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VISION

In the future it is conceivable that computers will take an active role
in the creative process of doing mathematics. Routine parts of proofs
will more and more be performed by computers. Already ten years ago
the British mathematician Timothy Gowers (Cambridge University)
speculated: “I expect computers to be better than humans at proving
theorems in 2099”. Gowers is one of the most brilliant and influential
mathematicians of our days: In 1998 he got the Fields medal, which
is the mathematical equivalent of the “Nobel prize”. He is the editor
of The Princeton Companion to Mathematics. Furthermore, he is a
very active user of the Internet and we highly recommend to look at
his blog, the “polymath project”, and the “tricki web site”.

So, what happened during the last ten years? Are we — humans
and computers — coming closer to Gowers’ speculation? In this
article we would like to illustrate that already now computers are
sometimes better than humans at proving theorems, and that
doing computer-assisted mathematics is fruitful, useful and most
important: It is fun.

PARADIGM

In the last years we attacked several problems in geometry and
optimization with a symbiosis of human and computer reasoning.
One of our motivations is that we want to find systematic ways for
doing elegant and insightful computer-assisted proofs. Typically one
works with the following three-step process:

1. Modelling

Modelling the problem (or a relaxation of it) as an optimization prob-
lem is usually very beneficial, because there is a wealth of theoretical
and practical methods. For an efficient treatment, a better under-
standing of the structure of the space of all possible solutions (e.g. its
symmetry, its regularity) is usually needed. This step is often difficult,
but once achieved, this can lead to new insights.

2. Solving

Solving a problem computationally usually involves the design of new
optimization techniques on top of existing standard procedures. Here
it is important to separate algebraic and numerical calculations to
find a good balance between accuracy and speed of computation.

3. Interpretation

Obtained numerical results have to be turned into rigorous mathe-
matical arguments. “Beautification” of numerical data often leads to
the discovery of new objects or previously unrevealed structure of the
problem.

As examples for this three-step process, we describe some of our
recent work. Other fascinating examples are for instance in [3].

KISSING NUMBER

In geometry, the kissing number is the maximum number of non-
overlapping equally-sized spheres that can simultaneously touch a
central sphere. The kissing number is only known for dimensions 1,
2, 3, 4, 8 and 24. It is easy to see that the kissing number in dimension
1 is 2, and in dimension 2 it is 6. The kissing number problem has a
rich history. In 1694 Isaac Newton and David Gregory had a famous
discussion about the kissing number in three dimensions. The story is

that Gregory thought thirteen spheres could fit while Newton believed
the limit was twelve. Only in 1953, Schütte and van der Waerden
proved Newton right.

In the 1970s advanced methods to determine upper bounds for the
kissing number based on optimization, namely linear programming,
were introduced. Using these new techniques, the kissing number
problem in dimension 8 and 24 was solved. For four dimensions,
however, the optimization bound is 25, while the exact kissing num-
ber is 24. In a celebrated work Oleg Musin (University of Texas at
Brownsville) proved this in 2003, see [8].

Figure 1: Construction of 12 kissing spheres. Image credit: Anja
Traffas

In collaboration with Christine Bachoc (Université Bordeaux) we
found new upper bounds for kissing numbers. There we gave a unified
proof of all known kissing numbers and we found new upper bounds
in all other dimensions up to 24 with numerical assistance of Hans
Mittelmann (Arizona State University).

In [1] and [7] we found a rigorous, computational proof for these new
upper bounds. The first two phases of the three-step process were
especially important: In step 1 we used semidefinite programming
which is more powerful than linear programming and we used Fourier
analysis for exploiting the rotational symmetry of the problem. In
step 2 we applied techniques from polynomial optimization which
were introduced by Jean Lasserre (Université Toulouse) and Pablo
Parrilo (MIT) only recently. These algebraic methods enabled us to
give a rigorous mathematical proof.

ENERGY MINIMIZATION

The kissing number problem is not only a nice geometric puzzle prob-
lem, but it is related to many problems in science and technology. It
belongs to a class of more general energy minimization problems.
Given some potential function f , defined on pairs of points, how
should points on a sphere be arranged to minimize the total f -
potential energy? For a configuration C of points on the unit sphere,
this f -potential energy is defined by

Ef (C) =
X

x,y∈C,x 6=y

f(x, y).

Popular choices of potential functions are

f(x, y) =
1

‖x− y‖s (1)

with a fixed parameter s > 0. For s = 1 and in dimension 3 one
obtains for example the Coulomb potential studied in physics. A typ-
ical question is to find a configuration of N points on the unit sphere
which minimizes the f -potential energy among all configuration with
N points. By letting s tend to infinity one can see that the kiss-
ing number problem is a limit case of energy minimization. Another



Figure 2: Microscope images of “colloidosomes”, water droplets
coated by polystyrene beads, all submerged within an oil emul-
sion. Image credit: David Weitz research laboratory, Exper-
imental Soft Condensed Matter Group at Harvard University
http://www.deas.harvard.edu/projects/weitzlab/

Figure 3: Image credit: Left: Rob Womers-
ley, “Interpolation and Cubature on the Sphere”,
http://web.maths.unsw.edu.au/~rsw/Sphere/

Right: Laurent Orluc, “Pointillisme”,
http://www.math.vanderbilt.edu/~esaff/pointillisme.html

way to model the kissing number problem as an energy minimization
problem is by using the potential function

f(x, y) =


∞, if ‖x− y‖ < 1,
0, otherwise.

Then the kissing number is the maximum number N so that there
is a point configuration with N points on the unit sphere with finite
f -potential energy. In this case the point configuration gives the
touching points of the spheres.

Energy minimizing point configurations on spheres have attracted
mathematicians in fields such as approximation and coding theory,
and biologists, chemists, and physicists in diverse fields such as viral
morphology, crystallography, molecular structure and electrostatics.
As engineers advance in gaining control of the microscopic and even
nanoscopic world, energy minimization principles appear to become
increasingly important for synthetic fabrication and design. Figure 2
for example shows two microscopic images of tiny polystyrene beads
(one of the most widely used kinds of plastic), on the surface of
water droplets. These “colloidosomes” are self-assembling according
to energy minimizing principles and are expected to be of future use
in medical applications such as drug delivery.

The distribution of particles on more general surfaces and manifolds
has applications in a variety of fields where discretization is needed,
such as interpolation or computer aided design (see Figure 3 and [6]).
The distribution of particles in Euclidean space has been of particu-
lar interest. As in the case of spherical point configurations, where
the limit case is the kissing number problem, there is a well known
problem giving the limit case of energy minimization: the sphere
packing problem. It asks for the densest possible arrangement of
non-overlapping, equally sized spheres. Its three-dimensional version
became known as “Kepler conjecture”. After a long and controversy
history, it has in recent years been solved with massive computer cal-
culations by Thomas Hales (University of Pittsburgh). Here step 2
of the paradigm was the most difficult part.

Finding energy minimizing point configurations on spheres and in
Euclidean space is often done with computer simulations. With the

right model at hand, and by assuming some prescribed structure
(step 1), such computer experiments can lead to the discovery of
new geometric structures. Together with Henry Cohn (Microsoft
Research) and Abhinav Kumar (MIT) we have found in [2] and
[4] several previously unknown point configurations on spheres
and in Euclidean space. Some of them are conjectured to be
“universally optimal”; meaning they minimize energy for a large
class of potentials, including all those defined by (1). These
amazing configurations would most likely not have been discovered
without computer assistance. The newly found energy minimizing
point configurations in Euclidean space, suggest a deeper, not yet
understood symmetry of the Gaussian core model, which is one of
the most interesting soft-core potentials studied in physics. These
works exemplary show how in step 3 of the paradigm, computers may
help to discover mathematical structure that was previously unknown.

GETTING CLOSER TO THE VISION

Where do we stand now? Nine decades before 2099? As described
above, for certain classes of optimization problems, computers are al-
ready today an indispensable tool. Computers are also already better
in checking the correctness of proofs. Proofs for theorems like the
Jordan curve theorem or the four-color theorem can be checked by
computers nowadays. The “FlysPecK” project of Thomas Hales [5]
seeks to formalize his proof of the Kepler Conjecture in the computer
theorem prover HOL Light which is based on the ML programming
language.

Finally: There is a myth about Barbarossa, a German emperor who
died during the Third Crusade. A legend grew that he was still alive,
asleep in a cave. He would awake only when Germany needed him.
In the 1930’s somebody asked David Hilbert, “If you were to be
awoken like Barbarossa, after five hundred years of sleep, what would
you do?” Hilbert replied: “I would ask: Has anyone proved the
Riemann Hypothesis?” Nowadays he would add: “Was it a human
or a computer?”
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acusa, E. Kelly, A. Schürmann, Experimental study of
energy-minimizing point configurations on spheres, Experiment.
Math., to appear.

[3] J.M. Borwein, D.H. Bailey, Mathematics by Experiment:
Plausible Reasoning for the 21st century, A.K. Peters, 2003.

[4] H. Cohn, A. Kumar, A. Schürmann, Lattice-gradient tech-
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