
Copositive Formulations of the
DOMINATING SET Problem and

Applications

Master Thesis
Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Science
in the

Department of Mathematics
Faculty of Science

Jan Hendrik Rolfes
University of Cologne

Winter 2014

Contents

1 Introduction 1

2 Notations, General Theory and Complexity 3
2.1 Definitions and Basic Properties . 3
2.2 Complexity of DOMINATING SET 10
2.3 Applications of DOMINATING SET 13

3 Formulation of DOMINATING SET as a Copositive Program 17

4 An Approximation Algorithm 39
4.1 A Semidefinite Test for Copositivity 39
4.2 Parrilo’s Hierarchy . 41
4.3 A Simplification for Symmetric Programs 48
4.4 Application to Football Pools . 52

5 Outlook 57

6 Appendix 59
6.1 Algorithm for Checking Copositivity 59
6.2 Preliminaries for Solving Algorithms 59
6.3 Solving Algorithm for R2V . 61
6.4 Solving Algorithm for RVV . 63

Statement of Originality 71

Danksagung 73

1 Introduction

The game of chess has inspired mathematicians for a long time. A well-known
example for a chess problem is the so-called "Eight Queens Puzzle". In 1848 the
german mathematician M. Bezzel asked for the number of possibilities to place
eight queens on a chessboard, without two queens threatening each other. A re-
lated problem was covered in G. Berge’s famous book "The Theory of graphs" and
is known as the "Five Queens Puzzle". This problem deals with the question of
finding the minimum number of queens needed to attack or occupy every square
on a chess board. The general case of this problem is known as the DOMINATING
SET Problem or DS Problem and belongs to the fundamental problems in graph
theory.
In 1990 S. T. Hedetniemi and R. C. Laskar (see [17]) noted that essential research
on Domination in graphs started with the graph theory texts of D. König (1950),
G. Berge (1958) and O. Ore (1962). From the mid-1970s onwards the number of
domination papers grew quickly. The authors attribute this to mainly three factors.
Two of them are the diversity of applications and the interest in finding polynomial
time solutions to domination problems in special classes of graphs, which have mo-
tivated the approach worked out in this thesis .
A dominating set for an undirected graph G = (V,E) is a subset D of V , such that
every vertex in V is connected to at least one member of D. Now we are look-
ing for the domination number γ(G) which is the number of vertices in a smallest
dominating set of G.
To classify the hardness of DOMINATING SET we consider the so-called decision
version of DOMINATING SET, which means, given an integer k, to decide whether
a dominating set of size ≤ k exists in a given graph. Due to the fact that V itself
is always a dominating set in a graph G = (V,E), we can reduce the decision prob-
lem to integers k ≤ |V |. It has been shown by M. Garey and D. Johnson in 1979
([10]), that this decision version of DOMINATING SET is NP-complete. Under
the hypothesis that P6= NP, there is no efficient algorithm to solve this problem.
The approach to the DS Problem worked out in this thesis is to formulate DOM-
INATING SET as a so-called copositive program, which is a certain optimization
problem.
The field of Mathematical Optimization is a very active area of research in mod-
ern mathematics. Generally speaking it is about finding a point in a set of feasible
points which maximizes or minimizes an objective function. For the purpose of this
thesis we mostly stick to conic programs, where the set of feasible points can be ex-
pressed with the help of convex cones and linear constraints. Examples for convex
cones are the non-negative orthant or the cone of positive semidefinite matrices,
common constraints are linear (in)equalities or integrality constraints. Copositive
programs are certain conic programs, where the considered cone is the cone of
copositive matrices. In Chapter 3 we develope two specific copositive formulations
for DOMINATING SET.

1

CHAPTER 1. INTRODUCTION

Because solving copositive programs in general remains NP-hard, we approximate
the resulting program with a series of simpler programs developed by P. Parrilo in
[21]. This allows us to develope algorithms to approximate any copositive program,
such as the formulations given in Chapter 3 within polynomial time. This means
we provide two new approximation algorithms for DOMINATING SET.
Furthermore, a simplification for semidefinite programs, developed by C. Bachoc,
D. C. Gijswijt, A. Schrijver and F. Vallentin [1], can be applied to Parrilo’s hier-
archy in certain instances of DOMINATING SET. This increases the performance
of the algorithms significantly for large instances, providing a useful tool to find
lower bounds for the domination number γ(G).

2

2 Notations, General Theory and
Complexity

In this chapter we give the theoretical background that we need to obtain a copos-
itive formulation of DOMINATING SET. We start with some general definitions
and properties for convex sets, continue with theory on conic programming and
close with specific definitions and statements about graph theory, necessary to be
able to express DOMINATING SET as an optimization problem. For this we follow
mainly the script of M. Laurent and F. Vallentin [18]. Later on, the complexity of
DOMINATING SET and its approximations is covered. The last section overviews
a couple of applications in different fields of science.

2.1 Definitions and Basic Properties

Optimization problems differ in terms of hardness, due to differences in the type of
the objective function and the underlying set of feasible points. For our purpose it
is sufficient to limit oneself to convex sets of feasible points in the Euclidian Space.

Definition 2.1. A set C ⊆ Rn is called a convex set, if for every pair of elements
x, y ∈ C the entire line segment between x and y is contained in C. The line
segment between the elements x and y is defined as

[x, y] = {(1− λ)x+ λy : 0 ≤ λ ≤ 1}.

An important special case for the following chapters are convex sets of real matrices.

Remark 2.2. Since the spaces Rn×n and Rn2 are isomorphic, matrices A ∈ Rn×n

can be regarded as elements of convex sets in the sense of the definition above.

Definition 2.3. A convex combination in a set S is a linear combination of elements
in S, where the non-negative coefficients of the elements sum up to 1, i.e.

N∑
i=1

λixi : x1, ..., xN ∈ S, λ1, ..., λN ∈ R≥0,
N∑
i=1

λi = 1.

Convex sets are closed under convex combinations of their elements.

Definition 2.4. The convex hull of S ⊆ Rn is the smallest convex set containing
S, defined by

conv(S) :=

{
N∑
i=1

λixi : N ∈ N, x1, ..., xN ∈ S, λ1, ..., λN ∈ R≥0,

N∑
i=1

λi = 1

}
.

3

2.1. DEFINITIONS AND BASIC PROPERTIES CHAPTER 2. NOTATIONS, GENERAL THEORY AND COMPLEXITY

As mentioned before a very useful class of convex sets is the class of convex cones.
Roughly speaking the main difference between the two classes is that we omit the
last constraint, which guarantees the parameters λi to be bounded. This implies
that convex cones are in general unlimited.

Definition 2.5. A nonempty subset K of Rn is called a convex cone, if it is closed
under non-negative linear combinations, so-called conic combinations, i.e.

N∑
i=1

λixi ∈ K ∀x1, ..., xN ∈ K, ∀λ1, ..., λN ∈ R≥0.

Definition 2.6. Similarly the conic hull of S ⊆ Rn is the smallest cone containing
S, defined by

cone(S) :=

{
N∑
i=1

λixi : N ∈ N, x1, ..., xN ∈ S, λ1, ..., λN ∈ R≥0

}
.

Another interesting hull of a set is the affine hull, obtained by setting the nonneg-
ativity of the parameters λi aside.

Definition 2.7. The affine hull of a set S ⊆ Rn is

aff(S) :=

{
N∑
i=1

αixi : N ∈ N, x1, ..., xN ∈ S, α1, ..., αN ∈ R,
N∑
i=1

αi = 1

}
.

In particular the definitions above define objects in the space of real matrices. To
be able to represent conic programs on this space we further provide the definition
of the Frobenius inner product.

Definition 2.8. Given two matrices A,B ∈ Rn×n the Frobenius inner product of
these matrices is:

〈A,B〉 := Tr(ATB) =
n∑
i=1

n∑
j=1

AijBij.

With the help of these basic facts and definitions we can express a conic program as
follows: Let K denote a cone. A conic program over this cone is a program which
asks besides of linear restrictions for a membership in K. A possible representation
of these kinds of programs is

inf 〈C,X〉 (Prim)
s.t. 〈Ai, X〉 = bi ∀i ∈ {1, ...,m}

X ∈ K.

Example 2.9. We will see later on that the domination number γ(G) of a graph
G mentioned in the introduction (see also Definition 2.31) can be expressed as

γ(G) = inf 〈C,X〉
s.t. 〈Ai, X〉 = bi ∀i ∈ {1, ...,m}

X ∈ K,

where the matrices Ai, C and the vector b depend on the graph G. The underlying
cone K is the completely positive cone (see Definition 2.11).

4

CHAPTER 2. NOTATIONS, GENERAL THEORY AND COMPLEXITY 2.1. DEFINITIONS AND BASIC PROPERTIES

Similar to linear programming every conic program of the form (Prim) has a dual
program that we denote by (Du):

sup bTy (Du)

s.t. C −
m∑
i=1

yiAi ∈ K∗.

In this program K∗ denotes the so-called dual cone to the cone K:

Definition 2.10. Let K ⊆ Rn×n be a cone, then its dual cone K∗ is defined by

K∗ :=
{
Y ∈ Rn×n : 〈X, Y 〉 ≥ 0 ∀X ∈ K

}
.

Common examples of conic programs are linear or semidefinite programs, where K
is the non-negative orthant respectively the cone of positive semidefinite symmetric
matrices. These examples have the convenient property that they are self-dual, i.e.
K = K∗. In this thesis our main concern will be with the case that K denotes the
copositive cone. As we will see later on (see Chapter 3, formulations (DVV) and
(D2V)) DOMINATING SET can be expressed as a copositive, conic program.

Definition 2.11. The closed, full-dimensional, convex cone of n × n copositive
matrices is defined as

Cn :=
{
X ∈ Sn : vTXv ≥ 0 ∀ v ∈ Rn

≥0

}
,

and its dual is the closed, full-dimensional, convex cone of n×n completely positive
matrices

C∗n := cone
{
vvT : v ∈ Rn

≥0

}
.

Remark 2.12. In S. Burer’s paper [3] an equivalent definition of C∗n is used, which
is more convenient for the proofs of the upcoming theorems:

C∗n =

{
X ∈ Rn×n : X =

∑
k∈K

zk(zk)T for some finite {zk}k∈K ⊂ Rn
+ \ {0}

}
∪ {0}.

To check whether a given matrix is copositive or not turns out to be very costly
in terms of computation time. Thus in general copositive programs remain very
hard, i.e. NP-hard to solve. To illustrate this we introduce a method to check
copositivity, mentioned by W. Kaplan [15].

Definition 2.13. A principal submatrix of a matrix A ∈ Rn×n is a matrix con-
structed by selecting some of the rows and columns of A simultaneously. This
means for I ⊂ {1, ..., n} with I 6= ∅ the corresponding principal submatrix is the
matrix AI,I = (Aij)i,j∈I .

Theorem 2.14. The matrix A is copositive if and only if all principal submatrices
of A have no non-negative eigenvector with negative eigenvalue.

Proof. see [15] Theorem 2.

5

2.1. DEFINITIONS AND BASIC PROPERTIES CHAPTER 2. NOTATIONS, GENERAL THEORY AND COMPLEXITY

Due to the fact that each matrix in the n-dimensional Euclidean Space has 2n prin-
cipal submatrices, this characterization provides exponentially many eigenvalues we
have to compute. To achieve more convenient formulations for convex optimiza-
tion problems it is sometimes useful to have a closer look on the boundary of the
underlying feasible set. In linear programming for example, the powerful simplex
algorithm is based on a method of searching for optimal solutions on the boundary
of the feasible set. In the case of copositive programming we talk about objects
on the boundary of the underlying convex set. To this end we give the following
definitions:

Definition 2.15. A point x ∈ C in a closed, convex set C is defined as extreme if
x cannot be written in the form x = (1 − λ)y + λz with y, z ∈ C and λ ∈ (0, 1).
The set of all these points will be denoted Extp(C).

Definition 2.16. The set of extremal rays Ext(K) of a closed, convex cone K ⊆ V
in a Euclidean Vector Space V consists of the conic hulls cone(z) of the elements
z ∈ K for which the equation z = x+ y for all x, y ∈ K implies

∃λ ∈ [0, 1] : x = λz, y = (1− λ)z.

Remark 2.17. A pointed convex cone K, i.e. a cone with the property

x,−x ∈ K ⇒ x = 0

has only one extreme point in x = 0 but maybe a lot of extremal rays due to its
shape. The non-negative orthant, the positive semidefinite cone and the copositive
cone are pointed.

Definition 2.18. The interior of a closed, convex set C ⊆ V , denoted Int(C) is
defined as

Int(C) := {x ∈ C : ∃ ε > 0 : Bε(x) ⊆ C} .

Likewise the set of boundary points of this set is defined as ∂C := C \ Int(C).

Remark 2.19. A characterization for the interior of dual cones K∗ of cones of sym-
metric matrices K ⊆ S was given by Dür and Still [9]:

Int(K∗) := {Y ∈ S : 〈Y,X〉 > 0 ∀X ∈ K \ {0}} .

For our purpose it is convenient to consider the interior of the copositive cone. The
characterization above can be applied to this cone as follows:

Lemma 2.20. The interior of the n-dimensional copositive cone is the set of strictly
copositive matrices, i.e.

Int(Cn) =
{
A ∈ S|xTAx > 0 ∀x ∈ Rn

≥0 \ {0}
}
.

Proof. The above characterization can be found e.g. in Dür and Still [9].

Remark 2.21. M. Hall and M. Newman [14] proposed the following characterization
for the extremal rays of the completely positive cone, obtained from Definition 2.11:

Ext(C∗n) =
{
aaT : a ∈ Rn

≥0

}
.

6

CHAPTER 2. NOTATIONS, GENERAL THEORY AND COMPLEXITY 2.1. DEFINITIONS AND BASIC PROPERTIES

For the reader’s convenience we further provide a few basic properties of convex
sets and their boundaries, which will be useful to reformulate DOMINATING SET.
Especially Lemma 2.25 will play a major role in proving the main theorems in
Chapter 3. Important for these properties are so-called hyperplanes.

Definition 2.22. A hyperplane H at a point x ∈ Rn is a (n − 1)-dimensional
subspace of the form

H :=
{
y ∈ Rn : aTx = aTy

}
,

where a ∈ Rn \ {0} is the normal of H. This hyperplane divides Rn into two
halfspaces

H+ :=
{
y ∈ Rn : aTx ≥ aTy

}
, H− :=

{
y ∈ Rn : aTx ≤ aTy

}
.

A hyperplane H is a supporting hyperplane of a convex set C at z ∈ C if z ∈ H
and either C ⊆ H+ or C ⊆ H−.

Lemma 2.23. [18] Let C ⊆ Rn be a closed convex set and let x ∈ ∂C be a point
lying on the boundary of C. Then there is a hyperplane that supports C at x.

Lemma 2.24. [18] Let C ⊆ Rn be a convex set. If Int(C) = ∅ then the dimension
of its affine closure is at most n− 1.

Lemma 2.25. Let K ⊆ Rn be a closed, convex cone and H be a hyperplane in Rn,
with K ∩H being a compact set. Then,

Extp(K ∩H) = Ext(K) ∩H.

Proof. To show "Extp(K ∩H) ⊆ Ext(K) ∩H", consider:

x ∈ Extp(K ∩H)⇒ x ∈ K ∩H ⇒ x ∈ K and x ∈ H

This means it suffices to show that x ∈ Ext(K). We prove this by induction on the
dimension n. If n = 0 then K = {0} and the result follows immediately.
If we assume the interior of K to be empty, we have thatK lies in a n−1-dimensional
subspace A of Rn. Because of the compactness of K∩H we know that H cannot be
identified with A except for the case K = {0}, because otherwise K ∩H = K and
thus compactness would not hold. We can therefore consider the n−2-dimensional
intersection HA := H∩A and the n−1-dimensional cone K = K∩A. The induction
hypothesis implies the statement of the theorem in this case. This means we can
assume that we have a nonempty interior of K.
If x lies in the interior Int(K) of K, we obtain without loss of generality H =
x + λ1y1 + ... + λn−1yn−1, where y1 and x are linearly independent. If we define
y := x + ε

2
y1
‖y1‖ , z := x − ε

2
y1
‖y1‖ with ε is sufficiently small and λ := 1

2
∈ (0, 1), we

obtain

x = (1− λ)y + λz, where y, z ∈ Bε(x) ⊆ Int(K) ⊆ K, y, z ∈ H.

This implies that x can be written as a strict convex combination of y and z, i.e.
x /∈ Extp(K ∩H), which is a contradiction.
Thus x lies on the boundary ∂K ofK. Lemma 2.23 tells us that there is a supporting
hyperplane H̃ for K. This means x lies in a n−1 dimensional cone F := H̃∩K in a

7

2.1. DEFINITIONS AND BASIC PROPERTIES CHAPTER 2. NOTATIONS, GENERAL THEORY AND COMPLEXITY

n−1 dimensional subspace aff(F). With similar arguments as in the case Int(K) =
∅ we obtain that H cannot be identified with aff(F). Thus HF := H∩aff(F) defines
a n− 2 dimensional hyperplane. Applying the induction hypothesis on this n− 1
dimensional cone F and the n− 2 dimensional hyperplane HF leads to

x ∈ Extp(F ∩H) ⊆ Ext(F) ∩H.

We finally show that Ext(F) ⊆ Ext(K).
Let c denote the normal vector of H̃. Because 0 lies in H̃ we can denote H̃ = {y ∈
Rn : cTy = 0} and w.l.o.g K ⊆ H̃+.
If we consider the equation x = x1 + x2 for any x1, x2 ∈ K, implying w.l.o.g
cTx1, c

Tx2 ≥ 0, we obtain

x ∈ Ext(F)⇒ cTx = 0

⇒ cTx1 + cTx2 = 0, x1, x2 ∈ K
⇒ cTx1 = 0, cTx2 = 0

⇒ x1, x2 ∈ H̃
⇒ x1, x2 ∈ F.

The fact that x ∈ Ext(F) implies for x1, x2 that there is a λ ∈ [0, 1], such that
x = λx1, x = (1− λ)x2 and thus we conclude that x ∈ Ext(K).
For the inclusion "Extp(K ∩H) ⊇ Ext(K) ∩H", we use contraposition

(K ∩H) \ Extp(K ∩H) ⊆ (K ∩H) \ (Ext(K) ∩H).

Let x /∈ Extp(K ∩H) then we can express x as follows:

x = λy + (1− λ)z for y, z ∈ K ∩H, λ ∈ (0, 1). (2.1.1)

If we choose x1 = λy and x2 = (1 − λ)z we know because K is closed under
non-negative scalar multiplication that

x = x1 + x2 : x1, x2 ∈ K.

Let H = {y ∈ Rn : cTy = b} with b 6= 0 because otherwise K ∩ H is either a
non-compact cone or the zero cone. If we assume that x ∈ Ext(K) we obtain

x1 = µx, x2 = (1− µ)x⇒ y =
µ

λ
x, z =

1− µ
1− λ

x for x ∈ K ∩H

⇒ cTy =
µ

λ
cTx =

µ

λ
b 6= b for µ 6= λ

⇒ y /∈ H

This is a contradiction to equation (2.1.1) and thus x /∈ Ext(K). Finally this
implies x /∈ Ext(K) ∩H.

Lemma 2.26. [18] Let C ⊆ Rn be a compact and convex set. Then,

C = conv(Extp(C)).

8

CHAPTER 2. NOTATIONS, GENERAL THEORY AND COMPLEXITY 2.1. DEFINITIONS AND BASIC PROPERTIES

With the help of the above definitions and basic properties we are able to formulate
a central theorem for conic programming. Let opt (Prim) and opt (Du) denote the
optimal values of (Prim) and (Du).

Theorem 2.27 (Strong Duality Theorem for conic Programming).
(i) If there exists an interior feasible solution X ∈ Int(K∗) of (Prim) and a feasible
solution y of (Du), then

opt(Prim) = opt(Du)

(ii) If there exists an interior feasible solution y of (Du), i.e.

C −
m∑
i=1

yiAi ∈ Int(K),

and a feasible solution X of (Prim), then

opt(Prim) = opt(Du)

Proof. A proof is given in J. Renegar’s paper [24].

Applying this theorem to the case K = C will help us to provide a copositive
formulation for DOMINATING SET and closes the optimization theoretical part
of this chapter. To give a first formulation of the DS Problem we provide a few basic
concepts in graph theory. Consider an undirected and connected graph G = (V,E)
with V the set of vertices and E the set of edges.

Remark 2.28. We can limit ourselves to connected graphs because, if we have a
disconnected graph, we can consider all of its connected components separately.
Then we solve the DS Problem for all of these connected components and add up
the results to get the domination number for the original graph.

Definition 2.29. We define the adjacency matrix AG of a graph G by

AG :=

{
(AG)uv = 1 {u, v} ∈ E
(AG)uv = 0 {u, v} /∈ E

and we denote by (AG)i the i-th column of AG.

Definition 2.30. A dominating set is a set D ⊆ V , if for all v ∈ V , we have v ∈ D
or there is a node u ∈ D such that {u, v} ∈ E.

Definition 2.31. If G = (V,E) is an undirected graph. The domination number
γ(G) is defined as

γ(G) := min{|D| : D ⊆ V is a dominating set}.

Remark 2.32. [18] The domination number γ(G) can be reformulated as the follow-
ing binary optimization problem i.e. a problem, where the decision variables can
only take two values

γ(G) = min

∑
v∈V

xv : x ∈ {0, 1}V , xv +
∑

u:{u,v}∈E

xu ≥ 1 ∀v ∈ V

 .

9

2.2. COMPLEXITY OF DOMINATING SET CHAPTER 2. NOTATIONS, GENERAL THEORY AND COMPLEXITY

2.2 Complexity of DOMINATING SET

To get an impression of the complexity of the DS Problem we give an introduction
similar to the one in T. W. Haynes et al. [11]. Given a graph G = (V,E) with
|V | = n, the domination number lies in the range 1 ≤ γ(G) ≤ n. Thus to determine
a dominating set D ⊆ V we could check all the 2n given subsets of V and take the
one with the smallest cardinality. The construction of this brute force algorithm
is quite easy but this algorithm would need exponentially many steps. Thus one
goal is to obtain an algorithm with significantly faster, for example polynomial run
time. The theory of NP-completeness suggests that it is not likely that we are able
to construct an polynomial algorithm.
In the theory of NP-completeness we restrict our attention to the so-called decision
problems. The answer to these kinds of problems is always a "yes" or a "no". For
the DS Problem this means we seek an algorithm which, given a graph G and a
positive integer k, can decide whether G has a dominating set of size at most k.
Let P denote the class of all decision problems that can be solved in polynomial
time, which means polynomial in the length of the inputs for every instance of the
problem.
NP denotes the class of all decision problems that have a certificate which is check-
able in polynomial time by a deterministic Turing machine. For details see [10] or
the famous paper of S. A. Cook [5].
For DOMINATING SET we want to know if a given graph G has a dominating
set D with |D| ≤ k for some given positive integer k. A nondeterministic Turing
machine has the ability to make a guess if vi ∈ D or not for every 1 ≤ i ≤ n. Then
it is possible to verify in polynomial time whether the resulting D is a dominating
set and |D| ≤ k or not.
The fundamental open question and also one of the famous Millennium Prize Prob-
lems (see [12]) is whether P equals NP or not. To characterize the complexity of
DOMINATING SET we use Cook’s (see [10] or [5]) class of NP-complete problems
and check it with the help of the following definitions.

Definition 2.33. P1 is polynomial-time reducible to a problem P2 if

1. there exists a function f which maps any instance of P1 to an instance of P2

in such a way that: I1 is a "yes" instance of P1 ⇔ f(I1) is a "yes" instance
of P2.

2. for any instance I1, the instance f(I1) can be constructed in polynomial time.

Notation: P1 ≤p P2

This implies if P2 is solvable in polynomial time so is P1, or roughly speaking: P2

is at least as hard as P1 in terms of run time.

Definition 2.34. P is NP-complete if

1. P ∈ NP

2. P ′ ∈ NP⇒ P ′ ≤p P

10

CHAPTER 2. NOTATIONS, GENERAL THEORY AND COMPLEXITY 2.2. COMPLEXITY OF DOMINATING SET

Remark 2.35. If condition 2 is satisfied but not necessarily condition 1 we call the
problem NP-hard.

Because of the transitivity of ≤p a method to show that a given problem P (in our
case DOMINATING SET) is in NP is the following:

1. show P ∈ NP, and

2. show that there is a NP-complete problem P ′ such that P ′ ≤p P

We use this format, as established by M. Garey and D. Johnson in [10], to be
able to handle the following form for the basic complexity question concerning the
decision problem for the domination number.

DOMINATING SET
Instance: A graph G = (V,E) and a positive integer k
Question: Does G have a dominating set of size ≤ k?

To prove the NP-completeness of DOMINATING SET we will use the reduction
techniques given in [10]. Thus we need the definition and the NP-completeness of
the following decision problem.

VERTEX COVER
Instance: A graph G = (V,E) and a positive integer k
Question: Is there a vertex cover of size k or less for G, that is, a subset V ′ ⊆ V
such that |V ′| ≤ k and, for each edge (u, v) ∈ E, at least one of u and v belongs to
V ′?

Lemma 2.36. VERTEX COVER is NP-complete.

Proof. see [10] for a reduction from the well known 3-SAT problem, which is one
of R. M. Karp’s famous 21 NP-complete problems (see [16]).
In [10] the additional restriction k ≤ |V | is given. But for k > |V | the answer
to VERTEX COVER is "yes" because V itself is always a vertex cover of V , this
means we can omit the additional restriction.

Lemma 2.37. DOMINATING SET is NP-complete.

Proof. We use the idea of A. Paz and S. Moran [22] (Examples 5.3.(v)) and reduce
VERTEX COVER polynomially to DOMINATING SET.
First we need to show that DOMINATING SET ∈ NP.

Consider a "yes" instance of DOMINATING SET, that is, for a graph G = (V,E)
a positive integer k and an arbitrary set S ⊆ V with |S| ≤ k. To verify in polyno-
mial time whether S is a dominating set can be done for example by a brute force
algorithm by checking the connections of all v ∈ V to all v ∈ S.

Second we will show that VERTEX COVER ≤p DOMINATING SET.
We use the abbreviations VC for a vertex cover and DS for a dominating set and
transform VERTEX COVER to DOMINATING SET. Let G = (V,E) and k ∈ N

11

2.2. COMPLEXITY OF DOMINATING SET CHAPTER 2. NOTATIONS, GENERAL THEORY AND COMPLEXITY

be any instance of VERTEX COVER. We need to construct a graph G′ = (V ′, E ′)
with k′ ∈ N such that

G has a VC S of size |S| ≤ k ⇔ G′ has a DS S ′ of size |S ′| ≤ k′.

For this we choose G′ and k′, where each undirected edge e connecting nodes u and
v is denoted by exactly one tuple (u, v) as follows:

V ′ = V ∪ E, k′ = k,

E ′ = {(i, j)| i, j ∈ V } ∪ {(i, e)| i ∈ V, e ∈ E, i incident to e}.
”⇐ ”
We will show that S := S ′ ∪ {ue ∈ V : e = (ue, ve) ∈ E ∩ S ′} \E ∩ S ′ is a VC of G
with |S| ≤ k, where ue is the left node of the tuple (ue, ve) corresponding to edge
e, i.e. we take exactly one node for each edge e.

G′ has a DS S ′ ⇒ ∀ v ∈ V ′ either v ∈ S ′ or ∃ u ∈ S ′ : (u, v) ∈ E ′
Consider an arbitrary edge e ∈ E, then

e ∈ E ⇒ e ∈ V ′ DS⇒ e ∈ S ′ ∨ ∃ u ∈ S ′ : (u, e) ∈ E ′

Case 1:
e ∈ S ′ ⇒ ue ∈ S ⇒ ∃ u ∈ S : u ∈ e

Case 2:

∃ u ∈ S ′ : (u, e) ∈ E ′ ⇒ ∃ u ∈ S ′ : u ∈ V, u ∈ e
⇒ ∃ u ∈ S ′ : u /∈ E ∩ S ′, u ∈ e
⇒ ∃ u ∈ S : u ∈ e

This means S is a VC of G and with

|S| = |S ′ ∪ {ue ∈ V : e = (ue, ve) ∈ E ∩ S ′} \ E ∩ S ′|
E∩S′⊆S′

= |S ′ ∪ {ue ∈ V : e = (ue, ve) ∈ E ∩ S ′}| − |E ∩ S ′|
≤ |S ′|+ |{ue ∈ V : e = (ue, ve) ∈ E ∩ S ′}| − |E ∩ S ′|
≤ |S ′| ≤ k′ = k

the first inclusion follows.
”⇒ ”
We will show that S ′ := S is a DS of size |S ′| ≤ k′.

G has a VC S such that |S| ≤ k ⇒ ∀ (u, v) ∈ E ⇒ u ∈ S ∨ v ∈ S. Con-
sider an arbitrary vertex v′ ∈ V ′ then v′ ∈ V ∨ v′ ∈ E.
Case 1:

v′ ∈ V ⇒ v′ ∈ S ∨ v′ /∈ S see E′⇒ v′ ∈ S ′ ∨ ∃ u ∈ S ′ : (u, v′) ∈ E ′

Case 2:

(uv′ , wv′) := v′ ∈ E VC⇒ uv′ ∈ S ∨ wv′ ∈ S ⇒ ∃ u ∈ S ′ : (u, v′) ∈ E ′

This means S ′ is a DS of G′ and with |S ′| = |S| ≤ k = k′ the second inclusion
follows.

12

CHAPTER 2. NOTATIONS, GENERAL THEORY AND COMPLEXITY 2.3. APPLICATIONS OF DOMINATING SET

2.2.1 Complexity of approximations

To give some relevant statements for approximations of DOMINATING SET we
use the equivalent problem SET COVER, where equivalency means we can map
instances of the problems to each other (for a construction see [22]).
SET COVER
Instance: Collection C of subsets of a finite set S, positive integer k ≤ |C|.
Question: Does C contain a cover for S of size k or less, i.e. a subset C ′ ⊆ C with
|C ′| ≤ k such that every element of S belongs to at least one member of C ′?

Lemma 2.38. DOMINATING SET is approximable within 1 + log(|V |) by using
a polynomial algorithm

Proof. see the paper of D. Johnson [13] for the approximation of SET COVER and
conclude the above lemma by using Johnson’s algorithm for

S = V, C := {S1, ..., S|V |}, where Si := {i} ∪ {j|(i, j) ∈ E} ⊆ S

(see [22] Examples 5.3. (iv)).

Lemma 2.39. For any 0 < c < 1
8
, DOMINATING SET cannot be approximated

within a factor of c · log(|V |) in polynomial time unless NP-complete problems can
be solved in O(npoly(log(n))) (i.e. NP ⊆ DTIME(npoly(log(n)))).

Proof. Assume that we knew a polynomial algorithm which would be able to ap-
proximate DOMINATING SET within a factor of c · log(|V |). We could apply
the solution of this algorithm to get a solution for DOMINATING SET with
G = (V,E), where V := {1, ..., n, x1, ..., xm} and E = {(i, j)| 1 ≤ i < j ≤
n} ∪ {(i, xi)| xi ∈ Si} (see [22] Examples 5.3. (iii)).
Thus we obtain an approximation of SET COVER with C = {S1, ..., Sn} and
S =

⋃n
i=1 Si = {x1, ..., xm} within a factor of c · log(n+m). For a connected graph

andm ≥ 3 we can conclude n+m ≤ 2m+1 ≤ m2 and thus c·log(n+m) ≤ 2c·log(m).
For 0 < c < 1

8
we would be able to approximate SET COVER within a factor of

1
4
log(m). This would contradict a theorem of C. Lund and M. Yannakakis (Theo-

rem 3.3 in [19]) or NP-complete problems would be solvable in O(npoly(log(n))).

2.3 Applications of DOMINATING SET

These statements are valid for graphs with finite node and edge sets. Examples for
these kinds of graphs are well known, for example we could think of cluster heads in
a network. A rather popular example to apply DOMINATING SET are the famous
British "football pools" and its continental counterpart the "toto" competitions.

2.3.1 Football Pools

A "football pool" is a betting pool based on predicting the outcome of football
matches. Invented in the United Kingdom similar football pools known as "toto"
competitions became very popular in Continental Europe. In these games players
predict the outcome of typically thirteen given football matches from the upcoming
matchday. The player marks a home win with 1, an away win with 2 and a draw

13

2.3. APPLICATIONS OF DOMINATING SET CHAPTER 2. NOTATIONS, GENERAL THEORY AND COMPLEXITY

with 0 (sometimes with an X or N).
It is of great interest for the players to know, how many combinations or codes
ω ∈ {1, 0, 2}13 a player has to cover to predict at least 12 out of 13 matches cor-
rectly, i.e. to guarantee quite a large amount of money. In fact players have to
cover 59049 (see J. G. Mauldon [20]) of these codes. But if we don’t stick to
n = 13 matches to choose from, or to R = 1 differences between the codes, the
problem is generally unsolved even today. A possibility to reformulate this problem
is DOMINATING SET for a graph G = (V,E) with node set V = {1, 2, 0}n and
E = {{u, v} ∈ V × V : |i : ui 6= vi| ≤ R}. We will refer to this problem later on.

2.3.2 Radio Stations

T. W. Haynes, S. T. Hedetniemi and P. J. Slater [11] gave another example of
DOMINATING SET. If we suppose a remote part of the world like the Outback
in Australia or Siberia and we want to locate radio stations in some of the very
rare villages in these regions we need to use several stations to ensure that each
village can receive the radio program, due to limited broadcasting range. Since
radio stations are expensive we want to construct as few as possible. Let the
broadcasting range be 50 kilometres, the villages be represented by a vertex and two
villages be adjacent if the distance between them is less or equal to 50 kilometres.
The domination number of this graph gives us the least number of radio stations
needed to broadcast to every village.

v1

v2

v3

v4

v5

v6

v7

r1 r2

44km
12km

22km

35km

32km

28km

25km

11km

33km

14km
38km

18km

42km

Figure 2.1: Two radio stations broadcasting to 9 villages v1, ..., v7, r1, r2.

So far we have only considered applications for DOMINATING SET, given finite
node and edge sets. To convince the reader that the concept of dominating sets is
also useful in infinite graphs we provide some useful applications when there are
infinite node and edge sets.

2.3.3 Applications of the Spherical Covering problem

More applications of DOMINATING SET can be found for the following param-
eters of our problem. Let V := Sn−1 = {x ∈ Rn : xTx = 1}, ER := {{x, y} :

14

CHAPTER 2. NOTATIONS, GENERAL THEORY AND COMPLEXITY 2.3. APPLICATIONS OF DOMINATING SET

‖x−y‖ ≤ R}, where R > 0 and consider the DS Problem of the graph G = (V,E).
This special case of DOMINATING SET is called Spherical Covering problem be-
cause it describes for a fixed radius R the minimal amount N of points x1, ..., xN ,
which is needed to cover Sn−1 via so-called spherical caps with angle γ. These caps
are defined by

C(x, γ) := {y ∈ Sn−1 : ‖x− y‖ ≤ R, } = {y ∈ Sn−1 : xTy ≥ cos(γ)},

where γ is defined by γ := arccos(1− 1
2
R2).

2.3.4 Coverings with Transmission Towers

Similar to covering an area with radio stations we can cover a whole planet with
transmission towers for e.g. a GPS network. A planet’s surface can approximately
be assumed as shaped like a sphere and we want to design a network that covers
the whole surface of the planet. Each transmission tower has fixed expenses and
fixed range R. To obtain the cheapest network we want to know how to place
the towers on the planet. We design the problem as a Spherical Covering problem
where the radius of range R assigns the spherical caps.

2.3.5 Surveys in astronomy

A similar application of these spherical caps is given in [2]: "Large surveys using
multiobject spectrographs require automated methods for deciding how to effi-
ciently point observations and how to assign targets to each pointing. The Sloan
Digital Sky Survey (SDSS) will observe around 106 spectra from targets distributed
over an area of about 10,000 deg2, using a multiobject fiber spectrograph that can
simultaneously observe 640 objects in a circular field of view (referred to as "tile")
1.49◦ in radius. No two fibers can be placed closer than 55′′ during the same ob-
servation; multiple targets closer than this distance are said to "collide"."
If we assume γ to be 1.49◦, these circular fields can be considered as the caps in our
model and the firmament we can consider as the node set V = S2. Let us assume
further that we have enough fibers to cover each object in the caps (or tiles), so we
neglect the restrictions given above. A solution to our problem would provide the
minimal amount of spectrographs needed to cover the sphere and thus to create an
efficient survey to observe the whole firmament.

15

3 Formulation of DOMINATING
SET as a Copositive Program

As seen before approximating DOMINATING SET remains a hard problem. In
2009 S. Burer [3] provided a general result to achieve a completely positive reformu-
lation of binary programs such as DOMINATING SET. Because of duality reasons
approximating copositive programs should have the same computational complex-
ity as approximating completely positive programs. However, a formal proof for
this statement still has to be found. Nevertheless for certain classes of matrices
checking copositivity is cheap in terms of computational run time. For example the
copositivity of diagonal matrices is verifiable in linear time. This leads to the im-
pression that copositive programs are promising candidates to approximate binary
programs like DOMINATING SET. The ideas of Burer’s approach will be used in
this chapter to obtain several completely positive formulations for DOMINATING
SET. Afterwards by dualizing we obtain corresponding copositve formulations that
are approximable with the methods given in Chapter 4. Recall that we have the
following formulation of DOMINATING SET (see Remark 2.32):

γ(G) = min

∑
v∈V

xv : x ∈ {0, 1}V , xv +
∑

u:{u,v}∈E

xu ≥ 1 ∀v ∈ V

= min

{
1Tx : x ∈ {0, 1}V , (IV + AG)x ≥ 1

}
.

Introducing a slack vector s := (s1, s2, ..., sn) ≥ 0 changes the inequalities to equal-
ities. Let us further denote A := IV + AG. We obtain

γ(G) = min
{
1Tx : x ∈ {0, 1}V , s ≥ 0, Ax− s = 1

}
.

Defining V = {1, ..., n} leads to the below formulation of this program. We will refer
to this formulation as the standard form of the binary program for DOMINATING
SET.

min 1Tx (P)
s.t. ATi x = 1 + si ∀i ∈ V

x, s ≥ 0 (3.0.1)
xi ∈ {0, 1} ∀i ∈ V

17

CHAPTER 3. FORMULATION OF DOMINATING SET AS A COPOSITIVE PROGRAM

A natural completely positive formulation of (P), due to S. Burer [3] is the following:

min 1Tx (C)
s.t. ATi x = 1 + si ∀ i ∈ V (3.0.2)
〈AiATi , X〉 = (1 + si)

2 ∀ i ∈ V (3.0.3)
xi = Xii ∀ i ∈ V (3.0.4)
s ≥ 0(

1 xT

x X

)
∈ C∗n+1 (3.0.5)

For convenience of the reader we provide a proof for this formulation in Theorem
3.5. For this we need some further preliminaries.

Definition 3.1.

Feas(P) :=
{

(x, s) ∈ Rn
≥0 × Rn

≥0 : (x, s) is feasible for (P)
}

Feas(C) :=
{

(x, s,X) ∈ Rn × Rn × Rn×n : (x, s,X) is feasible for (C)
}

Feas+(P) :=

{
(s,X) : X ∈ conv

{(
1
x

)(
1
x

)T}
, (x, s) ∈ Feas(P)

}

Feas+(C) :=

{(
s,

(
1 xT

x X

))
: (x, s,X) ∈ Feas(C)

}
Definition 3.2.

opt+(P) :=

{
(s,X) : X ∈ conv

{(
1
x

)(
1
x

)T}
, (x, s) is optimal for (P)

}

opt+(C) :=

{(
s,

(
1 xT

x X

))
: (x, s,X) is optimal for (C)

}
Lemma 3.3. Feas(P) and Feas(C) are compact.

Proof. Consider (P). The constraint xi ∈ {0, 1} restricts x in each component and
thus via si = ATi x − 1, s is restricted in each component. This means we have a
finite set of points in Rn, which is closed and restricted and thus compact.

To show that Feas(C) is compact, consider the closed convex cone Rn
≥0 × C∗n+1.

Feas(C) is a projection of this cone on the intersection of the hyperplanes (3.0.2),
(3.0.3) and (3.0.4). Projections of closed sets remain closed and thus Feas(C) is
closed. To show that for Feas(C) is restricted, observe that for (x, s,X) ∈ Feas(C)

the components x and X define a matrix
(

1 xT

x X

)
∈ {Y ∈ C∗n+1 : Y11 = 1, Yii =

X1i, i ≥ 2} ⊆ {Y ∈ Sn+1 : Y11 = 1, Yii = Y1i, i ≥ 2}, which is a compact set.
This is because each principal minor of a matrix in the last set has to be positive
semidefinite, implying

(1,−1)

(
1 Y1i

Yi1 Yii

)(
1
−1

)
= 1− 2Y1i + Yii = 1− Yii ≥ 0 ∀i ∈ V.

18

CHAPTER 3. FORMULATION OF DOMINATING SET AS A COPOSITIVE PROGRAM

This implies that 0 ≤ Yii ≤ 1 for each i ∈ V . If we use a similar argumentation
for the remaining minors we conclude that each entry of Y is restricted and thus

xT = (Y1,2, ..., Y1,n+1), X =

(
Y2,2 ...
... Yn+1,n+1

)
and s = Ax− 1 are restricted.

Remark 3.4. Observe that opt(P) ≥ 0 and opt(C) ≥ 0 because of restrictions
(3.0.1) and (3.0.5). Also we observe that none of the above sets is empty, because
x = 1, s = Ax − 1, X = xxT always provides a solution. The compactness of
Feas+(P) and Feas+(C) implies that we do not have to distinguish between inf and
min.
With these preliminaries we can prove the equivalence between (P) and (C).

Theorem 3.5. (C) is equivalent to (P), i.e.:
(i) opt(C) = opt(P)
(ii) (x∗, s∗, X∗) is optimal for (C)⇒ (x∗, s∗) is in the convex hull of optimal solu-
tions for (P).

Proof. For (i):
Let 1 be of dimension n. We define the linear function

L : Sn+1 −→ R

L(Y) := 〈
(

0 1
2
1T

1
2
1 0

)
, Y 〉.

We can express opt(P) and opt(C) as follows:

opt(P) = min
(t,Y)∈Feas+(P)

L(Y) = min
(t,Y)∈opt+(P)

L(Y)

opt(C) = min
(t,Y)∈Feas+(C)

L(Y) = min
(t,Y)∈opt+(C)

L(Y).

” opt(C) ≤ opt(P)”

It can be easily checked that

(
s,

(
1
x

)(
1
x

)T)
∈ Feas+(P) provides a feasible so-

lution
(
x, s, xxT

)
for (C). Thus we have Feas+(P) ⊆ Feas+(C), which implies

opt(C) ≤ opt(P).

” opt(C) ≥ opt(P)”
The proof of this inequality is organized in two steps. First we show that each
optimal solution of (C) can be expressed as a convex combination of extreme points
of a subset of Feas+(C). Second we show that these extreme points are in Feas+(P)
and conclude the inequality.
1. We consider the convex cone C̄ :=

{
X ∈ C∗n+1 : Xii = X1i ∀i ∈ {2, ..., n+ 1}

}
and the hyperplane H :=

{
X ∈ C∗n+1 : X11 = 1

}
. Let us define C̃ := C̄ ∩H, which

is compact and convex. Lemma 2.25 implies that the extreme points of C̃ are of

the form
(

1
x

)(
1
x

)T
, where xi = x2

i and thus xi ∈ {0, 1}.

If we consider an optimal solution
(
s∗,

(
1 (x∗)T

x∗ X∗

))
∈ opt+(C), we have in

particular (
1 (x∗)T

x∗ X∗

)
∈ C̃.

19

CHAPTER 3. FORMULATION OF DOMINATING SET AS A COPOSITIVE PROGRAM

Lemma 2.26 implies that we can regard this matrix as a convex combination of the
extreme points of C̃. These points are denoted with the help of a finite set, say S,
of vectors xk, whose support corresponds to a node set of the graph as follows:

(
1 (x∗)T

x∗ X∗

)
=
∑
k∈S

λk

(
1
xk

)(
1
xk

)T
, λk > 0,

∑
k∈S

λk = 1,

(
1
xk

)(
1
xk

)T
∈ Extp(C̃).

2. The two first feasibility restrictions provide∑
k∈S

λkA
T
i x

k = 1 + s∗i ,
∑
k∈S

λk〈AiATi , xk(xk)T 〉 = (1 + s∗i)
2.

This implies (∑
k∈S

λkA
T
i x

k

)2

=
∑
k∈S

λk(A
T
i x

k)2.

Recall that
∑

k∈S λk = 1, if we denote zk =
√
λkx

k, we obtain(∑
k∈S

√
λkA

T
i z

k

)2

=

(∑
k∈S

λk

)(∑
k∈S

(ATi z
k)2

)
.

Because of the equality case of the Cauchy-Schwarz inequality we know that there
are δi for which we have

δi
√
λk = ATi z

k ∀k ∈ S,∀i ∈ V.

To calculate these δi we use

δi =
∑
k∈S

λkδi =
∑
k∈S

√
λkA

T
i z

k =
∑
k∈S

λkA
T
i x

k = 1 + s∗i ,

which leads to

1 + s∗i =
ATi z

k

√
λk

= ATi x
k ∀k ∈ S, ∀i ∈ V.

Thus for each k ∈ S we have ATi xk = 1 + s∗i and
(

1
xk

)(
1
xk

)T
∈ Ext(C̃), which

means xk ∈ {0, 1}V . This implies (xk, s∗) ∈ Feas(P), implying(
s∗,

(
1
xk

)(
1
xk

)T)
∈ Feas+(P).

And thus

opt(C) = L

((
1 (x∗)T

x∗ X∗

))
=
∑
k∈S

λkL

((
1
xk

)(
1
xk

)T)
≥
∑
k∈S

λk min
(t,Y)∈Feas+(P)

L(Y) = opt(P).

20

CHAPTER 3. FORMULATION OF DOMINATING SET AS A COPOSITIVE PROGRAM

For (ii):
If we consider the solutions (xk, s∗, xk(xk)T) from part i), we know 1Txk ≥ opt(P)
because of feasibility of (xk, s∗) for (P). With the help of i) we conclude

opt(P)
(i)
= opt(C) =

∑
k∈S

λk1
Txk, 1Txk ≥ opt(P) ∀ k ∈ S.

Thus we have 1Txk = opt(P) for each k ∈ S, which means that (xk, s∗) are
optimal solutions of (P). Finally the equation (x∗, s∗) =

∑
k∈S λk(x

k, s∗) finishes
the proof.

The biggest obstacle left in (C) is the quadratic restriction (3.0.3). One cannot
neglect this restriction due to the following counterexample.

Example 3.6. Consider a circle with four nodes as the underlying graph G.

v1

v2

v3

v4

Figure 3.1: Circle C4

Let G = C4 = (V,E) be a graph with extended adjacency matrix

A = I + AG =

1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

 .

The domination number can be derived as γ(G) = 2. We will show that

(x∗, s∗, t∗, X∗) =

 5

12
1,

1

4
1,

3

4
1,

1

12

5 2 2 2
2 5 2 2
2 2 5 2
2 2 2 5

solves the following relaxation of (C) with a better value than γ(G) = 2.

min 1Tx (CEx)
s.t. ATi x = 1 + si ∀ i ∈ V
〈AiATi , X〉 = 1 + 2si + ti ∀ i ∈ V
xi = Xii ∀ i ∈ V
s, t ≥ 0(

1 xT

x X

)
∈ C∗n+1

21

CHAPTER 3. FORMULATION OF DOMINATING SET AS A COPOSITIVE PROGRAM

First we calculate the objective value:

1Tx∗ = 1T
5

12
1 =

5

12
1T1 =

5

12
· 4 =

5

3
< 2.

Second we show that (x∗, s∗, t∗, X∗) is feasible for (CEx).

ATi x
∗ = ATi

5

12
1 =

5

12
ATi 1 =

5

12
· 3 =

5

4
= 1 +

1

4
= 1 + s∗i ∀i ∈ {1, 2, 3, 4}

〈AiATi , X∗〉 =
1

12
〈AiATi ,

5 2 2 2
2 5 2 2
2 2 5 2
2 2 2 5

〉 =
15 + 12

12
=

27

12

= 1 +
1

2
+

9

12
= 1 + 2 · 1

4
+

3

4
= 1 + 2s∗i + t∗i ∀i ∈ {1, 2, 3, 4}

x∗i =
5

12
= X∗ii ∀i ∈ {1, 2, 3, 4}

s∗i =
1

4
≥ 0, t∗i =

3

4
≥ 0 ∀i ∈ {1, 2, 3, 4}

(
1 (x∗)T

x∗ X∗

)
=

1

12

12 5 5 5 5
5 5 2 2 2
5 2 5 2 2
5 2 2 5 2
5 2 2 2 5

=
1

6

4 1 1 1 1
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

+
1

12

4 3 3 3 3
3 3 2 2 2
3 2 3 2 2
3 2 2 3 2
3 2 2 2 3

=

1

6

4∑
i=1

(
1
ei

)(
1
ei

)T
+

1

12

4∑
i=1

(
1

1− ei

)(
1

1− ei

)T
∈ C∗n+1

Now we can conclude that C4 is a suitable counterexample for the equivalence
between (CEx) and (C). This means we cannot relax the quadratic constraint
(3.0.3) in this way.

A completely positive program like (C) is though not very promising in terms of
run time, due to the quadratic restriction (3.0.3). Hence a program which avoids
this constraint is more convenient. A program satisfying this property is

min 1Tx (C2V)

s.t.
(
ATi ,−eTi

)(x
s

)
= 1 ∀ i ∈ V

〈
(
Ai
−ei

)(
Ai
−ei

)T
, X〉 = 1 ∀ i ∈ V

xi = Xii ∀ i ∈ V 1 (xT , sT)(
x
s

)
X

 ∈ C∗2n+1.

Similar to the proof of Theorem 3.5 we need some further definitions to describe
the feasible respectively optimal solutions of (P) and (C2V).

22

CHAPTER 3. FORMULATION OF DOMINATING SET AS A COPOSITIVE PROGRAM

Definition 3.7.

Feas+
2 (P) := conv

1
x
s

1
x
s

T

: (x, s) ∈ Feas(P)

Feas+(C2V) :=

 1 (xT , sT)(

x
s

)
X

 : (x, s,X) ∈ Feas(C2V)

opt+

2 (P) := conv

1
x
s

1
x
s

T

: (x, s) is optimal for (P)

opt+(C2V) :=

 1 (xT , sT)(

x
s

)
X

 : (x, s,X) is optimal for (C2V)

Theorem 3.8. (C2V) is equivalent to (P), i.e.:
(i) opt(C2V) = opt(P)
(ii) (x∗, s∗, X∗) is optimal for (C2V) ⇒ (x∗, s∗) is in the convex hull of optimal
solutions for (P).

Proof. For (i):
Let 1 be of dimension n. We define the linear function

L : S2n+1 −→ R

L(Y) := 〈

 0 (1
2
1T , 0T)(

1
2
1

0

)
0

 , Y 〉.

We can express opt(P) and opt(C2V) as follows:

opt(P) = min
Y ∈Feas+2 (P)

L(Y) = min
Y ∈opt+2 (P)

L(Y)

opt(C2V) = min
Y ∈Feas+(C2V)

L(Y) = min
Y ∈opt+(C2V)

L(Y).

” opt(C2V) ≤ opt(P)”

It can be easily checked that

1
x
s

1
x
s

T

∈ Feas+
2 (P) is a feasible solution for

(C2V). Thus we have Feas+
2 (P) ⊆ Feas+(C2V), which implies opt(C2V) ≤ opt(P).

” opt(C2V) ≥ opt(P)”

This inequality will be proved as follows: First we show that each optimal solution
of (C2V) can be expressed as a convex combination of extreme points of a subset
of Feas+(C2V). Second we show that these extreme points are in Feas+(P) and

23

CHAPTER 3. FORMULATION OF DOMINATING SET AS A COPOSITIVE PROGRAM

conclude the inequality.
1. We consider the convex cone

C̄ :=

X ∈ C
∗
2n+1 :

ATi (X2,1, ..., Xn+1,1)T −Xn+1+i,1 = X11 ∀i ∈ V

〈
(
Ai
−ei

)(
Ai
−ei

)T
, X{2,...,2n+1}〉 = X11 ∀i ∈ V

Xi+1,i+1 = X1,i+1 ∀i ∈ V

 ,

where X{2,...,2n+1} is the bottom 2n× 2n principal submatrix of X and the hyper-
plane H :=

{
X ∈ C∗2n+1 : X11 = 1

}
. Let the compact, convex set C̃ := C̄ ∩ H,

where compactness can be shown similar to the proof of Lemma 3.3. Lemma 2.25

implies that the extreme points of C̃ are of the form

1
x
s

1
x
s

T

, where xi = x2
i

and ATi x = 1 + si.

If we consider an optimal solution

 1 ((x∗)T , (s∗)T)(
x∗

s∗

)
X∗

 ∈ opt+(C2V), we have 1 ((x∗)T , (s∗)T)(
x∗

s∗

)
X∗

 ∈ C̃. This implies that we can regard this matrix as a

convex combination of the extreme points of C̃. These points are denoted with the

help of a finite set, say S, of vectors
(
xk

sk

)
, whose support corresponds to a node

set of the graph, i.e. 1 ((x∗)T , (s∗)T)(
x∗

s∗

)
X∗

 =
∑
k∈S

λk

 1
xk

sk

 1
xk

sk

T

,

where λk > 0,
∑

k∈S λk = 1 and

 1
xk

sk

 1
xk

sk

T

∈ Extp(C̃).

2. Thus we have ATi xk = 1 + ski , xki ∈ {0, 1} and ski ≥ 0. This implies (xk, sk) ∈

Feas(P), which on the other hand implies

 1
xk

sk

 1
xk

sk

T

∈ Feas+
2 (P). For the

optimal value this leads to

opt(C2V) = L

 1 ((x∗)T , (s∗)T)(
x∗

s∗

)
X∗

 =
∑
k∈S

λkL

 1
xk

sk

 1
xk

sk

T

≥
∑
k∈S

λk min
Y ∈Feas+2 (P)

L(Y) = opt(P).

For (ii):
If we consider the solutions (xk, sk) ∈ Feas(P) from part i), we know 1Txk ≥ opt(P)
because of the feasibility of (xk, sk) for (P). With the help of i) we conclude

24

CHAPTER 3. FORMULATION OF DOMINATING SET AS A COPOSITIVE PROGRAM

opt(P)
(i)
= opt(C2V) =

∑
k∈S

λk1
Txk, 1Txk ≥ opt(P) ∀k ∈ S.

Thus we have 1Txk = opt(P) for each k ∈ S, which means that (xk, sk) are
optimal solutions of (P). Finally the equation (x∗, s∗) =

∑
k∈S λk(x

k, sk) finishes
the proof.

Due to this equivalency we obtain a completely positive reformulation of DOMI-
NATING SET. To get a more convenient, e.g. copositive, formulation we need to
dualize the above program (C2V).

Theorem 3.9. The dual formulation for (C2V) is:

sup1T

 2X1,n+2

...
2X1,2n+1

− 1T

 Xn+2,n+2

...
X2n+1,2n+1

−X11 s.t. (D2V)

X1+i,1+i + 2
∑

j:{i,j}∈E

X1,n+1+j + 2X1,1+i −
∑

j:{i,j}∈E

Xn+1+j,n+1+j = 1 ∀i ∈ V

X1+i,1+j −
∑

k:{i,k}∈E,{j,k}∈E

Xn+1+k,n+1+k = 0 ∀i, j ∈ V, i < j

X1+i,n+1+j +Xn+1+j,n+1+j = 0 ∀{i, j} ∈ E
X1+i,n+1+j = 0 ∀{i, j} /∈ E
Xn+1+i,n+1+j = 0 ∀i, j ∈ V, i < j

X ∈ C2n+1

Proof. Recall the primal formulation of (C2V):

min 1Tx (C2V)

s.t.
(
ATi ,−eTi

)(x
s

)
= 1 ∀ i ∈ V

〈
(
Ai
−ei

)(
Ai
−ei

)T
, X〉 = 1 ∀ i ∈ V

xi = Xii ∀ i ∈ V 1 (xT , sT)(
x
s

)
X

 ∈ C∗2n+1

We can reformulate (C2V) by using the Frobenius inner product for the restrictions

25

CHAPTER 3. FORMULATION OF DOMINATING SET AS A COPOSITIVE PROGRAM

and redefine X :=

 1 (xT , sT)(
x
s

)
X

.

min 〈

 0 (1
2
1T , 0T)(

1
2
1

0

)
0

 , X〉 (C2V’)

s.t. 〈1
2

 0 (ATi ,−eTi)(
Ai
−ei

)
0

 , X〉 = 1 ∀ i ∈ V

〈

 0 (0T , 0T)(
0
0

) (
Ai
−ei

)(
Ai
−ei

)T , X〉 = 1 ∀ i ∈ V

〈

 0 (eTi , 0
T)(

ei
0

) (
−2eie

T
i 0

0 0

) , X〉 = 0 ∀ i ∈ V

〈

 1 (0T , 0T)(
0
0

)
0

 , X〉 = 1

X ∈ C∗2n+1

Consider the dual program:

sup
2n∑
i=1

yi + y3n+1

s.t.

 0 (1
2
1T , 0T)(

1
2
1

0

)
0

− n∑
i=1

yi
1

2

 0 (ATi ,−eTi)(
Ai
−ei

)
0

−

n∑
i=1

yi+n

 0 (0T , 0T)(
0
0

) (
Ai
−ei

)(
Ai
−ei

)T− n∑
i=1

yi+2n

 0 (eTi , 0
T)(

ei
0

) (
−2eie

T
i 0

0 0

)
− y3n+1

 1 (0T , 0T)(
0
0

)
0

 ∈ C2n+1

If we define the vectors y0 := −y3n+1, y1 := (y1, ..., yn), y2 := (−yn+1, ...,−y2n) and
y3 := 2(y2n+1, ..., y3n) the dual program can be written in a more convenient form:

sup1Ty1 − 1Ty2 − y0 (D2V’)

s.t.

 y0
1
2
(1− y3 − Ay1)T 1

2
(y1)T

1
2
(1− y3 − Ay1) diag(y3) + A diag(y2)A −A diag(y2)

1
2
y1 − diag(y2)A diag(y2)

 ∈ C2n+1.

To verify that for (C2V’) and (D2V’) strong duality holds and thus the objective
values of the two programs do not differ, we need to check the conditions of Theorem
2.27. In this proof we set back ourselves to the dual formulation and prove strong

26

CHAPTER 3. FORMULATION OF DOMINATING SET AS A COPOSITIVE PROGRAM

duality in Lemma 3.10. We continue with the formulation of (D2V’), where we
define X ∈ C2n+1:

sup1Ty1 − 1Ty2 − y0 (D2V’)

s.t. X =

 y0
1
2
(1− y3 − Ay1)T 1

2
(y1)T

1
2
(1− y3 − Ay1) diag(y3) + A diag(y2)A −A diag(y2)

1
2
y1 − diag(y2)A diag(y2)

 ∈ C2n+1.

Let X1,1, ..., X1,2n+1 and Xn+2,n+2, ..., X2n+1,2n+1 be free variables. This leaves the
other variables restricted with the constraints: X2,2 ... Xn+1,2

...
X2,n+1 ... Xn+1,n+1

 = diag(y3) + A diag(y2)A

 X2,n+2 ... X2,2n+1

...
Xn+1,n+2 ... Xn+1,2n+1

 = −A diag(y2)

Xn+2,n+2 ... Xn+2,2n+1

...
X2n+1,n+2 ... X2n+1,2n+1

 = diag(y2),

which are equivalent to X2,2 ... Xn+1,2

...
X2,n+1 ... Xn+1,n+1

 = I − 2 diag(X1,2, ..., X1,n+1)

− 2 diag(A(X1,n+2, ..., X1,2n+1)T) + A diag(Xn+2,n+2, ..., X2n+1,2n+1)A X2,n+2 ... X2,2n+1

...
Xn+1,n+2 ... Xn+1,2n+1

 = −A diag(Xn+2,n+2, ..., X2n+1,2n+1)

Xn+2,n+2 ... Xn+2,2n+1

...
X2n+1,n+2 ... X2n+1,2n+1

 = diag(Xn+2,n+2, ..., X2n+1,2n+1).

Due to symmetry reasons this leads to:

X1+i,1+i + 2
∑

j:{i,j}∈E

X1,n+1+j + 2X1,1+i −
∑

j:{i,j}∈E

Xn+1+j,n+1+j = 1 ∀i ∈ V

X1+i,1+j −
∑

k:{i,k}∈E,{j,k}∈E

Xn+1+k,n+1+k = 0 ∀i, j ∈ V, i < j

X1+i,n+1+j +Xn+1+j,n+1+j = 0 ∀{i, j} ∈ E
X1+i,n+1+j = 0 ∀{i, j} /∈ E
Xn+1+i,n+1+j = 0 ∀i, j ∈ V, i < j

The objective function translates to:

1Ty1 − 1Ty2 − y0 = 1T

 2X1,n+2

...
2X1,2n+1

− 1T

 Xn+2,n+2

...
X2n+1,2n+1

−X11

27

CHAPTER 3. FORMULATION OF DOMINATING SET AS A COPOSITIVE PROGRAM

As mentioned before we need to verify that strong duality between (C2V’) and
(D2V’) (and thus for (C2V) and (D2V)) holds.

Lemma 3.10. If we choose y0 = 1, y1 = 0, y2 = 1 and y3 = 1 then, y0
1
2
(1− y3 − Ay1)T 1

2
(y1)T

1
2
(1− y3 − Ay1) diag(y3) + A diag(y2)A −A diag(y2)

1
2
y1 − diag(y2)A diag(y2)

 ∈ Int(C2n+1).

Proof. y0
1
2
(1− y3 − Ay1)T 1

2
(y1)T

1
2
(1− y3 − Ay1) diag(y3) + A diag(y2)A −A diag(y2)

1
2
y1 − diag(y2)A diag(y2)

=

 1 1
2
1T − 1

2
1T 0T

1
2
1− 1

2
1 I + A2 −A

0 −A I

=

1 0T 0T

0 I + A2 −A
0 −A I

=

1 0T 0T

0 0 0
0 0 0

+

0 0T 0T

0 I 0
0 0 0

+

 0 (0T , 0T)(
0
0

) (
A
−I

)(
A
−I

)T =: M

To show that this matrix is strictly copositive we have to show that xTMx > 0
holds for all x ≥ 0, x 6= 0. We will show the contrapositive. Due to the fact that
each of these matrices is positive semidefinite we have xTMx ≥ 0 and thus we can
assume xTMx = 0 instead of xTMx ≤ 0 and show that this implies that x = 0.

xT

1 0T 0T

0 0 0
0 0 0

+

0 0T 0T

0 I 0
0 0 0

+

 0 (0T , 0T)(
0
0

) (
A
−I

)(
A
−I

)Tx = 0

Also because of positive semidefiniteness we can conclude:

xT

1 0T 0T

0 0 0
0 0 0

x = 0 (3.0.6)

xT

0 0T 0T

0 I 0
0 0 0

x = 0 (3.0.7)

xT

 0 (0T , 0T)(
0
0

) (
A
−I

)(
A
−I

)Tx = 0. (3.0.8)

From (3.0.6) and (3.0.7) we obtain x1 = ... = x|V |+1 = 0 and thus for (3.0.8) we
conclude

28

CHAPTER 3. FORMULATION OF DOMINATING SET AS A COPOSITIVE PROGRAM

xT

 0 (0T , 0T)(
0
0

) (
A
−I

)(
A
−I

)Tx =

 x|V |+2

...
x2|V |+1

T

I

 x|V |+2

...
x2|V |+1

 = 0.

This means we also have x|V |+2 = ... = x2|V |+1 = 0 and have shown the contrapos-
itive.

We can conclude with Lemma 3.10 and Theorem 2.27 that γ(G) can be formulated
e.g. with the copositive program (D2V). As an example we can consider the
equivalent copositive program (D2V’), where the underlying graph is just a simple
graph with two connected nodes.

Example 3.11. Let G be a graph with two nodes connected via an edge, i.e.

AG =

(
0 1
1 0

)
and thus A = I +AG =

(
1 1
1 1

)
. The domination number γ(G) ≤ 1

because we can choose one of the nodes and the other one is connected via the
edge to obtain a dominating set. We consider (D2V’) with y0 = 1, y1 = 3

2

(
1
1

)
,

y2 = 1
2

(
1
1

)
, y3 =

(
0
0

)
. We obtain

1Ty1 − 1Ty2 − y0 = 3− 1− 1 = 1 = γ(G)

and y0
1
2
(1− y3 − Ay1)T 1

2
(y1)T

1
2
(1− y3 − Ay1) diag(y3) + A diag(y2)A −A diag(y2)

1
2
y1 − diag(y2)A diag(y2)

=

1 1

2
1T − 3

4
(1, 1)

(
1 1
1 1

)
3
4
(1, 1)

1
2
1− 3

4

(
1 1
1 1

)(
1
1

)
1
2

(
1 1
1 1

)
I

(
1 1
1 1

)
−1

2

(
1 1
1 1

)
I

3
4

(
1
1

)
−1

2
I

(
1 1
1 1

)
1
2
I

=

1 −1T 3

4
(1, 1)

−1
(

1 1
1 1

)
−1

2

(
1 1
1 1

)
3
4

(
1
1

)
−1

2

(
1 1
1 1

)
1
2
I

 =

1 −1 −1 3

4
3
4

−1 1 1 −1
2
−1

2

−1 1 1 −1
2
−1

2
3
4
−1

2
−1

2
1
2

0
3
4
−1

2
−1

2
0 1

2

 ∈ C.
To prove that this matrix is copositive can be done by using Theorem 2.14. This
is quite elaborate and thus is done in the appendix. The solution provides a lower
bound 1Ty1 − 1Ty2 − y0 = 3− 1− 1 = 1 ≤ γ(G) and thus γ(G) = 1.

The program (D2V) is a convenient copositive program with the major drawback,
that the dimension of the matrix X is more than twice of the input size of the
original problem. This means every solver has to use big matrices that decrease
the performance significantly in the long run. So far it is unknown whether this
approach is a good choice for medium size instances. To avoid the problems in

29

CHAPTER 3. FORMULATION OF DOMINATING SET AS A COPOSITIVE PROGRAM

the long run we use a third possibility to reformulate (P) as a completely positive
program.

min 1Tx (CVV)

s.t.
(
ATi ,−1

)(x
si

)
= 1 ∀ i ∈ V

〈
(
Ai
−1

)(
Ai
−1

)T
,

(
X Si
STi S̃i

)
〉 = 1 ∀ i ∈ V

xi = Xii ∀ i ∈ V1 xT si
x X Si
si STi S̃i

 ∈ C∗n+2, ∀ i ∈ V

where x, s, Si ∈ RV , S̃i ∈ R and X ∈ C∗n.
Again similar to the proof of Theorem 3.5, we need to define the sets of feasible
and optimal solutions of the programs (P) and (CVV) to prove the formulation
(CVV).

Definition 3.12. Let Z(x, s,X, S, S̃)i :=

1 xT si
x X Si
si STi S̃i

andW (x, s)i :=

1
x
si

1
x
si

T
then we define:

LFeas3(P) := conv

W (x, s)1 0 ... 0

0 0
0 ... 0 W (x, s)n

 : (x, s) ∈ Feas(P)

LFeas(CV V) :=
Z(x, s,X, S, S̃)1 0 ... 0

0 0

0 ... 0 Z(x, s,X, S, S̃)n

 : (x, s,X, S, S̃) ∈ Feas(CV V)

LOpt3(P) := conv

W (x, s)1 0 ... 0

0 0
0 ... 0 W (x, s)n

 : (x, s) is optimal for (P)

LOpt(CV V) :=

Z(x, s,X, S, S̃)1 0 ... 0

0 0

0 ... 0 Z(x, s,X, S, S̃)n

 :

(x, s,X, S, S̃) is optimal for (CVV)

Theorem 3.13. (CVV) is equivalent to (P), i.e.:
(i) opt(CV V) = opt(P)
(ii) (x∗, s∗, X∗, S∗, S̃∗) is optimal for (CV V) ⇒ (x∗, s∗) is in the convex hull of
optimal solutions for (P).

30

CHAPTER 3. FORMULATION OF DOMINATING SET AS A COPOSITIVE PROGRAM

Proof. For (i):
Let 1 be of dimension n. We define the linear function

L : Sn(n+2) −→ R

L(Y) := 〈

 0 1
2
1T 0

1
2
1 0 0
0 0 0

 , Y 〉.

We can express opt(CV V) and opt(P) as follows:

opt(CV V) = min
Y ∈LFeas(CV V)

L(Y) = min
Y ∈LOpt(CV V)

L(Y)

opt(P) = min
Y ∈LFeas3(P)

L (Y) = min
Y ∈LOpt3(P)

L (Y)

” opt(CV V) ≤ opt(P)”
Let us denote s2 := (s2

1, ..., s
2
n), Zi := Z(x, s,X, S, S̃)i and Wi := W (x, s)i. It can

be easily checked that

W1 0 ... 0
0 0
0 ... 0 Wn

 ∈ LFeas3(P) encodes a feasible solu-

tion (x, s, xxT , xsT , s2) for (CVV) and thus LFeas3(P) is contained in LFeas(CV V).
This implies opt(CV V) ≤ opt(P).

” opt(CV V) ≥ opt(P)”
The proof of the other inequality is organized as follows: We will show that for a
fixed j the Z∗j part of an optimal solution for (CVV) is in the convex hull of feasible
solutions for certain relaxations of (P). In a second step we use this property to
obtain a convex combination for the whole optimal solution of (CVV) with elements
in LFeas3(P) and therefore obtain the wanted inequality.
1. First we consider the convex cone

C̄j :=

X ∈ C
∗
V+2 :

ATj (X2,1, ..., Xn+1,1)T −Xn+2,1 = X11

〈
(
Aj
−1

)(
Aj
−1

)T
, X{2,...,n+2}〉 = X11

Xi+1,i+1 = X1,i+1 ∀i ∈ V

 ,

where X{2,...,n+2} is the bottom (n+1)×(n+1) submatrix of X and the hyperplane
H :=

{
X ∈ C∗V+2 : X11 = 1

}
. Consider the compact, convex set C̃j := C̄j ∩ H,

where the compactness can be verified again by using the methods of the proof for
Lemma 3.3. Referring to Lemma 2.25 the set of extreme points of C̃j is given by
the intersection of the extremal rays of C̄j with the hyperplane H.

This implies that these points are of the form

1
x
tj

1
x
tj

T

, where xi = x2
i , A

T
j x−

tj = 1, and tj ∈ R≥0 and thus xi ∈ {0, 1}, ATj x = 1 + tj, and tj ∈ R≥0.

If we consider an optimal solution

Z∗1 0 ... 0
0 0
0 ... 0 Z∗n

 ∈ LOpt(CV V), we have

Z∗j ∈ C̃j for each j. Observe that C̃j is compact. Referring to Lemma 2.26 this

31

CHAPTER 3. FORMULATION OF DOMINATING SET AS A COPOSITIVE PROGRAM

implies that we can regard each of these matrices as a convex combination of the
extreme points of C̃j. Observing that the support of xkj corresponds to a "k-th"
node subset and denoting the set of these finitely many subsets by Sj leads us to

Z∗j =
∑
k∈Sj

λk

 1
xkj
tkj

 1
xkj
tkj

T

, λk > 0,
∑
k∈Sj

λk = 1,

 1
xkj
tkj

 1
xkj
tkj

T

∈ Ext(C̃j).

2. Consider the vector x∗, which is a common component of all

Z∗j =

 1 (x∗)T s∗j
x∗ X∗ S∗j
s∗j (S∗j)

T S̃∗j

 .

Recalling that {x ∈ RV : ATj x ≥ 1} is a halfspace for each j, we obtain:

x∗ ∈
⋂
j∈V

conv
{
x ∈ {0, 1}V : ATj x ≥ 1

}
⊆
⋂
j∈V

(
conv

{
x ∈ {0, 1}V

}
∩
{
x ∈ RV : ATj x ≥ 1

})
⊆ conv

{
x ∈ {0, 1}V : ATj x ≥ 1 ∀j ∈ V

}
It is also possible to show equality of these two sets because⋂

i∈I

convAi ⊇ conv
⋂
i∈I

Ai

holds by Definition 2.4. This means that we can express x∗ as a convex combination,
i.e. x∗ =

∑
l∈S′ µlx

l, where S ′ denotes the corresponding index set, xl ∈ {0, 1}V
and sl := ATxl − 1 ≥ 0. We obtain

1 + s∗ = Ax∗ =
∑
l∈S′

µlAx
l =
∑
l∈S′

µl(1 + sl) = 1 +
∑
l∈S′

µls
l,

implying (
x∗

s∗

)
=
∑
l∈S′

µl

(
xl

sl

)
:
∑
l∈S′

µl = 1, µl > 0, (xl, sl) ∈ Feas(P).

We now consider the corresponding matrixW l
1 0 ... 0

0 0
0 ... 0 W l

n

 ∈ LFeas3(P), where W l
i =

 1
xl

sli

 1
xl

sli

T

.

And thus, recalling that the value of L is only affected by x∗ as a part of Z∗1 =∑
l∈S′ µlW

l
1

opt(CV V) = L

Z∗1 0 ... 0
0 0
0 ... 0 Z∗n

 =
∑
l∈S′

µlL

W l
1 0 ... 0

0 0
0 ... 0 W l

n

≥
∑
l∈S′

µl min
Y ∈LFeas3(P)

L (Y) = opt(P).

32

CHAPTER 3. FORMULATION OF DOMINATING SET AS A COPOSITIVE PROGRAM

For (ii):
If we consider the solutions (xl, sl) ∈ Feas(P) from part i), then we know 1Txl ≥
opt(P). Further we conclude

opt(P)
(i)
= opt(CV V) =

∑
k∈S′

µl1
Txl, where 1Txl ≥ opt(P).

Thus we have 1Txl = opt(P), which means that (xl, sl) are optimal solutions of
(P). Finally the equation (x∗, s∗) =

∑
l∈S′ µl(x

l, sl) finishes the proof.

To obtain the corresponding copositive program we have to dualize (CVV).

Theorem 3.14. The dual formulation for (CVV) is:

sup
∑
k∈V

(2(Xk)1,n+2 − (Xk)11 − (Xk)n+2,n+2) (DVV)

s.t.
∑
k∈V

(Xk)1+i,1+j +
∑

{k,i}∈E,{k,j}∈E

(Xk)n+2,n+2 = 0 ∀i < j

∑
k∈V

((Xk)1+i,1+i + 2(Xk)1,1+i) +∑
{k,i}∈E

(2(Xk)1,n+2 − (Xk)n+2,n+2) = 1 ∀i ∈ V

(Xk)n+2,1+i + (Xk)n+2,n+2 = 0 ∀{i, k} ∈ E
(Xk)n+2,1+i = 0 ∀{i, k} ∈ Ē
Xk ∈ Cn+2 ∀k ∈ V

Proof. Let us recall the primal formulation of (CVV):

min 1Tx (CVV)

s.t.
(
ATi ,−1

)(x
si

)
= 1 ∀ i ∈ V

〈
(
Ai
−1

)(
Ai
−1

)T
,

(
X Si
STi S̃i

)
〉 = 1 ∀ i ∈ V

xi = Xii ∀ i ∈ V1 xT si
x X Si
si STi S̃i

 ∈ C∗n+2 ∀ i ∈ V

If we use standard notation and denote Zk :=

zk xT sk
x X Sk
sk STk S̃k

 (consider constraints

33

CHAPTER 3. FORMULATION OF DOMINATING SET AS A COPOSITIVE PROGRAM

(3.0.9) respectively (3.0.10) below) this is equivalent to:

min 〈1
2

0 1T 0
1 0 0
0 0 0

 , Z1〉 (CVV2)

s.t. 〈

 0 ATk −1
Ak 0 0
−1 0 0

 , Zk〉 = 2 ∀ k ∈ V

〈

0 0T 0
0 AkA

T
k −Ak

0 −ATk 1

 , Zk〉 = 1 ∀ k ∈ V

〈

 0 eTk 0
ek −2eke

T
k 0

0 0T 0

 , Z1〉 = 0 ∀ k ∈ V

〈

1 0T 0
0 0 0
0 0 0

 , Z1〉 = 1 (3.0.9)

〈
(
eie

T
j + eje

T
i 0

0T 0

)
, Z1 − Zk〉 = 0 ∀ i, j, k ∈ V, k 6= 1 (3.0.10)

Zk ∈ C∗n+2 ∀ k ∈ V

By dualizing we obtain:

max
∑
k∈V

(2y1
k + y2

k) + y3
1 (DVV1)

s.t.
1

2

0 1T 0
1 0 0
0 0 0

− y1
1

 0 AT1 −1
A1 0 0
−1 0 0

− y2
1

0 0T 0
0 A1A

T
1 −A1

0 −AT1 1

− y3
1

1 0T 0
0 0 0
0 0 0

−
∑
k∈V

y4
k

 0 eTk 0
ek −2eke

T
k 0

0 0T 0

− ∑
i,j,k∈V
k≥2

y5
ijk

(
eie

T
j + eje

T
i 0

0T 0

)
∈ Cn+2

∑
i,j∈V

y5
ijk

(
eie

T
j + eje

T
i 0

0T 0

)
− y1

k

 0 ATk −1
Ak 0 0
−1 0 0

− y2

k

0 0T 0
0 AkA

T
k −Ak

0 −ATk 1

 ∈ Cn+2 ∀k ∈ V \ {1}

34

CHAPTER 3. FORMULATION OF DOMINATING SET AS A COPOSITIVE PROGRAM

Let us denote Y 5
k =

∑
i,j∈V y

5
ijk(eie

T
j + eje

T
i). Also we denote Xk as follows:

max
∑
k∈V

(2y1
k + y2

k) + y3
1 (DVV2)

s.t.

X1 =

 −y3
1

1
2
1T − y1

1A
T
1 − (y4)T y1

1
1
2
1− y1

1A1 − y4 −y2
1A1A

T
1 + 2 diag(y4) y2

1A1

y1
1 y2

1A
T
1 −y2

1

−

∑
k∈V \{1}

(
Y 5
k 0

0T 0

)
∈ Cn+2

Xk =

(
Y 5
k 0

0T 0

)
+

 0 −y1
kA

T
k y1

k

−y1
kAk −y2

kAkA
T
k y2

kAk
y1
k y2

kA
T
k −y2

k

 ∈ Cn+2 ∀k ∈ V \ {1}.

Observe that (Xk)ij are free entries (except for symmetry) for all i, j ∈ {1, ..., n+1}
and thus we obtain:

max
∑
k∈V

(2y1
k + y2

k) + y3
1

s.t.

X1 =

 −y3
1

1
2
1T −

∑
k∈V y

1
kA

T
k − (y4)T

∑
k∈V y

1
k

1
2
1−

∑
k∈V y

1
kAk − y4 −

∑
k∈V y

2
kAkA

T
k + 2 diag(y4)

∑
k∈V y

2
kAk∑

k∈V y
1
k

∑
k∈V y

2
kA

T
k −

∑
k∈V y

2
k

−

∑
k∈V \{1}

Xk

(Xk)n+2,1+i + (Xk)n+2,n+2 = 0 ∀{i, k} ∈ E, k 6= 1 (3.0.11)
(Xk)n+2,1+i = 0 ∀{i, k} ∈ Ē, k 6= 1 (3.0.12)
Xk ∈ Cn+2 ∀k ∈ V \ {1} (3.0.13)

We observe that except for the central block of X1, there are always free variables
left or we can handle them by using restrictions (3.0.11), (3.0.12) and (3.0.13) for
k = 1. Hence the central block of X1, denoted by X̃1, provides a couple of other
restrictions. If we denote X̃k analogously we derive:

X̃1 =
∑
k∈V

−y2
kAkA

T
k + 2 diag(y4)−

∑
k∈V \{1}

X̃k

=
∑
k∈V

(Xk)n+2,n+2AkA
T
k + 2 diag(y4)−

∑
k∈V \{1}

X̃k.

Further we have for y4:

(y4)T =
1

2
1T −

∑
k∈V

y1
kA

T
k −

∑
k∈V

((Xk)1,2, ..., (Xk)1,n+1)

=
1

2
1T −

∑
k∈V

(Xk)1,n+2A
T
k −

∑
k∈V

((Xk)1,2, ..., (Xk)1,n+1) .

35

CHAPTER 3. FORMULATION OF DOMINATING SET AS A COPOSITIVE PROGRAM

And thus we obtain for X̃1

X̃1 =
∑
k∈V

(Xk)n+2,n+2AkA
T
k + I − 2

∑
k∈V

(Xk)1,n+2 diag(Ak)

− 2
∑
k∈V

diag

 (Xk)1,2

...
(Xk)1,n+1

− ∑
k∈V \{1}

X̃k,

which implies∑
k∈V

X̃k −
∑
k∈V

(Xk)n+2,n+2AkA
T
k

+ 2
∑
k∈V

(Xk)1,n+2 diag(Ak) + diag

 (Xk)1,2

...
(Xk)1,n+1

 = I.

This we can split up in two restrictions:∑
k∈V

(Xk)1+i,1+j −
∑

{i,k},{j,k}∈E

(Xk)n+2,n+2 = 0 ∀ i < j

∑
k∈V

(Xk)1+i,1+i−
∑
{i,k}∈E

(Xk)n+2,n+2 + 2
∑
{i,k}∈E

(Xk)1,n+2 + 2
∑
k∈V

(Xk)1,1+i = 1 ∀ i ∈ V.

The resulting program is:

max
∑
k∈V

(2(Xk)1,n+2 − (Xk)n+2,n+2 − (Xk)11)

s.t.
∑
k∈V

(Xk)1+i,1+j −
∑

{i,k},{j,k}∈E

(Xk)n+2,n+2 = 0 ∀ i < j

∑
k∈V

(Xk)1+i,1+i −
∑
{i,k}∈E

(Xk)n+2,n+2+

2
∑
{i,k}∈E

(Xk)1,n+2 + 2
∑
k∈V

(Xk)1,1+i = 1 ∀ i ∈ V

(Xk)n+2,1+i + (Xk)n+2,n+2 = 0 ∀{i, k} ∈ E
(Xk)n+2,1+i = 0 ∀{i, k} ∈ Ē
Xk ∈ Cn+2 ∀k ∈ V (3.0.14)

Similarly to (D2V) we need to verify that this dual formulation (DVV) provides
the same objective value as (CVV), i.e. that strong duality holds. We can prove
this by checking that Theorem 2.27 can be applied to (DVV1) and thus strong
duality holds for each equivalent program in the above proof, e.g. for the programs
(CVV) and (DVV).

Theorem 3.15. Let y1 = 0, y2 = −1, y3
1 = −1, y4 = 1

2
1, y5

iik = 1
2
and y5

ijk =
0, i 6= j then the corresponding matrices in (DVV1) are interior points of the
feasibility set of (DVV1).

36

CHAPTER 3. FORMULATION OF DOMINATING SET AS A COPOSITIVE PROGRAM

Proof.

1

2

0 1T 0
1 0 0
0 0 0

− y1
1

 0 AT1 −1
A1 0 0
−1 0 0

− y2
1

0 0T 0
0 A1A

T
1 −A1

0 −AT1 1

− y3
1

1 0T 0
0 0 0
0 0 0

−
∑
k∈V

y4
k

 0 eTk 0
ek −2eke

T
k 0

0 0T 0

− ∑
i,j,k∈V,k≥2

y5
ijk

(
eie

T
j + eje

T
i 0

0T 0

)

=
1

2

0 1T 0
1 0 0
0 0 0

+

 0
A1

−1

 0
A1

−1

T

+

1 0T 0
0 0 0
0 0 0

−
 0 1

2
1T 0

1
2
1 −I 0
0 0T 0

−
1

2
0T 0

0 1
2
I 0

0 0 0

=

1

2

1 0T 0
0 I 0
0 0 0

+

 0
A1

−1

 0
A1

−1

T

∈ Int(Cn+2)

∑
i,j∈V

y5
ijk

(
eie

T
j + eje

T
i 0

0T 0

)
− y1

k

 0 ATk −1
Ak 0 0
−1 0 0

− y2
k

0 0T 0
0 AkA

T
k −Ak

0 −ATk 1

=

1

2

1 0T 0
0 I 0
0 0 0

+

 0
Ak
−1

 0
Ak
−1

T

∈ Int(Cn+2) ∀k ∈ V \ {1}

We can verify the strict copositivity for the last matrices similarly to the end of
the proof in Theorem 3.10.

We have obtained two copositive formulations of DOMINATING SET in standard
form. It is possible to efficiently consider every constraint in a solver, such as
CSDP, except for the copositivity constraints (3.0.14). Checking these constraints
is an NP-hard problem whereas checking positive semidefiniteness of a matrix can
be checked in polynomial time (for example using Gaussian elimination). To ob-
tain lower bounds for DOMINATING SET in polynomial time we need to find a
semidefinite relaxation for (CVV), i.e. a semidefinite program with a larger set of
feasible solutions. This corresponds to a semidefinite program whose feasible set is
contained in the feasible set of the dual program (DVV). To find such an approxi-
mation or more precisely a hierarchy of such approximations is content of the next
chapter.

37

4 An Approximation Algorithm

With the information given in the chapters before and some additional information
we are able to compute an approximate solution of DOMINATING SET. This
chapter is organized as follows: First we use a hierarchy of semidefinite programs
developed by P. Parrilo [21] to be able to calculate a sequence of lower bounds for
(CVV) and (C2V) respectively their dual copositve formulations. Algorithms to
solve these programs are given via pseudocode in the appendix (see Sections 6.3 and
6.4), the implementation was done in matlab. They consist of a code for creating
the semidefinite program and using the solver CSDP to solve it via an interior
point method. After that we will use the fact that (DVV) belongs to a special class
of programs, so-called G-invariant programs, where G is a group acting on the
underlying matrices. We close with illustrating that the corresponding modified
program is applicable to the "football pools" example introduced in Chapter 2
(see Subsection 2.3.1). This provides the opportunity of a modified algorithm with
enhanced performance for certain cases, such as "football pools".

4.1 A Semidefinite Test for Copositivity

The following two sections are based on the PHD thesis of P. Parrilo ([21], chapters
4 and 5) and provide an increasingly powerful hierarchy of sufficient conditions for
copositivity. Parrilo’s approach was obtained through the use of the sum of squares
decomposition for multivariate forms. Thus we begin this section by introducing
some background information on the theory of sum of squares.

Definition 4.1. A n-variate polynomial f in x1, ..., xn with coefficients in the real
numbers is a finite linear combination of monomials:

f =
∑
α

cαx
α =

∑
α

cαx
α1
1 · · ·xαnn , cα ∈ R,

where the sum is over a finite number of n-tuples α = (α1, ..., αn), αi ∈ N0. We
further define the degree of f as max

α

∑n
i=1 αi. The set of all polynomials in x1, ..., xn

with coefficients in R is denoted R[x1, ..., xn].

Definition 4.2. A form is a polynomial where all the monomials have the same
degree d :=

∑
i αi. In this case, the polynomial is homogeneous of d, since it

satisfies f(λx1, ..., λxn) = λdf(x1, ..., xn).

The following example illustrates that checking the nonnegativity of forms helps
us to check whether a matrix is copositive or not.

Example 4.3. Recall that a matrix M is copositive if and only if xTMx ≥ 0
for all x ∈ Rn

≥0. Furthermore if we denote (yi)
2 = xi, y = (y2

1, ..., y
2
n) we have

39

4.1. A SEMIDEFINITE TEST FOR COPOSITIVITY CHAPTER 4. AN APPROXIMATION ALGORITHM

pM(y) = yTMy ≥ 0 for all yi ∈ R. Now we observe that pM(y) =
∑

i,jmijy
2
i y

2
j is

a multivariate form with degree d = 4. This means checking whether the matrix
M is copositive is equivalent to checking whether the form pM(y) is non-negative.

Of course in general this problem remains (for d ≥ 4) NP-hard. This means there
are no established methods to obtain the correct answer for every possible instance
in polynomial time. Nevertheless we will show that there are some conditions,
guaranteeing global nonnegativity of a form, which can be checked in polynomial
time. One of these conditions is the existence of a sum of squares decomposition
for the polynomial f , i.e.:

f(x) =
∑
i

f 2
i (x)

We observe that the existence of such a decomposition provides the nonnegativity
of f for all values of x ∈ R. The sum of squares decomposition will become the
fundamental method used in the upcoming algorithm. It is mainly based on the
first part of the "Gram matrix" method presented in [23], which is a useful tool to
decide whether a polynomial can be expressed as a sum of squares or not.
The basic idea in Parrilo’s paper is that it is possible to express a polynomial f of
degree 2d as a quadratic form in the following way. Let z consist of all monomials
of degree less than or equal to d. Then we have the representation:

f(x) = zTQz (4.1.1)

where Q is a coefficient matrix for f . A possible positive semidefiniteness of Q
would imply f(x) ≥ 0 for all x. A major problem that arises from this kind of
representation is that Q might not be unique due to the fact that the zi are not
independent variables. This causes the possibility that Q may not be positive
semidefinite for certain representations of f but for others. Hence it would be
useful to restrict the matrices Q to a (smaller) subspace in which the existence of
such a matrix Q is equivalent to the existence of a sum of squares decomposition of
f (implying nonnegativity). This subspace is obtained by handling the dependence
of the zi with the help of constraints of the form zizj = zkzl, respectively z2

i = zkzl.
It can be shown that these constraints provide a linear subspace of matrices Q that
satisfies (4.1.1). If there is a positive semidefinite matrix Q′ in this subspace then
we can conclude that f can be decomposed as a sum of squares. The reason for this
is that given an eigenvalue decomposition Q′ = T diag(d)T T , di ≥ 0 this implies
f(x) =

∑
i di(Tz)2

i . The reverse case would be that if we know that f can be
expressed as a sum of squares of polynomials then splitting up the sum of squares
to monomials provides the representation (4.1.1). For an example to illustrate the
paragraph above for the form f(x1, x2) = (x2

1 − x2
2)2 see Example 4.5.

Example 4.3 (Continuation). We recall that the degree of the monomials was
d = 4 and every monomial y2

i y
2
j can be expressed as a product of the monomials

with degree d = 2. If we store all the monomials of degree 2 in a vector Y this
implies that we have a representation of pM(y) in the way:

pM(y) =
∑
i,j

mijy
2
i y

2
j = YTQY

40

CHAPTER 4. AN APPROXIMATION ALGORITHM 4.2. PARRILO’S HIERARCHY

Furthermore monomials of degree d < 2 cannot provide monomials of degree 4,
thus we can neglect these kind of monomials in our vector Y. The dependence of
the Yi is caused by the identities of the form

(yiyj)
2 = (y2

i)(y
2
j)

(yiyj)(yiyk) = (y2
i)(yjyk)

(yiyj)(ykyl) = (yiyk)(yjyl) = (yiyl)(yjyk).

Observe that only the first kind of identities have coefficients mij in pM(y) not
equal to zero. We denote the associated multipliers in matrix Q by qij, qijk, qijkl
and q′ijkl. If we further group the variables in Y in the way y2

i first, yiyj second we
obtain a matrix Q of the following structure

Q =

m11 m12 − q12 ... m1n − q1n ∗ ∗ ... ∗
m12 − q12 m22 ... m2n − q2n ∗ ∗ ... ∗

... ∗ ∗ ... ∗
m1n − q1n m2n − q2n ... mnn ∗ ∗ ... ∗
∗ ∗ ... ∗ 2q12 ∗ ... ∗
...
∗ ∗ ... ∗ ∗ ∗ ... 2q(n−1)n

,

where the asterisks symbolize either zero or linear combinations of qijk, qijkl and
q′ijkl. Because of our observation above that the coefficients in pM(y) associated to
the above entries of Q are zero we obtain that the sum of each of the above entries
is zero. This implies that we can choose these entries to be zero without changing
the value of YTQY. This choice leads us to the linear matrix inequality system

m11 m12 − q12 ... m1n − q1n

m12 − q12 m22 ... m2n − q2n

...
m1n − q1n m2n − q2n ... mnn

 ∈ Sn�0, qij ≥ 0.

This is equivalent to show the existence of a positive semidefinite matrix P and
a componentwise non-negative matrix N such that M = P + N , which is a well-
known sufficient condition for the copositivity of M . For more details concerning
the equivalence of these tests Parrilo suggests the paper of M. D. Choi and T. Y.
Lam ([4], especially Lemma 3.5).

4.2 Parrilo’s Hierarchy

We have seen so far that the above theory is applicable to design a sufficient test
for checking copositivity. The main drawback of the method seen so far is that we
need stronger conditions to be able to check copositivity more precisely. This can
be done by a hierarchy of increasingly powerful tests, which was developed by P.
Parrilo [21]. To do this we consider the 2(r + 2)-forms

pr(y) =

(
n∑
i=1

y2
i

)r

pM(y).

41

4.2. PARRILO’S HIERARCHY CHAPTER 4. AN APPROXIMATION ALGORITHM

There are two main facts, we obtain from this representation. First if pr is a sum of
squares pr+1(y) =

∑n
i=1 y

2
i pr(y) is a sum of squares but not necessarily the converse

proposition holds. Second the inequality pr(y) ≥ 0 implies pM(y) ≥ 0. This means
by testing whether pr(y) is a sum of squares we check a stricter condition implying
copositivity of M . Let Ar := {M ∈ Sn : pr(y) is SOS}, e.g. A0 = C then the two
facts translate to

Ar ⊆ Ar+1 ⊆ C.
Thus it is possible to sharpen the lower bounds for DOMINATING SET with
increasing r.
Let us denote |α| =

∑n
i=1 αi and for m ∈ N0 denote Λm := {(α1, ..., αn) ∈ Nn

0 :
|α| = m}. Let us assume that the finitely many, say k, elements of Λm are ordered,
i.e. Λm = {β1, ..., βk}. Following these notations the last part of section 4.1 can be
stated for forms with the help of the following theorem, of which a similar form
can be found in [23].

Theorem 4.4. Suppose f(x) =
∑

α∈Λ2m
aαx

α and x̄ = (xβ1 , ..., xβk). Then f is a
sum of squares of polynomials in R if and only if there exists a matrix Q ∈ Sk�0

such that
f(x) = x̄Qx̄T .

Proof. If f =
∑t

i=1 h
2
i is a sum of squares of polynomials hi, we have that each

monomial is of degree m because otherwise we would have a monomial of degree

strictly less than 2m in f . Take Q = HHT with H =

b1
h1

... b1
ht

...
bkh1 ... bkht

, where bjhi is

the coefficient corresponding to xβj in the polynomial hi. If we assume that there is
a matrix Q ∈ Sk�0 with rank(Q) = t, then there exists an eigenvalue decomposition

f(x) = x̄T diag(d1, ..., dt, 0, ..., 0)T T x̄T .

If we define hi :=
√
di
∑k

j=1 tjix
βj we obtain f = h2

1 + ...+ h2
t .

To illustrate the above construction consider the following example.

Example 4.5. Let f(x1, x2) = x4
1−2x2

1x
2
2 +x4

2, which is a sum of squares witnessed
by the function h(x1, x2) = x2

1 − x2
2. Consider the two representations for x̄ =

(x(2,0), x(0,2), x(1,1))

Q1 =

1 0 0
0 1 0
0 0 −2

 /∈ S3
�0, Q2 = HHT =

 1
−1
0

 1
−1
0

T

=

 1 −1 0
−1 1 0
0 0 0

 ∈ S3
�0,

i.e. f(x1, x2) = x̄Q1x̄
T respectively f(x1, x2) = x̄Q2x̄

T . This means we have two
representations x̄Qx̄T for f , both handling the constraint x2

1x
2
2 = (x1x2)2, via

q21 + q12 + q33 = −2, but only Q2 satisfies the additional positive semidefiniteness
constraint. The reverse conclusion is as follows: Suppose Q2 is given, then we
obtain the eigenvalue decomposition

Q2 = T

2 0 0
0 0 0
0 0 0

T T , where T =
1√
2

 1 −1 0
−1 1 0
0 0 0

 .

42

CHAPTER 4. AN APPROXIMATION ALGORITHM 4.2. PARRILO’S HIERARCHY

If we define h(x) =
√

2
(

1√
2
x2

1 − 1√
2
x2

2 + 0 · (x1x2)
)

= x2
1−x2

2 we obtain exactly our
sum of squares f(x) = h(x)2.

Consider that the form pr(y), which is homogeneous in d = 2(r + 2), can also be
expressed with the help of

pr(y) =
∑

α∈Λ2(r+2)

aαy
α =

∑
α∈Λ2(r+2)

∑
i,j: βi+βj=α

yβiQijy
βj .

Comparing coefficients leads to ∑
i,j: βi+βj=α

Qij = aα.

Similar to Example 4.3 we can reduce the considered part of the matrix Q. First
we need to order the βk.

Definition 4.6. First we define the 1-order for n-variate forms as

(β̃1
1 , ..., β̃

1
n) = (e1, ..., en).

Inductively we define an r-order of n-variate forms:

β̃r+1 := (β̃r1 + e1, ..., β̃
r
1 + en, β̃

r
2 + e1, ..., β̃

r
2 + en, ..., β̃

r
nr + e1, ..., β̃

r
nr + en).

Definition 4.7. Consider the n-variate monomials of degree 2 ordered in the way

x2
1, ..., x

2
n, x1x2, ..., xn−1xn.

The corresponding degrees are

β∗ = (β∗1 , ..., β
∗
n, β

∗
n+1, ..., β

∗
k) = (2e1, ..., 2en, e1 + e2, ..., en−1 + en).

We consider β̃r and add the vector β∗ component-by-component to each entry of
β̃r. Reordering of the resulting vector defines the vector βr of r + 2 degrees by

βr := (β̃r1 + 2e1, ..., β̃
r
1 + 2en, β̃

r
2 + 2e1, ..., β̃

r
2 + 2en, ..., β̃

r
nr + 2e1, ..., β̃

r
nr + 2en, β

r
end),

where βrend is a vector of degrees in Λr+2, which haven’t been considered in the first
nr+1 components, ordered in lexicographic ascending order. Let us further define
αr := 2βr and αrend := 2βrend.

Remark 4.8. The order within αrend and βrend does not affect the following theorems.

Definition 4.9. Let i1, ..., ik ∈ {1, ..., n} be a set of indices. Define the k-dimensio-
nal multiindex number Kn inductively:

Kn(i1) = i1, Kn(i1, ..., ik) = n(Kn(i1, ..., ik−1)− 1) + ik.

Remark 4.10. The r-dimensional multiindex number Kn(i1, ..., ir) helps us to de-
note the degrees β̃rKn(i1,...,ir)

= ei1 + ... + eir and further βrKn(i1,...,ir+1) = ei1 + ... +
eir + 2eir+1 .

43

4.2. PARRILO’S HIERARCHY CHAPTER 4. AN APPROXIMATION ALGORITHM

Similar to Parrilo’s (see [21]) theorem for the case r = 1 we deduce the basic
theorem for the upcoming algorithms.

Theorem 4.11. Let us denote Iα = {(i, j, k) ∈ [n] × [n] × [nr] : βrn(k−1)+i +

βrn(k−1)+j = α}. Consider the system of linear matrix inequalities given by:

M − Λk � 0 ∀k ∈ {1, ..., nr}∑
(i,j,k)∈Iα

Λk
ij = 0 ∀α ∈ αr \ αrend (4.2.1)

∑
(i,j,k)∈Iα

Λk
ij ≥ 0 ∀α ∈ αrend (4.2.2)

with nr matrices Λk ∈ Sn. If there exists a feasible solution, then M is copositive.
Furthermore, this test is at least as powerful as the same test for r − 1.

Proof. Let us denote j the r−1-tuple (j3, ..., jr+1). First we show the nonnegativity
of pr(y). We denote w.l.o.g k = Kn(j, jr+2). Consider∑

j1,j2∈[n]

mj1,j2y
2
j1
y2
j2
≥

∑
j1,j2∈[n]

Λ
Kn(j,jr+2)
j1,j2

y2
j1
y2
j2
∀j3, ..., jr+2 ∈ {1, ..., n},

which implies

pr(y) =
∑

j1,...,jr+2∈[n]

mj1,j2y
2
j1
y2
j2
· ... · y2

jr+2

≥
∑

j1,...,jr+2∈[n]

Λ
Kn(j,jr+2)
j1,j2

y2
j1
y2
j2
· ... · y2

jr+2

=
∑

j1,...,jr+2∈[n]

Λ
Kn(j,jr+2)
j1,j2

y2ej1+
∑r+2
l=3 ejly2ej2+

∑r+2
l=3 ejl

=
∑

j1,...,jr+2∈[n]

Λ
Kn(j,jr+2)
j1,j2

y
βr
Kn(j,jr+2,j1)y

βr
Kn(j,jr+2,j2) .

Thus each α ∈ αr can be expressed in the form

α = βrn(k−1)+i + βrn(k−1)+j,

where βrn(k−1)+i and β
r
n(k−1)+j are no entries in βrend. The sum above equals∑

(i,j,k)∈Iα: α∈αr\αrend

Λk
ijy

α +
∑

(i,j,k)∈Iα: α∈αrend

Λk
ijy

α =
∑

(i,j,k)∈Iα: α∈αrend

Λk
ijy

α ≥ 0,

due to restrictions (4.2.1) and (4.2.2), implying the copositivity of M .
Second we show that if the system in Theorem 4.11 has a feasible solution Λ̃ for
r − 1 then this implies that the system has a feasible solution for r. Denoting
α(i) := α− 2ei, we set

Λ
Kn(j,jr+2)
j1,j2

= Λ̃
Kn(j)
j1,j2

for j1 6= j2

44

CHAPTER 4. AN APPROXIMATION ALGORITHM 4.2. PARRILO’S HIERARCHY

and
Λ
Kn(j,jr+2)
i,i = Λ̃

Kn(j)
i,i − hi(j, jr+2, Λ̃),

where for α = 2βrn(Kn(j,jr+2)−1)+i

hi(j, jr+2, Λ̃) =
1

|(i, i,Kn(j, jr+2)) ∈ Iα|
∑

(i,j,Kn(j))∈Iα(jr+2)

Λ̃
Kn(j)
i,j .

Observe that

α(jr+2) = α− 2ejr+2 = 2βrn(Kn(j,jr+2)−1)+i − 2ejr+2 = 2βr−1
n(Kn(j)−1)+i ∈ α

r−1

and thus implies ∑
(i,j,Kn(j,jr+2))∈Iα(jr+2)

Λ̃
Kn(j)
i,j ≥ 0.

Hence hi ≥ 0 and thus

M − Λk = (M − Λ̃k) + diag(h),

where both matrices M − Λ̃k and diag(h) are positive semidefinite, implying the
positive semidefiniteness of the r-system. Furthermore let α ∈ αr \ αrend we obtain∑

(i,j,k)∈Iα

Λk
ij =

∑
(i,j,Kn(j,jr+2))∈Iα

Λ
Kn(j,jr+2)
ij

=
∑

(i,j,Kn(j,jr+2))∈Iα: i 6=j

Λ
Kn(j,jr+2)
ij +

∑
(i,i,Kn(j,jr+2))∈Iα

Λ
Kn(j,jr+2)
ii

=
∑

(i,j,Kn(j,jr+2))∈Iα

Λ̃
Kn(j)
ij −

∑
(i,i,Kn(j,jr+2))∈Iα

∑
(i,j,Kn(j))∈Iα(jr+2)

Λ̃
Kn(j)
ij

|(i, i,Kn(j, jr+2)) ∈ Iα|

=
∑

(i,j,Kn(j,jr+2))∈Iα

Λ̃
Kn(j)
ij −

∑
(i,j,Kn(j))∈Iα(jr+2)

Λ̃
Kn(j)
ij = 0

and for the lower restriction, i.e. for α ∈ αrend implying i 6= j∑
(i,j,k)∈Iα

Λk
ij =

∑
(i,j,Kn(j,jr+2))∈Iα

Λ
Kn(j,jr+2)
ij

=
∑

(i,j,Kn(j,jr+2))∈Iα

Λ̃
Kn(j)
ij

=
∑

(i,j,Kn(j))∈Iα(jr+2)

Λ̃
Kn(j)
ij ≥ 0.

Thus a solution Λ̃ for the r − 1-program provides a solution for the r-program,
which makes the r-test more powerful.

We have shown that this family of systems is less strict with growing parameter
r and thus provides a series of increasing lower bounds for DOMINATING SET.
For the question of conservativeness for Parrilo’s hierarchy we consider the famous
theorem of Pólya:

45

4.2. PARRILO’S HIERARCHY CHAPTER 4. AN APPROXIMATION ALGORITHM

Theorem 4.12 ([21], Theorem 5.3). Given a form F (x1, ..., xn), strictly positive
for xi ≥ 0,

∑n
i=1 xi > 0, then F can be expressed as

F =
G

H
,

where G and H are forms with positive coefficients. In particular, we can choose

H = (x1 + x2 + ...+ xn)r

for a suitable r.

We can apply Pólya’s theorem to any interior point of (DVV), which is a strictly
copositive matrix M , providing for a suitable r:

pr(y) = pM(y)(y2
1 + ...+ y2

n)r = F (y)H(y) is a sum of squares.

Thus Pólya’s theorem states that there is a finite r for which the copositive program
(DVV) and the more restricted semidefinite program corresponding to pr(y) have
the same interior. Due to the fact that the algorithm will be based on an interior
point method to solve the resulting semidefinite relaxation, we obtain the same
approximate solution for the r-relaxation of (DVV) as for (DVV) itself. However
so far no such r has been found to express r as a polynomial in n, meaning that
finding an exact solution for (DVV) remains a very hard problem. Examples of
effective bounds for r have been presented by J. de Loera and F. Santos in [6] and
[7].
If we combine the copositive formulation (DVV) with Theorem 4.11, we obtain a
semidefinite program, whose feasible solutions are contained in the feasible solutions
of (DVV):

sup
∑
k∈V

(2(Xk)1,n+2 − (Xk)11 − (Xk)n+2,n+2) (RVV)

s.t.
∑
k∈V

(Xk)1+i,1+j +
∑

{k,i}∈E,{k,j}∈E

(Xk)n+2,n+2 = 0 ∀i < j

∑
k∈V

((Xk)1+i,1+i + 2(Xk)1,1+i) +∑
{k,i}∈E

(2(Xk)1,n+2 − (Xk)n+2,n+2) = 1 ∀i ∈ V

(Xk)n+2,1+i + (Xk)n+2,n+2 = 0 ∀{i, k} ∈ E
(Xk)n+2,1+i = 0 ∀{i, k} ∈ Ē∑
(i,j,l)∈Iα

Λkl
ij = 0 ∀α ∈ αr \ αrend, ∀k ∈ V∑

(i,j,l)∈Iα

Λkl
ij ≥ 0 ∀α ∈ αrend, ∀k ∈ V

Xk − Λkl � 0 ∀l ∈ {1, ..., (n+ 2)r}, ∀k ∈ V

This program can be solved like every semidefinite program with an interior point
method in polynomial time. An algorithm to solve (RVV) by using CSDP is given

46

CHAPTER 4. AN APPROXIMATION ALGORITHM 4.2. PARRILO’S HIERARCHY

in the appendix (see Section 6.4). Similarly we can combine (D2V) with Theorem
4.11 and obtain:

sup 1T

 2X1,n+2

...
2X1,2n+1

− 1T

 Xn+2,n+2

...
X2n+1,2n+1

−X11 (R2V)

s.t. X1+i,1+i + 2
∑

j:{i,j}∈E

X1,n+1+j + 2X1,1+i −
∑

j:{i,j}∈E

Xn+1+j,n+1+j = 1 ∀i ∈ V

X1+i,1+j −
∑

k:{i,k}∈E,{j,k}∈E

Xn+1+k,n+1+k = 0 ∀i, j ∈ V, i < j

X1+i,n+1+j +Xn+1+j,n+1+j = 0 ∀{i, j} ∈ E
X1+i,n+1+j = 0 ∀{i, j} /∈ E
Xn+1+i,n+1+j = 0 ∀i, j ∈ V, i < j∑
(i,j,k)∈Iα

Λk
ij = 0 ∀α ∈ αr \ αrend∑

(i,j,k)∈Iα

Λk
ij ≥ 0 ∀α ∈ αrend

X − Λk � 0 ∀k ∈ {1, ..., (2n+ 1)r}

Again an algorithm to solve (R2V) is given in the appendix (see Section 6.3).
To check how precise our approximations are we consider the following table for
the case r = 1 and the average of the approximation ratios opt(R2V)

γ(G)
respectively

opt(RV V)
γ(G)

for different input instances, i.e. randomized graphs with |V | = n.

Qual. for n = 7 n = 8 n = 9 n = 10 n = 11 n = 12 n = 13 n = 14

opt(R2V)
γ(G)

0.81 0.97 0.97 0.87 0.98 0.85 0.94 0.87
opt(RV V)
γ(G)

0.81 0.97 0.97 0.87 0.98 0.85 0.94 0.87

Table 4.1: Approximation quality of R2V and RVV

The following table illustrates the run time of the two algorithms, where we use
a naive exponential algorithm calculating the exact domination number as a com-
parison. Moreover we use the quotient of the run times of the approximation
algorithms and the naive algorithm to illustrate the behaviour of the run time over
the different sizes of the input problems.
However this does not seem to be a very efficient way of solving these problems,
because it is necessary to use a large number of semidefinite matrices. Thus we
run out of memory very quickly (e.g. using a normal desktop computer for n = 16
for (RVV)). Nevertheless for some instances of DOMINATING SET it is possible
to reduce the memory space needed immensely just as the run time (as shown in
Section 4.3). One of the applications allowing this are so-called "covering codes",
which are used for example in the field of the European betting pools, such as
"football pools".

47

4.3. A SIMPLIFICATION FOR SYMMETRIC PROGRAMS CHAPTER 4. AN APPROXIMATION ALGORITHM

Time for n=7 n=8 n=9 n=10 n=11 n=12 n=13 n=14

App. D2V 11.9 23.5 46.9 95.1 174.1 326.5 562.2 909.3

App. DVV 13.1 30.2 72.6 184.8 428.6 981.1 2122.1 5070.1

Naive 0.005 0.009 0.013 0.027 0.04 0.07 0.127 0.257

D2V/Naive 2185 2513 3709 3473 4311 4670 4421 3532

DVV/Naive 2416 3228 5747 6748 10612 14031 16687 19694

Table 4.2: Behaviour of run times in seconds for CSDP solving programs R2V and
RVV

4.3 A Simplification for Symmetric Programs

To be able to reduce the run time and memory needed to solve certain instances
of (RVV), we need some further theory, developed by C. Bachoc, D. Gijswijt, A.
Schrijver and F. Vallentin [1] on semidefinite programs like:

inf 〈C,X〉 (Psem)
s.t. 〈Ai, X〉 = bi ∀i ∈ {1, ..., l}

X � 0

X ∈ Rn×n

Let G be a finite group and O(n) denote the group of orthogonal matrices, i.e.
matrices Q ∈ Rn×n with property QQT = In. Let π : G −→ O(n) be an orthogonal
representation of G, i.e. a group homomorphism from G to O(n). We can denote
an inner product between these two groups with

〈g,Q〉 7→ π(g)Qπ(g).

An action of a group G on a set A is a map

G× A→ A, 〈g, a〉 7→ ga,

satisfying: Let e denote the neutral element of G, then ea = a for all a ∈ A and
(g1g2)(a) = g1(g2a) for all g1, g2 ∈ G and all a ∈ A.

Definition 4.13. Consider a finite group G and an action G × Rn×n → Rn×n. A
matrixM is called G-invariant ifM = gM for all g ∈ G. We denote the set of these
matrices by (Rn×n)G. Likewise we call a semidefinite program (Psem) G-invariant
if for each feasible solution X and g ∈ G the matrix gX is also feasible for (Psem)
and gX provides the same objective value, i.e. 〈C,X〉 = 〈C, gX〉.

Let G be a finite group for which (Psem) is G-invariant. Then convexity of (Psem)
provides that if X is an optimal solution of (Psem) we have that the group average

48

CHAPTER 4. AN APPROXIMATION ALGORITHM 4.3. A SIMPLIFICATION FOR SYMMETRIC PROGRAMS

1
|G|
∑

g∈G gX is an optimal solution of:

inf 〈C,X〉 (Pres)
s.t. 〈Ai, X〉 = bi ∀i ∈ {1, ..., l}

X � 0

X ∈ (Rn×n)G

Remark 4.14. The group average 1
|G|
∑

g∈G gX of a matrix is G-invariant because

g̃
1

|G|
∑
g∈G

gX =
1

|G|
∑
g∈G

g̃gX =
1

|G|
∑
g∈G

gX for all g̃ ∈ G.

Example 4.15. Consider a semidefinite program of the form (Psem) and the per-
mutation group on the index set [n] = {1, .., n}. Let Σ denote a finite subgroup
of permutations, also acting on [n], for which the set of feasible solutions X for
(Psem) is invariant under the corresponding simultaneous permutations of rows
and columns. These permutations of rows and columns can be expressed with the
help of transformation matrices Tσ defined by

(Tσ)ij =

{
1, if i = σ(j),

0, otherwise
,

where π(σ) = Tσ. The action on the feasible solutions X is

σ(X) = TσXT
T
σ , where σ(X)ij = Xσ−1(i),σ−1(j).

Thus we can consider the following equivalent program:

inf 〈C,X〉
s.t. 〈Ai, X〉 = bi ∀i ∈ {1, ..., l}

X � 0

X ∈ (Rn×n)Σ

Consider the matrices in the intersection (Rn×n)G∩Sn�0, which form a vector space.
Let B1, ..., BN be a basis of this space. We use this basis to simplify (Pres) by
expressing it with the following equivalent program:

inf 〈C,X〉 (Pbas)
s.t. 〈Ai, X〉 = bi ∀i ∈ {1, ..., l}

X = λ1B1 + ...+ λNBN � 0

λ1, ..., λN ∈ R

Example 4.16. The permutation action mentioned above (see Example 4.15) pro-
vides a set of Σ-invariant matrices. We will determine a canonical basis C1, ..., CM
of this space by looking at the orbits of the group action on pairs. Further-
more this basis can be used to determine a basis B1, ..., BN of the intersection
V = (Rn×n)Σ ∩ Sn�0. The orbit of the pair (i, j) ∈ [n] × [n] under the group Σ is
defined by

O(i, j) = {(σ(i), σ(j)) : σ ∈ Σ}.

49

4.3. A SIMPLIFICATION FOR SYMMETRIC PROGRAMS CHAPTER 4. AN APPROXIMATION ALGORITHM

Decomposing the set [n]× [n] into the orbits O1, ..., OM under the action of Σ leads
toM ≤ n2 because some pairs may provide the same orbit. For every k ∈ {1, ...,M}
we define the matrix Ck ∈ {0, 1}n×n by

(Ck)ij =

{
1 if (i, j) ∈ Ok

0 otherwise
.

For obtaining the basis B1, ..., BN we need to consider the orbits of unordered pairs
and define

B{i,j} =

{
Ck if (i, j), (j, i) ∈ Ok

Ck1 + Ck2 if (i, j) ∈ Ok1, (j, i) ∈ Ok2, k1 6= k2
.

Due to the fact that Xij = λ{i,j} because (i, j) = (id(i), id(j)) and (σ(i), σ(j)) are
in the same orbit we have

Xij = Xσ(i),σ(j) = Xσ(j),σ(i) = Xji

for each σ ∈ Σ.

For the next simplification of our program we use that (Rn×n)G has the structure
of a matrix ∗-algebra. A matrix ∗-algebra is a set of complex matrices, which is
closed under addition, scalar multiplication, matrix multiplication and taking the
conjugate transpose. Linearity of each g ∈ G provides the first two properties,
whereas

g(AB) = π(g)ABπ(g)T = (π(g)Aπ(g)T)(π(g)Bπ(g)T) = g(A)g(B)

and
g(A∗) = π(g)A∗π(g)T

A∈Rn×n
= π(g)Aπ(g)T = g(A),

provide the other properties.

Theorem 4.17. [1] Let A ⊆ Cn×n be a matrix ∗-algebra. There are numbers
m1, ...,md such that there is a ∗-isomorphism between A and a direct sum of com-
plete matrix algebras

ϕ : A →
d⊕

k=1

Cmk×mk .

A detailed proof of this theorem can be found e.g. in [1]. We apply a ∗-isomorphism
ϕ to A = (Rn×n)G:

ϕ : (Rn×n)G →
d⊕

k=1

Cmk×mk .

Since ϕ is a ∗-isomorphism between matrix algebras with unity, this leads to the
fact that ϕ preserves eigenvalues and hence positive semidefiniteness. In fact if X
is G-invariant we have that X − λI is G-invariant because

g(X − λI) = g(X)− λg(I) = X − λπ(g)Iπ(g)T = X − λI.

50

CHAPTER 4. AN APPROXIMATION ALGORITHM 4.3. A SIMPLIFICATION FOR SYMMETRIC PROGRAMS

FurthermoreX−λI has an inverse if and only if ϕ(X)−λI has an inverse. Denoting
ψ−1(X − λI) = I as the first inverse leads to the fact that ψ−1 ◦ ϕ−1 is an inverse
for ϕ(X)− λI because

(ψ−1 ◦ ϕ−1)(ϕ(X)− λI) = ψ−1(ϕ−1(ϕ(X − λI))) = I

and denoting χ−1(ϕ(X)− λI) = I as the second inverse leads to

(χ−1 ◦ ϕ)(X − λI) = χ−1(ϕ(X)− λI) = I.

For positive semidefiniteness this means that for an eigenvalue λ we have that
det(X − λI) = 0 is equivalent to det(ϕ(X) − λI) = 0 and thus X is positive
semidefinite if and only if ϕ(X) is positive semidefinite. Hence we can simplify
(Pbas) and obtain the G-invariant program (Psem)

inf 〈C,X〉 (PS2)
s.t. 〈Ai, X〉 = bi ∀i ∈ {1, ..., l}

λ1ϕ(B1) + ...+ λNϕ(BN) � 0

X = λ1B1 + ...+ λNBN ,

where ϕ(Bi) are block diagonal matrices with blocks of size m1, ...,md. Hence in-
stead of a semidefinite program of dimension n2 we only need to solve a semidefinite
program of dimension m2

1 + ...+m2
d.

Remark 4.18. If G = Σ is a subset of the permutation group we have that the sum
m2

1 + ...+m2
d = M , where M is the number of distinct orbits.

A problem that arises when using the simplification (PS2) instead of (Psem) is that
we need to find a ∗-isomorphism ϕ. In the case of permutation action C. Bachoc,
D. Gijswijt, A. Schrijver and F. Vallentin ([1]) proposed the following construction
for the ∗-isomorphism. The main drawback of this construction is that it does not
guarantee to provide the maximum possible simplification but it can be computed
only by knowing the orbit structure of the permutation group action σ ∈ Σ (see
Example 4.16). Consider the canonical basis C1, ..., CM in the case of permutation
action, computed in Example 4.16. We define the multiplication parameters or
structural parameters mt

rs by

mt
rs = |{k ∈ [n] : (i, k) ∈ Or, (k, j) ∈ Os}|,

where (i, j) ∈ Ot. Notice that mt
rs does not depend on the choice of i and j.

By using the Frobenius norm ||Cr|| =
√
〈Cr, Cr〉, which equals the size of the

corresponding orbits Or we can define the matrices D(Cr) ∈ RM×M by

(D(Cr))ij =
〈CrCj, Ci〉
||Cj|||Ci||

=
||Ci||
||Cj||

mi
rj.

We can now find a ∗-isomorphism φ as stated in the following theorem.

Theorem 4.19. [1] Let D denote the algebra generated by D(C1), ..., D(CM). Then
the homomorphism

φ : (Rn×n)Σ −→ D, φ(Cr) = D(Cr), r = 1, ...,M,

is a ∗-isomorphism.

51

4.4. APPLICATION TO FOOTBALL POOLS CHAPTER 4. AN APPROXIMATION ALGORITHM

The above theorem leads to a simplification for (Psem), similar to (PS2):

inf 〈C,X〉 (Pfin)
s.t. 〈Ai, X〉 = bi ∀i ∈ {1, ..., l}

λ1φ(B1) + ...+ λNφ(BN) � 0

X = λ1B1 + ...+ λNBN ,

where the dimension of the matrix λ1φ(B1) + ...+λNφ(BN) is M instead of n. For
certain instances of the problem M ≤ n holds and thus (Pfin) is not as hard to
solve in terms of computational run time as (Psem). Certain instances of football
pools belong to these instances.

4.4 Application to Football Pools

As mentioned before our application will refer to the european pendant of the
famous British "football pools", the so-called "continental pools" or "toto" com-
petitions. See Subsection 2.3.1 for a more detailed explanation. Basically it is an
instance of DOMINATING SET for a graph G = (V,E) where V = {1, 2, 0}m
denotes the set of vertices and E = {{u, v} ∈ V × V : |i : ui 6= vi| ≤ R} the edge
set for fixed numbers m,R ∈ N0.
For this instance we are able to apply simplification (Pfin) to our approxima-
tive program (RVV) we only need a permutation group Σ for which (RVV) is
Σ-invariant. We order the 3m nodes of V in lexicographical ascendent order, i.e.
v1 = (0, ..., 0, 0), v2 = (0, ..., 0, 1), ..., v3m = (2, ..., 2, 2). Consider the adjacency
matrix for football pools of dimension m ≥ 2, A(m)

G ∈ R3m×3m :

A
(m)
G =

A
(m−1)
G I3m−1 I3m−1

I3m−1 A
(m−1)
G I3m−1

I3m−1 I3m−1 A
(m−1)
G

 , A
(2)
G =

11T I3 I3

I3 11T I3

I3 I3 11T

 .

These matrices remain the same under permutations of the entries of the nodes,
i.e. if we consider a permutation

σ : V −→ V, σ(v) = (vσ(1), ..., vσ(m))

then the corresponding adjacency matrix to the corresponding rearranged node set
Vσ = (σ(v1), ..., σ(v3m)) remains A(m)

G . To prove this we denote the set of these
permutations Σm.

Lemma 4.20. A(m)
G is Σm-invariant for any m ≥ 2.

Proof. Due to the fact that σ is only acting on the entries of any v ∈ V , it is
independent of the number of the node. This implies that

vik = vjk ⇔ σ(vi)σ(k) = σ(vj)σ(k).

For any pair of nodes vi, vj using the above result leads to

{vi, vj} ∈ E ⇔ |k : vik 6= vjk| ≤ R

⇔ |k : σ(vi)σ(k) 6= σ(vj)σ(k)| ≤ R

⇔ {σ(vi), σ(vj)} ∈ E.

52

CHAPTER 4. AN APPROXIMATION ALGORITHM 4.4. APPLICATION TO FOOTBALL POOLS

This means for each rearranged node set Vσ the entry of the adjacency matrix
(AG)

(m)
ij remains the same.

The entry permutation σ corresponds to a row and column permutation σ̃ because
instead of changing the entries in a certain node we can also permute the node with
its counterpart, where the entries are already permuted. To illustrate this consider
the following example.

Example 4.21. For m = 2, Σm consists of the identity and τ((v1, v2)) = (v2, v1),
this leads to

τ(v1) = τ((0, 0)) = (0, 0) = v1,

τ(v2) = τ((0, 1)) = (1, 0) = v4,

τ(v3) = τ((0, 2)) = (2, 0) = v7,

τ(v4) = τ((1, 0)) = (0, 1) = v2,

τ(v5) = τ((1, 1)) = (1, 1) = v5,

τ(v6) = τ((1, 2)) = (2, 1) = v8,

τ(v7) = τ((2, 0)) = (0, 2) = v3,

τ(v8) = τ((2, 1)) = (1, 2) = v6,

τ(v9) = τ((2, 2)) = (2, 2) = v9.

and thus to a simultaneous row and column permutation matrix Tτ = e1e
T
1 +e5e

T
5 +

e9e
T
9 + e2e

T
4 + e4e

T
2 + e3e

T
7 + e7e

T
3 + e6e

T
8 + e8e

T
6 . It is easy to verify that

τ(A
(2)
G) = TτA

(2)
G T Tτ = A

(2)
G .

This leads to the needed property of (RVV).

Theorem 4.22. For a graph with adjacency matrix A(m)
G the semidefinite program

(RVV) is Σm-invariant.

Proof. Recall formulation (RVV):

sup
∑
k∈V

(2(Xk)1,n+2 − (Xk)11 − (Xk)n+2,n+2) (RVV)

s.t.
∑
k∈V

(Xk)1+i,1+j +
∑

{k,i}∈E,{k,j}∈E

(Xk)n+2,n+2 = 0 ∀i < j

∑
k∈V

((Xk)1+i,1+i + 2(Xk)1,1+i) +∑
{k,i}∈E

(2(Xk)1,n+2 − (Xk)n+2,n+2) = 1 ∀i ∈ V

(Xk)n+2,1+i + (Xk)n+2,n+2 = 0 ∀{i, k} ∈ E
(Xk)n+2,1+i = 0 ∀{i, k} ∈ Ē∑
(i,j,l)∈Iα

Λkl
ij = 0 ∀α ∈ αr \ αrend, ∀k ∈ V∑

(i,j,l)∈Iα

Λkl
ij ≥ 0 ∀α ∈ αrend, ∀k ∈ V

Xk − Λkl � 0 ∀l ∈ {1, ..., (n+ 2)r}, ∀k ∈ V

53

4.4. APPLICATION TO FOOTBALL POOLS CHAPTER 4. AN APPROXIMATION ALGORITHM

Denote the number of nodes |V | = n = 3m. Consider the positive semidefinite
restriction Xk − Λkl � 0 ∀l ∈ {1, ..., (n + 2)r}, k ∈ V in (RVV). An equivalent
formulation is to express this restriction with the help of a diagonalmatrix

Z =

Y1 0 0
0 ... 0
0 0 Yn

 � 0, where Yk =

Xk − Λk,1 0 0
0 ... 0
0 0 Xk − Λk,(n+2)r

 .

A permutation σ ∈ Σm of entries in a node v ∈ V corresponds to a permuta-
tion of nodes σ̃ with Vσ := σ̃(V), where the permuted nodes σ̃(v) = σ(v). The
corresponding solution is

σ̃(Z)=

Ỹσ(1) 0 0
0 ... 0

0 0 Ỹσ(n)

,where Ỹσ(k)=

X̃σ(k) − Λ
σ(k),1
σ 0 0

0 ... 0

0 0 X̃σ(k) − Λ
σ(k),(n+2)r

σ

and (X̃σ(k))1+i,1+j = (Xσ(k))1+σ(i),1+σ(j), (Λσ)1+i,1+j = Λ1+σ(i),1+σ(j). We can verify
that this is a feasible solution for (RVV) by using the invariance of the adjacency
matrix AG from Lemma 4.20. In particular this invariance implies that (i, j) ∈ E
is equivalent to (σ(i), σ(j)) ∈ E and thus the first four constraints in (RVV) are
not affected by the permutation. For a fixed node k respectively σ(k) the two
sums of entries in Λ are not affected by a permutation of rows and columns of Λ.
Eigenvalues of a matrix are not affected by a simultaneous permutation of rows and
columns and thus semidefiniteness holds as well. Finally to sum up over the nodes
k ∈ V does not change under permutations and thus the objective value remains
the same.

Thus we can apply the simplification (Pfin) to (RVV). If M ≤ |V | = 3m holds,
this allows us to use an algorithm, needing fewer memory and run time but still
giving the same lower bounds for the domination number γ(G). Unfortunately
the number of orbits will turn out to be M =

(
m+8

8

)
, as we can see in Lemma

4.24. To prove this, we use the following Lemma 4.23. Although Burnside himself
attributed the lemma to F. Frobenius it became famous as "Burnside’s Lemma".
For a general version of this lemma see e.g. J. Rotman [25].

Lemma 4.23 (Burnside’s Lemma). Let Σ be a finite permutation group acting on
a finite set [n]× [n]. Then the number of orbits M can be expressed as

M =
1

|Σ|
∑
σ∈Σ

F (σ),

where, for σ ∈ Σ, F (σ) is the number of (i, j) ∈ [n] × [n] fixed by σ, where
σ ((i, j)) := (σ′(i), σ′(j)) for the corresponding permutation group Σ′ acting on [n].

Lemma 4.24. For an m-dimensional permutation group Σm the number of orbits
Mm can be expressed as

Mm =

(
m+ 8

8

)
.

54

CHAPTER 4. AN APPROXIMATION ALGORITHM 4.4. APPLICATION TO FOOTBALL POOLS

Proof. We can use Burnside’s Lemma to obtain

Mm =
1

|Σm|
∑
σ∈Σm

F (σ) =
1

|Σ′m|
∑
σ′∈Σ′m

F (σ′)2

for a permutation Σ′m acting on [n] = |V | = 3m. We prove 1
|Σ′m|

∑
σ′∈Σ′m

F (σ′)2 =(
m+8

8

)
via Induction on m. If m = 2, recall τ from Example 4.21, which implies

M2 =
1

2!

(
F (id)2 + F (τ)2

)
=

1

2

(
92 + 32

)
= 45 =

10 · 9
2

=
10!

8! 2!
=

(
2 + 8

8

)
.

Hence for the m-dimensional permutation group Σm we have the induction hypoth-
esis:

Mm =
1

|Σ′m|
∑
σ′∈Σ′m

F (σ′)2 =

(
m+ 8

8

)
.

For the inductive step we observe that any σ′ ∈ Σ′m+1 can be expressed as a
composition of a permutation σ′ ∈ Σ′m on the last m entries of the nodes v ∈
{1, 0, 2}m+1 and a transposition σ̃ with the first entry, as follows:

Mm+1 =
1

|Σ′m+1|
∑

σ′∈Σ′m+1

F (σ′)2 =
1

(m+ 1)!

∑
σ̃k: σ̃k(1)=k, k∈[m+1]

∑
σ′∈Σ′m

F (σ̃k ◦ σ′)2.

Splitting up the sums leads to

1

(m+ 1)!

 ∑
σ′∈Σ′m

F (σ̃1 ◦ σ′)2 +
∑

σ̃k: σ̃k(1)=k, k∈{2,...,m+1}

∑
σ′∈Σ′m

F (σ̃k ◦ σ′)2

 .

To count the fixed points of σ̃k ◦ σ′ we need the following observation:

σ̃k ◦ σ′(v) = v ⇔ σ′(v) = σ̃−1
k (v) = (vk, v2, ..., vk−1, v1, vk+1, ..., vm+1)

⇔ (v1, vσ′(2), ..., vσ′(m+1)) = (vk, v2, ..., vk−1, v1, vk+1, ..., vm+1)

⇔ v1 = vk, vσ′(k) = v1, vσ′(j) = vj ∀j 6= k

⇔ v1 = vk, σ
′(v2, ..., vm+1) = (v2, ..., vm+1).

Hence if k 6= 1 each fixed point v of σ̃ ◦ σ′ leads to exactly one fixed point of σ′
implying F (σ̃k ◦ σ′) = F (σ′). In the remaining case v1 can be chosen arbitrarily
out of {1, 0, 2}, i.e. F (σ̃1 ◦ σ′) = 3F (σ′). This means we can express M as follows:

1

m+ 1

 1

m!

∑
σ′∈Σ′m

(3F (σ′))2 +
1

m!

∑
σ̃k: σ̃k(1)=k, k∈{2,...,m+1}

∑
σ′∈Σ′m

F (σ′)2

 .

Finally applying the induction hypothesis leads to
1

m+ 1

(
32

(
m+ 8

8

)
+m

(
m+ 8

8

))
=

8 + 1 +m

m+ 1

(
m+ 8

8

)
=

(
m+ 1 + 8

8

)
.

This means the number of orbits grows polynomially in the number of games m.
Due to the fact that the run time of any algorithm using this reduction method
grows in M instead of 3m we have a quite powerful tool to reduce the run time in
the long run. Unfortunately this affects only the case m ≥ 10, i.e. for programs of
size |V | = 310. Semidefinite programs of this size are still out of reach for present
computers and thus the method is not applicable for our purpose yet.

55

5 Outlook

The central question motivating this thesis can be formulated as follows:
If we have a certain combinatorial problem, which seems not to be solvable with a
polynomial time algorithm, can we at least approximate it quite precisely?
Because of the variety of combinatorial problems that are known so far, we consider
only one of these problems, namely DOMINATING SET. S. Burer’s paper provides
the opportunity to apply the theory of copositive optimization on combinatorial
problems. Using this approach we achieved two copositive formulations of DOMI-
NATING SET.
Due to the fact that copositive programs remain NP-hard, we needed an approxima-
tion hierarchy, where the single steps of this hierarchy are computable in polynomial
time. This hierarchy was developed by P. Parrilo and has provided semidefinite
hierarchies for each of the two copositive formulations. The corresponding polyno-
mial solving algorithms compute approximations for the domination number γ(G)
with different behaviour in run time.
It turns out that both algorithms have a large (though polynomial) run time for
computably small instances. However, it seems that at least for the first approx-
imation step the algorithms will have a smaller run time for graphs of estimated
50 nodes than the naive brute force approach. For the given instances of nodes
up to n = 14 , computing the formulation (R2V) provides lower bounds of the
domination number γ(G) with equal quality but in a significantly smaller run time
than computing (RVV). This implies that we can approximate larger instances,
such as n = 20. On the other hand the copositive formulation (RVV) uses smaller
matrices, which should enhance the performance in the long run significantly.
Due to the large run time of the presented polynomial algorithms, the use of copos-
itive optimization to calculate lower bounds for DOMINATING SET suffers from
a lack of computational capacity. The developed algorithms should disproportion-
ately benefit from faster computers because, if the given instances are large enough,
the polynomial run time should pay off. Especially approximation algorithms for
instances such as "football pools", for which the simplification in Chapter 4 can be
used, should gain significant performance enhancements.
Further research could be based on the questions, whether there are other coposi-
tive formulations for DOMINATING SET that enhance the performance or provide
better bounds for a comparable performance of the resulting algorithms. For exam-
ple relaxing the quadratic restriction in the completely positive program (C) could
be a convenient approach. It might be another approach to sharpen the bounds
for the hierarchy steps needed to obtain an exact or at least approximate solution.
Generalizing the results of this thesis to graphs with infinite node sets V could
improve our knowledge of NP-hard problems in general. The related problem of
computing the stability number of a graph is currently under investigation by C.
Dobre, M. Dür, L. Frerick and F. Vallentin [8].

57

6 Appendix

6.1 Algorithm for Checking Copositivity

To prove that

M :=

1 −1 −1 3

4
3
4

−1 1 1 −1
2
−1

2

−1 1 1 −1
2
−1

2
3
4
−1

2
−1

2
1
2

0
3
4
−1

2
−1

2
0 1

2

 ∈ C
we need to check whether there are principal submatrices with negative eigenvalues
and corresponding positive eigenvectors. This can be verified by the following
algorithm.

Algorithm 1 Checking Copositivity of M
Require: M :
Ensure: iscopositive: boolean variable indicating whether M is copositive
1: indexset← {1, 2, 3, 4, 5}
2: powerset← 2indexset

3: iscopositive← TRUE
4: for element ∈ powerset do
5: eig ← eigenvectors of Melement

6: for k ∈ {1, ..., length of eig} do
7: if eig(k) is componentwise strictly negative or strictly positive then
8: if eigenvalue corresponding to eig(k) is negative then
9: iscopositive← FALSE

10: end if
11: end if
12: end for
13: end for

6.2 Preliminaries for Solving Algorithms

For the solving algorithms for the semidefinite programs (R2V) and (RVV) for each
step r in Parrilo’s hierarchy we need to compute the degrees βr and αr. Due to
the fact that αr = 2βr we introduce three procedures to compute βr and neglect
the corresponding αr. First we compute the degrees β0 := β∗ of an n-variate form
with the procedure degrees0. Observe that we use different for loops to achieve the
wanted order within the degrees β∗. Furthermore we add an additional column of
zeros to the variable beta0matrix, which becomes important for the next procedure.

59

6.2. PRELIMINARIES FOR SOLVING ALGORITHMS CHAPTER 6. APPENDIX

Algorithm 2 Procedure degrees0
Require: n:
Ensure: beta0matrix: matrix with β∗ components as rows and zeros in the last

column
1: nsum← n(n+ 1)/2
2: counter← 0
3: for i ∈ {1, ..., n} do
4: counter← counter + 1
5: beta0matrix[counter, :]← 2(eTi , 0)
6: end for
7: for i < j do
8: counter← counter + 1
9: beta0matrix[counter, :]← (eTi + eTj , 0)

10: end for

Second we use the procedure degrees to compute the degrees βr inductively by
adding (e1, ..., en) to each component of βr−1. In line 9 we add the index of the
original β0

i to the matrix degb. This means if βrn(k−1)+i is stored in row l of degb,
i.e. βrn(k−1)+i = degb[l, 1 : end − 1] then i = degb[l, end]. Thus for any step in the
hierarchy the information of i is kept, providing information about the entries i, j
for degrees αr = βrn(k−1)+i + βrn(k−1)+j (later referred to as: βri and βrj). as we will
see in the solving algorithms below.

Algorithm 3 Procedure degrees
Require: b: matrix with entries of βr−1

Ensure: degb: matrix with βr \ βrend components as rows and the information β∗k
added

1: n← (length of rows of b)− 1
2: counter← 0
3: for j ∈ {1, ..., n} do
4: for i ∈ {1, ..., nr+1} do
5: counter← counter + 1
6: degb[counter, :]← bi + (eTj , 0)
7: . Add information about β∗k added (0 if k > n):
8: if b[i, end] = 0 then
9: degb[counter, end]← i

10: end if
11: end for
12: end for

The last procedure minimumevendegrees provides for a matrix of degrees αr of
size 2(r+ 2) the corresponding even degrees without double entries and additional
information.

60

CHAPTER 6. APPENDIX 6.3. SOLVING ALGORITHM FOR R2V

Algorithm 4 Procedure minimumevendegrees
Require: dega: matrix with all entries of αr \αrend and two columns of additional

information
Ensure: mindega: matrix with even αr \ αrend components as rows
1: dega← dega[, end− 2]
2: vector help← number of odd entries in rows of dega
3: l← number of entries >0 in help

. Copy only even degrees in smaller matrix hmindega
4: counter← 0
5: for i ∈ {1, ..., length of help} do
6: if help[i] = 0 then
7: counter← counter + 1
8: hmindega[counter,]← dega[i,]
9: end if

10: end for
11: . Eliminate double entries in hmindega
12: for i ∈ {1, ..., l} do
13: . Check whether hmindega[i,] is in mindega. If not append it to mindega.
14: end for

6.3 Solving Algorithm for R2V

We declare K as a cone variable with two components, where K.s is the set of
nr + 2 positive semidefinite cones with the components

X+ � 0, X− � 0 and Wk := X+ −X− − Λk � 0.

and K.l is the non-negative orthant for the slack variables for the inequalities given
in (R2V). Let further G = (V,E) with adjacency matrix AG and denote |V | = VG.
For any α ∈ αr we have a corresponding set of matrices Aα to define the degree
constraints in (R2V). Similarly we compute the constraints Alin and b in line 39.

Algorithm 5 Algorithm to solve R2V
Require: AG: adjacency matrix of the graph G,
Require: r: step of Parrilo’s hierarchy
Ensure: res: result of CSDP inner point solution for (R2V)
1: m← 2VG + 1
2: Compute degb:
3: degb← degrees0(m)
4: for i ∈ {1, ..., r} do
5: degb← degrees(degb)
6: end for
7: degb← degb[1 : mr+1,]
8: Compute matrix dega consisting of the relevant parts of αr, i.e. βri +βrj , where
βri and βrj are in the same (k-th) block. These degrees correspond to the entries
(Wk)ij.

9: mindega← minimumevendegree(dega) . Delete double entries

61

6.3. SOLVING ALGORITHM FOR R2V CHAPTER 6. APPENDIX

10: Set C as given in (R2V).
11: Compute size of K.l:
12: for α ∈ mindega do
13: if α /∈ 2 · degb then
14: slack ← slack + 1
15: end if
16: end for
17: K.l ← slack
18: C ← −C . Needed for applying CSDP
19: Compute degree constraints for each α ∈ αr:
20: for α ∈ mindega do
21: if α ∈ 2 · degb then . α /∈ αrend?
22: for l ∈ length of dega do
23: if α = dega[l, 1 : end− 2] then . Is βri resp. βrj ∈ βrend?
24: if dega[l, end− 1] ≤ mr+1 & dega[l, end] ≤ mr+1 then
25: Compute equality constraint and set Aα.
26: end if
27: end if
28: end for
29: else . α ∈ αrend?
30: for l ∈ length of dega do
31: if α = dega[l, 1 : end− 2] then . Is βri resp. βrj ∈ βrend?
32: if dega[l, end− 1] ≤ mr+1 & dega[l, end] ≤ mr+1 then
33: Compute inequality constraint and set Aα and slack.
34: end if
35: end if
36: end for
37: end if
38: end for
39: Compute other constraints. . i.e. Alin, b
40: Asp← sparse(A)
41: bsp← sparse(b)
42: Csp← sparse(C)
43: [x,y,z,info]← csdp(Asp, bsp, Csp,K)
44: res← −〈C,X〉

62

CHAPTER 6. APPENDIX 6.4. SOLVING ALGORITHM FOR RVV

6.4 Solving Algorithm for RVV

We declare K as a cone variable with two components, where K.s is the set of
2n+ n · (n+ 2)r positive semidefinite cones with the components

X+
k � 0, X−k � 0 and Wkl := X+

k −X
−
k − Λkl � 0.

and K.l is the non-negative orthant for the slack variables for the inequalities given
in (RVV). Let further G = (V,E) with adjacency matrix AG and denote |V | = VG.
For any α ∈ αr we compute a corresponding set of matrices Aα to define the degree
constraints in (RVV). Similarly we compute the constraints Alin and b in line 41.

Algorithm 6 Algorithm to solve RVV
Require: AG: adjacency matrix of the graph G,
Require: r: step of Parrilo’s hierarchy
Ensure: res: result of CSDP inner point solution for (RVV)
1: m← VG + 2
2: Compute degb:
3: degb← degrees0(m)
4: for i ∈ {1, ..., r} do
5: degb← degrees(degb)
6: end for
7: degb← degb[1 : mr+1,]
8: Compute matrix dega consisting of the relevant parts of αr, i.e. βri +βrj , where
βri and βrj are in the same (k-th) block. These degrees correspond to the entries
(Wkl)ij.

9: mindega← minimumevendegree(dega) . Delete double entries
10: for α ∈ mindega do
11: Compute size of K.l :
12: if α /∈ 2 · degb then
13: slack ← slack + 1
14: end if
15: end for
16: K.l ← VG · slack
17: Set C as given in (RVV).
18: C ← −C . Needed for applying CSDP

63

6.4. SOLVING ALGORITHM FOR RVV CHAPTER 6. APPENDIX

19: Compute degree constraints for each α ∈ αr:
20: for k ∈ V do
21: for α ∈ mindega do
22: if α ∈ 2 · degb then . α /∈ αrend?
23: for l ∈ length of dega do
24: if α = dega[l, end− 2] then . Is βri resp. βrj ∈ βrend?
25: if dega[l, end− 1] ≤ mr+1 & dega[l, end] ≤ mr+1 then
26: Compute equality constraint and set Aα.
27: end if
28: end if
29: end for
30: else . α ∈ αrend?
31: for l ∈ length of dega do
32: if α = dega[l, end− 2] then . Is βri resp. βrj ∈ βrend?
33: if dega[l, end− 1] ≤ mr+1 & dega[l, end] ≤ mr+1 then
34: Compute inequality constraint and set Aα and slack.
35: end if
36: end if
37: end for
38: end if
39: end for
40: end for
41: Compute other constraints. . i.e. Alin, b
42: Asp← sparse(A)
43: bsp← sparse(b)
44: Csp← sparse(C)
45: [x,y,z,info]← csdp(Asp, bsp, Csp,K)
46: res← −〈C,X〉

64

Bibliography

[1] C. Bachoc, D. Gijswijt, A. Schrijver, and F. Vallentin. Invariant semidefinite
programs, volume 166 of Internat. Ser. Oper. Res. Management Sci., pages
219–269. Springer, New York, 2012.

[2] M. R. Blanton, H. Lin, R. H. Lupton, F. Miller Maley, N. Young, I. Zehavi,
and J. Loveday. An efficient targeting strategy for multiobject spectrograph
surveys: The Sloan Digital Sky Survey "Tiling" Algorithm. The Astronomical
Journal, 125(4):2276–2286, 2003.

[3] S. Burer. On the copositive representation of binary and continuous nonconvex
quadratic programs. Math. Program., 120(2):479–495, 2009.

[4] M. D. Choi and T. Y. Lam. An old question of Hilbert. In Conference on
Quadratic Forms–1976, number 46 in Queen’s Papers in Pure and Appl. Math.,
pages 385–405. Queen’s Univ., Kingston, Ont., 1977.

[5] Stephen A. Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the Third Annual ACM Symposium on the Theory of Computing,
pages 151–158, 1971.

[6] J. de Loera and F. Santos. An effective version of Pólya’s theorem on positive
definite forms. J. Pure Appl. Algebra, 108(3):231–240, 1996.

[7] J. de Loera and F. Santos. Erratum to: "An effective version of Pólya’s
theorem on positive definite forms". J. Pure Appl. Algebra, 155(2–3):309–310,
2001.

[8] C. Dobre, M. Dür, L. Frerick, and F. Vallentin. A copositive formulation
for the stability number of infinite graphs. Preprint, Available at: http:
//arxiv.org/abs/1305.1819, 2014.

[9] M. Dür and G. Still. Interior points of the completely positive cone. Electron.
J. Linear Algebra 17, pages 48–53, 2008.

[10] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New
York, 1979.

[11] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Fundamentals of Domination
in Graphs. Marcel Dekker Inc., New York, 1998.

[12] Clay Mathematics Institute. Millenium prize problems. Website. http://
www.claymath.org/millennium-problems;.

65

http://arxiv.org/abs/1305.1819
http://arxiv.org/abs/1305.1819
http://www.claymath.org/millennium-problems
http://www.claymath.org/millennium-problems

Bibliography Bibliography

[13] David S. Johnson. Approximation algorithms for combinatorial problems. J.
Comput. System Sci, 9:256–278, 1974.

[14] M. Hall Jr. and M. Newman. Copositive and completely positive quadratic
forms. Proc. Cambridge Philos. Soc., 59:329–339, 1963.

[15] W. Kaplan. A test for copositive matrices. Linear Algebra Appl., 313(1–
3):203–206, 2000.

[16] Richard M. Karp. Reducibility among combinatorial problems. In Complexity
of Computer Computations, (Proc. Sympos., IBM Thomas J. Watson Res.
Center, Yorktown Heights, N.Y., 1972), pages 85–103. Plenum, New York,
1972.

[17] S.T. Hedetniemi; R.C. Laskar. Bibliography on domination in graphs and some
basic definitions of domination parameters. Discrete Math., 86(1–3):257–277,
1990.

[18] M. Laurent and F. Vallentin. Semidefinite optimization. Scriptum of Semidef-
inite Optimization, Mastermath Spring 2012, Available at: https://sites.
google.com/site/nichtlinopt/material, 2012.

[19] C. Lund and M. Yannakakis. On the hardness of approximating minimization
problems. J. Assoc. Comput. Mach., 41(5):960–981, 1994.

[20] J. G. Mauldon. Covering theorems for groups. Quart. J. Math. Oxford Ser.
(2), 1:284–287, 1950.

[21] P.A. Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry
Methods in Robustness and Optimization. PhD thesis, California Institute of
Technology, Pasadena, California, 2000. Available at: http://www.mit.edu/
~parrilo/pubs/files/thesis.pdf.

[22] A. Paz and S. Moran. Non-deterministic polynomial optimization problems
and their approximation. In Automata, languages and programming (Fourth
Colloq., Univ. Turku, Turku, 1977), volume 52 of Lecture Notes in Comput.
Sci., pages 370–379. Springer, Berlin, 1977.

[23] V. Powers and T. Wörmann. An algorithm for sums of squares of real poly-
nomials. J. Pure Appl. Algebra, 127(1):99–104, 1998.

[24] J. Renegar. A mathematical view of interior-point methods in convex opti-
mization. MPS/SIAM Series on Optimization. SIAM, 2001.

[25] J. Rotman. An introduction to the theory of groups, volume 148 of Grad. Texts
in Math. Springer-Verlag, New York, 1995.

66

https://sites.google.com/site/nichtlinopt/material
https://sites.google.com/site/nichtlinopt/material
http://www.mit.edu/~parrilo/pubs/files/thesis.pdf
http://www.mit.edu/~parrilo/pubs/files/thesis.pdf

List of Symbols

[n] := {1, ..., n}

diag(v) :=

{
diag(v)ij = vi for i = j

diag(v)ij = 0 for i 6= j

Sn := {M ∈ Rn×n : MT = M}

ei i-th canonical unit vector

In n-dimensional identity matrix

67

Index

NP-complete, 10
αr, 43
βr, 43
1-order, 43

action, 48
adjacency matrix, 9
affine hull, 4

codes, 14
conic combinations, 4
conic hull, 4
convex, 3
convex combination, 3
convex cone, 4
convex hull, 3

degree, 39
degrees, 60
degrees0, 59
dominating set, 9
domination number, 9

extreme, 6

form, 39

G-invariant, 48
group average, 48

halfspaces, 7
hyperplane, 7

line segment, 3

matrix ∗-algebra, 50
minimumevendegrees, 60
multiindex number Kn, 43
multiplication parameters, 51

n-variate polynomial, 39
NP-hard, 11

orbit, 49
orthogonal representation, 48

polynomial-time reducible, 10

r-order, 43

spherical caps, 15
structural parameters, 51
supporting hyperplane, 7

vertex cover, 11

69

Statement of Originality

I hereby declare under oath that this master’s thesis is the product of my own
independent work. All content and ideas drawn directly or indirectly from external
sources are indicated as such. The thesis has not been submitted to any other
examining body and has not been published.

(Place and date) (Jan Hendrik Rolfes)

71

Danksagung

Abschließend möchte ich mich bei allen Menschen bedanken, die mich bei dieser
Arbeit unterstützt haben. Ein besonderer Dank geht an meinen Betreuer Herrn
Prof. Dr. Vallentin für das interessante Thema und seine weiteren Anregungen.
Weiterhin danke ich Herrn Dr. Frederik von Heymann dafür, dass er jederzeit für
mich ansprechbar war und damit erheblich zum Gelingen dieser Arbeit beigetragen
hat.
Ebenso bedanke ich mich bei allen Anderen, die mich bei dieser Arbeit unter-
stützt haben, insbesondere Kristina Hoffmann und Johannes Wirtz. Außerdem
gebührt großer Dank meinen Eltern und deren Lebensgefährten, die mir während
des gesamten Studiums helfend zur Seite standen.

73

	Introduction
	Notations, General Theory and Complexity
	Definitions and Basic Properties
	Complexity of DOMINATING SET
	Applications of DOMINATING SET

	Formulation of DOMINATING SET as a Copositive Program
	An Approximation Algorithm
	A Semidefinite Test for Copositivity
	Parrilo's Hierarchy
	A Simplification for Symmetric Programs
	Application to Football Pools

	Outlook
	Appendix
	Algorithm for Checking Copositivity
	Preliminaries for Solving Algorithms
	Solving Algorithm for R2V
	Solving Algorithm for RVV

	 Statement of Originality
	 Danksagung

