

Einführung in die Mathematik des Operations Research

Sommersemester 2015

— Aufgabenblatt 13 —

Aufgabe 13.1 Es sei $A \in \mathbb{R}^{n \times n}$ eine positiv definite Matrix und es sei $x \in \mathbb{R}^n$ ein Vektor. Sei $c \in \mathbb{R}^n \setminus \{0\}$ gegeben. Bestimmen Sie das Maximum

$$\max\{c^{\mathsf{T}}y: y \in \mathcal{E}(A, x)\}\$$

und die Vektoren y^* , die das Maximum annehmen.

Aufgabe 13.2 Es sei G=(V,E) ein bipartiter Graph. Wie in Kapitel VI.3 definiert, ist das Matchingpolytop von G ist die konvexe Hülle der Inzidenzvektoren aller Matchings in G:

$$M(G) = \text{conv}\{\chi^M : M \subseteq E \text{ ist ein Matching in } G\}.$$

Bestimmen Sie einen Vektor $x_0 \in \mathbb{R}^E$ und positive Zahlen r, R > 0, so dass

$$x_0 + rB \subseteq M(G) \subseteq x_0 + RB$$

gilt, wobei B die Einheitskugel der Dimension |E| ist.

Aufgabe 13.3 Es sei (A, B) das Bimatrix-Spiel

$$(A,B) = \begin{pmatrix} 2,1 & 0,0 \\ 0,0 & 1,2 \end{pmatrix}.$$

Finden Sie alle Gleichgewichte und die zugehörigen besten Antworten.

Aufgabe 13.4 Gibt es eine Korrelationsmatrix für das Spiel in Aufgabe 13.3, die zu einem korrelierten Gleichgewicht mit Wert (1,3,1,1) führt?

Abgabe: keine.