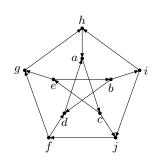
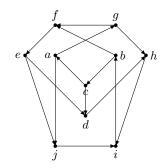
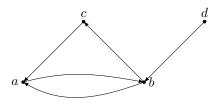


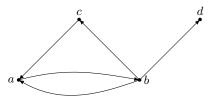
Einführung in die Mathematik des Operations Research

Sommersemester 2016


— Aufgabenblatt 1 —


Aufgabe 1.1 (10 Punkte) Finden Sie im rechtsstehenden gerichteten Graphen kürzeste Wege von dem Knoten v_1 zu jedem der anderen Knoten, sowie eine optimale Potentialfunktion. Begründen Sie, warum die von Ihnen angegebene Funktion eine optimale Potentialfunktion ist.


Aufgabe 1.2 (5 + 5 = 10 Punkte) Zwei gerichtete Graphen D = (V, A) und D' = (V', A') sind isomorph, wenn es eine bijektive Abbildung $f: V \to V'$ gibt, so dass für alle $u, v \in V$ gilt $(u, v) \in A \Leftrightarrow (f(u), f(v)) \in A'$.


a) Prüfen Sie, ob die beiden angegebenen Graphen isomorph sind.

b) Prüfen Sie, ob die beiden angegebenen Graphen isomorph sind.

Aufgabe 1.3 (10 Punkte) Sei D=(V,A) ein gerichteter Graph mit n Knoten und m Kanten. Der Graph D ist zusammenhängend, wenn es für alle $s,t\in V$ eine Umorientierung der Kanten gibt (d.h. $(u,v)\in A$ kann ersetzt werden durch (v,u)), so dass ein s-t-Weg existiert. Zeigen Sie: Falls D zusammenhängend ist, dann gilt $n-1\leq m\leq n(n-1)$.

Abgabe: Bis Dienstag, 19.04. 12 Uhr.

Aufgaben 1.1, 1.2 und 1.3 im Schließfach im Studierendenarbeitsraum im MI (Raum 3.01). Bitte Namen, Matrikelnummer sowie Übungsgruppennummer auf die Abgabe schreiben.