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Exercise 8.1. Let A € R™*" be a matrix. Write the optimization problem sdp___,,(A) as semide-
finite program in primal standard form.

Exercise 8.2. Let A € R™*" be a rectangular matrix. Show:

m n

|A]|co—s1 = max ZZAijxiyj cx,y; € [-1,1], 4 € [m], j € [n]

i=1 j=1

Exercise 8.3. Show: If A € S7, then
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[ Alfoc—1 = max ZZAU'%CU]’ cx; € {—1,1}, i € [n]

i=1 j=1

Exercise 8.4. Show that in the setting of the Grothendieck problem with rank r constraint we
have the following inequality
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for every matrix A = (A4;;) € R™*", where
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where u, v are unit vectors, and where Z € R"*(m+7) is a random matrix whose entries are distri-
buted independently according to the standard normal distribution with mean 0 and variance 1.

Hint. Consider the m + n vectors w; = u;, W4, = v;. Then the (m + n) x (m + n)-matrix with
entries

o0
Z farrr (w; - w; )L
k=1

is positive semidefinite. Determine the diagonal entries of this matrix.



