Universität zu Köln
Mathematisches Institut
Prof. Dr. F. Vallentin
G. Fischer

Dr. M.C. Zimmermann

Convex Optimization

Winter Term 2020/21
— Exercise Sheet 8 (January 19, 2021) —

Exercise 8.1. Let $A \in \mathbb{R}^{m \times n}$ be a matrix. Write the optimization problem $\operatorname{sdp}_{\infty \rightarrow 1}(A)$ as semidefinite program in primal standard form.

Exercise 8.2. Let $A \in \mathbb{R}^{m \times n}$ be a rectangular matrix. Show:

$$
\|A\|_{\infty \rightarrow 1}=\max \left\{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} x_{i} y_{j}: x_{i}, y_{j} \in[-1,1], i \in[m], j \in[n]\right\}
$$

Exercise 8.3. Show: If $A \in \mathcal{S}_{+}^{n}$, then

$$
\|A\|_{\infty \rightarrow 1}=\max \left\{\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j}: x_{i} \in\{-1,1\}, i \in[n]\right\}
$$

Exercise 8.4. Show that in the setting of the Grothendieck problem with rank r constraint we have the following inequality

$$
\left|\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} \sum_{k=1}^{\infty} f_{2 k+1}\left(u_{i} \cdot v_{j}\right)^{2 k+1}\right| \leq\left(1-f_{1}\right) \operatorname{SDP}_{m+n}(A)
$$

for every matrix $A=\left(A_{i j}\right) \in \mathbb{R}^{m \times n}$, where

$$
\mathbb{E}\left[\frac{Z u}{\|Z u\|} \cdot \frac{Z v}{\|Z v\|}\right]=\sum_{k=0}^{\infty} f_{2 k+1}(u \cdot v)^{2 k+1}
$$

where u, v are unit vectors, and where $Z \in \mathbb{R}^{r \times(m+n)}$ is a random matrix whose entries are distributed independently according to the standard normal distribution with mean 0 and variance 1.

Hint. Consider the $m+n$ vectors $w_{i}=u_{i}, w_{m+i}=v_{j}$. Then the $(m+n) \times(m+n)$-matrix with entries

$$
\sum_{k=1}^{\infty} f_{2 k+1}\left(w_{i} \cdot w_{j}\right)^{2 k+1}
$$

is positive semidefinite. Determine the diagonal entries of this matrix.

