BMS Summer School: Convex Geometry — Discrete and Computational

Packings, Coverings, and Embeddings

— Problem Sheet 3: Coverings —

Problem 3.1 Given $Q \in \mathcal{S}^n$ and $V = \{v_1, \dots, v_{n+1}\}$ be affinely independent. Let $c \in \mathbb{R}^n$ and r > 0 be such that $Q[c - v_i] = r^2$ for all $i = 1, \dots, n+1$. Then,

$$\langle Q, N_{V,w} \rangle = Q[w-c] - r^2.$$

Problem 3.2 Consider $Q[x]=n\sum_{i=1}^n x_i^2-\sum_{i\neq j}x_ix_j$. For a permutation $\pi\in S_{n+1}$ define the n-dimensional simplex

$$L_{\pi} = \operatorname{conv} \left\{ \sum_{i=1}^{k} e_{\pi(i)} : k = 1, \dots, n+1 \right\},$$

where $e_{n+1} = -(e_1 + \cdots + e_n)$.

- a) Then, $L_{\pi} \in \text{Del}(Q)$ holds for any $\pi \in S_{n+1}$.
- b) What is $\Delta(Del(Q))$?
- c) The lattice determined by Q is locally optimal for the lattice covering problem.

Problem 3.3 Define the Cayley-Menger determinant of n points x_1, \ldots, x_n , where the pairwise distances $d(x_i, x_j) = \|x_i - x_j\|$ are given, by

$$CM(x_1, ..., x_n) = \begin{vmatrix} 0 & 1 & ... & 1 \\ 1 & d(x_1, x_1)^2 & ... & d(x_1, x_n)^2 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & d(x_n, x_1)^2 & ... & d(x_n, x_n)^2 \end{vmatrix}.$$

- a) The Cayley-Menger determinant of n+2 points in \mathbb{R}^n vanishes.
- b) Let $L=\mathrm{conv}\{v_0,\dots,v_n\}$ be a n-dimensional simplex. Then the circumsphere of L has the squared radius

$$R^{2} = -\frac{1}{2} \cdot \frac{\det \left(d(v_{i}, v_{j})^{2}\right)_{0 \leq i, j \leq n}}{\operatorname{CM}(v_{0}, \dots, v_{n})}.$$

Problem 3.4* The Leech lattice Λ_{24} is locally optimal for the lattice covering problem.

Problem 3.5**

- a) Is the E₈ root lattice locally optimal for the lattice packing-covering problem?
- b) The Leech lattice Λ_{24} is optimal for the lattice packing-covering problem.