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1 Quasirandom graphs

Theorem 1 (Chung, Graham, Wilson). Let G be a graph with n vertices and
edge density p. Then the following statements are asymptotically equivalent:

(i) G has low discrepancy: |G — pllg < ¢
(ii) G correctly counts all graphs: t(F,G) = pl¥! £ ¢o|F| for all graphs F
(i4i) G has few 4-cycles: t(Cy, G) < p* + c3
(iv) Only the first eigenvalue matters: Ay = (p £ ca)n, |A2] < cn
Proof. (i) = (i)
Let m be the number of vertices of the graph F, and assume V(F) = [m)]

and E(F) = {e1,...,ep|}. For t =1,... |F|, let i, j; be the endpoints of the
edge e;. Then [t(F,G) — p/¥l| can be rewritten as

Eajl,“.7wm€V(G) H G(I“x]) _plF‘

ijEB(F)
|F| |F|
= Bay.oanevie) | 20" (Glai,z5) —p) [ Glai, ;)
t=1 s=t+1
|F'| |F|
<Y P By amevie) | (Glai,z,) —p) [ Glas,, ;)
t=1 s=t+1

Take any term in this sum, and for notational convenience assume that i; = 1
and j; = 2. Then for any fixed z3, ...,z € V(G) we have

|F|
Eayasev(e) |(Glzr,22) —p) [ Glai, ;)
s=t+1

= |Ez1,z26V(G) [(G(ffhm) -p) at($1)bt(x2)]

)




where a; and b; are the functions given by

H G(zi,,x;,)

= H G(zs,,x;,) and by(xg) :=
s>t

s>t
1€es 1¢es
By hypothesis |G — p|lg < ¢1, so the expression on the right is at most ¢; for
all fixed 3, - ,x,,. Thus
|F'|
Ezl ..... Tm €V (G) (G<xlt7xjt H G xz 7x] <c,
s=t+1

implying [t(F,G) — pl¥!| < ¢1|F|, and so we may take ¢ = ¢;

This is just a special case, and we can take c3 = 4co

(7i1) = (iv)
Suppose the vertices of G are labelled by {1, 2 n}, and denote the adja-
cency matrix of G by A. First note that Ay > pn, since
2

] g Ml el e g
v#0 |lvll2 lellz = flell?2 — n ’

where e = (1,1,...,1)%
Now we note that, for any k € N, the entry (i, j) on the matrix A* counts the

number of (directed) paths of length k on G beginning at vertex ¢ and ending

at vertex j. For instance,
(A% = > AuwAreAy = {(k,0) € [n] : ik, ke, 4] € E(G)}]
k=1

is the number of directed paths of length 3 starting at ¢ and ending at j
Thus (A%);; counts the number of labelled 4-cycles starting (and ending)

vertex 7. This implies that
Al + A5
HC, G) = 42,44”: ZA“
By assumption t(Cy, G) < p*+ c3, which together with A\; > pn implies that
1/4

(p+ cé/ Jn and |Ag] < 03/ n. We may then take ¢4 = ¢4

A <
(iv) = (1)
We will first show that || A—pJ||sp < 6ci/2n, where A is the adjacency matrix
of G, J = ee’ is the n x n all-ones matrix and || - ||sp is the spectral norm.
vn} be an orthonormal basis of eigenvectors of A, where v;

Let {vy,va,...,
is an eigenvector associated to the eigenvalue A; for all 1 <i <n



If we suppose the graph G is regular of degree pn, then the result we want
to prove is simple: in this case e; := e/y/n is a unitary eigenvector of A with
eigenvalue \; = pn, and so

n
A—pJ=A—pneel = Z /\jvjv§
=2

has spectral norm equal to |A2] < ¢yn.
If we do not suppose G is regular, then we can decompose

n
A—pJ= Z \ivivl — pnegel
i=1

n
t t t t t
= \Mv1v] — pnuiv; + E )\jvjvj + pnviv; — pneje;
=2

= My + My + Ms,

where

n
My = (M — pn)vvt, My = Z)‘ﬂ)ﬂ};’ M3 = pn(vivh — eiel).
j=2
Clearly | Mi]lsp = [A1 — pn| < can and [|[Ma||sp = [A2| < can.
Let us now bound || M3||sp. Since Ms is symmetric real, we know that

| Ms5]|sp = max |u' M3ul.
[lull2=1

Moreover, for any fixed u € R™ with |Jull2 = 1 we have that

|u' M3u| = pn - |(utv1)2 — (ut61)2|
=pn-|u'(v1 +er)| - [u'(v1 — e1)]

<2pn-|jv1 —e1ll2,

where the last inequality follows from Cauchy-Schwarz. It thus suffices to bound
o1 — e

Decompose e; = pvy + w, where u = eﬁvl and w is orthogonal to v;. Note
that ||w|l2 < 1 (by Pythagoras’ theorem) and that, up to changing v; by —uvy,
we can assume g > 0. Then

pn = ejde; < | Aeills = [[A(por + w)lla
< pf|Avi |2 + [|Aw|l2
< pAr A+ Ao - flwll
< pu(p+ ca)n + can

—c 2c
= e§v1:p2u>l——4

D+cq p



From this we conclude that

404

lv1 — e1]|3 = vivy — 2vte; +ele; = 2(1 —viey) < ?

We thus conclude that || Msl|sp < 2pn - [jur — e1]]2 < 461/2n and

1/2
[A=pJ|lsp < [Millsp + [[Mz|lsp + [[Ma]]sp < 6C4/ n,

as wished.

The rest follows immediately from Cauchy-Schwarz. Indeed, for any subsets
X,Y CV(G) we have

n n

1 1 . .
) Z Z(G(ff’y) —-p)| = 3 ZZ(AU —p)1x(i)1y(4)
zeX yeY =1 j=1
1
< SlA=pJllspllLxll2l1y 2
1/2
< 604/
We thus obtain property (i) with ¢; = 60}1/ 2, O



2 Uniformity and quasirandomness in additive
groups

Recall that we defined the U? norm of a function f : G — R by

I£llg2y = Bahinoec [ F@)f (@ + ) (@ + ha) f(x + by + ha) ]

Lemma 1. For all real functions f: G — R, we have || f||y2(q) = ||f||£4(é),

Proof. Since f is real-valued, for all v € G we have that

[FO)I* = Eaealf (@)7(@)] Byea [ f )7 (W) Ezcalf (2)7(2)] Buea [ f (w)y(w)]
=Eoyzwea [f(@) f(W) f(2) f(w)y(—z -y + 2+ w)]

Using the orthogonality relations of characters we then obtain

115 ) = Bawmwee | F@F@)F(2)f(w) Y v(—a —y+2+w)

'yeé

= Ex,y,z,wGG [f(l')f(y)f(Z)f(’lU) . |G‘]—{m+y:z+w}]

Now we note that, when x, hy, hy are uniformly distributed over G, the
quadruple (z,x+hi+ha, x+h1, x+he) is uniformly distributed over all solutions
in G to x +y = z + w. This implies that the last expression is equal to

Eahy hoe [ F(2)f (@ + byt h2) fa + h) f (@ + h2) ] = [ fl[E2(cs
finishing the proof. O

We defined in the lecture the following inner product of second order:

(1, f2, 35 f) vz @) = Bahy hoea [ F1(2) f2(x + ha) f3(z + h2) fa(z + hy + ha) ]

With this inner product we have that || f|v2q) = (f, f, f, f>(1]/24(G).

Lemma 2 (Gowers-Cauchy-Schwarz inequality). For any functions f1, fa, f3, fa :
G — R we have

(1, f2, f3, f) vz < I fillozo)l f2lloz @) | f3lloe o | falloz e

Proof. By the usual Cauchy-Schwarz inequality applied to the variable hi, we
see that

(f1, for f35 f)Bre = B pyhoec [ f1(2) fo(@ + hy) fa(x + o) fa(x + by + ho)]?
= En, [Eq [f1(2) f2(z + 7)) - By [f3(y) faly + ha)] ]2
< (B, [Ec (@) fale+h)l]) - (Bn, [y faly)faly + )] ])



= (f1, f2, f1, f2)v2(f3, fa, f3, fa)ue

Applying the same argument to the variable hy instead of hq, we obtain

(f1, f2o f3s f) o < (f1s 1o f30 f3)u2 (fos fou fas fa)ue

We conclude by using both inequalities one after the other:

(f1s fas F3, F1) T2 < (f1s fos 1, F2) o2 (f3y fa, f30 fa) T
< (f1, fi. f1, fr)uz(fa, fo, fo, fo)uz (f3, f3, f3, fa)uz (fa, fas far fa) o
= [1f1llE2 11 f2llire N 312 N fall e
O

Theorem 2 (Chung, Graham). Let G be an additive group of order n and

let A C G be a set of size |A] = an. Then the following are asymptotically
equivalent:

(i) Fourier coefficients: |A(y)| < ¢1 for all non-trivial characters ~

(ii) Additive quadruples: There are at most (a* + co)n® solutions in A of the
equation T +vy =z +w

(i4i) Strong translation: For all sets B C G, all but at most cgn elements x € G
satisfy |AN (B +x)| = a|B| £ can

(iv) Weak translation: All but at most can elements x € G satisfy |[AN (A +
7)| =a’n+cen

Proof. First of all, we note that condition (i7) is equivalent to saying that
||AH?J2(G) <ot + .
(1) = (ii) . .
Suppose |A(1)] = a and |A(y)| < ¢1 for all v € G\ {1}. Then
1Al ey = 14l ) = + 3 [A)I*
7#1
<a'+) GIAMP
y#1
4 20 A2
Sa+ CIHAng(G)
=o' + A2 <+,
so we can take ca = c3.
(ii) = (i)

If HAH4U2((;) < a* + ¢y, then

ot er > Al gy = o' + AR 2 o + max] A(y)]*
v#1



This implies that max, . [A(y)| < 05/47 so we can take ¢; = c§/4.

We first note that, for any fixed x € G, we have

|AN(B—2)|—alB| = Y (A(y) - @)B(z +y)
yeG
Using this identity and the Gowers-Cauchy-Schwarz inequality we see that
2

Y (AnB-a2) -aB)* =" | Y (Aly) — a)Blz +y)

z€G zeG \yeG

Y (Aly) — )Bla +y)(A(z) — a)B(x + z)

z,y,2€G
= n3<A - Q, B7 A— [ B>U2(G)

<n’||A - allfz e

Defining the function f(z) := A(z) — o in G, we easily see that f(1) = 0 and
f(y) = A(y) for all v € G\ {1}. Supposing ||A||‘[L]2(G) < a* + ¢y, we then obtain
14 = alldaiay = Il = 14l — a* = Al — o < co

If less than (1 — c3)n values = € G satisfy |AN (B — z)| = a|B| £ ¢3n, then

> (AN (B =) - a|B|)* > esn - (csn)® = cin®
zeG

It thus suffices to take c3 = cé/ % for this last inequality to be incompatible with
our previous bound.

(7i1) = (iv)

This is just a special case, and we may take ¢4 = c3.
(iv) = (i1)

As in the proof that (i7) = (i4i), we see that

Yo lAN(A+ D) =0*| Al {2
zeG

Assuming ¢4 <1 (as otherwise we may just take co = 1), we then have

nAllf2 gy < n- (0% + ea)?n® + ean - n?

< (a4 3cq)n® + can® = (o + 4ey)n®

We may then take co = 4c¢y. O



Definition. Given a subset A C G, we define its Cayley graph I' 4 by
V(La) =G, Ela)=A{zy:xz+yecA}

Lemma 3. A set A C G is linear uniform if and only if its Cayley graph T 4 is
quasirandom.

Proof. We will show that property (iii) of quasirandom graphs applied to I" 4 is
the same as property (ii) of quasirandom sets applied to A. Indeed,

t(Cy,Ta) = Eqpcacc [Tala,b)Ta(b,c)l a(c,d)la(d, a)]
= Ea,b,c,dEG [A(a + b)A(b + C)A(C + d)A(d + (l)]
Let us now make the change of variables x := a+b, hy :=c—a, ho :=d—b. It is

easy to see that x, hq, ho are uniformly distributed on G, so the last expression
is equal to

B hyhoec [A(@)A(z + h1) A(x + hy + ho) A(z + ha)] = | All 2

Thus t(Cy,T4) < a* + € if and only if ”A”%ﬁ(c) < o + ¢, as wished. O

Lemma 4. Let G be an additive group of odd order and suppose A C G is linear
e-uniform. Then there are between (o — e)n? and (o + €)n? 3-term arithmetic
progressions in A.

Proof. We will use the identity

Eoreclfi(@)fa(z+ 1) fs(x+20)] = > () 07200,

’yEG‘

where v~2 is the character satisfying v=2(z) = v(z)~2 for all € G. Indeed,

the last sum is equal to

> Eeealf(@(@)] Eyealf (1)1 2(1)) Ezealf(2)7(2)]

'yEC?

=Y Euyeclfi(@) foa) fs(2)y(—z + 2y — 2)]

ve@
=Eoy o [f1(2) f2(y) f3(2) - |G (g4 22,1
=Ky req(fi(z)fo(z + 1) f3(x + 27)],

where we used the orthogonality relations of characters for the second equality.
As A(1) = «, we conclude that

Eepec[A(@)Alz +r)Al+2r)]=a+ Y A()?AR7%)
vEG\{1}



We then bound the absolute value of the last sum by

> AW)*A(T?) S( max A(v)) > 1AW 1A

ea\{1}

yeG\{1} veG\{1}
1/2 1/2
> AP > AP
’yEG 'yeé

where for the last inequality we used Cauchy-Schwarz and the fact that A is
linear e-uniform.

We will next show that {y~2: v € G} = G. Note that this would conclude
the proof, since it implies that the right hand side of the last inequality is equal
to e||A||€2 @ = = €| All32 (@) < € Since clearly {7y2:~4 e G} C G, it suffices to
show that v=2 # n~2 whenever v and 7 are distinct characters.

But if v # 1 and y~2 = =2, then ny~! is a nontrivial character satisfying
(ny~1)% = 1. This implies that the order of 77 ~! is 2, which is impossible since
it must divide |G| = |G| which is odd. This contradiction finishes the proof. [

Remark: The assumption that G has odd order cannot be dropped. To see
this, consider the group Fy and any set A C Fy of density 0 < a < 1. Then

Eqrery [A(2)A(z + 1) A(z + 27)] = Eo rerg [A(2) A + 7)) = o

is strictly bigger than o + ¢ for any € < (1 — a)a?.



3 Quasirandomness in hypergraphs

Lemma 5 (Counting lemma for quasirandomness of order d). For any k-
uniform hypergraph H and any 0 < p < 1, we have that

k
t(F,H)=p P £ |F| |H —pley. ¥YF e £

Proof. Let m be the number of vertices of the graph F, and assume V (F) = [m]

and E(F) = {e1,...,e;p}. Then we can write as a telescoping sum
t(F, H) —plFl| = Exevmyve H H(x.) — plFl
|e€E(F)
[1F| IF|
= IExGV(H)V(F) sz_l (H(X€i> -p) H H(X€j>
=1 j=it+1 |
L 7| |
< sz_l IExEV(H)V(F) (H(Xei) —p) H H(Xej)
i=1 j=it+1

The i-th term in the final sum is bounded by |[H — pl|gx. Indeed, if we fix all
variables other than x.,, then all the factors except for (H(x.,) — p) have the
form wu(xy) for some set f of size at most d, as f is the intersection of e; with
another edge ¢;. So the the expectation can be bounded by ||H — p||g« for each
term, proving the lemma. U

Given functions f, : VF = R, w € {0,1}*, we define their inner product of
order k by

(fo)weqo,13)ocrs = Ex(0) x) vk H fux@ 1,
we{0,1}*

where we write x(“) := (xz(-w7')),-e[k]. With this inner product, we have

A2 = (o foee s Poons

Lemma 6 (Gowers-Cauchy-Schwarz inequality).

<(fw)w€{0,l}k>OCTk < H ”fw”OCT‘C

we{0,1}F

The proof of this lemma follows by applying Cauchy-Schwarz k times con-
secutively, and it will be given next class.

Remark: Using the Gowers-Cauchy-Schwarz inequality it is possible to prove
that the octahedral norm satisfies the triangle inequality, and is thus indeed a
norm.

10



Lemma 7. For every function f : V¥ — R, we have that 1o, < [fllocrw-

Proof. For any function ug : VB — [0,1], B € (k[f]l), we let f,, : VIF — R be
the function f,, (x) := up(xp), where wp € {0,1}* is the indicator vector
of the set B.

By denoting f; := f and f, := 1 for w € {0,1}/*\ {1} not in {wp : B €
( k[f]l)}, using the Gowers-Cauchy-Schwarz inequality we conclude that

1

Exevin |fx) [ wsxp)||=|Exoxwers | [ fox™)

Be (M) we{o,1}+

< H | follocrs

we{0,1}k

Since clearly || fulloers < || fullee < 1 for all w € {0, 1}F\ {1}, the last product
is at most || f||oerk- As this inequality is valid for all functions ug : VE — [0, 1],
Be (k[f]l), we obtain the claim. O

Theorem 3 (Kohayakawa, R6dl, Skokan). Let H be a k-uniform hypergraph
with edge density p. Then the following statements are asymptotically equivalent:

(i) H is strongly quasirandom: ||H —pHDZil <c
(ii) H correctly counts all hypergraphs:

t(F,H) = alfl £ co|F|  for all k-hypergraphs F

(iii) H correctly counts Oct™® and all its subhypergraphs:
t(F,H) =o'+ ¢35 for all F C OcT®
Proof. (i) = (i7)
This follows immediately from the counting lemma, and we may take co = ¢;.
This is a special case, and we may take c3 = 2¥¢;.
Suppose t(F, H) = plFl 4+ ¢ for all subhypergraphs F C Oct®™ . Then

t(OCT(k), H—-p)= Eer(H)WO”(’“)) H (H(x.) —p)
LecOcT(*)
= EXEV(H)V(()CT(’C)) Z H H(Xe) H (_p)
| FCOcT(®) e€F €00\ F

11



- Z EXEV(H)V(O(:T(’C)) [H H(xe)‘| .(_p)2k—|F|

FCOct(F) e€F
K
= Y tFH) (-p* 7
FCOct(®)
= > W)
FCOct(®)
= 3 P 22
FCOct(®)
=+9%"¢,

Thus ||H — p|loe = t(OCT(k)7 H —p)l/zk < 20§/2k, and the claim follows from

k
the inequality |[H — pllor < ||H — plloer (with ¢ = 2¢3/%). O

k—1

12



4 Comparing quasirandomness in additive groups
and in hypergraphs

Lemma 8. For every function f : V¥ — R, we have that ||f||D§71 < Ifloerk -

Proof. For any function ug : VEZ —[0,1], B € (k[f]l), we let f,, : VIF = R be
the function f,,, (xjx)) = up(xp), where wp € {0,1}*] is the indicator vector
of the set B.

By denoting f; := f and f, := 1 for w € {0,1}¥1\ {1} not in {wp : B €
(k[f]l)}, using the Gowers-Cauchy-Schwarz inequality we conclude that

Exevin |fx) [ wsxs)||=|Exoxmers | [ fox*)

Be(k[ﬁ]l) we{0,1}k

H ||fw||OCTk

we{0,1}+

IN

Since clearly || fulloers < || fullee < 1 for all w € {0, 1}F\ {1}, the last product
is at most || f||oerk- As this inequality is valid for all functions ug : VE — [0, 1],
Be (k[f]l), we obtain the claim. O

Remark: Denoting by s : G¥ — G the sum operator (z1,...,71) — o1 +
-+ +xg, one can easily prove the identity || f||yxq) = [|f © sk llocrr, valid for all
functions f : G — R.

Theorem 4. Let G be a finite additive group and A C G be a subset.
a) If A is e-uniform of degree d, then for all k > d+ 1 the Cayley hypergraph
HW® A is e-quasirandom of order d.
gd+1 )

b) Conversely, if HYtY A is e-quasirandom of order d, then A is 2¢'/
uniform of degree d.

Proof. We will prove the theorem more generally for functions f : G — [0,1]
instead of only sets A C G. The statement then follows by taking f to be the
indicator function of the set A.

a) Suppose f : G — R satisfies || f—a||ya+1 < €, and choose optimal functions
up : GB —[0,1], B¢ ([Z]), so that

IH® f —allgs == [[f o s — alloy = [Exegm |[(f(s(x)) —a) [ un(xs)
Be('y)

13



We now separate the first d + 1 variables x4, 1) from the rest, thus writing
|H®) f — oy as

o arn Bxparny | (F (5xpaga) + sGeppasn) —a) [ usxs) ||,

where the first expectation is over G\ and the second is over G4+,

By using the triangle inequality and choosing suitable functions vp x .\ a y;
GP — [0,1] for each xp\(g41) € GFNIT and each set D € ([d;”), the last
expression is at most

B sy |Bxpara) (TS(X[k]\[dJrl])f 0 8(X[g41]) — a) H UD x40y (XD)
pe(431)
< By g I TN f 05— af|gan

= Expopasn 1 08 = ellgen

= [HD f ~ al|gan
By the Gowers-Cauchy-Schwarz inequality corollary, this is at most
IHEDf — allgern = [HED(F = o) loerars = |1 = allpers < e,
thus showing |H*) f — afgs <e.

b) If h: V41 — [0, 1], recall that

d+1
DB =Exo xwevan | [ Ax*))
we{0,1}*

We can then use the pigeonhole principle to freeze the x(*) variables and then
obtain functions up : VP —[0,1], D € ([dil'l]), for which

d+1
hllgers 2 Exevars |A(x) [ up(xp)| = [Ih]Eerar
pe(1)
The claim easily follows from the identity || f||ga+1(q) = || © sklloerd+r - O

Definition: d-simple k-graphs Sék), squashed octahedron OCTE;C).

Theorem 5. Let A C G be a set of density o in G. Then for every k > d+ 1
the following statements are asymptotically equivalent:

14



(i) A is uniform of degree d:  ||A — | gerr < ¢

(ii) H®) A correctly counts all hypergraphs in Sc(ll_?l :

t(F,H® A) = ol £ eo|F|  vFesP

(iii) H®) A correctly counts OCTgﬂl:

t(OCTg:_)l,H(k)A) =a2" Loy

Proof. (i) = (ii):

|F| |F|
t(F, H®) f) — a\FI‘_ By, cav Za (fos(xe;) — ) H fos(xe;)
i=1 Jj=i+1
|F| |F|
SZ Ex,cav |(fos(xe,)— H fos(xe;)
i=1 j=i+1
|F|
<D By, [Bxy, | (F (s(21) + 5(xe0 1) — )
i=1
|F|
< I (s(xejnp) + s(xe\10)
j=i+1

Let us now consider the i-th term in the last sum. For a fixed xy-;, € GV'\f:
and each i+1 < j < |F[, define the function u; x,. , = T5®e\10) fo 5 on GeiNfi,
With this notation, the last sum becomes

I |F]
> By, [Bxy, | (7500 fos(xs) = a) T] iy, (esrir)
i=1 j=i+1
7]
< Z v, HTs(xe \i) fos— a' et
£ :

(3
- ]1f o5 — aflge

Then item (i7) follows from the corollary of the Gowers-Cauchy-Schwarz in-
equality, since

If o5 —allgan = [H® f —allgan < [HYf —allooass = |If — allpass < e,

and we may take co = c1.

15



This is a special case, and we may take c3 = 29 ¢,.

(7i1) = (i):

First we note that t(OCTgi)l, H® £y = t(Oct D HE@+D) £ for any func-
tion f: G — R. Indeed, we have that

Oy, HY f) = Byeav [T fosx)

EGOCTfiﬁ_)l

=Eycatr-aExo x0eqtat H f (S(y) + S(X(w))>
we{0,1}a+1

= Eycqir-a t(OCT(d“)’ H(dH)TS(y)f)]
= t(OCT(d"’l),H(dH)f)

Item () then follows from the hypergraph quasirandomness theorem given last
lecture and the item b) of the last theorem. O
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