
CHAPTER 1

A ten page introduction to conic optimization

This background chapter gives an introduction to conic optimization. We do
not give proofs, but focus on important (for this thesis) tools and concepts.

1.1. Optimization and computational hardness

Optimization is about maximizing or minimizing a function over a set. The set
is typically described more implicitly than just an enumeration of its elements, and
the structure in this description is essential in developing good optimization tech-
niques. The set is known as the feasible set and its elements the feasible solutions.
The function is called the objective function and its values the objective values. We
write a minimization problem as p = infx∈S f(x), and we often use p to refer to
the optimization problem as a whole instead of just its optimal value. We are not
only interested in finding the optimal value, but also in finding optimal solutions,
and if this is too difficult (or if they do not exist) we seek close to optimal feasible
solutions. An important topic is finding certificates asserting the solution’s opti-
mality or quality of approximation. In fact, when solving an optimization problem
we often intend to find an optimal or near optimal feasible solution together with a
certificate.

Linear programming is foundational in conic optimization. Consider the prob-
lem of finding a vector x satisfying a linear system Ax = b. We can find such an x by
Gaussian elimination, but when we also require the entries of x to be nonnegative,
then we need algorithms which go further then just solving linear systems. Linear
programming is the optimization analogue of this feasibility problem: In a linear
program we optimize a linear functional over all nonnegative vectors satisfying some
linear system. It is the positivity condition, and not the fact that we are optimizing
a functional, that moves a linear problem into the realm of optimization: Using
complementary slackness (see Section 1.3) we can add variables and constraints to
a linear program so that all its feasible solutions are optimal. Alternatively, we can
constrain a minimization problem’s objective value to be at most some number b,
and then bisect on b to solve the optimization problem by solving a sequence of
feasibility problems.

When we discuss the hardness (in some computational model) of solving or ap-
proximating a class of optimization problems, we need to define an explicit encoding
of the feasible sets and objective functions. In this way it is clear what constitutes
the input data for the algorithms. This is important because the efficiency of an
algorithm is determined by the dependence of the running time on the input size.
Geometrically, linear programming is the optimization of a linear functional over a

1

2 1. A TEN PAGE INTRODUCTION TO CONIC OPTIMIZATION

polyhedron, and although a polyhedron can be described in different ways, when
we discuss hardness we assume a facial description. This means the polyhedron is
given by all vectors x satisfying some linear inequality Ax ≥ b. We can, however,
use any description which is easily transformable into and derivable from this one,
such as the description from the previous paragraph. Linear programs can be solved
efficiently in practice by simplex methods, although it is not known whether there
exists a polynomial time simplex method. The ellipsoid method can solve a rational
linear program in polynomial time (in the bit model) but appears to be too slow in
practice. In Section 1.4 we discuss interior point methods which are fast in practice
and which can be made to run in polynomial time.

If a linear program’s input is rational, then its optimal value is a rational number
whose bit size is bounded by a fixed polynomial in the input bit size [56, Corollary
10.2a]. For semidefinite programming, which is a broad generalization of linear
programming, there exist rational instances whose optimal value is an algebraic
number of high degree [49]. It is not known whether a polynomial time algorithm
for semidefinite programing exists. However, if the feasible set of a semidefinite
program contains a ball of radius r and is contained in a ball of radius R, then for
each ε > 0 we can find an ε-optimal solution in polynomial time (where ε, r, and R
are part of the input of the algorithm). An ε-optimal solution is a feasible solution
whose objective value is within ε of the optimum.

We distinguish between convex and nonconvex optimization problems, where a
convex optimization problem has a convex feasible set and convex (concave) objec-
tive function in case it is a minimization (maximization) problem. Convex problems
have the advantage that local optima are globally optimal, although this does not
mean that they are necessarily easy to solve.

1.2. Lifts and relaxations

When optimization problems are difficult, we can try to use their description
to derive easier optimization problems which give information about the original
problems. Lifts provide one such technique. A lift of an optimization problem is
another optimization problem with a surjective map P from its feasible set onto
the original problem’s feasible set, and whose objective function is given by com-
posing the original objective function with P . This technique originated from the
observation that there exist polytopes which are projections of higher dimensional
polytopes with drastically simpler facial structure. Lifts contain all information of
the original problems; they have the same optimal value and we can project their
optimal solutions to optimal solutions of the original problem.

Typically we do not lift a single problem, but we systematically lift an entire
class of problems. When the worst case instances in this class are inherently difficult
to solve – for instance, the class is NP-hard and P �= NP – then it appears to be
difficult for lifts to recognize the easy problems; that is, all of them will be hard to
solve. More successful in this respect are relaxations. A relaxation of a problem
infx∈A f(x) is another problem infx∈B g(x) together with an injective map R : A �→
B such that g◦R ≤ f . Relaxations are often obtained by relaxing the constraint set,
in which case R is the identity. For example, by removing the integrality constraints

1.3. CONIC PROGRAMMING AND DUALITY 3

in an integer linear program we obtain the linear programming relaxation. Also
common are Lagrangian relaxations which we discuss in Section 1.3.

A lift of a relaxation is a relaxation, and we will encounter instances which are
naturally interpreted in this way. When R is surjective, the relaxation is a lift, and
R and P are each others inverses. Even when R is not surjective, it can happen
that it maps optimal solutions to optimal solutions, and in this case we say the
relaxation is sharp. Any optimization problem infx∈S f(x) admits a sharp convex
relaxation infx∈C g(x) by taking C to be the convex hull of the basis elements δx of
the vector space RS of finitely supported functions S → R and g to be the linear
functional satisfying g(δx) = f(x) for x ∈ S.

1.3. Conic programming and duality

In a conic program we optimize a linear functional over the intersection of a
closed convex cone with an affine space. A convex cone K is a subset of a real vector
space E such that ax + by ∈ K for all a, b ≥ 0 and x, y ∈ K. We define the affine
space by the set of solutions to the equation Ax = b, where A is a linear operator
from E to another real vector space F , and b is an element from F . The objective
function is a linear functional c : E → R. A conic program (in standard form) reads

p = inf {c(x) : x ∈ K, Ax = b} .
We can write any convex optimization problem infx∈S f(x) as a conic program:

First write it as a minimization problem with linear objective g(x, b) = b and convex
feasible set S� = {(x, b) : x ∈ S, f(x) ≤ b}, then write it as a conic program over
the cone {(x, t) : t ≥ 0, x ∈ tS�}. The power of conic programming, however, lies in
the fact that we only need a few classes of convex cones to express a wide variety of
optimization problems. The type of optimization problem is encoded by the cone
and the problem data by the affine space and objective function. Linear programs
are conic programs over a nonnegative orthant cone Rn

≥0, and semidefinite programs
use a cone of positive semidefinite matrices.

Positivity — as modeled by the cone constraints in a conic program — is funda-
mental in convex optimization. A second fundamental concept is duality. We first
discuss Lagrangian duality, which is based on removing constraints and penalizing
violations of those constraints in the objective. Consider a problem of the form

q = inf
�
f(x) : x ∈ S, gi(x) = 0 for i ∈ [l], hj(x) ≥ 0 for j ∈ [m]

�
,

where [l] = {1, . . . , l}. We call this the primal problem. For simplicity we assume
all functions to be real-valued and continuously differentiable, and we assume S to
be an open subset of Rn. We define the Lagrangian by

L : S × Rl × Rm
≤0 → R, (x, u, v) �→ f(x) +

l�

i=1

uigi(x) +

m�

j=1

vjhj(x).

When m = 0, the constrained stationary points of f correspond precisely to
the stationary points of L. The geometric explanation is that ∇uL = 0 forces x
to be feasible, and ∇xL = 0 forces the direction of steepest descent of f at x to
be a normal vector of the feasible set. The entries of the vector u in a stationary

4 1. A TEN PAGE INTRODUCTION TO CONIC OPTIMIZATION

point (x, u) of L are called Lagrange multipliers. In the general case where m > 0
the situation is more subtle. The constrained stationary points of L are known
as Karush-Kuhn-Tucker points. For each such point (x, u, v), the vector x is a
constrained stationary point of f . In general not all constrained stationary points
of f can be obtained in this way, but there are sufficient conditions known as global
constraint qualifications under which this is true. The most well-known is Slater’s
condition which requires the problem to be convex and to admit a strictly (all
inequalities are strictly satisfied) feasible point. When the functions f, g1, . . . , gm
are convex, the set S is convex, and the functions h1, . . . , hm are linear, then the
problem is convex. In convex problems the global constrained minima are precisely
the constrained stationary points.

We define the Lagrangian dual function

R : Rl × Rm
≤0 → R, R(u, v) = inf

x∈S
L(x, u, v),

so that R(u, v) is a relaxation of q for each u and v ≤ 0. The Lagrangian dual
problem is given by maximizing this function over its domain:

q∗ = sup
(u,v)∈Rl×Rm

≤0

R(u, v).

The primal problem can be written as

inf
x∈S

sup
(u,v)∈Rl×Rm

≤0

L(x, u, v),

so that we simply interchange sup and inf to go from the primal to the dual problem.
A global constraint qualification such as Slater’s condition guarantees the optimal
values are the same.

To apply Lagrangian duality to general conic programs we extend the above dis-
cussion to conic constraints. In q∗ the objective function is an optimization problem
itself, and the reduction to a more explicit form requires problem specific informa-
tion. An advantage of conic programming is that all nonlinearities are contained in
the cone constraint, and an explicit description of the dual cone is all we need for
an explicit description of the dual program. The dual program is a conic program
over the dual cone, and the situation is symmetric in the sense that we recover the
original problem by taking the dual again.

Let E∗ and F ∗ be the algebraic duals of E and F ; that is, the vector spaces
of real-valued linear functionals on E and F . Then c ∈ E∗. We have two nonde-
generate bilinear pairings E ×E∗ → R and F ×F ∗ → R, each denoted and defined
by �x, y� = y(x). The dual cone K∗ is defined by {y ∈ E∗ : �x, y� ≥ 0 for x ∈ K}.
The adjoint operator A∗ : F ∗ → E∗ is defined by A∗f = f ◦ A for all f ∈ F ∗. The
Lagrangian of the conic program p is naturally given by

L : K∗ × E → R, (y, x) �→ c(x)− �x, y�,
so that the Lagrangian dual program becomes

p∗ = sup{�b, y� : y ∈ F ∗, c−A∗y ∈ K∗}.
To reconstruct the primal from the dual we write the dual as a conic program in

standard form, take the dual, and write this in standard form. The symmetry here

1.3. CONIC PROGRAMMING AND DUALITY 5

becomes more apparent when we write both programs in a more geometric form.
For e an element such that Ae = b and P = ker(A), the primal and dual become

inf{�x, c� : x ∈ (e+ P) ∩K} and sup{�y, e� : y ∈ P⊥ ∩ (K∗ + c)},
so that both programs optimize a linear functional over the intersection of a (trans-
lated) cone with an (affine) linear subspace.

When the vector spaces E and F are infinite dimensional, their algebraic duals
are so large that the algebraic dual conic programs have too many variables and
constraints to be useful. Instead we endow E and F with topologies and restrict E∗

and F ∗ to contain only continuous linear functionals. We require these topologies to
agree with the data in the sense that c and A are continuous, so that c is in E∗ and
the adjoint A∗ maps E∗ into F ∗. We also require these topologies to be Hausdorff
and locally convex so that there are — by the Hahn–Banach theorem — enough
continuous linear functionals to separate points. This insures nondegeneracy of the
bilinear forms, so that (E,E∗) and (F, F ∗) are dual pairs. We form the dual cone
and the dual conic program in the same way as before, and if we equip E and F with
very strong topologies, such as the topologies of algebraically open sets, then we get
the same duals as in the algebraic case. To keep the situation symmetric we equip
E∗ and F ∗ with weak* topologies; that is, we give them the weakest topologies for
which all linear functionals x �→ �x, y� are continuous. Using nondegeneracy of the
pairings we see that (E∗)∗ and (F ∗)∗ are isomorphic to E and F , and by identifying
them we obtain (A∗)∗ = A, (K∗)∗ = K, and (p∗)∗ = p.

Suppose x is feasible for p and y is feasible for p∗. We always have p ≥ p∗, which
we call weak duality and which follows from �x, c� ≥ �x,A∗y� = �Ax, y� = �b, y�.
We also always have complementary slackness, which says �x, c − A∗y� = 0 if and
only if both x and y are optimal and have the same objective value. There can be
a strictly positive duality gap p− p∗, and we say strong duality holds when this gap
is 0. As for the constraint qualifications in Lagrangian duality, we have sufficient
conditions for strong duality. To Slater’s condition corresponds the following interior
point condition: If the interior of K admits a primal feasible point and the primal
problem is bounded, then p = p∗, and the supremum in the dual is attained.

In infinite dimensional spaces there are many interesting cones whose interior
is empty, which means we cannot use an interior point condition. We have the
following alternative closed cone condition: If the cone {(Ax, �x, c�) : x ∈ K} is
closed in F×R and there is a primal feasible solution, then p = p∗, and if in addition
the primal is bounded, then the infimum in the primal is attained [8]. Choosing
stronger topologies on E and F makes it easier for strong duality to hold: K will
have more interior points and F × R more closed sets. But the duality gap cannot
always be closed by choosing a stronger topology; even finite dimensional problems
such as semidefinite programs can have a strictly positive duality gap. Notice that
the interior point condition benefits from E having a stronger topology, while the
closed cone condition benefits from F having a stronger topology (and indirectly by
E having a stronger topology to keep A continuous). The crucial ingredient in the
proofs of these conditions is the Hahn–Banach separation theorem. This theorem
says that if we have a closed convex set and a point, then either the point lies in the
set or it can be strictly separated from it by two parallel hyperplanes in between the

6 1. A TEN PAGE INTRODUCTION TO CONIC OPTIMIZATION

set and the point. This resembles the situation that given strong duality, a number
λ either is an upper bound on the optimal objective of a minimization problem, or
there is a dual feasible solution whose objective is in between λ and the optimal
objective.

1.4. Semidefinite programming and interior point methods

The positive semidefinite cone Sn
�0 consists of the positive semidefinite matrices

of size n×n. A positive semidefinite matrix is a real symmetric matrix whose eigen-
values are nonnegative, or equivalently, a matrix which can be written as RRT where
R is a real rectangular matrix. Such an R can be found efficiently by performing
a Cholesky factorization, which moreover gives R in lower triangular form which is
useful for solving a system of the form RRTx = b. The positive semidefinite cones
are convex and for n ≥ 2 they are not polyhedral; the extreme rays are spanned
by the rank one matrices xxT, where x ∈ Rn. The positive semidefinite cones are
self dual, where the dual pairings, denoted by �·, ·�, are defined by taking the trace
of the matrix product. We view Sn

�0 as a subset of the n(n + 1)/2 dimensional
vector space Sn of n × n real symmetric matrices. The interior of Sn

�0 is the cone
Sn
�0 of positive definite matrices, which are real symmetric matrices with strictly

positive eigenvalues. The cones Sn
�0 and Sn

�0 induce partial orders, denoted � and
�, on the vector space Sn. The Schur complement condition says that if A, B,
and C are matrices with A invertible, then

�
A B
BT C

�
� 0 if and only if A � 0 and

C −BTA−1B � 0.
A semidefinite program is a conic program over a cone of positive semidefinite

matrices. We write such a program as

p = inf
�
�X,C� : X ∈ Sn

�0, �X,Ai� = bi for i ∈ [m]
�
,

where C,A1, . . . , Am ∈ Sn and b1, . . . , bm ∈ R. The dual program is given by

p∗ = sup
�
�b, y� : y ∈ Rm, C −

m�

i=1

yiAi ∈ Sn
�0

�
.

Checking and certifying whether a matrix is or is not positive semidefinite is
easy, and this indicates that semidefinite programming is easy. Indeed, interior
point methods are highly effective in solving semidefinite programs by reducing
such a problem to a sequence of problems of approximating stationary points of
functions from nearby points.

For this we use Newton’s method, which is an iterative method to find roots of
multivariate vector functions and stationary points of multivariate scalar functions.
Given a continuously differentiable function g : Rn → Rn and a point close enough
to a root r, Newton’s method generates a sequence of points rapidly converging
to r by applying successive Newton steps. A Newton step moves a point to the
root of the linear approximation of g at that point. To find a stationary point of a
twice continuously differentiable function f : Rn → R we apply the above method
to the gradient ∇f . In this case a Newton step maps a point x to the stationary
point of the second order Taylor approximation of f at x; that is, it maps x to
x − (Hf(x))−1∇f(x), where Hf is the Hessian. If the domain of f is an affine

1.4. SEMIDEFINITE PROGRAMMING AND INTERIOR POINT METHODS 7

space in Rn, then we use Lagrange multipliers to optimize the Taylor approximation
subject to linear equality constraints. In our applications the linear systems to be
solved to determine the Newton steps will have a positive definite matrix so that
we can use a Cholesky factorization. Although a Cholesky factorization can be
computed efficiently, this is a relatively expensive step in interior point methods, so
we typically only perform a single Newton step when we invoke Newton’s method.

The function β : Sn
�0 → R defined by β(X) = − log(det(X)) is strongly convex

and grows to infinity as X nears the boundary of the cone. This is an example of
a barrier functional, which lies at the heart of any interior point method. We use
this to define the primal and dual central paths {Xη}η≥0 and {(yη, Zη)}η≥0, where
Xη and (yη, Zη) are the unique optimal solutions to the barrier problems

pη = min
�
�X,C�+ ηβ(X) : X ∈ Sn

�0, �X,Ai� = bi for i ∈ [m]
�

and

p∗η = max
�
�b, y� − ηβ(Z) : y ∈ Rm, Z ∈ Sn

�0, Z = C −
m�

i=1

yiAi

�
.

To guarantee the existence and uniqueness of optimal solutions we assume strict
feasibility of p and p∗ and linear independence of the matrices Ai. The central paths
converge to optimal solutions of p and p∗ as η tends to 0.

In the (short-step) primal barrier method we first solve an auxiliary problem to
find a primal feasible solution X close to the primal central path; that is, close to
Xη for some η. Then we iteratively decrease η and apply a constrained Newton step
to X for the function �X,C�+ ηβ(X) and the constraints �X,Ai� = bi for i ∈ [m].
If we decrease η slowly enough, this results in a sequence of matrices which lie close
to the central path and for which it is guaranteed that they are positive definite.
As η → 0 they converge towards the optimal solution limη↓0 Xη, and by choosing
the right parameters this algorithm finds, for each ε > 0, an ε-optimal solution in
polynomial time.

In primal-dual methods we maintain both primal and dual iterates which are
allowed to violate the affine constraints. To find new iterates we use both primal
and dual information, and this results in excellent performance in practice. The
main observation is that the Lagrangian

Lη : Sn × Rm × Sn
�0 → R, (X, y, Z) �→ �b, y� − ηβ(Z) + �C −

m�

i=1

yiAi − Z,X�

of p∗η has (Xη, yη, Zη) as unique stationary point. The stationarity condition

0 = ∇ZLη(Xη, yη, Zη) = −ηZ−1
η +Xη

can be written as XηZη = ηI so that η = �Xη, Zη�/n. Since �Xη, Zη� is the duality
gap, this tells us how fast the primal and dual central paths converge to optimality
as η ↓ 0. Moreover, this formula allows us to compute an η value for iterates which
do not lie on the central paths or are not even feasible.

The basic idea in primal-dual methods is to start with arbitrary positive definite
matrices X and Z and corresponding vector y. Then we iteratively set η to half
(which is a good heuristic) the corresponding η value and perform a Newton step

8 1. A TEN PAGE INTRODUCTION TO CONIC OPTIMIZATION

for the function Lη. Although Sn
�0 is convex and X, Z, Zη, and Xη are all positive

definite, after a Newton step the iterates X and Z might not be positive definite
because Newton iterates do not lie on a straight line segment. We perform a line
search in the direction of the Newton step to select positive definite iterates.

In the above method we take an optimizing Newton step for Lη, which is the
same as taking a root finding Newton step for ∇Lη. In practice we often use
variations which are obtained by first rewriting the equation ∇ZLη(X, y, Z) = 0 as
for instance ZX − ηI = 0. In this variation we have to symmetrize the Z matrix
after each Newton step because the product XZ of two symmetric matrices is not
necessarily symmetric, so we have to apply Newton’s root finding method to maps
whose domain and codomain is Sn × Rm × Rn×n instead of Sn × Rm × Sn. This
reformulation of the nonlinear gradient condition is used in the CSDP solver, which
uses a predictor-corrector variant of the above algorithm [12].

These interior point methods can be generalized to methods for symmetric
cones, which have been classified as being products of Lorentz cones, real, complex,
and quaternionic positive semidefinite cones, and one exceptional cone. Semidefinite
programming is the main case in the sense that a conic program over a product of
cones from these families can be transformed (in quadratic time) into a semidefinite
program. A conic program over a product of positive semidefinite cones is a semi-
definite program where we take direct sums of the data matrices with zero blocks
at appropriate places. This also shows linear programming is a special case of semi-
definite programming. A second order cone program transforms into a semidefinite
program using a Schur complement. The complex plane embeds into the algebra of
real antisymmetric 2×2 matrices by mapping x+iy to the matrix

� x y
−y x

�
. To trans-

form a complex semidefinite program into a semidefinite program we simply replace
each entry in the data matrices by such a block. For the quaternionic case we do the
same using an embedding of the quaternions in the algebra of real antisymmetric
4×4 matrices. Of course, the computational complexity of solving a resulting semi-
definite program can be much higher than the original problem, and for especially
linear and second order cone programming we use specialized solvers. Moreover,
semidefinite programming solvers work with products of semidefinite cones; that is,
they exploit the block structure in semidefinite programs.

1.5. Symmetry in semidefinite programming

Problems p = infx∈S f(x) often contain symmetry because the underlying data
has symmetry or because the modeling method introduces symmetry. Exploiting
this symmetry can significantly reduce the problem size and remove degeneracies
which is relevant for numerical stability. We say p has symmetry if f is invariant
for a nontrivial action of a group Γ on S. More specifically we say p is Γ-invariant.
When S is convex, f is linear, and Γ is compact, then we can use this symmetry to
derive a simpler optimization problem. For this we let µ be the normalized Haar
measure of Γ and notice that for each x ∈ S the group average x̄ =

�
γx dµ(γ) also

lies in S, is invariant under the action of Γ, and satisfies f(x̄) = f(x). We obtain a
reduced optimization problem pΓ = infx∈SΓ f(x), where SΓ is the set of Γ-invariant

1.6. MOMENT HIERARCHIES IN POLYNOMIAL OPTIMIZATION 9

vectors in S. Note that in the above argument convexity is essential; a general
symmetric optimization problem does not admit symmetric optimal solutions.

Given a unitary representation ρ of a finite group Γ on Cn; that is, a group
homomorphism ρ : Γ → U(Cn), we get an action of Γ on the space of Hermitian
n×n-matrices by γX = ρ(γ)∗Xρ(γ). This action is eigenvalue preserving, so it pre-
serves positive semidefiniteness, and a complex semidefinite program p is invariant
whenever its objective and affine space are invariant. We obtain pΓ by restricting
to the cone of Γ-invariant, complex, positive semidefinite matrices.

There are several equivalent ways to simplify pΓ. The matrix ∗-algebra (Cn×n)Γ

is ∗-isomorphic to a direct sum ⊕d
i=1Cmi×mi [5], and since ∗-isomorphisms between

unital ∗-algebras preserve eigenvalues, this provides a block diagonalization of pΓ

as a conic program over a product of smaller complex positive semidefinite cones.
Another viewpoint, where we use the representation more explicitly, is that invariant
matrices X commutate with ρ: for each γ ∈ Γ we have ρ(γ)∗X = Xρ(γ). Schur’s
lemma [28] provides a coordinate transform T : Cn → Cn such that T ∗XT has
identical block structure for all X ∈ (Cn×n)Γ. This is a block diagonal structure
with d diagonal blocks where the ith block is again block diagonal and consists of
identical blocks of size mi. Applying this transformation and removing redundant
blocks yields the same block diagonalization as above. Here d is the number of
inequivalent irreducible subrepresentations of ρ and mi is the number of equivalent
copies of the ith of these representations. A third approach applies when ρmaps into
the set of permutation matrices. Then we view an invariant matrix as an invariant
kernel [n]× [n] → C and apply Bochner’s theorem to obtain a diagonalization with
the kernel’s Fourier coefficients as blocks; see Chapter 2.

1.6. Moment hierarchies in polynomial optimization

When constructing a relaxation we need to find a balance between its complexity
and the quality of the bounds it gives. For an in general NP-hard optimization
problem of the form

p = inf
x∈S

f(x), S = {x ∈ Rn : g(x) ≥ 0 for g ∈ G},

where {f} ∪ G is a finite set of polynomials, we use moment techniques to define
a hierarchy of semidefinite programs which give increasingly good bounds. The
program p admits the sharp relaxation infµ∈P(S) µ(f), where P(S) is the set of
probability measures on S. Let yα = µ(xα) where xα = xα1

1 · · ·xαn
n . The moment

sequence {yα}α∈Nn
0
satisfies y0 = 1 and is of positive type. This means the infinite

moment matrix M(y), defined by M(y)α,β = yα+β , is positive semidefinite (all
its finite principal submatrices are positive semidefinite). Moreover, the localizing
matrices M(y ∗ g), where y ∗ g is the convolution (y ∗ g)α =

�
γ yα+γgγ , are also

positive semidefinite.
We obtain a relaxation by optimizing over truncated moment sequences y which

satisfy only finitely many of these constraints. Let Mt(y) be the submatrix of M(y)
whose entries are indexed by (α,β) with |α|, |β| ≤ t. Let Mg

t (y) be the partial
matrix whose entries are indexed by (α,β) with |α|, |β| ≤ t where the (α,β) entry
is given by (y ∗ g)α+β if |α + β| ≤ 2t − deg(g) and remains unspecified otherwise.

10 1. A TEN PAGE INTRODUCTION TO CONIC OPTIMIZATION

By Mg
t (y) � 0 we mean that Mg

t (y) can be completed to a positive semidefinite
matrix.

For t ≥ �deg(f)/2�, we have the relaxation

Lt = inf
��

α

fαyα : y ∈ R{α:|α|≤2t}, y0 = 1, Mt(y) � 0, Mg
t (y) � 0 for g ∈ G

�
.

This is a strengthened variation on the Lasserre hierarchy [41]. This gives a non-
decreasing sequence of lower bounds on p and under mild conditions on the set G
these bounds converge to p.

In the case where we enforce the variables to be binary by using the constraints
x2
i − xi ≥ 0 and xi − x2

i ≥ 0 for i ∈ [n], we can simplify the hierarchy. For
each feasible y the localizing matrix corresponding to a constraint x2

i − xi ≥ 0
is both positive and negative definite, and hence equal to zero. It follows that
yα = yᾱ for each α ∈ Nn

0 , where ᾱ is obtained from α by replacing all nonzero
entries by ones. By restricting the vectors to be of this form and removing the
polynomials x2

i − xi and xi − x2
i from G we simplify the hierarchy. We may assume

all polynomials to be square free and we index their entries by subsets of [n] instead
of 0/1 vectors. The moment matrix of a real vector y indexed by elements from
[n]2t = {S ⊆ [n] : |S| ≤ 2t} is now defined as M(y)J,J � = yJ∪J � for J, J � ∈ [n]t,
and we modify the truncated/localizing matrices in the same way. The hierarchy
becomes

Lt = inf
� �

S∈[n]2t

fS yS : y ∈ R[n]2t , y∅ = 1, Mt(y) � 0, Mg
t (y) � 0 for g ∈ G

�
.

In [42] it is shown that the relaxation is sharp already for t = n.
The maximum independent set problem, which asks for a largest set of pairwise

nonadjacent vertices in a finite graph G = (V,E), can be written as a polynomial
optimization problem with a binary variable xv for each vertex v ∈ V and a con-
straint xu + xv ≤ 1 for each edge {u, v} ∈ E. In [43] it is shown that for t ≥ 2 the
t-th step of the (maximization version of the) Lasserre hierarchy reduces to

ϑt(G) = max
� �

x∈V

y{x} : y ∈ R[n]2t , y∅ = 1, Mt(y) � 0, yS = 0 for S dependent
�
.

Our strengtened version reduces to this hierarchy for all t ≥ 1. This hierarchy
converges to the indepence number α(G) in α(G) steps. The map P : RV2t → RV

defined by P (y)v = y{v} identifies ϑt(G) as a lift (see Section 1.2) of the relaxation
max{�x∈V xv : x ∈ P (Ft)} where Ft is the feasible set of ϑt(G). The first step
is equivalent to the Lovász ϑ-number [54, Theorem 67.10] which a well-known
relaxation in combinatorial optimization. When the edge set is invariant under
a group action on the vertices, this is a good example where the symmetrization
procedure from the previous section applies.

