Quasirandomness notes

Davi Castro-Silva

January 2020

1 Quasirandom graphs

Theorem 1 (Chung, Graham, Wilson). Let G be a graph with n vertices and edge density p. Then the following statements are asymptotically equivalent:
(i) G has low discrepancy: $\|G-p\|_{\square} \leq c_{1}$
(ii) G correctly counts all graphs: $t(F, G)=p^{|F|} \pm c_{2}|F|$ for all graphs F
(iii) G has few 4-cycles: $t\left(C_{4}, G\right) \leq p^{4}+c_{3}$
(iv) Only the first eigenvalue matters: $\lambda_{1}=\left(p \pm c_{4}\right) n,\left|\lambda_{2}\right| \leq c_{4} n$

Proof. (i) \Rightarrow (ii)
Let m be the number of vertices of the graph F, and assume $V(F)=[m]$ and $E(F)=\left\{e_{1}, \ldots, e_{|F|}\right\}$. For $t=1, \ldots,|F|$, let i_{t}, j_{t} be the endpoints of the edge e_{t}. Then $\left|t(F, G)-p^{|F|}\right|$ can be rewritten as

$$
\begin{aligned}
& \left|\mathbb{E}_{x_{1}, \ldots, x_{m} \in V(G)}\left[\prod_{i j \in E(F)} G\left(x_{i}, x_{j}\right)-p^{|F|}\right]\right| \\
& \quad=\left|\mathbb{E}_{x_{1}, \ldots, x_{m} \in V(G)}\left[\sum_{t=1}^{|F|} p^{t-1}\left(G\left(x_{i_{t}}, x_{j_{t}}\right)-p\right) \prod_{s=t+1}^{|F|} G\left(x_{i_{s}}, x_{j_{s}}\right)\right]\right| \\
& \quad \leq \sum_{t=1}^{|F|} p^{t-1}\left|\mathbb{E}_{x_{1}, \ldots, x_{m} \in V(G)}\left[\left(G\left(x_{i_{t}}, x_{j_{t}}\right)-p\right) \prod_{s=t+1}^{|F|} G\left(x_{i_{s}}, x_{j_{s}}\right)\right]\right|
\end{aligned}
$$

Take any term in this sum, and for notational convenience assume that $i_{t}=1$ and $j_{t}=2$. Then for any fixed $x_{3}, \ldots, x_{m} \in V(G)$ we have

$$
\begin{array}{r}
\left|\mathbb{E}_{x_{1}, x_{2} \in V(G)}\left[\left(G\left(x_{1}, x_{2}\right)-p\right) \prod_{s=t+1}^{|F|} G\left(x_{i_{s}}, x_{j_{s}}\right)\right]\right| \\
=\left|\mathbb{E}_{x_{1}, x_{2} \in V(G)}\left[\left(G\left(x_{1}, x_{2}\right)-p\right) a_{t}\left(x_{1}\right) b_{t}\left(x_{2}\right)\right]\right|,
\end{array}
$$

where a_{t} and b_{t} are the functions given by

$$
a_{t}\left(x_{1}\right):=\prod_{\substack{s>t \\ 1 \in e_{s}}} G\left(x_{i_{s}}, x_{j_{s}}\right) \quad \text { and } \quad b_{t}\left(x_{2}\right):=\prod_{\substack{s>t \\ 1 \notin e_{s}}} G\left(x_{i_{s}}, x_{j_{s}}\right)
$$

By hypothesis $\|G-p\|_{\square} \leq c_{1}$, so the expression on the right is at most c_{1} for all fixed x_{3}, \cdots, x_{m}. Thus

$$
\left|\mathbb{E}_{x_{1}, \ldots, x_{m} \in V(G)}\left[\left(G\left(x_{i_{t}}, x_{j_{t}}\right)-p\right) \prod_{s=t+1}^{|F|} G\left(x_{i_{s}}, x_{j_{s}}\right)\right]\right| \leq c_{1}
$$

implying $\left|t(F, G)-p^{|F|}\right| \leq c_{1}|F|$, and so we may take $c_{2}=c_{1}$.

$$
(i i) \Rightarrow(i i i)
$$

This is just a special case, and we can take $c_{3}=4 c_{2}$.

$$
(i i i) \Rightarrow(i v)
$$

Suppose the vertices of G are labelled by $\{1,2, \ldots, n\}$, and denote the adjacency matrix of G by A. First note that $\lambda_{1} \geq p n$, since

$$
\left|\lambda_{1}\right|=\max _{v \neq 0} \frac{\|A v\|_{2}}{\|v\|_{2}} \geq \frac{\|A e\|_{2}}{\|e\|_{2}} \geq \frac{e^{t} A e}{\|e\|_{2}^{2}}=\frac{p n^{2}}{n}=p n
$$

where $e=(1,1, \ldots, 1)^{t}$.
Now we note that, for any $k \in \mathbb{N}$, the entry (i, j) on the matrix A^{k} counts the number of (directed) paths of length k on G beginning at vertex i and ending at vertex j. For instance,

$$
\left(A^{3}\right)_{i j}=\sum_{k, \ell=1}^{n} A_{i k} A_{k \ell} A_{\ell j}=\left|\left\{(k, \ell) \in[n]^{2}: i k, k \ell, \ell j \in E(G)\right\}\right|
$$

is the number of directed paths of length 3 starting at i and ending at j.
Thus $\left(A^{4}\right)_{i i}$ counts the number of labelled 4 -cycles starting (and ending) at vertex i. This implies that

$$
t\left(C_{4}, G\right)=\frac{1}{n^{4}} \sum_{i=1}^{n}\left(A^{4}\right)_{i i}=\frac{1}{n^{4}} \operatorname{tr}\left(A^{4}\right)=\frac{1}{n^{4}} \sum_{i=1}^{n} \lambda_{i}^{4} \geq \frac{\lambda_{1}^{4}+\lambda_{2}^{4}}{n^{4}}
$$

By assumption $t\left(C_{4}, G\right) \leq p^{4}+c_{3}$, which together with $\lambda_{1} \geq p n$ implies that $\lambda_{1} \leq\left(p+c_{3}^{1 / 4}\right) n$ and $\left|\lambda_{2}\right| \leq c_{3}^{1 / 4} n$. We may then take $c_{4}=c_{3}^{1 / 4}$.
$(i v) \Rightarrow(i)$
We will first show that $\|A-p J\|_{s p} \leq 6 c_{4}^{1 / 2} n$, where A is the adjacency matrix of $G, J=e e^{t}$ is the $n \times n$ all-ones matrix and $\|\cdot\|_{s p}$ is the spectral norm.

Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be an orthonormal basis of eigenvectors of A, where v_{i} is an eigenvector associated to the eigenvalue λ_{i} for all $1 \leq i \leq n$.

If we suppose the graph G is regular of degree $p n$, then the result we want to prove is simple: in this case $e_{1}:=e / \sqrt{n}$ is a unitary eigenvector of A with eigenvalue $\lambda_{1}=p n$, and so

$$
A-p J=A-p n e_{1} e_{1}^{t}=\sum_{j=2}^{n} \lambda_{j} v_{j} v_{j}^{t}
$$

has spectral norm equal to $\left|\lambda_{2}\right| \leq c_{4} n$.
If we do not suppose G is regular, then we can decompose

$$
\begin{aligned}
A-p J & =\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{t}-p n e_{1} e_{1}^{t} \\
& =\lambda_{1} v_{1} v_{1}^{t}-p n v_{1} v_{1}^{t}+\sum_{j=2}^{n} \lambda_{j} v_{j} v_{j}^{t}+p n v_{1} v_{1}^{t}-p n e_{1} e_{1}^{t} \\
& =M_{1}+M_{2}+M_{3},
\end{aligned}
$$

where

$$
M_{1}=\left(\lambda_{1}-p n\right) v_{1} v_{1}^{t}, \quad M_{2}=\sum_{j=2}^{n} \lambda_{j} v_{j} v_{j}^{t}, \quad M_{3}=p n\left(v_{1} v_{1}^{t}-e_{1} e_{1}^{t}\right) .
$$

Clearly $\left\|M_{1}\right\|_{s p}=\left|\lambda_{1}-p n\right| \leq c_{4} n$ and $\left\|M_{2}\right\|_{s p}=\left|\lambda_{2}\right| \leq c_{4} n$.
Let us now bound $\left\|M_{3}\right\|_{s p}$. Since M_{3} is symmetric real, we know that

$$
\left\|M_{3}\right\|_{s p}=\max _{\|u\|_{2}=1}\left|u^{t} M_{3} u\right| .
$$

Moreover, for any fixed $u \in \mathbb{R}^{n}$ with $\|u\|_{2}=1$ we have that

$$
\begin{aligned}
\left|u^{t} M_{3} u\right| & =p n \cdot\left|\left(u^{t} v_{1}\right)^{2}-\left(u^{t} e_{1}\right)^{2}\right| \\
& =p n \cdot\left|u^{t}\left(v_{1}+e_{1}\right)\right| \cdot\left|u^{t}\left(v_{1}-e_{1}\right)\right| \\
& \leq 2 p n \cdot\left\|v_{1}-e_{1}\right\|_{2},
\end{aligned}
$$

where the last inequality follows from Cauchy-Schwarz. It thus suffices to bound $\left\|v_{1}-e_{1}\right\|_{2}$.

Decompose $e_{1}=\mu v_{1}+w$, where $\mu=e_{1}^{t} v_{1}$ and w is orthogonal to v_{1}. Note that $\|w\|_{2} \leq 1$ (by Pythagoras' theorem) and that, up to changing v_{1} by $-v_{1}$, we can assume $\mu \geq 0$. Then

$$
\begin{aligned}
p n=e_{1}^{t} A e_{1} \leq\left\|A e_{1}\right\|_{2} & =\left\|A\left(\mu v_{1}+w\right)\right\|_{2} \\
& \leq \mu\left\|A v_{1}\right\|_{2}+\|A w\|_{2} \\
& \leq \mu \lambda_{1}+\left|\lambda_{2}\right| \cdot\|w\|_{2} \\
& \leq \mu\left(p+c_{4}\right) n+c_{4} n \\
\Rightarrow e_{1}^{t} v_{1}=\mu \geq & \frac{p-c_{4}}{p+c_{4}} \geq 1-\frac{2 c_{4}}{p}
\end{aligned}
$$

From this we conclude that

$$
\left\|v_{1}-e_{1}\right\|_{2}^{2}=v_{1}^{t} v_{1}-2 v_{1}^{t} e_{1}+e_{1}^{t} e_{1}=2\left(1-v_{1}^{t} e_{1}\right) \leq \frac{4 c_{4}}{p}
$$

We thus conclude that $\left\|M_{3}\right\|_{s p} \leq 2 p n \cdot\left\|v_{1}-e_{1}\right\|_{2} \leq 4 c_{4}^{1 / 2} n$ and

$$
\|A-p J\|_{s p} \leq\left\|M_{1}\right\|_{s p}+\left\|M_{2}\right\|_{s p}+\left\|M_{3}\right\|_{s p} \leq 6 c_{4}^{1 / 2} n
$$

as wished.
The rest follows immediately from Cauchy-Schwarz. Indeed, for any subsets $X, Y \subseteq V(G)$ we have

$$
\begin{aligned}
\frac{1}{n^{2}}\left|\sum_{x \in X} \sum_{y \in Y}(G(x, y)-p)\right| & =\frac{1}{n^{2}}\left|\sum_{i=1}^{n} \sum_{j=1}^{n}\left(A_{i j}-p\right) \mathbf{1}_{X}(i) \mathbf{1}_{Y}(j)\right| \\
& \leq \frac{1}{n^{2}}\|A-p J\|_{s p}\left\|\mathbf{1}_{X}\right\|_{2}\left\|\mathbf{1}_{Y}\right\|_{2} \\
& \leq 6 c_{4}^{1 / 2}
\end{aligned}
$$

We thus obtain property (i) with $c_{1}=6 c_{4}^{1 / 2}$.

2 Uniformity and quasirandomness in additive groups

Recall that we defined the U^{2} norm of a function $f: G \rightarrow \mathbb{R}$ by

$$
\|f\|_{U^{2}(G)}:=\mathbb{E}_{x, h_{1}, h_{2} \in G}\left[f(x) f\left(x+h_{1}\right) f\left(x+h_{2}\right) f\left(x+h_{1}+h_{2}\right)\right]^{1 / 4}
$$

Lemma 1. For all real functions $f: G \rightarrow \mathbb{R}$, we have $\|f\|_{U^{2}(G)}=\|\hat{f}\|_{\ell^{4}(\hat{G})}$.
Proof. Since f is real-valued, for all $\gamma \in \hat{G}$ we have that

$$
\begin{aligned}
|\hat{f}(\gamma)|^{4} & =\mathbb{E}_{x \in G}[f(x) \overline{\gamma(x)}] \mathbb{E}_{y \in G}[f(y) \overline{\gamma(y)}] \mathbb{E}_{z \in G}[f(z) \gamma(z)] \mathbb{E}_{w \in G}[f(w) \gamma(w)] \\
& =\mathbb{E}_{x, y, z, w \in G}[f(x) f(y) f(z) f(w) \gamma(-x-y+z+w)]
\end{aligned}
$$

Using the orthogonality relations of characters we then obtain

$$
\begin{aligned}
\|\hat{f}\|_{\ell^{4}(\hat{G})}^{4} & =\mathbb{E}_{x, y, z, w \in G}\left[f(x) f(y) f(z) f(w) \sum_{\gamma \in \hat{G}} \gamma(-x-y+z+w)\right] \\
& =\mathbb{E}_{x, y, z, w \in G}\left[f(x) f(y) f(z) f(w) \cdot|G| \mathbf{1}_{\{x+y=z+w\}}\right]
\end{aligned}
$$

Now we note that, when x, h_{1}, h_{2} are uniformly distributed over G, the quadruple ($x, x+h_{1}+h_{2}, x+h_{1}, x+h_{2}$) is uniformly distributed over all solutions in G to $x+y=z+w$. This implies that the last expression is equal to

$$
\mathbb{E}_{x, h_{1}, h_{2} \in G}\left[f(x) f\left(x+h_{1}+h_{2}\right) f\left(x+h_{1}\right) f\left(x+h_{2}\right)\right]=\|f\|_{U^{2}(G)}^{4},
$$

finishing the proof.
We defined in the lecture the following inner product of second order:

$$
\left\langle f_{1}, f_{2}, f_{3}, f_{4}\right\rangle_{U^{2}(G)}=\mathbb{E}_{x, h_{1}, h_{2} \in G}\left[f_{1}(x) f_{2}\left(x+h_{1}\right) f_{3}\left(x+h_{2}\right) f_{4}\left(x+h_{1}+h_{2}\right)\right]
$$

With this inner product we have that $\|f\|_{U^{2}(G)}=\langle f, f, f, f\rangle_{U^{2}(G)}^{1 / 4}$.
Lemma 2 (Gowers-Cauchy-Schwarz inequality). For any functions $f_{1}, f_{2}, f_{3}, f_{4}$: $G \rightarrow \mathbb{R}$ we have

$$
\left\langle f_{1}, f_{2}, f_{3}, f_{4}\right\rangle_{U^{2}(G)} \leq\left\|f_{1}\right\|_{U^{2}(G)}\left\|f_{2}\right\|_{U^{2}(G)}\left\|f_{3}\right\|_{U^{2}(G)}\left\|f_{4}\right\|_{U^{2}(G)}
$$

Proof. By the usual Cauchy-Schwarz inequality applied to the variable h_{1}, we see that

$$
\begin{aligned}
\left\langle f_{1}, f_{2}, f_{3}, f_{4}\right\rangle_{U^{2}}^{2} & =\mathbb{E}_{x, h_{1}, h_{2} \in G}\left[f_{1}(x) f_{2}\left(x+h_{1}\right) f_{3}\left(x+h_{2}\right) f_{4}\left(x+h_{1}+h_{2}\right)\right]^{2} \\
& =\mathbb{E}_{h_{1}}\left[\mathbb{E}_{x}\left[f_{1}(x) f_{2}\left(x+h_{1}\right)\right] \cdot \mathbb{E}_{y}\left[f_{3}(y) f_{4}\left(y+h_{1}\right)\right]\right]^{2} \\
& \leq\left(\mathbb{E}_{h_{1}}\left[\mathbb{E}_{x}\left[f_{1}(x) f_{2}\left(x+h_{1}\right)\right]^{2}\right]\right) \cdot\left(\mathbb{E}_{h_{1}}\left[\mathbb{E}_{y}\left[f_{3}(y) f_{4}\left(y+h_{1}\right)\right]^{2}\right]\right)
\end{aligned}
$$

$$
=\left\langle f_{1}, f_{2}, f_{1}, f_{2}\right\rangle_{U^{2}}\left\langle f_{3}, f_{4}, f_{3}, f_{4}\right\rangle_{U^{2}}
$$

Applying the same argument to the variable h_{2} instead of h_{1}, we obtain

$$
\left\langle f_{1}, f_{2}, f_{3}, f_{4}\right\rangle_{U^{2}}^{2} \leq\left\langle f_{1}, f_{1}, f_{3}, f_{3}\right\rangle_{U^{2}}\left\langle f_{2}, f_{2}, f_{4}, f_{4}\right\rangle_{U^{2}}
$$

We conclude by using both inequalities one after the other:

$$
\begin{aligned}
\left\langle f_{1}, f_{2}, f_{3}, f_{4}\right\rangle_{U^{2}}^{4} & \leq\left\langle f_{1}, f_{2}, f_{1}, f_{2}\right\rangle_{U^{2}}^{2}\left\langle f_{3}, f_{4}, f_{3}, f_{4}\right\rangle_{U^{2}}^{2} \\
& \leq\left\langle f_{1}, f_{1}, f_{1}, f_{1}\right\rangle_{U^{2}}\left\langle f_{2}, f_{2}, f_{2}, f_{2}\right\rangle_{U^{2}}\left\langle f_{3}, f_{3}, f_{3}, f_{3}\right\rangle_{U^{2}}\left\langle f_{4}, f_{4}, f_{4}, f_{4}\right\rangle_{U^{2}} \\
& =\left\|f_{1}\right\|_{U^{2}}^{4}\left\|f_{2}\right\|_{U^{2}}^{4}\left\|f_{3}\right\|_{U^{2}}^{4}\left\|f_{4}\right\|_{U^{2}}^{4}
\end{aligned}
$$

Theorem 2 (Chung, Graham). Let G be an additive group of order n and let $A \subseteq G$ be a set of size $|A|=\alpha n$. Then the following are asymptotically equivalent:
(i) Fourier coefficients: $|\hat{A}(\gamma)| \leq c_{1}$ for all non-trivial characters γ
(ii) Additive quadruples: There are at most $\left(\alpha^{4}+c_{2}\right) n^{3}$ solutions in A of the equation $x+y=z+w$
(iii) Strong translation: For all sets $B \subseteq G$, all but at most $c_{3} n$ elements $x \in G$ satisfy $|A \cap(B+x)|=\alpha|B| \pm c_{3} n$
(iv) Weak translation: All but at most $c_{4} n$ elements $x \in G$ satisfy $\mid A \cap(A+$ $x) \mid=\alpha^{2} n \pm c_{4} n$

Proof. First of all, we note that condition (ii) is equivalent to saying that $\|A\|_{U^{2}(G)}^{4} \leq \alpha^{4}+c_{2}$.
$(i) \Rightarrow(i i)$
Suppose $|\hat{A}(1)|=\alpha$ and $|\hat{A}(\gamma)| \leq c_{1}$ for all $\gamma \in \hat{G} \backslash\{1\}$. Then

$$
\begin{aligned}
\|A\|_{U^{2}(G)}^{4}=\|\hat{A}\|_{\ell^{4}(\hat{G})}^{4} & =\alpha^{4}+\sum_{\gamma \neq 1}|\hat{A}(\gamma)|^{4} \\
& \leq \alpha^{4}+\sum_{\gamma \neq 1} c_{1}^{2}|\hat{A}(\gamma)|^{2} \\
& \leq \alpha^{4}+c_{1}^{2}\|\hat{A}\|_{\ell^{2}(\hat{G})}^{2} \\
& =\alpha^{4}+c_{1}^{2}\|A\|_{L^{2}(G)}^{2} \leq \alpha^{4}+c_{1}^{2}
\end{aligned}
$$

so we can take $c_{2}=c_{1}^{2}$.
$(i i) \Rightarrow(i)$
If $\|A\|_{U^{2}(G)}^{4} \leq \alpha^{4}+c_{2}$, then

$$
\alpha^{4}+c_{2} \geq\|\hat{A}\|_{\ell^{4}(\hat{G})}^{4}=\alpha^{4}+\sum_{\gamma \neq 1}|\hat{A}(\gamma)|^{4} \geq \alpha^{4}+\max _{\gamma \neq 1}|\hat{A}(\gamma)|^{4}
$$

This implies that $\max _{\gamma \neq 1}|\hat{A}(\gamma)| \leq c_{2}^{1 / 4}$, so we can take $c_{1}=c_{2}^{1 / 4}$.
(ii) $\Rightarrow(i i i)$

We first note that, for any fixed $x \in G$, we have

$$
|A \cap(B-x)|-\alpha|B|=\sum_{y \in G}(A(y)-\alpha) B(x+y)
$$

Using this identity and the Gowers-Cauchy-Schwarz inequality we see that

$$
\begin{aligned}
\sum_{x \in G}(|A \cap(B-x)|-\alpha|B|)^{2} & =\sum_{x \in G}\left(\sum_{y \in G}(A(y)-\alpha) B(x+y)\right)^{2} \\
& =\sum_{x, y, z \in G}(A(y)-\alpha) B(x+y)(A(z)-\alpha) B(x+z) \\
& =n^{3}\langle A-\alpha, B, A-\alpha, B\rangle_{U^{2}(G)} \\
& \leq n^{3}\|A-\alpha\|_{U^{2}(G)}^{2}
\end{aligned}
$$

Defining the function $f(x):=A(x)-\alpha$ in G, we easily see that $\hat{f}(1)=0$ and $\hat{f}(\gamma)=\hat{A}(\gamma)$ for all $\gamma \in \hat{G} \backslash\{1\}$. Supposing $\|A\|_{U^{2}(G)}^{4} \leq \alpha^{4}+c_{2}$, we then obtain

$$
\|A-\alpha\|_{U^{2}(G)}^{4}=\|\hat{f}\|_{\ell^{4}(\hat{G})}^{4}=\|\hat{A}\|_{\ell^{4}(\hat{G})}^{4}-\alpha^{4}=\|A\|_{U^{2}(G)}^{4}-\alpha^{4} \leq c_{2}
$$

If less than $\left(1-c_{3}\right) n$ values $x \in G$ satisfy $|A \cap(B-x)|=\alpha|B| \pm c_{3} n$, then

$$
\sum_{x \in G}(|A \cap(B-x)|-\alpha|B|)^{2}>c_{3} n \cdot\left(c_{3} n\right)^{2}=c_{3}^{3} n^{3}
$$

It thus suffices to take $c_{3}=c_{2}^{1 / 6}$ for this last inequality to be incompatible with our previous bound.
$(i i i) \Rightarrow(i v)$
This is just a special case, and we may take $c_{4}=c_{3}$.

$$
(i v) \Rightarrow(i i)
$$

As in the proof that $(i i) \Rightarrow(i i i)$, we see that

$$
\sum_{x \in G}|A \cap(A+x)|^{2}=n^{3}\|A\|_{U^{2}(G)}^{4}
$$

Assuming $c_{4} \leq 1$ (as otherwise we may just take $c_{2}=1$), we then have

$$
\begin{aligned}
n^{3}\|A\|_{U^{2}(G)}^{4} & \leq n \cdot\left(\alpha^{2}+c_{4}\right)^{2} n^{2}+c_{4} n \cdot n^{2} \\
& \leq\left(\alpha^{4}+3 c_{4}\right) n^{3}+c_{4} n^{3}=\left(\alpha^{4}+4 c_{4}\right) n^{3}
\end{aligned}
$$

We may then take $c_{2}=4 c_{4}$.

Definition. Given a subset $A \subseteq G$, we define its Cayley graph Γ_{A} by

$$
V\left(\Gamma_{A}\right)=G, \quad E\left(\Gamma_{A}\right)=\{x y: x+y \in A\}
$$

Lemma 3. A set $A \subseteq G$ is linear uniform if and only if its Cayley graph Γ_{A} is quasirandom.

Proof. We will show that property (iii) of quasirandom graphs applied to Γ_{A} is the same as property (ii) of quasirandom sets applied to A. Indeed,

$$
\begin{aligned}
t\left(C_{4}, \Gamma_{A}\right) & =\mathbb{E}_{a, b, c, d \in G}\left[\Gamma_{A}(a, b) \Gamma_{A}(b, c) \Gamma_{A}(c, d) \Gamma_{A}(d, a)\right] \\
& =\mathbb{E}_{a, b, c, d \in G}[A(a+b) A(b+c) A(c+d) A(d+a)]
\end{aligned}
$$

Let us now make the change of variables $x:=a+b, h_{1}:=c-a, h_{2}:=d-b$. It is easy to see that x, h_{1}, h_{2} are uniformly distributed on G, so the last expression is equal to

$$
\mathbb{E}_{x, h_{1}, h_{2} \in G}\left[A(x) A\left(x+h_{1}\right) A\left(x+h_{1}+h_{2}\right) A\left(x+h_{2}\right)\right]=\|A\|_{U^{2}(G)}^{4}
$$

Thus $t\left(C_{4}, \Gamma_{A}\right) \leq \alpha^{4}+\epsilon$ if and only if $\|A\|_{U^{2}(G)}^{4} \leq \alpha^{4}+\epsilon$, as wished.
Lemma 4. Let G be an additive group of odd order and suppose $A \subseteq G$ is linear ϵ-uniform. Then there are between $\left(\alpha^{3}-\epsilon\right) n^{2}$ and $\left(\alpha^{3}+\epsilon\right) n^{2}$ 3-term arithmetic progressions in A.

Proof. We will use the identity

$$
\mathbb{E}_{x, r \in G}\left[f_{1}(x) f_{2}(x+r) f_{3}(x+2 r)\right]=\sum_{\gamma \in \hat{G}} \widehat{f}_{1}(\gamma) \widehat{f}_{2}\left(\gamma^{-2}\right) \widehat{f}_{3}(\gamma)
$$

where γ^{-2} is the character satisfying $\gamma^{-2}(x)=\gamma(x)^{-2}$ for all $x \in G$. Indeed, the last sum is equal to

$$
\begin{aligned}
\sum_{\gamma \in \hat{G}} \mathbb{E}_{x \in G}[f(x) \overline{\gamma(x)}] & \mathbb{E}_{y \in G}\left[f(y) \overline{\gamma^{-2}(y)}\right] \mathbb{E}_{z \in G}[f(z) \overline{\gamma(z)}] \\
& =\sum_{\gamma \in \hat{G}} \mathbb{E}_{x, y, z \in G}\left[f_{1}(x) f_{2}(y) f_{3}(z) \gamma(-x+2 y-z)\right] \\
& =\mathbb{E}_{x, y, z \in G}\left[f_{1}(x) f_{2}(y) f_{3}(z) \cdot|G| \mathbf{1}_{\{x+z=2 y\}}\right] \\
& =\mathbb{E}_{x, r \in G}\left[f_{1}(x) f_{2}(x+r) f_{3}(x+2 r)\right],
\end{aligned}
$$

where we used the orthogonality relations of characters for the second equality.
As $\hat{A}(1)=\alpha$, we conclude that

$$
\mathbb{E}_{x, r \in G}[A(x) A(x+r) A(x+2 r)]=\alpha^{3}+\sum_{\gamma \in \hat{G} \backslash\{1\}} \hat{A}(\gamma)^{2} \hat{A}\left(\gamma^{-2}\right)
$$

We then bound the absolute value of the last sum by

$$
\begin{aligned}
\sum_{\gamma \in \hat{G} \backslash\{1\}} \hat{A}(\gamma)^{2} \hat{A}\left(\gamma^{-2}\right) \mid & \leq\left(\max _{\gamma \in \hat{G} \backslash\{1\}} \hat{A}(\gamma)\right) \sum_{\gamma \in \hat{G} \backslash\{1\}}|\hat{A}(\gamma)| \cdot\left|\hat{A}\left(\gamma^{-2}\right)\right| \\
& \leq \epsilon\left(\sum_{\gamma \in \hat{G}}|\hat{A}(\gamma)|^{2}\right)^{1 / 2}\left(\sum_{\gamma \in \hat{G}}\left|\hat{A}\left(\gamma^{-2}\right)\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

where for the last inequality we used Cauchy-Schwarz and the fact that A is linear ϵ-uniform.

We will next show that $\left\{\gamma^{-2}: \gamma \in \hat{G}\right\}=\hat{G}$. Note that this would conclude the proof, since it implies that the right hand side of the last inequality is equal to $\epsilon\|\hat{A}\|_{\ell^{2}(\hat{G})}^{2}=\epsilon\|A\|_{L^{2}(G)}^{2} \leq \epsilon$. Since clearly $\left\{\gamma^{-2}: \gamma \in \hat{G}\right\} \subseteq \hat{G}$, it suffices to show that $\gamma^{-2} \neq \eta^{-2}$ whenever γ and η are distinct characters.

But if $\gamma \neq \eta$ and $\gamma^{-2}=\eta^{-2}$, then $\eta \gamma^{-1}$ is a nontrivial character satisfying $\left(\eta \gamma^{-1}\right)^{2}=1$. This implies that the order of $\eta \gamma^{-1}$ is 2 , which is impossible since it must divide $|\hat{G}|=|G|$ which is odd. This contradiction finishes the proof.

Remark: The assumption that G has odd order cannot be dropped. To see this, consider the group \mathbb{F}_{2}^{n} and any set $A \subset \mathbb{F}_{2}^{n}$ of density $0<\alpha<1$. Then

$$
\mathbb{E}_{x, r \in \mathbb{F}_{2}^{n}}[A(x) A(x+r) A(x+2 r)]=\mathbb{E}_{x, r \in \mathbb{F}_{2}^{n}}[A(x) A(x+r)]=\alpha^{2}
$$

is strictly bigger than $\alpha^{3}+\epsilon$ for any $\epsilon<(1-\alpha) \alpha^{2}$.

3 Quasirandomness in hypergraphs

Lemma 5 (Counting lemma for quasirandomness of order d). For any k uniform hypergraph H and any $0 \leq p \leq 1$, we have that

$$
t(F, H)=p^{|F|} \pm|F| \cdot\|H-p\|_{\square_{d}^{k}} \quad \forall F \in \mathcal{L}_{d}^{(k)}
$$

Proof. Let m be the number of vertices of the graph F, and assume $V(F)=[m]$ and $E(F)=\left\{e_{1}, \ldots, e_{|F|}\right\}$. Then we can write as a telescoping sum

$$
\begin{aligned}
\left|t(F, H)-p^{|F|}\right| & =\left|\mathbb{E}_{\mathbf{x} \in V(H)^{V(F)}}\left[\prod_{e \in E(F)} H\left(\mathbf{x}_{e}\right)-p^{|F|}\right]\right| \\
& =\left|\mathbb{E}_{\mathbf{x} \in V(H)^{V(F)}}\left[\sum_{i=1}^{|F|} p^{i-1}\left(H\left(\mathbf{x}_{e_{i}}\right)-p\right) \prod_{j=i+1}^{|F|} H\left(\mathbf{x}_{e_{j}}\right)\right]\right| \\
& \leq \sum_{i=1}^{|F|} p^{i-1}\left|\mathbb{E}_{\mathbf{x} \in V(H)^{V(F)}}\left[\left(H\left(\mathbf{x}_{e_{i}}\right)-p\right) \prod_{j=i+1}^{|F|} H\left(\mathbf{x}_{e_{j}}\right)\right]\right|
\end{aligned}
$$

The i-th term in the final sum is bounded by $\|H-p\|_{\square_{d}^{k}}$. Indeed, if we fix all variables other than $\mathbf{x}_{e_{i}}$, then all the factors except for $\left(H\left(\mathbf{x}_{e_{i}}\right)-p\right)$ have the form $u\left(\mathbf{x}_{f}\right)$ for some set f of size at most d, as f is the intersection of e_{i} with another edge e_{j}. So the the expectation can be bounded by $\|H-p\|_{\square_{d}^{k}}$ for each term, proving the lemma.

Given functions $f_{\omega}: V^{k} \rightarrow \mathbb{R}, \omega \in\{0,1\}^{k}$, we define their inner product of order k by

$$
\left\langle\left(f_{\omega}\right)_{\omega \in\{0,1\}^{k}}\right\rangle_{\mathrm{OCT}^{k}}:=\mathbb{E}_{\mathbf{x}^{(0)}, \mathbf{x}^{(1)} \in V^{k}}\left[\prod_{\omega \in\{0,1\}^{k}} f_{\omega}\left(\mathbf{x}^{(\omega)}\right)\right],
$$

where we write $\mathbf{x}^{(\omega)}:=\left(\mathbf{x}_{i}^{\left(\omega_{i}\right)}\right)_{i \in[k]}$. With this inner product, we have

$$
\|f\|_{\mathrm{OCT}^{k}}^{2^{k}}=\langle f, f, \ldots, f\rangle_{\mathrm{OCT}^{k}}
$$

Lemma 6 (Gowers-Cauchy-Schwarz inequality).

$$
\left\langle\left(f_{\omega}\right)_{\omega \in\{0,1\}^{k}}\right\rangle_{\mathrm{OCT}^{k}} \leq \prod_{\omega \in\{0,1\}^{k}}\left\|f_{\omega}\right\|_{\mathrm{OCT}^{k}}
$$

The proof of this lemma follows by applying Cauchy-Schwarz k times consecutively, and it will be given next class.

Remark: Using the Gowers-Cauchy-Schwarz inequality it is possible to prove that the octahedral norm satisfies the triangle inequality, and is thus indeed a norm.

Lemma 7. For every function $f: V^{k} \rightarrow \mathbb{R}$, we have that $\|f\|_{\square_{k-1}^{k}} \leq\|f\|_{\mathrm{OCT}^{k}}$.
Proof. For any function $u_{B}: V^{B} \rightarrow[0,1], B \in\binom{[k]}{k-1}$, we let $f_{\omega_{B}}: V^{[k]} \rightarrow \mathbb{R}$ be the function $f_{\omega_{B}}\left(\mathbf{x}_{[k]}\right):=u_{B}\left(\mathbf{x}_{B}\right)$, where $\omega_{B} \in\{0,1\}^{[k]}$ is the indicator vector of the set B.

By denoting $f_{\mathbf{1}}:=f$ and $f_{\omega}:=1$ for $\omega \in\{0,1\}^{[k]} \backslash\{\mathbf{1}\}$ not in $\left\{\omega_{B}: B \in\right.$ $\left.\binom{[k]}{k-1}\right\}$, using the Gowers-Cauchy-Schwarz inequality we conclude that

$$
\begin{aligned}
\left|\mathbb{E}_{\mathbf{x} \in V^{[k]}}\left[f(\mathbf{x}) \prod_{B \in\binom{[k]}{k-1}} u_{B}\left(\mathbf{x}_{B}\right)\right]\right| & =\left|\mathbb{E}_{\mathbf{x}^{(0)}, \mathbf{x}^{(1)} \in V^{k}}\left[\prod_{\omega \in\{0,1\}^{k}} f_{\omega}\left(\mathbf{x}^{(\omega)}\right)\right]\right| \\
& \leq \prod_{\omega \in\{0,1\}^{k}}\left\|f_{\omega}\right\|_{\mathrm{OCT}^{k}}
\end{aligned}
$$

Since clearly $\left\|f_{\omega}\right\|_{\mathrm{OCT}^{k}} \leq\left\|f_{\omega}\right\|_{\ell \infty} \leq 1$ for all $\omega \in\{0,1\}^{[k]} \backslash\{\mathbf{1}\}$, the last product is at most $\|f\|_{\mathrm{Oct}^{k}}$. As this inequality is valid for all functions $u_{B}: V^{B} \rightarrow[0,1]$, $B \in\binom{[k]}{k-1}$, we obtain the claim.

Theorem 3 (Kohayakawa, Rödl, Skokan). Let H be a k-uniform hypergraph with edge density p. Then the following statements are asymptotically equivalent:
(i) H is strongly quasirandom: $\|H-p\|_{\square_{k-1}^{k}} \leq c_{1}$
(ii) H correctly counts all hypergraphs:

$$
t(F, H)=\alpha^{|F|} \pm c_{2}|F| \quad \text { for all } k \text {-hypergraphs } F
$$

(iii) H correctly counts $\mathrm{OcT}^{(k)}$ and all its subhypergraphs:

$$
t(F, H)=\alpha^{|F|} \pm c_{3} \quad \text { for all } F \subseteq \mathrm{OCT}^{(k)}
$$

Proof. $(i) \Rightarrow(i i)$
This follows immediately from the counting lemma, and we may take $c_{2}=c_{1}$.
(ii) $\Rightarrow($ iii $)$

This is a special case, and we may take $c_{3}=2^{k} c_{2}$.
$(i i i) \Rightarrow(i)$
Suppose $t(F, H)=p^{|F|} \pm c_{3}$ for all subhypergraphs $F \subseteq \mathrm{OCT}^{(k)}$. Then

$$
\begin{aligned}
t\left(\mathrm{OCT}^{(k)}, H-p\right) & =\mathbb{E}_{\mathbf{x} \in V(H)^{V\left(O \mathrm{Or}^{(k)}\right)}}\left[\prod_{e \in \mathrm{OcT}^{(k)}}\left(H\left(\mathbf{x}_{e}\right)-p\right)\right] \\
& =\mathbb{E}_{\left.\mathbf{x} \in V(H)^{V(\mathrm{OcT}(k)}\right)}\left[\sum_{F \subseteq \mathrm{OCT}^{(k)}} \prod_{e \in F} H\left(\mathbf{x}_{e}\right) \prod_{e \in \mathrm{Oct}^{(k)} \backslash F}(-p)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{F \subseteq \mathrm{OCT}^{(k)}} \mathbb{E}_{\mathbf{x} \in V(H)^{V}\left(\text { Ocr }^{(k)}\right)}\left[\prod_{e \in F} H\left(\mathbf{x}_{e}\right)\right] \cdot(-p)^{2^{k}-|F|} \\
& =\sum_{F \subseteq \mathrm{OCT}^{(k)}} t(F, H) \cdot(-p)^{2^{k}-|F|} \\
& \left.=\sum_{F \subseteq \mathrm{OCT}^{(k)}} p^{|F|} \pm c_{3}\right)(-p)^{2^{k}-|F|} \\
& =\sum_{F \subseteq \mathrm{OCT}^{(k)}} p^{|F|}(-p)^{2^{k}-|F|} \pm 2^{2^{k}} c_{3} \\
& = \pm 2^{2^{k}} c_{3}
\end{aligned}
$$

Thus $\|H-p\|_{\mathrm{OCT}^{k}}=t\left(\mathrm{OCT}^{(k)}, H-p\right)^{1 / 2^{k}} \leq 2 c_{3}^{1 / 2^{k}}$, and the claim follows from the inequality $\|H-p\|_{\square_{k-1}^{k}} \leq\|H-p\|_{\mathrm{OCT}^{k}}\left(\right.$ with $c_{1}=2 c_{3}^{1 / 2^{k}}$).

4 Comparing quasirandomness in additive groups and in hypergraphs

Lemma 8. For every function $f: V^{k} \rightarrow \mathbb{R}$, we have that $\|f\|_{\square_{k-1}^{k}} \leq\|f\|_{\mathrm{OCT}^{k}}$.
Proof. For any function $u_{B}: V^{B} \rightarrow[0,1], B \in\binom{[k]}{k-1}$, we let $f_{\omega_{B}}: V^{[k]} \rightarrow \mathbb{R}$ be the function $f_{\omega_{B}}\left(\mathbf{x}_{[k]}\right):=u_{B}\left(\mathbf{x}_{B}\right)$, where $\omega_{B} \in\{0,1\}^{[k]}$ is the indicator vector of the set B.

By denoting $f_{\mathbf{1}}:=f$ and $f_{\omega}:=1$ for $\omega \in\{0,1\}^{[k]} \backslash\{\mathbf{1}\}$ not in $\left\{\omega_{B}: B \in\right.$ $\left.\binom{[k]}{k-1}\right\}$, using the Gowers-Cauchy-Schwarz inequality we conclude that

$$
\begin{aligned}
\left\lvert\, \mathbb{E}_{\mathbf{x} \in V^{[k]}}\left[f(\mathbf{x}) \prod_{B \in\binom{[k]}{k-1}} u_{B}\left(\mathbf{x}_{B}\right)\right]\right. & =\left|\mathbb{E}_{\mathbf{x}^{(0)}, \mathbf{x}^{(1)} \in V^{k}}\left[\prod_{\omega \in\{0,1\}^{k}} f_{\omega}\left(\mathbf{x}^{(\omega)}\right)\right]\right| \\
& \leq \prod_{\omega \in\{0,1\}^{k}}\left\|f_{\omega}\right\|_{\mathrm{OCT}^{k}}
\end{aligned}
$$

Since clearly $\left\|f_{\omega}\right\|_{\mathrm{OCT}^{k}} \leq\left\|f_{\omega}\right\|_{\ell \infty} \leq 1$ for all $\omega \in\{0,1\}^{[k]} \backslash\{\mathbf{1}\}$, the last product is at most $\|f\|_{\mathrm{Oct}^{k}}$. As this inequality is valid for all functions $u_{B}: V^{B} \rightarrow[0,1]$, $B \in\binom{[k]}{k-1}$, we obtain the claim.

Remark: Denoting by $s_{k}: G^{k} \rightarrow G$ the sum operator $\left(x_{1}, \ldots, x_{k}\right) \mapsto x_{1}+$ $\cdots+x_{k}$, one can easily prove the identity $\|f\|_{U^{k}(G)}=\left\|f \circ s_{k}\right\|_{\mathrm{OCT}^{k}}$, valid for all functions $f: G \rightarrow \mathbb{R}$.

Theorem 4. Let G be a finite additive group and $A \subseteq G$ be a subset.
a) If A is ϵ-uniform of degree d, then for all $k \geq d+1$ the Cayley hypergraph $H^{(k)} A$ is ϵ-quasirandom of order d.
b) Conversely, if $H^{(d+1)} A$ is ϵ-quasirandom of order d, then A is $2 \epsilon^{1 / 2^{d+1}}$ uniform of degree d.

Proof. We will prove the theorem more generally for functions $f: G \rightarrow[0,1]$ instead of only sets $A \subseteq G$. The statement then follows by taking f to be the indicator function of the set A.
a) Suppose $f: G \rightarrow \mathbb{R}$ satisfies $\|f-\alpha\|_{U^{d+1}} \leq \epsilon$, and choose optimal functions $u_{B}: G^{B} \rightarrow[0,1], B \in\binom{[k]}{d}$, so that

$$
\left\|H^{(k)} f-\alpha\right\|_{\square_{d}^{k}}:=\|f \circ s-\alpha\|_{\square_{d}^{k}}=\left|\mathbb{E}_{\mathbf{x} \in G^{[k]}}\left[(f(s(\mathbf{x}))-\alpha) \prod_{B \in\binom{[k]}{d}} u_{B}\left(\mathbf{x}_{B}\right)\right]\right|
$$

We now separate the first $d+1$ variables $\mathbf{x}_{[d+1]}$ from the rest, thus writing $\left\|H^{(k)} f-\alpha\right\|_{\square_{d}^{k}}$ as

$$
\left|\mathbb{E}_{\mathbf{x}_{[k] \backslash[d+1]}} \mathbb{E}_{\mathbf{x}_{[d+1]}}\left[\left(f\left(s\left(\mathbf{x}_{[d+1]}\right)+s\left(\mathbf{x}_{[k] \backslash[d+1]}\right)\right)-\alpha\right) \prod_{B \in\binom{[k]}{d}} u_{B}\left(\mathbf{x}_{B}\right)\right]\right|
$$

where the first expectation is over $G^{[k] \backslash[d+1]}$ and the second is over $G^{[d+1]}$.
By using the triangle inequality and choosing suitable functions $v_{D, \mathbf{x}_{[k] \backslash[d+1]}}$: $G^{D} \rightarrow[0,1]$ for each $\mathbf{x}_{[k] \backslash[d+1]} \in G^{[k] \backslash[d+1]}$ and each set $D \in\binom{[d+1]}{d}$, the last expression is at most

$$
\begin{aligned}
& \mathbb{E}_{\mathbf{x}_{[k] \backslash[d+1]}}\left|\mathbb{E}_{\mathbf{x}_{[d+1]}}\left[\left(T^{s\left(\mathbf{x}_{[k] \backslash[d+1]}\right)} f \circ s\left(\mathbf{x}_{[d+1]}\right)-\alpha\right) \prod_{D \in\binom{[d+1]}{d}} v_{D, \mathbf{x}_{[k] \backslash[d+1]}}\left(\mathbf{x}_{D}\right)\right]\right| \\
& \leq \mathbb{E}_{\mathbf{x}_{[k] \backslash[d+1]}}\left\|T^{s\left(\mathbf{x}_{[k] \backslash[d+1]}\right)} f \circ s-\alpha\right\|_{\square_{d}^{d+1}} \\
&=\mathbb{E}_{\mathbf{x}_{[k] \backslash[d+1]}}\|f \circ s-\alpha\|_{\square_{d}^{d+1}} \\
&=\left\|H^{(d+1)} f-\alpha\right\|_{\square_{d}^{d+1}}
\end{aligned}
$$

By the Gowers-Cauchy-Schwarz inequality corollary, this is at most

$$
\left\|H^{(d+1)} f-\alpha\right\|_{\mathrm{OCT}^{d+1}}=\left\|H^{(d+1)}(f-\alpha)\right\|_{\mathrm{OCT}^{d+1}}=\|f-\alpha\|_{U^{d+1}} \leq \epsilon
$$

thus showing $\left\|H^{(k)} f-\alpha\right\|_{\square_{d}^{k}} \leq \epsilon$.
b) If $h: V^{d+1} \rightarrow[0,1]$, recall that

$$
\|h\|_{\mathrm{OCT}^{d+1}}^{2^{d+1}}=\mathbb{E}_{\mathbf{x}^{(0)}, \mathbf{x}^{(1)} \in V^{d+1}}\left[\prod_{\omega \in\{0,1\}^{k}} h\left(\mathbf{x}^{(\omega)}\right)\right]
$$

We can then use the pigeonhole principle to freeze the $\mathbf{x}^{(0)}$ variables and then obtain functions $u_{D}: V^{D} \rightarrow[0,1], D \in\binom{[d+1]}{d}$, for which

$$
\|h\|_{\square_{d}^{d+1}} \geq \mathbb{E}_{\mathbf{x} \in V^{d+1}}\left[h(\mathbf{x}) \prod_{D \in\binom{[d+1]}{d}} u_{D}\left(\mathbf{x}_{D}\right)\right] \geq\|h\|_{\mathrm{OCT}^{d+1}}^{2^{d+1}}
$$

The claim easily follows from the identity $\|f\|_{U^{d+1}(G)}=\left\|f \circ s_{k}\right\|_{\mathrm{OCT}^{d+1}}$.
Definition: d-simple k-graphs $\mathcal{S}_{d}^{(k)}$, squashed octahedron $\mathrm{OCT}_{d}^{(k)}$.
Theorem 5. Let $A \subseteq G$ be a set of density α in G. Then for every $k \geq d+1$ the following statements are asymptotically equivalent:
(i) A is uniform of degree d : $\|A-\alpha\|_{U^{d+1}} \leq c_{1}$
(ii) $H^{(k)} A$ correctly counts all hypergraphs in $\mathcal{S}_{d+1}^{(k)}$:

$$
t\left(F, H^{(k)} A\right)=\alpha^{|F|} \pm c_{2}|F| \quad \forall F \in \mathcal{S}_{d+1}^{(k)}
$$

(iii) $H^{(k)} A$ correctly counts $\mathrm{OCT}_{d+1}^{(k)}$:

$$
t\left(\mathrm{OCT}_{d+1}^{(k)}, H^{(k)} A\right)=\alpha^{2^{d+1}} \pm c_{3}
$$

Proof. $(i) \Rightarrow(i i)$:

$$
\begin{aligned}
&\left|t\left(F, H^{(k)} f\right)-\alpha^{|F|}\right|=\left|\mathbb{E}_{\mathbf{x}_{V} \in G^{V}}\left[\sum_{i=1}^{|F|} \alpha^{i-1}\left(f \circ s\left(\mathbf{x}_{e_{i}}\right)-\alpha\right) \prod_{j=i+1}^{|F|} f \circ s\left(\mathbf{x}_{e_{j}}\right)\right]\right| \\
& \leq \sum_{i=1}^{|F|}\left|\mathbb{E}_{\mathbf{x}_{V} \in G^{V}}\left[\left(f \circ s\left(\mathbf{x}_{e_{i}}\right)-\alpha\right) \prod_{j=i+1}^{|F|} f \circ s\left(\mathbf{x}_{e_{j}}\right)\right]\right| \\
& \leq \sum_{i=1}^{|F|} \mathbb{E}_{\mathbf{x}_{V \backslash f_{i}}} \mid \mathbb{E}_{\mathbf{x}_{f_{i}}}\left[\left(f\left(s\left(\mathbf{x}_{f_{i}}\right)+s\left(\mathbf{x}_{e_{i} \backslash f_{i}}\right)\right)-\alpha\right)\right. \\
&\left.\times \prod_{j=i+1}^{|F|} f\left(s\left(\mathbf{x}_{e_{j} \cap f_{i}}\right)+s\left(\mathbf{x}_{e_{j} \backslash f_{i}}\right)\right)\right] \mid
\end{aligned}
$$

Let us now consider the i-th term in the last sum. For a fixed $\mathbf{x}_{V \backslash f_{i}} \in G^{V \backslash f_{i}}$ and each $i+1 \leq j \leq|F|$, define the function $u_{j, \mathbf{x}_{V \backslash f_{i}}}:=T^{s\left(\mathbf{x}_{e_{j} \backslash f_{i}}\right)} f \circ s$ on $G^{e_{j} \cap f_{i}}$. With this notation, the last sum becomes

$$
\begin{aligned}
& \sum_{i=1}^{|F|} \mathbb{E}_{\mathbf{x}_{V \backslash f_{i}}}\left|\mathbb{E}_{\mathbf{x}_{f_{i}}}\left[\left(T^{s\left(\mathbf{x}_{e_{i} \backslash f_{i}}\right)} f \circ s\left(\mathbf{x}_{f_{i}}\right)-\alpha\right) \prod_{j=i+1}^{|F|} u_{j, \mathbf{x}_{V \backslash f_{i}}}\left(\mathbf{x}_{e_{j} \cap f_{i}}\right)\right]\right| \\
& \leq \sum_{i=1}^{|F|} \mathbb{E}_{\mathbf{x}_{V \backslash f_{i}}}\left\|T^{s\left(\mathbf{x}_{e_{i} \backslash f_{i}}\right)} f \circ s-\alpha\right\|_{\square_{d}^{d+1}} \\
&=|F| \cdot\|f \circ s-\alpha\|_{\square_{d}^{d+1}}
\end{aligned}
$$

Then item (ii) follows from the corollary of the Gowers-Cauchy-Schwarz inequality, since
$\|f \circ s-\alpha\|_{\square_{d}^{d+1}}=\left\|H^{(k)} f-\alpha\right\|_{\square_{d}^{d+1}} \leq\left\|H^{(k)} f-\alpha\right\|_{\mathrm{OCT}^{d+1}}=\|f-\alpha\|_{U^{d+1}} \leq c_{1}$,
and we may take $c_{2}=c_{1}$.
$(i i) \Rightarrow(i i i)$:
This is a special case, and we may take $c_{3}=2^{d+1} c_{2}$.

$$
(i i i) \Rightarrow(i):
$$

First we note that $t\left(\mathrm{OCT}_{d+1}^{(k)}, H^{(k)} f\right)=t\left(\mathrm{OCT}^{(d+1)}, H^{(d+1)} f\right)$ for any function $f: G \rightarrow \mathbb{R}$. Indeed, we have that

$$
\begin{aligned}
t\left(\mathrm{OCT}_{d+1}^{(k)}, H^{(k)} f\right) & =\mathbb{E}_{\mathbf{x} \in G^{V}}\left[\prod_{e \in \mathrm{OCT}_{d+1}^{(k)}} f \circ s\left(\mathbf{x}_{e}\right)\right] \\
& =\mathbb{E}_{\mathbf{y} \in G^{[k-d]}} \mathbb{E}_{\mathbf{x}^{(0)}, \mathbf{x}^{(1)} \in G^{[d+1]}}\left[\prod_{\omega \in\{0,1\}^{d+1}} f\left(s(\mathbf{y})+s\left(\mathbf{x}^{(\omega)}\right)\right)\right] \\
& =\mathbb{E}_{\mathbf{y} \in G^{[k-d]}}\left[t\left(\mathrm{OCT}^{(d+1)}, H^{(d+1)} T^{s(\mathbf{y})} f\right)\right] \\
& =t\left(\mathrm{OCT}^{(d+1)}, H^{(d+1)} f\right)
\end{aligned}
$$

Item (i) then follows from the hypergraph quasirandomness theorem given last lecture and the item b) of the last theorem.

