KAPITEL 7 — DAS ELIMINATIONSVERFAHREN VON FOURIER UND MOTZKIN

F. VALLENTIN, A. GUNDERT

Ein algorithmisches Grundproblem in der Polyedertheorie ist zu entscheiden, ob ein Polyeder $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ nicht leer ist.

In der linearen Algebra hat man für ein ähnliches Problem, zu entscheiden, ob die Lösungsmenge $L=\{x\in\mathbb{R}^n:Ax=b\}$ eines linearen Gleichungssystems nicht leer ist, das Eliminationsverfahren von Gauß.

Wir lernen hier ein ähnliches Verfahren für unser Problem kennen.

1. Fourier-Motzkin-Elimination

Gegeben seien $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Ziel ist es, $x \in \mathbb{R}^n$ mit $Ax \leq b$ zu finden bzw. zu entscheiden (mit mathematischer Sicherheit), dass es ein solches x nicht gibt.

<u>Idee</u>: Eliminiere die Variable x_1 ; Finde $\tilde{A} \in \mathbb{R}^{\tilde{m} \times (n-1)}$, $\tilde{b} \in \mathbb{R}^{\tilde{m}}$, so dass

$$\exists x \in \mathbb{R}^n : Ax < b \Leftrightarrow \exists \tilde{x} \in \mathbb{R}^{n-1} : \tilde{A}\tilde{x} < \tilde{b}.$$

<u>Dazu</u>: Multipliziere Zeilen von A und entsprechende Einträge von b mit positiven Konstanten. Dann hat das System $Ax \leq b$ nach Umnummerierung der Zeilen folgende Gestalt:

$$\begin{bmatrix}
1 & (a'_{1})^{T} \\
\vdots & \vdots \\
1 & (a'_{r})^{T} \\
-1 & (a'_{r+1})^{T} \\
\vdots & \vdots \\
-1 & (a'_{r+s})^{T} \\
0 & (a'_{r+s+1})^{T} \\
\vdots & \vdots \\
0 & (a'_{m})^{T}
\end{bmatrix}
\begin{pmatrix}
x_{1} \\
\vdots \\
x_{n}
\end{pmatrix} \leq \begin{pmatrix}
b_{1} \\
\vdots \\
b_{m}
\end{pmatrix},$$

wobei $(a_i')^T \in \mathbb{R}^{1 \times (n-1)}$ die *i*-te Zeile von A ist, in der das erste Element gelöscht wurde (es kann passieren, dass r=0 oder s=0 ist). Betrachte die ersten r Bedingungen:

$$x_1 + (a_i')^T \underbrace{\begin{pmatrix} x_2 \\ \vdots \\ x_n \end{pmatrix}}_{-\tilde{x}} \le b_i \Rightarrow x_1 \le b_i - (a_i')^T \tilde{x}, \quad i = 1, \dots, r.$$

Date: 7. Juli 2014.

Genauso die nächsten s Bedingungen:

$$x_1 + (a'_{r+j})^T \tilde{x} \le b_{r+j} \Rightarrow x_1 \ge (a'_{r+j})^T \tilde{x} - b_{r+j}, \quad j = 1, \dots, s.$$

Zusammen gilt also

$$\max_{j=1,\dots,s} (a'_{r+j})^T \tilde{x} - b_{r+j} \le x_1 \le \min_{i=1,\dots,r} b_i - (a'_i)^T \tilde{x}.$$

(Falls s=0, dann ist $\max_{j=1,...,s}(a'_{r+j})^T\tilde{x}-b_{r+j}=-\infty$ und falls r=0, ist $\min_{i=1,...,r}b_i-(a'_i)^T\tilde{x}=+\infty$. In diesen Fällen ist also P in Richtung x_1 unbeschränkt.)

Also kann man x_1 eliminieren und das System (*) ist lösbar genau dann, wenn das System

$$(a'_{r+j})^T \tilde{x} - b_{r+j} \le b_i - (a'_i)^T \tilde{x}, \quad i = 1, \dots, r, \ j = 1, \dots, s$$

 $(a'_i)^T \tilde{x} \le b_i, \quad i = r + s + 1, \dots, m$

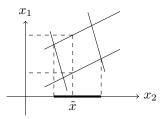
bzw. das System

$$(***) \qquad ((a'_{r+j})^T + (a'_i)^T)\tilde{x} \le b_i + b_{r+j}, \quad i = 1, \dots, r, \ j = 1, \dots, s$$
$$(a'_i)^T \tilde{x} \le b_i, \quad i = r + s + 1, \dots, m.$$

lösbar ist. Das neue System hat $r \cdot s + m - (r + s)$ viele Ungleichungen und n - 1 Variablen.

Bemerkung 1.1.

a) (***) entspricht der Projektion des Polyeders $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ entlang der x_1 -Achse.



- b) Eine Lösung \tilde{x} kann zu einer Lösung (x_1, \tilde{x}) von (*) erweitert werden. Dazu muss x_1 die Ungleichungen (**) erfüllen.
- c) Das Verfahren wird fortgesetzt, indem nun sukzessive die Variablen x_2, x_3, \ldots eliminiert werden, bis man bei x_n angekommen ist.
- d) Für x_n ist es offensichtlich, ob das finale System eine Lösung besitzt. Das finale System hat eine Lösung \Leftrightarrow das Ursprungssystem (*) hat eine Lösung.

2. LÖSEN VON LPS MIT FOURIER-MOTZKIN

Wir wollen das LP

(LP)
$$\max c^T x$$

$$x \in \mathbb{R}^n$$

$$Ax < b$$

mit dem Eliminationsverfahren von Fourier und Motzkin lösen. Dazu führen wir eine zusätzliche Variable λ ein und betrachten das System

$$Ax < b, \ \lambda < c^T x.$$

Die Idee ist, dass λ dem größtmöglichen Wert der Zielfunktion $c^T x$, also dem Maximum, so dass alle Ungleichungen erfüllt sind, entsprechen soll. Wegen $\lambda \leq c^T x \Leftrightarrow$ $\lambda - c^T x \leq 0$, ist das System äquivalent zu

$$\begin{bmatrix} A & 0 \\ -c^T & 1 \end{bmatrix} \begin{pmatrix} x \\ \lambda \end{pmatrix} \le \begin{pmatrix} b \\ 0 \end{pmatrix}.$$

Man kann nun das LP lösen, indem man eine Lösung $\begin{pmatrix} x \\ \lambda \end{pmatrix}$ von diesem System findet, so dass λ so groß wie möglich ist. Dazu eliminiert man x_1,\ldots,x_n bis λ die letzte Variable ist. Dann wählt man λ so groß wie möglich.

3. Farkas Lemma mit Fourier-Motzkin

Lemma 3.1. (Farkas)

 $Ax \leq b \text{ hat keine L\"osung} \Leftrightarrow \ \exists y \geq 0: y^TA = 0, \ y^Tb < 0.$

Beweis.

" \Leftarrow ": (hatten wir schon) Angenommen $Ax \leq b$ hat eine Lösung. Dann

$$0 = y^T A x \le y^T b < 0$$
, Widerspruch.

 $\underbrace{\xrightarrow{,,\Rightarrow\text{``}}: \text{ (algorithmisch mit Fourier-Motzkin)}}_{\text{Behauptung: }} \underbrace{\underbrace{(0,\dots,0}_{y^TA},\underbrace{-1}_{y^Tb})} \in \mathbb{R}^{n+1} \text{ ist eine nicht-negative Linear$ kombina-

tion der Zeilen der Matrix [A|b], gegeben durch y.

Beweis: (per Induktion nach n)

 $\underline{n=1}$: Angenommen $Ax_1 \leq b$ hat keine Lösung, das heißt

$$\begin{bmatrix} 1\\ \vdots\\ 1\\ -1\\ \vdots\\ -1\\ 0\\ \vdots\\ 0 \end{bmatrix} x_1 \le \begin{pmatrix} b_1\\ \vdots\\ b_r\\ b_{r+1}\\ \vdots\\ b_{r+s}\\ b_{r+s+1}\\ \vdots\\ b_m \end{pmatrix}$$

hat keine Lösung. Es gibt zwei Fälle, wie dies zustande kommen kann:

$$\underline{\text{1.Fall: }} 0 \cdot x_1 \leq b_{r+s+k} \text{ und } b_{r+s+k} < 0. \\
\text{Wähle } y = (0, \dots, 0, \underbrace{-\frac{1}{b_{r+s+k}}}_{\text{0.1}}, 0, \dots, 0)^T.$$

<u>2.Fall</u>: $b_i < -b_{r+j}$ für ein $i \in \{1, \dots, r\}$ und ein $j \in \{1, \dots, s\}$. $\overline{\text{Dann}}$ hat das System $Ax_1 \leq b$ keine Lösung, denn $-b_{r+j} \leq x_1 \leq b_i$, aber

$$b_i < -b_{r+j}$$
. Wähle

$$y = (0, \dots, 0, \underbrace{-\frac{1}{b_i + b_{r+j}}}_{\text{Position } i}, 0, \dots, 0, \underbrace{-\frac{1}{b_i + b_{r+j}}}_{\text{Position } r+j}, 0, \dots, 0)^T.$$

 $\underline{n} > \underline{1}$: Betrachte das System $A'x' \leq b'$, in dem die Variable x_1 eliminiert wurde. Das System besitzt keine Lösung, also ist der Vektor $(0,\ldots,0,-1) \in \mathbb{R}^n$ eine nicht-negative Linearkombination der Zeilen von [A'|b']. Nach Konstruktion sind die Zeilen der Matrix $[0\ A|b]$ nicht-negative Linearkombinationen der Zeilen von [A|b]. Also ist der Vektor $(0,\ldots,0-1) \in \mathbb{R}^{n+1}$ eine nicht-negative Linearkombination der Zeilen von [A|b].

Prof. Dr. F. Vallentin, Dr. A. Gundert, Mathematisches Institut, Universität zu Köln, Weyertal $86-90,\,50931$ Köln, Deutschland

 $E ext{-}mail\ address: frank.vallentin@uni-koeln.de, anna.gundert@uni-koeln.de}$