

University of Cologne Mathematical institute Prof. Dr. Frank Vallentin M. Sc. Maria Dostert M. Sc. Jan Rolfes

BMS Summer School: Convex Geometry — Discrete and Computational

Packings, Coverings, and Embeddings

- Problem Sheet 2: Embeddings -

Problem 2.1 = Problem 1.4^*

Problem 2.2 = Problem 1.5

Problem 2.3 Let G = (V, E) be a *d*-regular graph with *n* vertices and let

$$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$$

be the eigenvalues of the adjacency matrix of G. Then:

- a) $\lambda_i \in [d, -d]$ for all $i = 1, \ldots, n$.
- b) *G* is connected if and only if $\lambda_1 > \lambda_2$.
- c) *G* is bipartite if and only if $\lambda_1 = -\lambda_n$.
- d) $\lambda_2^2 \ge d \frac{n-d}{n-1}$.

Problem 2.4 Let G = (V, E) be a strongly regular graph with parameters (v, k, λ, μ) . What is $c_2(G)$?

Problem 2.5* Let G = (V, E) be a strongly regular graph with parameters (v, k, 0, 1). Then there are four possibilities for v and k:

$$(v,k) = (5,2), (10,3), (50,7), (3250,57).$$

It is currently not known whether a strongly regular graph with parameters (3250,57,0,1) exists.

Problem 2.6** Let G = (V, E) be a graph having girth g. It is conjectured that

$$c_2(G) = \Omega(g)$$

holds. The best lower bound which is currently known is $c_2(G) = \Omega(\sqrt{g})$.

Problem 2.7** Let G = (V, E) be a skeleton of a polytope. Does $c_2(G) = O(\sqrt{\log |V|})$ hold?