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1 Quasirandom graphs

Theorem 1 (Chung, Graham, Wilson). Let G be a graph with n vertices and
edge density p. Then the following statements are asymptotically equivalent:

(i) G has low discrepancy: ‖G− p‖� ≤ c1

(ii) G correctly counts all graphs: t(F,G) = p|F | ± c2|F | for all graphs F

(iii) G has few 4-cycles: t(C4, G) ≤ p4 + c3

(iv) Only the first eigenvalue matters: λ1 = (p± c4)n, |λ2| ≤ c4n

Proof. (i)⇒ (ii)
Let m be the number of vertices of the graph F , and assume V (F ) = [m]

and E(F ) = {e1, . . . , e|F |}. For t = 1, . . . , |F |, let it, jt be the endpoints of the

edge et. Then |t(F,G)− p|F || can be rewritten as∣∣∣∣∣∣Ex1,...,xm∈V (G)

 ∏
ij∈E(F )

G(xi, xj)− p|F |
∣∣∣∣∣∣

=

∣∣∣∣∣∣Ex1,...,xm∈V (G)

 |F |∑
t=1

pt−1 (G(xit , xjt)− p)
|F |∏

s=t+1

G(xis , xjs)

∣∣∣∣∣∣
≤
|F |∑
t=1

pt−1

∣∣∣∣∣∣Ex1,...,xm∈V (G)

(G(xit , xjt)− p)
|F |∏

s=t+1

G(xis , xjs)

∣∣∣∣∣∣
Take any term in this sum, and for notational convenience assume that it = 1

and jt = 2. Then for any fixed x3, . . . , xm ∈ V (G) we have∣∣∣∣∣∣Ex1,x2∈V (G)

(G(x1, x2)− p)
|F |∏

s=t+1

G(xis , xjs)

∣∣∣∣∣∣
=
∣∣Ex1,x2∈V (G) [(G(x1, x2)− p) at(x1)bt(x2)]

∣∣ ,
1



where at and bt are the functions given by

at(x1) :=
∏
s>t
1∈es

G(xis , xjs) and bt(x2) :=
∏
s>t
1/∈es

G(xis , xjs)

By hypothesis ‖G − p‖� ≤ c1, so the expression on the right is at most c1 for
all fixed x3, · · · , xm. Thus∣∣∣∣∣∣Ex1,...,xm∈V (G)

(G(xit , xjt)− p)
|F |∏

s=t+1

G(xis , xjs)

∣∣∣∣∣∣ ≤ c1,
implying |t(F,G)− p|F || ≤ c1|F |, and so we may take c2 = c1.

(ii)⇒ (iii)
This is just a special case, and we can take c3 = 4c2.

(iii)⇒ (iv)
Suppose the vertices of G are labelled by {1, 2, . . . , n}, and denote the adja-

cency matrix of G by A. First note that λ1 ≥ pn, since

|λ1| = max
v 6=0

‖Av‖2
‖v‖2

≥ ‖Ae‖2
‖e‖2

≥ etAe

‖e‖22
=
pn2

n
= pn,

where e = (1, 1, . . . , 1)t.
Now we note that, for any k ∈ N, the entry (i, j) on the matrix Ak counts the

number of (directed) paths of length k on G beginning at vertex i and ending
at vertex j. For instance,

(A3)ij =

n∑
k,`=1

AikAk`A`j = |{(k, `) ∈ [n]2 : ik, k`, `j ∈ E(G)}|

is the number of directed paths of length 3 starting at i and ending at j.
Thus (A4)ii counts the number of labelled 4-cycles starting (and ending) at

vertex i. This implies that

t(C4, G) =
1

n4

n∑
i=1

(A4)ii =
1

n4
tr(A4) =

1

n4

n∑
i=1

λ4i ≥
λ41 + λ42
n4

By assumption t(C4, G) ≤ p4 + c3, which together with λ1 ≥ pn implies that

λ1 ≤ (p+ c
1/4
3 )n and |λ2| ≤ c1/43 n. We may then take c4 = c

1/4
3 .

(iv)⇒ (i)

We will first show that ‖A−pJ‖sp ≤ 6c
1/2
4 n, where A is the adjacency matrix

of G, J = eet is the n× n all-ones matrix and ‖ · ‖sp is the spectral norm.
Let {v1, v2, . . . , vn} be an orthonormal basis of eigenvectors of A, where vi

is an eigenvector associated to the eigenvalue λi for all 1 ≤ i ≤ n.
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If we suppose the graph G is regular of degree pn, then the result we want
to prove is simple: in this case e1 := e/

√
n is a unitary eigenvector of A with

eigenvalue λ1 = pn, and so

A− pJ = A− pne1et1 =

n∑
j=2

λjvjv
t
j

has spectral norm equal to |λ2| ≤ c4n.
If we do not suppose G is regular, then we can decompose

A− pJ =

n∑
i=1

λiviv
t
i − pne1et1

= λ1v1v
t
1 − pnv1vt1 +

n∑
j=2

λjvjv
t
j + pnv1v

t
1 − pne1et1

= M1 +M2 +M3,

where

M1 = (λ1 − pn)v1v
t
1, M2 =

n∑
j=2

λjvjv
t
j , M3 = pn(v1v

t
1 − e1et1).

Clearly ‖M1‖sp = |λ1 − pn| ≤ c4n and ‖M2‖sp = |λ2| ≤ c4n.
Let us now bound ‖M3‖sp. Since M3 is symmetric real, we know that

‖M3‖sp = max
‖u‖2=1

|utM3u|.

Moreover, for any fixed u ∈ Rn with ‖u‖2 = 1 we have that

|utM3u| = pn · |(utv1)2 − (ute1)2|
= pn · |ut(v1 + e1)| · |ut(v1 − e1)|
≤ 2pn · ‖v1 − e1‖2,

where the last inequality follows from Cauchy-Schwarz. It thus suffices to bound
‖v1 − e1‖2.

Decompose e1 = µv1 + w, where µ = et1v1 and w is orthogonal to v1. Note
that ‖w‖2 ≤ 1 (by Pythagoras’ theorem) and that, up to changing v1 by −v1,
we can assume µ ≥ 0. Then

pn = et1Ae1 ≤ ‖Ae1‖2 = ‖A(µv1 + w)‖2
≤ µ‖Av1‖2 + ‖Aw‖2
≤ µλ1 + |λ2| · ‖w‖2
≤ µ(p+ c4)n+ c4n

⇒ et1v1 = µ ≥ p− c4
p+ c4

≥ 1− 2c4
p
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From this we conclude that

‖v1 − e1‖22 = vt1v1 − 2vt1e1 + et1e1 = 2(1− vt1e1) ≤ 4c4
p

We thus conclude that ‖M3‖sp ≤ 2pn · ‖v1 − e1‖2 ≤ 4c
1/2
4 n and

‖A− pJ‖sp ≤ ‖M1‖sp + ‖M2‖sp + ‖M3‖sp ≤ 6c
1/2
4 n,

as wished.
The rest follows immediately from Cauchy-Schwarz. Indeed, for any subsets

X,Y ⊆ V (G) we have

1

n2

∣∣∣∣∣∣
∑
x∈X

∑
y∈Y

(G(x, y)− p)

∣∣∣∣∣∣ =
1

n2

∣∣∣∣∣∣
n∑
i=1

n∑
j=1

(Aij − p)1X(i)1Y (j)

∣∣∣∣∣∣
≤ 1

n2
‖A− pJ‖sp‖1X‖2‖1Y ‖2

≤ 6c
1/2
4

We thus obtain property (i) with c1 = 6c
1/2
4 .
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2 Uniformity and quasirandomness in additive
groups

Recall that we defined the U2 norm of a function f : G→ R by

‖f‖U2(G) := Ex,h1,h2∈G [ f(x)f(x+ h1)f(x+ h2)f(x+ h1 + h2) ]
1/4

Lemma 1. For all real functions f : G→ R, we have ‖f‖U2(G) = ‖f̂‖`4(Ĝ).

Proof. Since f is real-valued, for all γ ∈ Ĝ we have that

|f̂(γ)|4 = Ex∈G[f(x)γ(x)]Ey∈G[f(y)γ(y)]Ez∈G[f(z)γ(z)]Ew∈G[f(w)γ(w)]

= Ex,y,z,w∈G [f(x)f(y)f(z)f(w)γ(−x− y + z + w)]

Using the orthogonality relations of characters we then obtain

‖f̂‖4
`4(Ĝ)

= Ex,y,z,w∈G

f(x)f(y)f(z)f(w)
∑
γ∈Ĝ

γ(−x− y + z + w)


= Ex,y,z,w∈G

[
f(x)f(y)f(z)f(w) · |G|1{x+y=z+w}

]
Now we note that, when x, h1, h2 are uniformly distributed over G, the

quadruple (x, x+h1+h2, x+h1, x+h2) is uniformly distributed over all solutions
in G to x+ y = z + w. This implies that the last expression is equal to

Ex,h1,h2∈G [ f(x)f(x+ h1 + h2)f(x+ h1)f(x+ h2) ] = ‖f‖4U2(G),

finishing the proof.

We defined in the lecture the following inner product of second order :

〈f1, f2, f3, f4〉U2(G) = Ex,h1,h2∈G [ f1(x)f2(x+ h1)f3(x+ h2)f4(x+ h1 + h2) ]

With this inner product we have that ‖f‖U2(G) = 〈f, f, f, f〉1/4U2(G).

Lemma 2 (Gowers-Cauchy-Schwarz inequality). For any functions f1, f2, f3, f4 :
G→ R we have

〈f1, f2, f3, f4〉U2(G) ≤ ‖f1‖U2(G)‖f2‖U2(G)‖f3‖U2(G)‖f4‖U2(G)

Proof. By the usual Cauchy-Schwarz inequality applied to the variable h1, we
see that

〈f1, f2, f3, f4〉2U2 = Ex,h1,h2∈G [ f1(x)f2(x+ h1)f3(x+ h2)f4(x+ h1 + h2) ]
2

= Eh1
[Ex [f1(x)f2(x+ h1)] · Ey [f3(y)f4(y + h1)] ]

2

≤
(
Eh1

[
Ex [f1(x)f2(x+ h1)]

2
])
·
(
Eh1

[
Ey [f3(y)f4(y + h1)]

2
])
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= 〈f1, f2, f1, f2〉U2〈f3, f4, f3, f4〉U2

Applying the same argument to the variable h2 instead of h1, we obtain

〈f1, f2, f3, f4〉2U2 ≤ 〈f1, f1, f3, f3〉U2〈f2, f2, f4, f4〉U2

We conclude by using both inequalities one after the other:

〈f1, f2, f3, f4〉4U2 ≤ 〈f1, f2, f1, f2〉2U2〈f3, f4, f3, f4〉2U2

≤ 〈f1, f1, f1, f1〉U2〈f2, f2, f2, f2〉U2〈f3, f3, f3, f3〉U2〈f4, f4, f4, f4〉U2

= ‖f1‖4U2‖f2‖4U2‖f3‖4U2‖f4‖4U2

Theorem 2 (Chung, Graham). Let G be an additive group of order n and
let A ⊆ G be a set of size |A| = αn. Then the following are asymptotically
equivalent:

(i) Fourier coefficients: |Â(γ)| ≤ c1 for all non-trivial characters γ

(ii) Additive quadruples: There are at most (α4 + c2)n3 solutions in A of the
equation x+ y = z + w

(iii) Strong translation: For all sets B ⊆ G, all but at most c3n elements x ∈ G
satisfy |A ∩ (B + x)| = α|B| ± c3n

(iv) Weak translation: All but at most c4n elements x ∈ G satisfy |A ∩ (A +
x)| = α2n± c4n

Proof. First of all, we note that condition (ii) is equivalent to saying that
‖A‖4U2(G) ≤ α

4 + c2.

(i)⇒ (ii)
Suppose |Â(1)| = α and |Â(γ)| ≤ c1 for all γ ∈ Ĝ \ {1}. Then

‖A‖4U2(G) = ‖Â‖4
`4(Ĝ)

= α4 +
∑
γ 6=1

|Â(γ)|4

≤ α4 +
∑
γ 6=1

c21|Â(γ)|2

≤ α4 + c21‖Â‖2`2(Ĝ)

= α4 + c21‖A‖2L2(G) ≤ α
4 + c21,

so we can take c2 = c21.

(ii)⇒ (i)
If ‖A‖4U2(G) ≤ α

4 + c2, then

α4 + c2 ≥ ‖Â‖4`4(Ĝ)
= α4 +

∑
γ 6=1

|Â(γ)|4 ≥ α4 + max
γ 6=1
|Â(γ)|4

6



This implies that maxγ 6=1 |Â(γ)| ≤ c1/42 , so we can take c1 = c
1/4
2 .

(ii)⇒ (iii)
We first note that, for any fixed x ∈ G, we have

|A ∩ (B − x)| − α|B| =
∑
y∈G

(A(y)− α)B(x+ y)

Using this identity and the Gowers-Cauchy-Schwarz inequality we see that

∑
x∈G

(|A ∩ (B − x)| − α|B|)2 =
∑
x∈G

∑
y∈G

(A(y)− α)B(x+ y)

2

=
∑

x,y,z∈G
(A(y)− α)B(x+ y)(A(z)− α)B(x+ z)

= n3〈A− α, B, A− α, B〉U2(G)

≤ n3‖A− α‖2U2(G)

Defining the function f(x) := A(x) − α in G, we easily see that f̂(1) = 0 and

f̂(γ) = Â(γ) for all γ ∈ Ĝ \ {1}. Supposing ‖A‖4U2(G) ≤ α
4 + c2, we then obtain

‖A− α‖4U2(G) = ‖f̂‖4
`4(Ĝ)

= ‖Â‖4
`4(Ĝ)

− α4 = ‖A‖4U2(G) − α
4 ≤ c2

If less than (1− c3)n values x ∈ G satisfy |A ∩ (B − x)| = α|B| ± c3n, then∑
x∈G

(|A ∩ (B − x)| − α|B|)2 > c3n · (c3n)2 = c33n
3

It thus suffices to take c3 = c
1/6
2 for this last inequality to be incompatible with

our previous bound.

(iii)⇒ (iv)
This is just a special case, and we may take c4 = c3.

(iv)⇒ (ii)
As in the proof that (ii)⇒ (iii), we see that∑

x∈G
|A ∩ (A+ x)|2 = n3‖A‖4U2(G)

Assuming c4 ≤ 1 (as otherwise we may just take c2 = 1), we then have

n3‖A‖4U2(G) ≤ n · (α
2 + c4)2n2 + c4n · n2

≤ (α4 + 3c4)n3 + c4n
3 = (α4 + 4c4)n3

We may then take c2 = 4c4.
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Definition. Given a subset A ⊆ G, we define its Cayley graph ΓA by

V (ΓA) = G, E(ΓA) = {xy : x+ y ∈ A}

Lemma 3. A set A ⊆ G is linear uniform if and only if its Cayley graph ΓA is
quasirandom.

Proof. We will show that property (iii) of quasirandom graphs applied to ΓA is
the same as property (ii) of quasirandom sets applied to A. Indeed,

t(C4,ΓA) = Ea,b,c,d∈G [ΓA(a, b)ΓA(b, c)ΓA(c, d)ΓA(d, a)]

= Ea,b,c,d∈G [A(a+ b)A(b+ c)A(c+ d)A(d+ a)]

Let us now make the change of variables x := a+b, h1 := c−a, h2 := d−b. It is
easy to see that x, h1, h2 are uniformly distributed on G, so the last expression
is equal to

Ex,h1,h2∈G [A(x)A(x+ h1)A(x+ h1 + h2)A(x+ h2)] = ‖A‖4U2(G)

Thus t(C4,ΓA) ≤ α4 + ε if and only if ‖A‖4U2(G) ≤ α
4 + ε, as wished.

Lemma 4. Let G be an additive group of odd order and suppose A ⊆ G is linear
ε-uniform. Then there are between (α3− ε)n2 and (α3 + ε)n2 3-term arithmetic
progressions in A.

Proof. We will use the identity

Ex,r∈G[f1(x)f2(x+ r)f3(x+ 2r)] =
∑
γ∈Ĝ

f̂1(γ)f̂2(γ−2)f̂3(γ),

where γ−2 is the character satisfying γ−2(x) = γ(x)−2 for all x ∈ G. Indeed,
the last sum is equal to∑

γ∈Ĝ

Ex∈G[f(x)γ(x)]Ey∈G[f(y)γ−2(y)]Ez∈G[f(z)γ(z)]

=
∑
γ∈Ĝ

Ex,y,z∈G[f1(x)f2(y)f3(z)γ(−x+ 2y − z)]

= Ex,y,z∈G
[
f1(x)f2(y)f3(z) · |G|1{x+z=2y}

]
= Ex,r∈G[f1(x)f2(x+ r)f3(x+ 2r)],

where we used the orthogonality relations of characters for the second equality.
As Â(1) = α, we conclude that

Ex,r∈G[A(x)A(x+ r)A(x+ 2r)] = α3 +
∑

γ∈Ĝ\{1}

Â(γ)2Â(γ−2)
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We then bound the absolute value of the last sum by∣∣∣∣∣∣
∑

γ∈Ĝ\{1}

Â(γ)2Â(γ−2)

∣∣∣∣∣∣ ≤
(

max
γ∈Ĝ\{1}

Â(γ)

) ∑
γ∈Ĝ\{1}

|Â(γ)| · |Â(γ−2)|

≤ ε

∑
γ∈Ĝ

|Â(γ)|2
1/2∑

γ∈Ĝ

|Â(γ−2)|2
1/2

where for the last inequality we used Cauchy-Schwarz and the fact that A is
linear ε-uniform.

We will next show that {γ−2 : γ ∈ Ĝ} = Ĝ. Note that this would conclude
the proof, since it implies that the right hand side of the last inequality is equal
to ε‖Â‖2

`2(Ĝ)
= ε‖A‖2L2(G) ≤ ε. Since clearly {γ−2 : γ ∈ Ĝ} ⊆ Ĝ, it suffices to

show that γ−2 6= η−2 whenever γ and η are distinct characters.
But if γ 6= η and γ−2 = η−2, then ηγ−1 is a nontrivial character satisfying

(ηγ−1)2 = 1. This implies that the order of ηγ−1 is 2, which is impossible since
it must divide |Ĝ| = |G| which is odd. This contradiction finishes the proof.

Remark: The assumption that G has odd order cannot be dropped. To see
this, consider the group Fn2 and any set A ⊂ Fn2 of density 0 < α < 1. Then

Ex,r∈Fn
2
[A(x)A(x+ r)A(x+ 2r)] = Ex,r∈Fn

2
[A(x)A(x+ r)] = α2

is strictly bigger than α3 + ε for any ε < (1− α)α2.

9



3 Quasirandomness in hypergraphs

Lemma 5 (Counting lemma for quasirandomness of order d). For any k-
uniform hypergraph H and any 0 ≤ p ≤ 1, we have that

t(F,H) = p|F | ± |F | · ‖H − p‖�k
d
∀F ∈ L(k)

d

Proof. Let m be the number of vertices of the graph F , and assume V (F ) = [m]
and E(F ) = {e1, . . . , e|F |}. Then we can write as a telescoping sum

∣∣∣t(F,H)− p|F |
∣∣∣ =

∣∣∣∣∣∣Ex∈V (H)V (F )

 ∏
e∈E(F )

H(xe)− p|F |
∣∣∣∣∣∣

=

∣∣∣∣∣∣Ex∈V (H)V (F )

 |F |∑
i=1

pi−1 (H(xei)− p)
|F |∏

j=i+1

H(xej )

∣∣∣∣∣∣
≤
|F |∑
i=1

pi−1

∣∣∣∣∣∣Ex∈V (H)V (F )

(H(xei)− p)
|F |∏

j=i+1

H(xej )

∣∣∣∣∣∣
The i-th term in the final sum is bounded by ‖H − p‖�k

d
. Indeed, if we fix all

variables other than xei , then all the factors except for (H(xei)− p) have the
form u(xf ) for some set f of size at most d, as f is the intersection of ei with
another edge ej . So the the expectation can be bounded by ‖H − p‖�k

d
for each

term, proving the lemma.

Given functions fω : V k → R, ω ∈ {0, 1}k, we define their inner product of
order k by

〈(fω)ω∈{0,1}k〉Octk := Ex(0),x(1)∈V k

 ∏
ω∈{0,1}k

fω(x(ω))

 ,
where we write x(ω) := (x

(ωi)
i )i∈[k]. With this inner product, we have

‖f‖2
k

Octk = 〈f, f, . . . , f〉Octk

Lemma 6 (Gowers-Cauchy-Schwarz inequality).

〈(fω)ω∈{0,1}k〉Octk ≤
∏

ω∈{0,1}k
‖fω‖Octk

The proof of this lemma follows by applying Cauchy-Schwarz k times con-
secutively, and it will be given next class.

Remark: Using the Gowers-Cauchy-Schwarz inequality it is possible to prove
that the octahedral norm satisfies the triangle inequality, and is thus indeed a
norm.
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Lemma 7. For every function f : V k → R, we have that ‖f‖�k
k−1
≤ ‖f‖Octk .

Proof. For any function uB : V B → [0, 1], B ∈
(

[k]
k−1
)
, we let fωB

: V [k] → R be

the function fωB
(x[k]) := uB(xB), where ωB ∈ {0, 1}[k] is the indicator vector

of the set B.
By denoting f1 := f and fω := 1 for ω ∈ {0, 1}[k] \ {1} not in {ωB : B ∈(

[k]
k−1
)
}, using the Gowers-Cauchy-Schwarz inequality we conclude that∣∣∣∣∣∣∣Ex∈V [k]

f(x)
∏

B∈( [k]
k−1)

uB(xB)


∣∣∣∣∣∣∣ =

∣∣∣∣∣∣Ex(0),x(1)∈V k

 ∏
ω∈{0,1}k

fω(x(ω))

∣∣∣∣∣∣
≤

∏
ω∈{0,1}k

‖fω‖Octk

Since clearly ‖fω‖Octk ≤ ‖fω‖`∞ ≤ 1 for all ω ∈ {0, 1}[k] \ {1}, the last product
is at most ‖f‖Octk . As this inequality is valid for all functions uB : V B → [0, 1],

B ∈
(

[k]
k−1
)
, we obtain the claim.

Theorem 3 (Kohayakawa, Rödl, Skokan). Let H be a k-uniform hypergraph
with edge density p. Then the following statements are asymptotically equivalent:

(i) H is strongly quasirandom: ‖H − p‖�k
k−1
≤ c1

(ii) H correctly counts all hypergraphs:

t(F,H) = α|F | ± c2|F | for all k-hypergraphs F

(iii) H correctly counts Oct(k) and all its subhypergraphs:

t(F,H) = α|F | ± c3 for all F ⊆ Oct(k)

Proof. (i)⇒ (ii)
This follows immediately from the counting lemma, and we may take c2 = c1.

(ii)⇒ (iii)
This is a special case, and we may take c3 = 2kc2.

(iii)⇒ (i)

Suppose t(F,H) = p|F | ± c3 for all subhypergraphs F ⊆ Oct(k). Then

t(Oct(k), H − p) = E
x∈V (H)V (Oct(k))

 ∏
e∈Oct(k)

(H(xe)− p)


= E

x∈V (H)V (Oct(k))

 ∑
F⊆Oct(k)

∏
e∈F

H(xe)
∏

e∈Oct(k)\F

(−p)


11



=
∑

F⊆Oct(k)

E
x∈V (H)V (Oct(k))

[∏
e∈F

H(xe)

]
· (−p)2

k−|F |

=
∑

F⊆Oct(k)

t(F,H) · (−p)2
k−|F |

=
∑

F⊆Oct(k)

(p|F | ± c3)(−p)2
k−|F |

=
∑

F⊆Oct(k)

p|F |(−p)2
k−|F | ± 22

k

c3

= ±22
k

c3

Thus ‖H − p‖Octk = t(Oct(k), H − p)1/2k ≤ 2c
1/2k

3 , and the claim follows from

the inequality ‖H − p‖�k
k−1
≤ ‖H − p‖Octk (with c1 = 2c

1/2k

3 ).
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4 Comparing quasirandomness in additive groups
and in hypergraphs

Lemma 8. For every function f : V k → R, we have that ‖f‖�k
k−1
≤ ‖f‖Octk .

Proof. For any function uB : V B → [0, 1], B ∈
(

[k]
k−1
)
, we let fωB

: V [k] → R be

the function fωB
(x[k]) := uB(xB), where ωB ∈ {0, 1}[k] is the indicator vector

of the set B.
By denoting f1 := f and fω := 1 for ω ∈ {0, 1}[k] \ {1} not in {ωB : B ∈(

[k]
k−1
)
}, using the Gowers-Cauchy-Schwarz inequality we conclude that∣∣∣∣∣∣∣Ex∈V [k]

f(x)
∏

B∈( [k]
k−1)

uB(xB)


∣∣∣∣∣∣∣ =

∣∣∣∣∣∣Ex(0),x(1)∈V k

 ∏
ω∈{0,1}k

fω(x(ω))

∣∣∣∣∣∣
≤

∏
ω∈{0,1}k

‖fω‖Octk

Since clearly ‖fω‖Octk ≤ ‖fω‖`∞ ≤ 1 for all ω ∈ {0, 1}[k] \ {1}, the last product
is at most ‖f‖Octk . As this inequality is valid for all functions uB : V B → [0, 1],

B ∈
(

[k]
k−1
)
, we obtain the claim.

Remark: Denoting by sk : Gk → G the sum operator (x1, . . . , xk) 7→ x1 +
· · ·+ xk, one can easily prove the identity ‖f‖Uk(G) = ‖f ◦ sk‖Octk , valid for all
functions f : G→ R.

Theorem 4. Let G be a finite additive group and A ⊆ G be a subset.

a) If A is ε-uniform of degree d, then for all k ≥ d+ 1 the Cayley hypergraph
H(k)A is ε-quasirandom of order d.

b) Conversely, if H(d+1)A is ε-quasirandom of order d, then A is 2ε1/2
d+1

-
uniform of degree d.

Proof. We will prove the theorem more generally for functions f : G → [0, 1]
instead of only sets A ⊆ G. The statement then follows by taking f to be the
indicator function of the set A.

a) Suppose f : G→ R satisfies ‖f−α‖Ud+1 ≤ ε, and choose optimal functions

uB : GB → [0, 1], B ∈
(
[k]
d

)
, so that

‖H(k)f − α‖�k
d

:= ‖f ◦ s− α‖�k
d

=

∣∣∣∣∣∣∣Ex∈G[k]

(f(s(x))− α)
∏

B∈([k]
d )

uB(xB)


∣∣∣∣∣∣∣

13



We now separate the first d + 1 variables x[d+1] from the rest, thus writing

‖H(k)f − α‖�k
d

as∣∣∣∣∣∣∣Ex[k]\[d+1]
Ex[d+1]

(f (s(x[d+1]) + s(x[k]\[d+1])
)
− α

) ∏
B∈([k]

d )

uB(xB)


∣∣∣∣∣∣∣ ,

where the first expectation is over G[k]\[d+1] and the second is over G[d+1].
By using the triangle inequality and choosing suitable functions vD,x[k]\[d+1]

:

GD → [0, 1] for each x[k]\[d+1] ∈ G[k]\[d+1] and each set D ∈
(
[d+1]
d

)
, the last

expression is at most

Ex[k]\[d+1]

∣∣∣∣∣∣∣Ex[d+1]

(T s(x[k]\[d+1])f ◦ s(x[d+1])− α
) ∏
D∈([d+1]

d )

vD,x[k]\[d+1]
(xD)


∣∣∣∣∣∣∣

≤ Ex[k]\[d+1]
‖T s(x[k]\[d+1])f ◦ s− α‖�d+1

d

= Ex[k]\[d+1]
‖f ◦ s− α‖�d+1

d

= ‖H(d+1)f − α‖�d+1
d

By the Gowers-Cauchy-Schwarz inequality corollary, this is at most

‖H(d+1)f − α‖Octd+1 = ‖H(d+1)(f − α)‖Octd+1 = ‖f − α‖Ud+1 ≤ ε,

thus showing ‖H(k)f − α‖�k
d
≤ ε.

b) If h : V d+1 → [0, 1], recall that

‖h‖2
d+1

Octd+1 = Ex(0),x(1)∈V d+1

 ∏
ω∈{0,1}k

h(x(ω))


We can then use the pigeonhole principle to freeze the x(0) variables and then
obtain functions uD : V D → [0, 1], D ∈

(
[d+1]
d

)
, for which

‖h‖�d+1
d
≥ Ex∈V d+1

h(x)
∏

D∈([d+1]
d )

uD(xD)

 ≥ ‖h‖2d+1

Octd+1

The claim easily follows from the identity ‖f‖Ud+1(G) = ‖f ◦ sk‖Octd+1 .

Definition: d-simple k-graphs S(k)d , squashed octahedron Oct
(k)
d .

Theorem 5. Let A ⊆ G be a set of density α in G. Then for every k ≥ d+ 1
the following statements are asymptotically equivalent:

14



(i) A is uniform of degree d: ‖A− α‖Ud+1 ≤ c1

(ii) H(k)A correctly counts all hypergraphs in S(k)d+1:

t(F,H(k)A) = α|F | ± c2|F | ∀F ∈ S(k)d+1

(iii) H(k)A correctly counts Oct
(k)
d+1:

t(Oct
(k)
d+1, H

(k)A) = α2d+1

± c3

Proof. (i)⇒ (ii):

∣∣∣t(F,H(k)f)− α|F |
∣∣∣ =

∣∣∣∣∣∣ExV ∈GV

 |F |∑
i=1

αi−1 (f ◦ s(xei)− α)

|F |∏
j=i+1

f ◦ s(xej )

∣∣∣∣∣∣
≤
|F |∑
i=1

∣∣∣∣∣∣ExV ∈GV

(f ◦ s(xei)− α)

|F |∏
j=i+1

f ◦ s(xej )

∣∣∣∣∣∣
≤
|F |∑
i=1

ExV \fi

∣∣∣∣∣∣Exfi

(f (s(xfi) + s(xei\fi)
)
− α

)

×
|F |∏

j=i+1

f
(
s(xej∩fi) + s(xej\fi)

)∣∣∣∣∣∣
Let us now consider the i-th term in the last sum. For a fixed xV \fi ∈ GV \fi

and each i+1 ≤ j ≤ |F |, define the function uj,xV \fi
:= T s(xej\fi )f ◦s on Gej∩fi .

With this notation, the last sum becomes

|F |∑
i=1

ExV \fi

∣∣∣∣∣∣Exfi

(T s(xei\fi )f ◦ s(xfi)− α
) |F |∏
j=i+1

uj,xV \fi
(xej∩fi)

∣∣∣∣∣∣
≤
|F |∑
i=1

ExV \fi

∥∥∥T s(xei\fi )f ◦ s− α
∥∥∥
�d+1

d

= |F | · ‖f ◦ s− α‖�d+1
d

Then item (ii) follows from the corollary of the Gowers-Cauchy-Schwarz in-
equality, since

‖f ◦ s− α‖�d+1
d

= ‖H(k)f − α‖�d+1
d
≤ ‖H(k)f − α‖Octd+1 = ‖f − α‖Ud+1 ≤ c1,

and we may take c2 = c1.
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(ii)⇒ (iii):
This is a special case, and we may take c3 = 2d+1c2.

(iii)⇒ (i):

First we note that t(Oct
(k)
d+1, H

(k)f) = t(Oct(d+1), H(d+1)f) for any func-
tion f : G→ R. Indeed, we have that

t(Oct
(k)
d+1, H

(k)f) = Ex∈GV

 ∏
e∈Oct

(k)
d+1

f ◦ s(xe)


= Ey∈G[k−d]Ex(0),x(1)∈G[d+1]

 ∏
ω∈{0,1}d+1

f
(
s(y) + s(x(ω))

)
= Ey∈G[k−d]

[
t(Oct(d+1), H(d+1)T s(y)f)

]
= t(Oct(d+1), H(d+1)f)

Item (i) then follows from the hypergraph quasirandomness theorem given last
lecture and the item b) of the last theorem.
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