SOS polynomials invariant under
finite reflection groups

Maria Dostert Cristébal Guzman Fernando M. de Oliveira Frank Vallentin
(University of Cologne)  (Georgia Tech) (University of Sdo Paulo) (University of Cologne)
Finite reflection group B; SOS polynomials
generated by three reflecting planes: p € R[z]oq is a sum of squares (SOS). <= There is a positive semidefinite matrix

n+d +d
0 e RUT)*X("EY) such that  p(z) = b(x)T Qb(x),
n+d
\ / where b(z) € R[x]( 4") contains a basis of the space of polynomials up to degree d.
‘\ Theorem (Gatermann, Parrilo 2002)

Let G be a finite group generated by reflections.
The cone of G-invariant polynomials which can be written as a SOS is equal to

B3 = symmetry group of the regular cube [—1, +1]3

= symmetry group of supersphere B} where

BY = {z eR3: |z 1P+ |aalP + |x3P < 1}, p>1 {peR[z]:p= Z (P™,Q™), P™ is Hermitian SOS matrix polynomial in 6y,..., 0y},
reqG
By is acting on Clx1, g, x3] = Cla] by (gp)(x) = p(g~'x) where QT € (Clz]®)%*4r is defined by [Q™; = 2 OReT.
invariant ring C[z]*% = {p € Clz] : gp = p Vg € B3} ™ is a special basis of the coinvariant algebra (described below)
= C[01,0,03] with 0; = a7 + 23 + 2, computational advantage: smaller block matrices
where 61, 0, 03 are basic invariants which are algebraically . o i1 2]3]4]5]6]7][8]9]10
independent homogeneous polynomials. (Chevalley-Shephard-Todd) Forn=3d=15: Q€S vs. QU€Shfor 3123 11] 7 | 271 39| 34/ 50| 50 70
Coinvariant algebra Clz]q Calculation of ¢,
Clz]g is a |G|-dimensional graded algebra defined by finite group G generated by reflections s1, ..., sp,
C[I]G = C[‘r}/(el sy Op) = 69’]rgn:(] ((C[‘T}G)k \L primary invariants 6y, . . ., 0,
where m = maximal degree of the Poincare polynomial. In particular, we have V =Clz]/(01,...,0n)
(C[x] — (C[x}G ® (C[Z']G J/ representation pi : G — GL, /); (9)(p) — gp
G = set of irreducible unitary representations of G up to equivalence. Vi VL p =G Z E milg Holg)
C[z]¢ equivalent to the regular representation of G: There are homogeneous polynomials V= @ @ Vi
_ TeG k
W%:Withﬂecvl <4%j < dr, \LI’/,W‘/. = Vi 1);r/7((]7 (g pr(g)
/s(
where dy is the degree of . They form a basis of C[z]¢ such that V= é; v,
vig )
(2! i=1
g@?j — (71-(9)1]- L W(g)d ]) : i=1,...,dy \I/ consider a non-zero vector o7, € V5
. b b b
m
Pidy i = Pri ()
New upper bounds for the density of Computational results
translative packings of superspheres
Theorem (Cohn, Elkies 2003) Lower bounds: lattice packings of Jiao,
Stillinger, and Torquat
Suppose f satisfies the following conditions: (26()3@;“’ and forquato
(i) (0) = vol B, . :
) File) 2 0 tor om0 2 R3 \ {01, lattice packing for p =4 :
oA - every supersphere has
(iii) f(z) < 0 whenever (B3)° N (z + (B3)°) = 0. 12 neighbours

Then the density of any packing of translates of B in R3 is at most f (0).
Upper bounds: p = 2 : coincides with upper bound of Cohn & Elkies

Specify a function f : R? — R via its Fourier transform f : p =4, 6, 8 : new upper bounds

= 2
flu) = p(u)e‘””“” , where p is a polynomial.

We can assume: f is Bs-invariant. Thus p is also Bs-invariant.

If f satisfies (i) — (iii), then so does M f(x) = Bi E f(g L), which is Bg-invariant.

For (i), check whether p(0) > vol BY.

For (ii), check whether p is SOS (using Gatermann-Parrilo). p 8
For (iii), 1. compute f from f by a linear transformation f(z ] Flu)emiwdy, lower bound 0.7404 0.8698 0.9318 ‘ 0.9582
upper bound 0.7797 0.8731 0.9331 0.9594

2. check constraint via SOS conditions (using Gatermann—Pamlo).

Thus we find such a function f by solving a finite semidefinite program.



