Quasirandomness notes

Davi Castro-Silva

January 2020

1 Quasirandom graphs

Theorem 1 (Chung, Graham, Wilson). Let G be a graph with n vertices and edge density p. Then the following statements are asymptotically equivalent:

(i) G has low discrepancy: $||G - p||_{\Box} \le c_1$

(ii) G correctly counts all graphs: $t(F,G) = p^{|F|} \pm c_2|F|$ for all graphs F

(iii) G has few 4-cycles: $t(C_4, G) \le p^4 + c_3$

(iv) Only the first eigenvalue matters: $\lambda_1 = (p \pm c_4)n$, $|\lambda_2| \le c_4 n$

Proof. $(i) \Rightarrow (ii)$

Let *m* be the number of vertices of the graph *F*, and assume V(F) = [m]and $E(F) = \{e_1, \ldots, e_{|F|}\}$. For $t = 1, \ldots, |F|$, let i_t, j_t be the endpoints of the edge e_t . Then $|t(F, G) - p^{|F|}|$ can be rewritten as

$$\left| \mathbb{E}_{x_1, \dots, x_m \in V(G)} \left[\prod_{ij \in E(F)} G(x_i, x_j) - p^{|F|} \right] \right|$$

$$= \left| \mathbb{E}_{x_1, \dots, x_m \in V(G)} \left[\sum_{t=1}^{|F|} p^{t-1} \left(G(x_{i_t}, x_{j_t}) - p \right) \prod_{s=t+1}^{|F|} G(x_{i_s}, x_{j_s}) \right] \right|$$

$$\le \sum_{t=1}^{|F|} p^{t-1} \left| \mathbb{E}_{x_1, \dots, x_m \in V(G)} \left[\left(G(x_{i_t}, x_{j_t}) - p \right) \prod_{s=t+1}^{|F|} G(x_{i_s}, x_{j_s}) \right] \right|$$

Take any term in this sum, and for notational convenience assume that $i_t = 1$ and $j_t = 2$. Then for any fixed $x_3, \ldots, x_m \in V(G)$ we have

$$\left| \mathbb{E}_{x_1, x_2 \in V(G)} \left[(G(x_1, x_2) - p) \prod_{s=t+1}^{|F|} G(x_{i_s}, x_{j_s}) \right] \right|$$

= $\left| \mathbb{E}_{x_1, x_2 \in V(G)} \left[(G(x_1, x_2) - p) a_t(x_1) b_t(x_2) \right] \right|,$

where a_t and b_t are the functions given by

$$a_t(x_1) := \prod_{\substack{s>t\\1 \notin e_s}} G(x_{i_s}, x_{j_s}) \text{ and } b_t(x_2) := \prod_{\substack{s>t\\1 \notin e_s}} G(x_{i_s}, x_{j_s})$$

By hypothesis $||G - p||_{\Box} \leq c_1$, so the expression on the right is at most c_1 for all fixed x_3, \dots, x_m . Thus

$$\left\| \mathbb{E}_{x_1, \dots, x_m \in V(G)} \left[(G(x_{i_t}, x_{j_t}) - p) \prod_{s=t+1}^{|F|} G(x_{i_s}, x_{j_s}) \right] \right\| \le c_1,$$

implying $|t(F,G) - p^{|F|}| \le c_1|F|$, and so we may take $c_2 = c_1$.

 $(ii) \Rightarrow (iii)$

This is just a special case, and we can take $c_3 = 4c_2$.

 $(iii) \Rightarrow (iv)$

Suppose the vertices of G are labelled by $\{1, 2, ..., n\}$, and denote the adjacency matrix of G by A. First note that $\lambda_1 \ge pn$, since

$$|\lambda_1| = \max_{v \neq 0} \frac{\|Av\|_2}{\|v\|_2} \ge \frac{\|Ae\|_2}{\|e\|_2} \ge \frac{e^t Ae}{\|e\|_2^2} = \frac{pn^2}{n} = pn,$$

where $e = (1, 1, \dots, 1)^t$.

Now we note that, for any $k \in \mathbb{N}$, the entry (i, j) on the matrix A^k counts the number of (directed) paths of length k on G beginning at vertex i and ending at vertex j. For instance,

$$(A^3)_{ij} = \sum_{k,\ell=1}^n A_{ik} A_{k\ell} A_{\ell j} = |\{(k,\ell) \in [n]^2 : ik, k\ell, \ell j \in E(G)\}|$$

is the number of directed paths of length 3 starting at i and ending at j.

Thus $(A^4)_{ii}$ counts the number of labelled 4-cycles starting (and ending) at vertex *i*. This implies that

$$t(C_4, G) = \frac{1}{n^4} \sum_{i=1}^n (A^4)_{ii} = \frac{1}{n^4} tr(A^4) = \frac{1}{n^4} \sum_{i=1}^n \lambda_i^4 \ge \frac{\lambda_1^4 + \lambda_2^4}{n^4}$$

By assumption $t(C_4, G) \leq p^4 + c_3$, which together with $\lambda_1 \geq pn$ implies that $\lambda_1 \leq (p + c_3^{1/4})n$ and $|\lambda_2| \leq c_3^{1/4}n$. We may then take $c_4 = c_3^{1/4}$.

 $(iv) \Rightarrow (i)$

We will first show that $||A - pJ||_{sp} \leq 6c_4^{1/2}n$, where A is the adjacency matrix of $G, J = ee^t$ is the $n \times n$ all-ones matrix and $|| \cdot ||_{sp}$ is the spectral norm.

Let $\{v_1, v_2, \ldots, v_n\}$ be an orthonormal basis of eigenvectors of A, where v_i is an eigenvector associated to the eigenvalue λ_i for all $1 \le i \le n$.

If we suppose the graph G is regular of degree pn, then the result we want to prove is simple: in this case $e_1 := e/\sqrt{n}$ is a unitary eigenvector of A with eigenvalue $\lambda_1 = pn$, and so

$$A - pJ = A - pne_1e_1^t = \sum_{j=2}^n \lambda_j v_j v_j^t$$

has spectral norm equal to $|\lambda_2| \leq c_4 n$.

If we do not suppose G is regular, then we can decompose

$$A - pJ = \sum_{i=1}^{n} \lambda_i v_i v_i^t - pne_1 e_1^t$$

= $\lambda_1 v_1 v_1^t - pnv_1 v_1^t + \sum_{j=2}^{n} \lambda_j v_j v_j^t + pnv_1 v_1^t - pne_1 e_1^t$
= $M_1 + M_2 + M_3$,

where

$$M_1 = (\lambda_1 - pn)v_1v_1^t, \quad M_2 = \sum_{j=2}^n \lambda_j v_j v_j^t, \quad M_3 = pn(v_1v_1^t - e_1e_1^t).$$

Clearly $||M_1||_{sp} = |\lambda_1 - pn| \le c_4 n$ and $||M_2||_{sp} = |\lambda_2| \le c_4 n$. Let us now bound $||M_3||_{sp}$. Since M_3 is symmetric real, we know that

$$||M_3||_{sp} = \max_{||u||_2=1} |u^t M_3 u|.$$

Moreover, for any fixed $u \in \mathbb{R}^n$ with $||u||_2 = 1$ we have that

$$|u^{t}M_{3}u| = pn \cdot |(u^{t}v_{1})^{2} - (u^{t}e_{1})^{2}|$$

= $pn \cdot |u^{t}(v_{1} + e_{1})| \cdot |u^{t}(v_{1} - e_{1})|$
 $\leq 2pn \cdot ||v_{1} - e_{1}||_{2},$

where the last inequality follows from Cauchy-Schwarz. It thus suffices to bound $||v_1 - e_1||_2.$

Decompose $e_1 = \mu v_1 + w$, where $\mu = e_1^t v_1$ and w is orthogonal to v_1 . Note that $||w||_2 \leq 1$ (by Pythagoras' theorem) and that, up to changing v_1 by $-v_1$, we can assume $\mu \geq 0$. Then

$$pn = e_1^t A e_1 \le ||Ae_1||_2 = ||A(\mu v_1 + w)||_2$$

$$\le \mu ||Av_1||_2 + ||Aw||_2$$

$$\le \mu \lambda_1 + |\lambda_2| \cdot ||w||_2$$

$$\le \mu (p + c_4)n + c_4n$$

$$\Rightarrow e_1^t v_1 = \mu \ge \frac{p - c_4}{p + c_4} \ge 1 - \frac{2c_4}{p}$$

From this we conclude that

$$||v_1 - e_1||_2^2 = v_1^t v_1 - 2v_1^t e_1 + e_1^t e_1 = 2(1 - v_1^t e_1) \le \frac{4c_4}{p}$$

We thus conclude that $||M_3||_{sp} \le 2pn \cdot ||v_1 - e_1||_2 \le 4c_4^{1/2}n$ and

$$||A - pJ||_{sp} \le ||M_1||_{sp} + ||M_2||_{sp} + ||M_3||_{sp} \le 6c_4^{1/2}n,$$

as wished.

The rest follows immediately from Cauchy-Schwarz. Indeed, for any subsets $X,Y\subseteq V(G)$ we have

$$\frac{1}{n^2} \left| \sum_{x \in X} \sum_{y \in Y} (G(x, y) - p) \right| = \frac{1}{n^2} \left| \sum_{i=1}^n \sum_{j=1}^n (A_{ij} - p) \mathbf{1}_X(i) \mathbf{1}_Y(j) \right|$$
$$\leq \frac{1}{n^2} \|A - pJ\|_{sp} \|\mathbf{1}_X\|_2 \|\mathbf{1}_Y\|_2$$
$$\leq 6c_4^{1/2}$$

We thus obtain property (i) with $c_1 = 6c_4^{1/2}$.

-		

2 Uniformity and quasirandomness in additive groups

Recall that we defined the U^2 norm of a function $f: G \to \mathbb{R}$ by

$$\|f\|_{U^2(G)} := \mathbb{E}_{x,h_1,h_2 \in G} \left[f(x) f(x+h_1) f(x+h_2) f(x+h_1+h_2) \right]^{1/4}$$

Lemma 1. For all real functions $f: G \to \mathbb{R}$, we have $||f||_{U^2(G)} = ||\hat{f}||_{\ell^4(\hat{G})}$.

Proof. Since f is real-valued, for all $\gamma \in \hat{G}$ we have that

$$|\hat{f}(\gamma)|^4 = \mathbb{E}_{x \in G}[f(x)\overline{\gamma(x)}] \mathbb{E}_{y \in G}[f(y)\overline{\gamma(y)}] \mathbb{E}_{z \in G}[f(z)\gamma(z)] \mathbb{E}_{w \in G}[f(w)\gamma(w)]$$
$$= \mathbb{E}_{x,y,z,w \in G}[f(x)f(y)f(z)f(w)\gamma(-x-y+z+w)]$$

Using the orthogonality relations of characters we then obtain

$$\|\hat{f}\|_{\ell^{4}(\hat{G})}^{4} = \mathbb{E}_{x,y,z,w\in G} \left[f(x)f(y)f(z)f(w) \sum_{\gamma\in\hat{G}} \gamma(-x-y+z+w) \right]$$
$$= \mathbb{E}_{x,y,z,w\in G} \left[f(x)f(y)f(z)f(w) \cdot |G|\mathbf{1}_{\{x+y=z+w\}} \right]$$

Now we note that, when x, h_1 , h_2 are uniformly distributed over G, the quadruple $(x, x+h_1+h_2, x+h_1, x+h_2)$ is uniformly distributed over all solutions in G to x + y = z + w. This implies that the last expression is equal to

$$\mathbb{E}_{x,h_1,h_2\in G}\left[f(x)f(x+h_1+h_2)f(x+h_1)f(x+h_2)\right] = \|f\|_{U^2(G)}^4,$$

finishing the proof.

We defined in the lecture the following *inner product of second order*:

$$\langle f_1, f_2, f_3, f_4 \rangle_{U^2(G)} = \mathbb{E}_{x, h_1, h_2 \in G} \left[f_1(x) f_2(x+h_1) f_3(x+h_2) f_4(x+h_1+h_2) \right]$$

With this inner product we have that $||f||_{U^2(G)} = \langle f, f, f, f \rangle_{U^2(G)}^{1/4}$.

Lemma 2 (Gowers-Cauchy-Schwarz inequality). For any functions $f_1, f_2, f_3, f_4 : G \to \mathbb{R}$ we have

$$\langle f_1, f_2, f_3, f_4 \rangle_{U^2(G)} \le \|f_1\|_{U^2(G)} \|f_2\|_{U^2(G)} \|f_3\|_{U^2(G)} \|f_4\|_{U^2(G)}$$

Proof. By the usual Cauchy-Schwarz inequality applied to the variable h_1 , we see that

$$\langle f_1, f_2, f_3, f_4 \rangle_{U^2}^2 = \mathbb{E}_{x, h_1, h_2 \in G} \left[f_1(x) f_2(x+h_1) f_3(x+h_2) f_4(x+h_1+h_2) \right]^2$$

$$= \mathbb{E}_{h_1} \left[\mathbb{E}_x \left[f_1(x) f_2(x+h_1) \right] \cdot \mathbb{E}_y \left[f_3(y) f_4(y+h_1) \right] \right]^2$$

$$\le \left(\mathbb{E}_{h_1} \left[\mathbb{E}_x \left[f_1(x) f_2(x+h_1) \right]^2 \right] \right) \cdot \left(\mathbb{E}_{h_1} \left[\mathbb{E}_y \left[f_3(y) f_4(y+h_1) \right]^2 \right] \right)$$

$$= \langle f_1, f_2, f_1, f_2 \rangle_{U^2} \langle f_3, f_4, f_3, f_4 \rangle_{U^2}$$

Applying the same argument to the variable h_2 instead of h_1 , we obtain

$$\langle f_1, f_2, f_3, f_4 \rangle_{U^2}^2 \le \langle f_1, f_1, f_3, f_3 \rangle_{U^2} \langle f_2, f_2, f_4, f_4 \rangle_{U^2}$$

We conclude by using both inequalities one after the other:

$$\begin{split} \langle f_1, f_2, f_3, f_4 \rangle_{U^2}^4 &\leq \langle f_1, f_2, f_1, f_2 \rangle_{U^2}^2 \langle f_3, f_4, f_3, f_4 \rangle_{U^2}^2 \\ &\leq \langle f_1, f_1, f_1, f_1 \rangle_{U^2} \langle f_2, f_2, f_2, f_2 \rangle_{U^2} \langle f_3, f_3, f_3 \rangle_{U^2} \langle f_4, f_4, f_4, f_4 \rangle_{U^2} \\ &= \|f_1\|_{U^2}^4 \|f_2\|_{U^2}^4 \|f_3\|_{U^2}^4 \|f_4\|_{U^2}^4 \end{split}$$

Theorem 2 (Chung, Graham). Let G be an additive group of order n and let $A \subseteq G$ be a set of size $|A| = \alpha n$. Then the following are asymptotically equivalent:

- (i) Fourier coefficients: $|\hat{A}(\gamma)| \leq c_1$ for all non-trivial characters γ
- (ii) Additive quadruples: There are at most $(\alpha^4 + c_2)n^3$ solutions in A of the equation x + y = z + w
- (iii) Strong translation: For all sets $B \subseteq G$, all but at most c_3n elements $x \in G$ satisfy $|A \cap (B+x)| = \alpha |B| \pm c_3 n$
- (iv) Weak translation: All but at most c_4n elements $x \in G$ satisfy $|A \cap (A + x)| = \alpha^2 n \pm c_4 n$

Proof. First of all, we note that condition (ii) is equivalent to saying that $||A||_{U^2(G)}^4 \leq \alpha^4 + c_2$.

$$\begin{aligned} (i) &\Rightarrow (ii) \\ \text{Suppose } |\hat{A}(1)| &= \alpha \text{ and } |\hat{A}(\gamma)| \leq c_1 \text{ for all } \gamma \in \hat{G} \setminus \{1\}. \text{ Then} \\ \|A\|_{U^2(G)}^4 &= \|\hat{A}\|_{\ell^4(\hat{G})}^4 = \alpha^4 + \sum_{\gamma \neq 1} |\hat{A}(\gamma)|^4 \\ &\leq \alpha^4 + \sum_{\gamma \neq 1} c_1^2 |\hat{A}(\gamma)|^2 \\ &\leq \alpha^4 + c_1^2 \|\hat{A}\|_{\ell^2(\hat{G})}^2 \\ &= \alpha^4 + c_1^2 \|A\|_{L^2(G)}^2 \leq \alpha^4 + c_1^2, \end{aligned}$$

so we can take $c_2 = c_1^2$.

$$\begin{array}{l} (ii) \Rightarrow (i) \\ \text{If } \|A\|_{U^{2}(G)}^{4} \leq \alpha^{4} + c_{2}, \text{ then} \\ \\ \alpha^{4} + c_{2} \geq \|\hat{A}\|_{\ell^{4}(\hat{G})}^{4} = \alpha^{4} + \sum_{\gamma \neq 1} |\hat{A}(\gamma)|^{4} \geq \alpha^{4} + \max_{\gamma \neq 1} |\hat{A}(\gamma)|^{4} \end{array}$$

This implies that $\max_{\gamma \neq 1} |\hat{A}(\gamma)| \leq c_2^{1/4}$, so we can take $c_1 = c_2^{1/4}$.

 $(ii) \Rightarrow (iii)$

We first note that, for any fixed $x \in G$, we have

$$|A \cap (B-x)| - \alpha |B| = \sum_{y \in G} (A(y) - \alpha)B(x+y)$$

Using this identity and the Gowers-Cauchy-Schwarz inequality we see that

$$\sum_{x \in G} \left(|A \cap (B - x)| - \alpha |B| \right)^2 = \sum_{x \in G} \left(\sum_{y \in G} (A(y) - \alpha) B(x + y) \right)^2$$
$$= \sum_{x, y, z \in G} (A(y) - \alpha) B(x + y) (A(z) - \alpha) B(x + z)$$
$$= n^3 \langle A - \alpha, B, A - \alpha, B \rangle_{U^2(G)}$$
$$\leq n^3 ||A - \alpha||^2_{U^2(G)}$$

Defining the function $f(x) := A(x) - \alpha$ in G, we easily see that $\hat{f}(1) = 0$ and $\hat{f}(\gamma) = \hat{A}(\gamma)$ for all $\gamma \in \hat{G} \setminus \{1\}$. Supposing $||A||_{U^2(G)}^4 \leq \alpha^4 + c_2$, we then obtain

$$\|A - \alpha\|_{U^2(G)}^4 = \|\hat{f}\|_{\ell^4(\hat{G})}^4 = \|\hat{A}\|_{\ell^4(\hat{G})}^4 - \alpha^4 = \|A\|_{U^2(G)}^4 - \alpha^4 \le c_2$$

If less than $(1 - c_3)n$ values $x \in G$ satisfy $|A \cap (B - x)| = \alpha |B| \pm c_3 n$, then

$$\sum_{x \in G} \left(|A \cap (B - x)| - \alpha |B| \right)^2 > c_3 n \cdot (c_3 n)^2 = c_3^3 n^3$$

It thus suffices to take $c_3 = c_2^{1/6}$ for this last inequality to be incompatible with our previous bound.

 $(iii) \Rightarrow (iv)$ This is just a special case, and we may take $c_4 = c_3$.

 $(iv) \Rightarrow (ii)$ As in the proof that $(ii) \Rightarrow (iii)$, we see that

$$\sum_{x \in G} |A \cap (A+x)|^2 = n^3 ||A||^4_{U^2(G)}$$

Assuming $c_4 \leq 1$ (as otherwise we may just take $c_2 = 1$), we then have

$$n^{3} \|A\|_{U^{2}(G)}^{4} \leq n \cdot (\alpha^{2} + c_{4})^{2} n^{2} + c_{4} n \cdot n^{2}$$
$$\leq (\alpha^{4} + 3c_{4})n^{3} + c_{4} n^{3} = (\alpha^{4} + 4c_{4})n^{3}$$

We may then take $c_2 = 4c_4$.

r	-	-	
L			

Definition. Given a subset $A \subseteq G$, we define its Cayley graph Γ_A by

$$V(\Gamma_A) = G, \quad E(\Gamma_A) = \{xy : x + y \in A\}$$

Lemma 3. A set $A \subseteq G$ is linear uniform if and only if its Cayley graph Γ_A is quasirandom.

Proof. We will show that property (iii) of quasirandom graphs applied to Γ_A is the same as property (ii) of quasirandom sets applied to A. Indeed,

$$t(C_4, \Gamma_A) = \mathbb{E}_{a,b,c,d \in G} \left[\Gamma_A(a,b) \Gamma_A(b,c) \Gamma_A(c,d) \Gamma_A(d,a) \right]$$

= $\mathbb{E}_{a,b,c,d \in G} \left[A(a+b) A(b+c) A(c+d) A(d+a) \right]$

Let us now make the change of variables x := a+b, $h_1 := c-a$, $h_2 := d-b$. It is easy to see that x, h_1, h_2 are uniformly distributed on G, so the last expression is equal to

$$\mathbb{E}_{x,h_1,h_2 \in G} \left[A(x)A(x+h_1)A(x+h_1+h_2)A(x+h_2) \right] = \|A\|_{U^2(G)}^4$$

Thus $t(C_4, \Gamma_A) \leq \alpha^4 + \epsilon$ if and only if $||A||_{U^2(G)}^4 \leq \alpha^4 + \epsilon$, as wished. \Box

Lemma 4. Let G be an additive group of odd order and suppose $A \subseteq G$ is linear ϵ -uniform. Then there are between $(\alpha^3 - \epsilon)n^2$ and $(\alpha^3 + \epsilon)n^2$ 3-term arithmetic progressions in A.

Proof. We will use the identity

$$\mathbb{E}_{x,r\in G}[f_1(x)f_2(x+r)f_3(x+2r)] = \sum_{\gamma\in\hat{G}}\widehat{f}_1(\gamma)\widehat{f}_2(\gamma^{-2})\widehat{f}_3(\gamma),$$

where γ^{-2} is the character satisfying $\gamma^{-2}(x) = \gamma(x)^{-2}$ for all $x \in G$. Indeed, the last sum is equal to

$$\sum_{\gamma \in \hat{G}} \mathbb{E}_{x \in G}[f(x)\overline{\gamma(x)}] \mathbb{E}_{y \in G}[f(y)\overline{\gamma^{-2}(y)}] \mathbb{E}_{z \in G}[f(z)\overline{\gamma(z)}]$$

$$= \sum_{\gamma \in \hat{G}} \mathbb{E}_{x,y,z \in G}[f_1(x)f_2(y)f_3(z)\gamma(-x+2y-z)]$$

$$= \mathbb{E}_{x,y,z \in G}\left[f_1(x)f_2(y)f_3(z) \cdot |G|\mathbf{1}_{\{x+z=2y\}}\right]$$

$$= \mathbb{E}_{x,r \in G}[f_1(x)f_2(x+r)f_3(x+2r)],$$

where we used the orthogonality relations of characters for the second equality. As $\hat{A}(1) = \alpha$, we conclude that

$$\mathbb{E}_{x,r\in G}[A(x)A(x+r)A(x+2r)] = \alpha^3 + \sum_{\gamma\in\hat{G}\setminus\{1\}}\hat{A}(\gamma)^2\hat{A}(\gamma^{-2})$$

We then bound the absolute value of the last sum by

$$\begin{aligned} \left| \sum_{\gamma \in \hat{G} \setminus \{1\}} \hat{A}(\gamma)^2 \hat{A}(\gamma^{-2}) \right| &\leq \left(\max_{\gamma \in \hat{G} \setminus \{1\}} \hat{A}(\gamma) \right) \sum_{\gamma \in \hat{G} \setminus \{1\}} |\hat{A}(\gamma)| \cdot |\hat{A}(\gamma^{-2})| \\ &\leq \epsilon \left(\sum_{\gamma \in \hat{G}} |\hat{A}(\gamma)|^2 \right)^{1/2} \left(\sum_{\gamma \in \hat{G}} |\hat{A}(\gamma^{-2})|^2 \right)^{1/2} \end{aligned}$$

where for the last inequality we used Cauchy-Schwarz and the fact that A is linear ϵ -uniform.

We will next show that $\{\gamma^{-2}: \gamma \in \hat{G}\} = \hat{G}$. Note that this would conclude the proof, since it implies that the right hand side of the last inequality is equal to $\epsilon \|\hat{A}\|_{\ell^2(\hat{G})}^2 = \epsilon \|A\|_{L^2(G)}^2 \leq \epsilon$. Since clearly $\{\gamma^{-2} : \gamma \in \hat{G}\} \subseteq \hat{G}$, it suffices to show that $\gamma^{-2} \neq \eta^{-2}$ whenever γ and η are distinct characters. But if $\gamma \neq \eta$ and $\gamma^{-2} = \eta^{-2}$, then $\eta\gamma^{-1}$ is a nontrivial character satisfying $(\eta\gamma^{-1})^2 = 1$. This implies that the order of $\eta\gamma^{-1}$ is 2, which is impossible since

it must divide $|\hat{G}| = |G|$ which is odd. This contradiction finishes the proof. \Box

Remark: The assumption that G has odd order cannot be dropped. To see this, consider the group \mathbb{F}_2^n and any set $A\subset \mathbb{F}_2^n$ of density $0<\alpha<1.$ Then

$$\mathbb{E}_{x,r\in\mathbb{F}_2^n}[A(x)A(x+r)A(x+2r)] = \mathbb{E}_{x,r\in\mathbb{F}_2^n}[A(x)A(x+r)] = \alpha^2$$

is strictly bigger than $\alpha^3 + \epsilon$ for any $\epsilon < (1 - \alpha)\alpha^2$.

3 Quasirandomness in hypergraphs

Lemma 5 (Counting lemma for quasirandomness of order d). For any kuniform hypergraph H and any $0 \le p \le 1$, we have that

$$t(F,H) = p^{|F|} \pm |F| \cdot ||H - p||_{\square_d^k} \quad \forall F \in \mathcal{L}_d^{(k)}$$

Proof. Let m be the number of vertices of the graph F, and assume V(F) = [m] and $E(F) = \{e_1, \ldots, e_{|F|}\}$. Then we can write as a telescoping sum

$$\begin{aligned} \left| t(F,H) - p^{|F|} \right| &= \left| \mathbb{E}_{\mathbf{x} \in V(H)^{V(F)}} \left[\prod_{e \in E(F)} H(\mathbf{x}_e) - p^{|F|} \right] \right| \\ &= \left| \mathbb{E}_{\mathbf{x} \in V(H)^{V(F)}} \left[\sum_{i=1}^{|F|} p^{i-1} \left(H(\mathbf{x}_{e_i}) - p \right) \prod_{j=i+1}^{|F|} H(\mathbf{x}_{e_j}) \right] \right| \\ &\leq \sum_{i=1}^{|F|} p^{i-1} \left| \mathbb{E}_{\mathbf{x} \in V(H)^{V(F)}} \left[\left(H(\mathbf{x}_{e_i}) - p \right) \prod_{j=i+1}^{|F|} H(\mathbf{x}_{e_j}) \right] \right| \end{aligned}$$

The *i*-th term in the final sum is bounded by $||H - p||_{\Box_d^k}$. Indeed, if we fix all variables other than \mathbf{x}_{e_i} , then all the factors except for $(H(\mathbf{x}_{e_i}) - p)$ have the form $u(\mathbf{x}_f)$ for some set f of size at most d, as f is the intersection of e_i with another edge e_j . So the the expectation can be bounded by $||H - p||_{\Box_d^k}$ for each term, proving the lemma.

Given functions $f_{\omega}: V^k \to \mathbb{R}, \ \omega \in \{0,1\}^k$, we define their inner product of order k by

$$\langle (f_{\omega})_{\omega \in \{0,1\}^k} \rangle_{\mathrm{OCT}^k} := \mathbb{E}_{\mathbf{x}^{(0)}, \mathbf{x}^{(1)} \in V^k} \left[\prod_{\omega \in \{0,1\}^k} f_{\omega}(\mathbf{x}^{(\omega)}) \right],$$

where we write $\mathbf{x}^{(\omega)} := (\mathbf{x}_i^{(\omega_i)})_{i \in [k]}$. With this inner product, we have

$$\|f\|_{\mathrm{OCT}^k}^{2^k} = \langle f, f, \dots, f \rangle_{\mathrm{OCT}^k}$$

Lemma 6 (Gowers-Cauchy-Schwarz inequality).

$$\langle (f_{\omega})_{\omega \in \{0,1\}^k} \rangle_{\mathrm{OCT}^k} \leq \prod_{\omega \in \{0,1\}^k} \|f_{\omega}\|_{\mathrm{OCT}^k}$$

The proof of this lemma follows by applying Cauchy-Schwarz k times consecutively, and it will be given next class.

Remark: Using the Gowers-Cauchy-Schwarz inequality it is possible to prove that the octahedral norm satisfies the triangle inequality, and is thus indeed a norm. **Lemma 7.** For every function $f: V^k \to \mathbb{R}$, we have that $||f||_{\Box_{k-1}^k} \leq ||f||_{OCT^k}$.

Proof. For any function $u_B: V^B \to [0,1], B \in {\binom{[k]}{k-1}}$, we let $f_{\omega_B}: V^{[k]} \to \mathbb{R}$ be the function $f_{\omega_B}(\mathbf{x}_{[k]}) := u_B(\mathbf{x}_B)$, where $\omega_B \in \{0,1\}^{[k]}$ is the indicator vector of the set B.

By denoting $f_1 := f$ and $f_{\omega} := 1$ for $\omega \in \{0, 1\}^{[k]} \setminus \{1\}$ not in $\{\omega_B : B \in \binom{[k]}{k-1}\}$, using the Gowers-Cauchy-Schwarz inequality we conclude that

$$\left| \mathbb{E}_{\mathbf{x} \in V^{[k]}} \left[f(\mathbf{x}) \prod_{B \in \binom{[k]}{k-1}} u_B(\mathbf{x}_B) \right] \right| = \left| \mathbb{E}_{\mathbf{x}^{(0)}, \mathbf{x}^{(1)} \in V^k} \left[\prod_{\omega \in \{0,1\}^k} f_\omega(\mathbf{x}^{(\omega)}) \right] \right|$$
$$\leq \prod_{\omega \in \{0,1\}^k} \|f_\omega\|_{\mathrm{OCT}^k}$$

Since clearly $||f_{\omega}||_{OCT^k} \leq ||f_{\omega}||_{\ell^{\infty}} \leq 1$ for all $\omega \in \{0, 1\}^{[k]} \setminus \{1\}$, the last product is at most $||f||_{OCT^k}$. As this inequality is valid for all functions $u_B : V^B \to [0, 1]$, $B \in {[k] \choose k-1}$, we obtain the claim.

Theorem 3 (Kohayakawa, Rödl, Skokan). Let H be a k-uniform hypergraph with edge density p. Then the following statements are asymptotically equivalent:

- (i) H is strongly quasirandom: $||H p||_{\square_{k-1}^k} \leq c_1$
- (ii) H correctly counts all hypergraphs:

$$t(F,H) = \alpha^{|F|} \pm c_2|F|$$
 for all k-hypergraphs F

(iii) H correctly counts $OCT^{(k)}$ and all its subhypergraphs:

$$t(F,H) = \alpha^{|F|} \pm c_3 \quad \text{for all } F \subseteq OCT^{(k)}$$

Proof. $(i) \Rightarrow (ii)$

This follows immediately from the counting lemma, and we may take $c_2 = c_1$.

 $(ii) \Rightarrow (iii)$

This is a special case, and we may take $c_3 = 2^k c_2$.

 $(iii) \Rightarrow (i)$

Suppose $t(F, H) = p^{|F|} \pm c_3$ for all subhypergraphs $F \subseteq OCT^{(k)}$. Then

$$t(\operatorname{OCT}^{(k)}, H - p) = \mathbb{E}_{\mathbf{x} \in V(H)^{V(\operatorname{OCT}^{(k)})}} \left[\prod_{e \in \operatorname{OCT}^{(k)}} (H(\mathbf{x}_e) - p) \right]$$
$$= \mathbb{E}_{\mathbf{x} \in V(H)^{V(\operatorname{OCT}^{(k)})}} \left[\sum_{F \subseteq \operatorname{OCT}^{(k)}} \prod_{e \in F} H(\mathbf{x}_e) \prod_{e \in \operatorname{OCT}^{(k)} \setminus F} (-p) \right]$$

$$= \sum_{F \subseteq OCT^{(k)}} \mathbb{E}_{\mathbf{x} \in V(H)^{V(OCT^{(k)})}} \left[\prod_{e \in F} H(\mathbf{x}_e) \right] \cdot (-p)^{2^k - |F|}$$

$$= \sum_{F \subseteq OCT^{(k)}} t(F, H) \cdot (-p)^{2^k - |F|}$$

$$= \sum_{F \subseteq OCT^{(k)}} (p^{|F|} \pm c_3)(-p)^{2^k - |F|}$$

$$= \sum_{F \subseteq OCT^{(k)}} p^{|F|}(-p)^{2^k - |F|} \pm 2^{2^k} c_3$$

$$= \pm 2^{2^k} c_3$$

Thus $||H - p||_{OCT^k} = t(OCT^{(k)}, H - p)^{1/2^k} \le 2c_3^{1/2^k}$, and the claim follows from the inequality $||H - p||_{\Box_{k-1}^k} \le ||H - p||_{OCT^k}$ (with $c_1 = 2c_3^{1/2^k}$).

4 Comparing quasirandomness in additive groups and in hypergraphs

Lemma 8. For every function $f: V^k \to \mathbb{R}$, we have that $||f||_{\square_{k-1}^k} \leq ||f||_{OCT^k}$.

Proof. For any function $u_B : V^B \to [0,1], B \in {\binom{[k]}{k-1}}$, we let $f_{\omega_B} : V^{[k]} \to \mathbb{R}$ be the function $f_{\omega_B}(\mathbf{x}_{[k]}) := u_B(\mathbf{x}_B)$, where $\omega_B \in \{0,1\}^{[k]}$ is the indicator vector of the set B.

By denoting $f_1 := f$ and $f_{\omega} := 1$ for $\omega \in \{0, 1\}^{[k]} \setminus \{1\}$ not in $\{\omega_B : B \in \binom{[k]}{k-1}\}$, using the Gowers-Cauchy-Schwarz inequality we conclude that

$$\left| \mathbb{E}_{\mathbf{x} \in V^{[k]}} \left[f(\mathbf{x}) \prod_{B \in \binom{[k]}{k-1}} u_B(\mathbf{x}_B) \right] \right| = \left| \mathbb{E}_{\mathbf{x}^{(0)}, \mathbf{x}^{(1)} \in V^k} \left[\prod_{\omega \in \{0,1\}^k} f_\omega(\mathbf{x}^{(\omega)}) \right] \right|$$
$$\leq \prod_{\omega \in \{0,1\}^k} \|f_\omega\|_{\mathrm{OCT}^k}$$

Since clearly $||f_{\omega}||_{OCT^k} \leq ||f_{\omega}||_{\ell^{\infty}} \leq 1$ for all $\omega \in \{0, 1\}^{[k]} \setminus \{1\}$, the last product is at most $||f||_{OCT^k}$. As this inequality is valid for all functions $u_B : V^B \to [0, 1]$, $B \in {[k] \choose k-1}$, we obtain the claim.

Remark: Denoting by $s_k : G^k \to G$ the sum operator $(x_1, \ldots, x_k) \mapsto x_1 + \cdots + x_k$, one can easily prove the identity $||f||_{U^k(G)} = ||f \circ s_k||_{OCT^k}$, valid for all functions $f : G \to \mathbb{R}$.

Theorem 4. Let G be a finite additive group and $A \subseteq G$ be a subset.

- a) If A is ϵ -uniform of degree d, then for all $k \ge d+1$ the Cayley hypergraph $H^{(k)}A$ is ϵ -quasirandom of order d.
- b) Conversely, if $H^{(d+1)}A$ is ϵ -quasirandom of order d, then A is $2\epsilon^{1/2^{d+1}}$ -uniform of degree d.

Proof. We will prove the theorem more generally for functions $f : G \to [0, 1]$ instead of only sets $A \subseteq G$. The statement then follows by taking f to be the indicator function of the set A.

a) Suppose $f: G \to \mathbb{R}$ satisfies $||f - \alpha||_{U^{d+1}} \leq \epsilon$, and choose optimal functions $u_B: G^B \to [0,1], B \in {[k] \choose d}$, so that

$$\|H^{(k)}f - \alpha\|_{\square_d^k} := \|f \circ s - \alpha\|_{\square_d^k} = \left|\mathbb{E}_{\mathbf{x} \in G^{[k]}}\left[(f(s(\mathbf{x})) - \alpha)\prod_{B \in \binom{[k]}{d}} u_B(\mathbf{x}_B)\right]\right|$$

We now separate the first d+1 variables $\mathbf{x}_{[d+1]}$ from the rest, thus writing $\|H^{(k)}f-\alpha\|_{\square_d^k}$ as

$$\left| \mathbb{E}_{\mathbf{x}_{[k]\setminus[d+1]}} \mathbb{E}_{\mathbf{x}_{[d+1]}} \left[\left(f\left(s(\mathbf{x}_{[d+1]}) + s(\mathbf{x}_{[k]\setminus[d+1]}) \right) - \alpha \right) \prod_{B \in \binom{[k]}{d}} u_B(\mathbf{x}_B) \right] \right|,$$

where the first expectation is over $G^{[k]\setminus[d+1]}$ and the second is over $G^{[d+1]}$.

By using the triangle inequality and choosing suitable functions $v_{D,\mathbf{x}_{[k]\setminus[d+1]}}$: $G^D \to [0,1]$ for each $\mathbf{x}_{[k]\setminus[d+1]} \in G^{[k]\setminus[d+1]}$ and each set $D \in \binom{[d+1]}{d}$, the last expression is at most

$$\mathbb{E}_{\mathbf{x}_{[k]\setminus[d+1]}} \left| \mathbb{E}_{\mathbf{x}_{[d+1]}} \left[\left(T^{s(\mathbf{x}_{[k]\setminus[d+1]})} f \circ s(\mathbf{x}_{[d+1]}) - \alpha \right) \prod_{D \in \binom{[d+1]}{d}} v_{D,\mathbf{x}_{[k]\setminus[d+1]}}(\mathbf{x}_{D}) \right] \right|$$

$$\leq \mathbb{E}_{\mathbf{x}_{[k]\setminus[d+1]}} \| T^{s(\mathbf{x}_{[k]\setminus[d+1]})} f \circ s - \alpha \|_{\square_{d}^{d+1}}$$

$$= \mathbb{E}_{\mathbf{x}_{[k]\setminus[d+1]}} \| f \circ s - \alpha \|_{\square_{d}^{d+1}}$$

$$= \| H^{(d+1)} f - \alpha \|_{\square_{d}^{d+1}}$$

By the Gowers-Cauchy-Schwarz inequality corollary, this is at most

$$\|H^{(d+1)}f - \alpha\|_{\mathcal{O}CT^{d+1}} = \|H^{(d+1)}(f - \alpha)\|_{\mathcal{O}CT^{d+1}} = \|f - \alpha\|_{U^{d+1}} \le \epsilon,$$

thus showing $||H^{(k)}f - \alpha||_{\square_d^k} \le \epsilon$.

b) If $h: V^{d+1} \to [0,1]$, recall that

$$\|h\|_{\mathcal{O}CT^{d+1}}^{2^{d+1}} = \mathbb{E}_{\mathbf{x}^{(0)}, \mathbf{x}^{(1)} \in V^{d+1}} \left[\prod_{\omega \in \{0,1\}^k} h(\mathbf{x}^{(\omega)}) \right]$$

We can then use the pigeonhole principle to freeze the $\mathbf{x}^{(0)}$ variables and then obtain functions $u_D: V^D \to [0, 1], D \in {\binom{[d+1]}{d}}$, for which

$$\|h\|_{\square_d^{d+1}} \ge \mathbb{E}_{\mathbf{x} \in V^{d+1}} \left[h(\mathbf{x}) \prod_{D \in \binom{[d+1]}{d}} u_D(\mathbf{x}_D) \right] \ge \|h\|_{\operatorname{OCT}^{d+1}}^{2^{d+1}}$$

The claim easily follows from the identity $||f||_{U^{d+1}(G)} = ||f \circ s_k||_{OCT^{d+1}}$.

Definition: *d*-simple *k*-graphs $\mathcal{S}_d^{(k)}$, squashed octahedron $OCT_d^{(k)}$.

Theorem 5. Let $A \subseteq G$ be a set of density α in G. Then for every $k \ge d+1$ the following statements are asymptotically equivalent:

- (i) A is uniform of degree d: $||A \alpha||_{U^{d+1}} \le c_1$
- (ii) $H^{(k)}A$ correctly counts all hypergraphs in $\mathcal{S}_{d+1}^{(k)}$:

$$t(F, H^{(k)}A) = \alpha^{|F|} \pm c_2|F| \quad \forall F \in \mathcal{S}_{d+1}^{(k)}$$

(iii) $H^{(k)}A$ correctly counts $OCT_{d+1}^{(k)}$:

$$t(\operatorname{OCT}_{d+1}^{(k)}, H^{(k)}A) = \alpha^{2^{d+1}} \pm c_3$$

Proof. (i) \Rightarrow (ii):

$$\begin{aligned} \left| t(F, H^{(k)}f) - \alpha^{|F|} \right| &= \left| \mathbb{E}_{\mathbf{x}_{V} \in G^{V}} \left[\sum_{i=1}^{|F|} \alpha^{i-1} \left(f \circ s(\mathbf{x}_{e_{i}}) - \alpha \right) \prod_{j=i+1}^{|F|} f \circ s(\mathbf{x}_{e_{j}}) \right] \right| \\ &\leq \sum_{i=1}^{|F|} \left| \mathbb{E}_{\mathbf{x}_{V} \in G^{V}} \left[\left(f \circ s(\mathbf{x}_{e_{i}}) - \alpha \right) \prod_{j=i+1}^{|F|} f \circ s(\mathbf{x}_{e_{j}}) \right] \right| \\ &\leq \sum_{i=1}^{|F|} \mathbb{E}_{\mathbf{x}_{V \setminus f_{i}}} \left| \mathbb{E}_{\mathbf{x}_{f_{i}}} \left[\left(f \left(s(\mathbf{x}_{f_{i}}) + s(\mathbf{x}_{e_{i} \setminus f_{i}}) \right) - \alpha \right) \right. \right. \\ & \left. \times \left. \prod_{j=i+1}^{|F|} f \left(s(\mathbf{x}_{e_{j} \cap f_{i}}) + s(\mathbf{x}_{e_{j} \setminus f_{i}}) \right) \right] \right| \end{aligned}$$

Let us now consider the *i*-th term in the last sum. For a fixed $\mathbf{x}_{V \setminus f_i} \in G^{V \setminus f_i}$ and each $i+1 \leq j \leq |F|$, define the function $u_{j,\mathbf{x}_{V \setminus f_i}} := T^{s(\mathbf{x}_{e_j \setminus f_i})} f \circ s$ on $G^{e_j \cap f_i}$. With this notation, the last sum becomes

$$\begin{split} \sum_{i=1}^{|F|} \mathbb{E}_{\mathbf{x}_{V \setminus f_{i}}} \left\| \mathbb{E}_{\mathbf{x}_{f_{i}}} \left[\left(T^{s(\mathbf{x}_{e_{i} \setminus f_{i}})} f \circ s(\mathbf{x}_{f_{i}}) - \alpha \right) \prod_{j=i+1}^{|F|} u_{j,\mathbf{x}_{V \setminus f_{i}}}(\mathbf{x}_{e_{j} \cap f_{i}}) \right] \right| \\ & \leq \sum_{i=1}^{|F|} \mathbb{E}_{\mathbf{x}_{V \setminus f_{i}}} \left\| T^{s(\mathbf{x}_{e_{i} \setminus f_{i}})} f \circ s - \alpha \right\|_{\Box_{d}^{d+1}} \\ & = |F| \cdot \| f \circ s - \alpha \|_{\Box_{d}^{d+1}} \end{split}$$

Then item (ii) follows from the corollary of the Gowers-Cauchy-Schwarz inequality, since

 $\|f \circ s - \alpha\|_{\square_d^{d+1}} = \|H^{(k)}f - \alpha\|_{\square_d^{d+1}} \le \|H^{(k)}f - \alpha\|_{\operatorname{OCT}^{d+1}} = \|f - \alpha\|_{U^{d+1}} \le c_1,$

and we may take $c_2 = c_1$.

 $(ii) \Rightarrow (iii)$: This is a special case, and we may take $c_3 = 2^{d+1}c_2$.

 $(iii) \Rightarrow (i)$:

First we note that $t(\operatorname{OCT}_{d+1}^{(k)}, H^{(k)}f) = t(\operatorname{OCT}^{(d+1)}, H^{(d+1)}f)$ for any function $f: G \to \mathbb{R}$. Indeed, we have that

$$t(\operatorname{OCT}_{d+1}^{(k)}, H^{(k)}f) = \mathbb{E}_{\mathbf{x}\in G^{V}} \left[\prod_{e\in\operatorname{OCT}_{d+1}^{(k)}} f \circ s(\mathbf{x}_{e})\right]$$
$$= \mathbb{E}_{\mathbf{y}\in G^{[k-d]}} \mathbb{E}_{\mathbf{x}^{(0)}, \mathbf{x}^{(1)}\in G^{[d+1]}} \left[\prod_{\omega\in\{0,1\}^{d+1}} f\left(s(\mathbf{y}) + s(\mathbf{x}^{(\omega)})\right)\right]$$
$$= \mathbb{E}_{\mathbf{y}\in G^{[k-d]}} \left[t(\operatorname{OCT}^{(d+1)}, H^{(d+1)}T^{s(\mathbf{y})}f)\right]$$
$$= t(\operatorname{OCT}^{(d+1)}, H^{(d+1)}f)$$

Item (i) then follows from the hypergraph quasirandomness theorem given last lecture and the item b) of the last theorem.