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she announced her spectacular result in the 
paper titled ‘The sphere packing problem 
in dimension 8’ [10] on the arXiv-preprint 
server. Only one week later, on 21 March 
2016, Henry Cohn, Abhinav Kumar, Stephen 
D. Miller, Danylo Radchenko and Maryna Vi-
azovska announced a proof for the n 24=  
case [3], building on Viazovska’s work.

Here we want to illustrate that the opti-
mal sphere packings in dimensions 8 and 
24 are very special (in the next section we 
give constructions of the E8 lattice and of 
the Leech lattice 24K , which provide the 
optimal sphere packings in their dimen-
sions), and we aim to explain the main 
ideas of the recent breakthrough results in 
sphere packing:

Theorem 1. The lattice E8 is the densest 
packing in R8. The Leech lattice 24K  is 
the densest packing in R24. Moreover, no 
other periodic packing achieves the same 
density in the corresponding dimension. 

 In the last section we will see that 
the beautiful proofs of these theorems 
use ideas from analytic number theory. 
Viazovska found a ‘magic’ function for di-
mension 8, which together with the linear 
programming bound of Cohn and Elkies, 

in three dimensions is the fact that there 
are uncountably many inequivalent optimal 
packings. In 2014 a fully computer verified 
version of Hales’ proof was completed; it 
was a result of the collaborative Flyspeck 
project, also directed by Hales [7].

Recently, Maryna Viazovska, a postdoc-
toral researcher from Ukraine working at the 
Humboldt University of Berlin, solved the 
eight-dimensional case. On 14 March 2016 

The sphere packing problem asks for a 
densest packing of congruent solid spheres 
in n-dimensional space Rn. In a packing 
the (solid) spheres are allowed to touch on 
their boundaries, but their interiors should 
not intersect.

While the case of the real line, n 1= , 
is trivial, the case n 2=  of packing circles 
in the plane was first solved in 1892 by 
the Norwegian mathematician Thue (1863–
1922). He showed that the honeycomb 
hexagonal lattice gives an optimal packing; 
see Figure 1.

The first rigorous proof is due to the 
Hungarian mathematician Fejes Tóth (1915– 
2005) in 1940. He also proved that this 
packing is unique (up to rotations, transla-
tions, and uniform scaling) among period-
ic packings. For n 3= , the sphere packing 
problem is known as the Kepler conjecture. 
It was solved by the American mathemati-
cian Hales in 1998 following an approach 
by Fejes Tóth. Hales’ proof is extremely 
complex, takes more than 300 pages, and 
makes heavy use of computers. One of the 
difficulties of the sphere packing problem 
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Figure 1  The hexagonal lattice and the corresponding 
circle packing.
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The E8 lattice
The nicest lattices are those which are 
even and unimodular. However, they only 
occur in higher dimensions: one can show 
that the first appearance of such an even 
and unimodular lattice is in dimension 8. 
It is the E8 lattice, which was first explic-
itly constructed by the Russian mathema-
ticians Korkine (1837–1908) and Zolotareff 
(1847–1878) in 1873.

Here we give a construction of the E8 
lattice which is based on lifting binary er-
ror correcting codes. For this we define the 
(extended) Hamming code H8 via a regu-
lar three-dimensional tetrahedron: consid-
er the binary linear code H8, which is the 
vector space over the finite field F2 (con-
sisting of the elements 0 and 1) spanned 
by the rows of the matrix
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where I is the identity matrix and where A 
is the adjacency matrix of the vertex-edge 
graph of a three-dimensional tetrahedron 
with vertices , , ,v v v v1 2 3 4. Hence, the Ham-
ming code is a 4-dimensional subspace of 
the vector space F2

8. It consists of 2 164 =  
code words:
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|0000 0000 1000 0111
0100 1011
0010 1101
0001 1110

1100 1100
1010 1010
1001 1001
0110 0110
0101 0101
0011 0011

0111 1000
1011 0100
1101 0010
1110 0001

1111 1111

It is interesting to look at the occurring 
Hamming weights (the number of non-zero 
entries) of code words. In H8, one code 
word has Hamming weight 0, 14 code 
words have Hamming weight 4, and one 
code word has Hamming weight 8. Since 
all occurring Hamming weights are divisi-
ble by four, and four is two times two, the 
Hamming code H8 is called doubly even.

Let us compute the dual code
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The density of L is then given by

( )
vol( / )
vol( ( / ))

,L
L

B r 2
Rn
n 1D =

where r1 is the shortest nonzero vector 
length in L. Here, ( / )B r 2n 1  is the solid 
sphere of radius /r 21 , whose volume is
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where C is the gamma function; it satisfies 
the equation ( ) ( )x x x1C C+ = , and two 
particularly useful values are ( )1 1C =  and 
( / )1 2 rC = .
The optimal sphere packing density 

can be approached arbitrarily well by the 
density of a periodic packing. In a periodic 
packing the set of centers is the union of a 
finite number m of translates of a lattice L:
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see Figure 2 for an example where m 3= . 
The density of a periodic packing is 
vol( ( ))/vol( / )m B r LRn

n$ , where r is the 
radius of the spheres in the packing. It is 
possible that in some dimensions the op-
timal sphere packing is not a lattice pack-
ing; for example, the best known sphere 
packing in R10 is a periodic packing but it 
is not a lattice packing.

A few last definitions: From a lattice L 
we can construct its dual lattice by

{ : } .L y x y x Lfor allR Z* n $! ! !=

It is not difficult to see that the volume of 
a lattice and its dual are reciprocal values, 
so that vol( / ) vol( / )L L 1R R *n n$ =  holds. 
When a lattice equals its dual (L L*= ) and 
when the square of every occurring vector 
length is an even integer, then L is called 
an even and unimodular lattice.

as explained later on, gives a proof for the 
optimality of the E8 lattice. Her method 
gave a hint how to find a magic function 
for dimension 24. Although the proof is rel-
atively easy to understand, and basically 
no computer assistance is needed for its 
verification, computer assistance was cru-
cial to conjecture the existence of, and to 
find, these magic functions.

Optimal lattices
In this section we introduce the two ex-
ceptional sphere packings in dimension 8 
and 24. The book Sphere Packings, Lattic-
es, and Groups of Conway and Sloane [5] 
is the definitive reference on this topic; 
the Italian-American combinatorialist Rota 
(1932–1999) reviewed the book saying:

“This is the best survey of the best 
work in one of the best fields of combi-
natorics, written by the best people. It 
will make the best reading by the best 
students interested in the best mathe-
matics that is now going on.’’ 

Lattice packings
How does one define a packing of unit 
spheres in n-dimensional space? In gener-
al, such a packing is defined by the set of 
centers L of the spheres in the packing. 

We talk about lattice packings when L 
forms a lattice. Then there are n linearly 
independent vectors , ,b b Ln1 f ! , called a 
lattice basis of L, so that L is the set of 
integral linear combinations of , ,b bn1 f . For 
instance, the three lattices
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define densest sphere packings in dimen-
sions 1, 2, and 3.

We should also define what we mean 
when we talk about density. Intuitively, the 
density of a sphere packing is the fraction 
of space covered by the spheres of the 
packing. When the sphere packing is a lat-
tice, this intuition is easy to make precise: 
The density of the sphere packing deter-
mined by L is the volume of one sphere 
divided by the volume of L, that is, the 
volume of a fundamental domain of L. One 
possible fundamental domain of L is given 
by the parallelepiped spanned by the lat-
tice basis , ,b bn1 f , so that we have

Figure 2  A periodic packing that is not a lattice packing.
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This is the Leech lattice. It is an even un-
imodular lattice. In 24K  there are 196560 
shortest vectors which have length 4. 
The occurring vector lengths in 24K  are 
, , , ,0 4 6 8 f

In 1969 Conway showed that the Leech 
lattice again has a remarkable number 
theoretical property: It is the only even 
unimodular lattice in dimension 24 which 
does not have vectors of length 2 . He 
used this result to determine the auto-
morphism group (the group of orthogonal 
transformation which leave 24K  invariant) 
of the Leech lattice and it turned out the 
number of automorphisms equals

|Aut( ) |

,

2 3 5 7 11 13 23

8315553613086720000
24

22 9 4 2$ $ $ $ $ $K =

=

and that this group contained three new 
sporadic simple groups Co , Co . Co1 2 3. The 
classification theorem of finite simple 
groups, which was announced in 1980, 
says that there are only 26 finite simple 
sporadic groups. They are sporadic in the 
sense that they are not contained in the 
infinite families of cyclic groups of prime 
order, alternating groups and groups of Lie 
type.

Similar to the eight-dimensional case, 
by results of Odlyzko, Sloane, Levenshtein, 
Bannai and Sloane, the 196560 shortest 
vectors of 24K  give the unique solution of 
the kissing number problem in dimension 
24. In 2004 Cohn and Kumar proved the 
optimality of the sphere packing of the 
Leech lattice among lattice packings by a 
computer assisted proof, see [2] and sec-
tion ‘Producing numerical evidence’ further 
on. However, despite all the similarities of 
E8 and 24K , there is a puzzling difference 
between E8 and 24K  when it comes to 
sphere coverings: Schürmann and Vallen-
tin [9] showed in 2006 that 24K  provides 
at least a locally thinnest sphere covering 
in the space of 24-dimensional lattices, 
whereas Dutour-Sikirić, Schürmann and 
Vallentin [9] showed in 2012 that one can 
improve the sphere covering of the E8 lat-
tice when picking a generic direction in the 
space of eight-dimensional lattices.

Theta series and modular forms
As already indicated, the class of even un-
imodular lattices is restrictive, at least in 
small dimensions. One can show that they 
only exist in dimensions that are divisible 
by 8, furthermore for every such dimension 
n there are only finitely many even uni-

this conjecture has been proved in the 
breakthrough work of Maryna Viazovska.

The Leech lattice
We turn to 24 dimensions and to the Leech 
lattice. In 1965 Leech (1926–1992) realized 
that he constructed a surprisingly dense 
sphere packing in dimension 24. For his 
construction, he used the (extended bina-
ry) Golay code which is an exceptional er-
ror correcting code found by Golay (1902–
1989) in 1949. To define the Leech lattice 
we modify the lifting construction of the E8 
lattice. We replace the Hamming code by 
the Golay code and apply two extra twists.

For defining the Golay code we replace 
the regular tetrahedron in the construction 
of the Hamming code by the regular icosa-
hedron and we apply the first twist. Con-
sider the binary code G24 spanned by the 
rows of the matrix
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where we use J A-  instead of A, with J 
the all-ones matrix and A the adjacen-
cy matrix of the vertex-edge graph of a 
three-dimensional icosahedron. This code, 
the extended binary Golay code G24, is a 
12-dimensional subspace in F2

24. It con-
tains one vector of Hamming weight 0, 759 
vectors of Hamming weight 8, 2576 vec-
tors of Hamming weight 16, 759 vectors 
of Hamming weight 20, and one vector of 
Hamming weight 24; G24 is a doubly even 
and self-dual code.

We define the even unimodular lattice

: , .modL x x x
2
1 2Z G24

24
24! != ( 2

Since the minimal non-zero Hamming 
weight occurring in the Golay code is 8, 
this lattice has 48 shortest vectors e2 i! , 
with , ,i 1 24f= , of length 2 . To eliminate 
them we make the second twist, we define

:
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Hence, A I 2mod2 = . From this, GG I AT 2= +  
0 2mod=  follows. Hence, we have the in-

clusion H H8 83 9 and by considering di-
mensions we see that H8 is a self-dual 
code; that is, H H8 8=9  holds.

We can define the lattice E8 by the fol-
lowing lifting construction (which is usually 
called Construction A):

: , .modx x x
2
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Now it is immediate to see that E8 has 240 
shortest (nonzero) vectors:
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where , ,e e1 8f  are the standard basis vec-
tors of R8 and where ( ) | { : } |wt x i x 0i !=  
denotes the Hamming weight of x. The 
shortest nonzero vectors of E8 have length 
2 . The occurring vector lengths in E8 are 
, , , ,0 2 4 6 f, so that E8 is an even lat-

tice.
From the lifting construction it follows 

that the density of E8 is | | 16H4 =  times 
the density of the lattice 2Z8 which is 
spanned by , ,e e2 21 8f . Thus,

vol( / ) vol( / )

( ) ,

16
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8 8
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so that E8 is unimodular. One can show 
that E8 is the only even unimodular lattice 
in dimension 8. In general, the lifting con-
struction always yields an even unimodular 
lattice when we start with a binary code 
which is doubly even and self-dual.

Next to this exceptional number theo-
retical property, E8 also has exceptional 
geometric properties: In 1979, Odlyzko and 
Sloane, and independently Levenshtein, 
proved that one cannot arrange more vec-
tors on a sphere in dimension 8 of radius 
2 so that the distance between any two 

distinct vectors is also at least 2; the 
240 vectors give the unique solution of 
the kissing number problem in dimension 
8 as was shown in by Bannai and Sloane 
in 1981. Blichfeldt (1873–1945) showed 
in 1935 that E8 gives the densest sphere 
packing among lattice packings. For a long 
time it has been conjectured that E8 also 
gives the unique densest sphere packing 
in dimension 8, without imposing the (se-
vere) restriction to lattice packings. Now 
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function. We can express the theta series 
of the E8 lattice and the Leech lattice 24K  
by E4 and E6. For the E8 lattice we have
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For the Leech lattice we have
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When k 2= , we can still write down the 
series as in (1), but then we loose some 
pleasant properties. For example, the series 
no longer converges absolutely, so the or-
dering of summating matters. Then
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where we of course omit the pair 
( , ) ( , )c d 0 0=  in the first sum. This for-
bidden Eisenstein series is not a modu-
lar form; instead it satisfies the following 
transformation law

( / ) ( ) .E z z E z iz1 6
2

2
2 r- = -

It is a quasi-modular form.

The LP Bound of Cohn and Elkies
We can use optimization techniques, in 
particular linear and semidefinite program-
ming, to obtain upper bounds on the opti-
mal sphere packing density.

Let us recall some facts about linear 
programming. In a linear program we 
want to maximize a linear functional over 
a polyhedron. For example, we maximize 
the functional a c a7 $  over all (entrywise) 
nonnegative vectors a Rd!  satisfying the 
linear system Aa b= , or we maximize the 
functional over all (nonnegative) vectors a 
satisfying the inequality Aa b# . Linear pro-
grams can be solved efficiently in practice 
by a simplex algorithm (which traverses 
a path along vertices of the polyhedron) 
or by Karmakar’s interior point method, 
where the latter runs in polynomial time.

.
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z cz d
az b= +
+e o

The action of the generator S corresponds 
to the involution /z z17-  and the action 
of the generator T corresponds to the 
translation z z 17 + .

A modular form of weight k is a holo-
morphic function f H C"|  that satisfies 
the transformation law
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and which has a power series expansion 
in q e iz2= r . Next to theta series, Eisenstein 
series, due to Eisenstein (1823–1852), form 
an important class of modular forms. For 
an integer k 3$  define
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where g is the Riemann zeta function 
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/ . For even integers k 3$ , the 
Eisenstein series Ek is a modular form of 
weight k.

Curiously, a theorem of Siegel (1896–
1981) gives a relation between the theta 
series of even unimodular lattices and Ei-
senstein series. Let , ,L Lh1 n

f  be the set 
of even unimodular lattices in dimension 
n. Define
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Another striking fact is that one can show 
that the modular forms form an algebra 
which is isomorphic to the polynomial al-
gebra [ , ]E EC 4 6 .

When k is even, the Eisenstein series 
has the Fourier expansion

modular lattices, this number is denoted 
by hn. In Table 1 we summarize the known 
values of hn.

A major tool for studying even unimod-
ular lattice are their theta series (first stud-
ied by Jacobi (1804–1851)): The theta series 
of a lattice L is
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the generating function of the number of 
lattice vectors of length r2 . In order to 
work with them analytically we set q e iz2= r  
where z lies in the complex upper half 
plane { : }Imz z 0>H C!= , so that Lj  is 
a function of z. The theta function is pe-
riodic mod Z: we have ( ) ( )z z 1L Lj j= + . 
The Poisson summation formula states
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with ,v Rn!  where
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is the n-dimensional Fourier transform. 
Using the Poisson summation formula one 
can show that Lj  satisfies the transforma-
tion law

( / ) ( / )
vol( / )

( ),z z i
L

z1 1
R

/
L

n
n L

2 *j j- =

which in particular shows that Lj  is a mod-
ular form of weight /n 2. From this it is not 
difficult to derive that an even unimodular 
lattice can only exist when n is a multiple 
of 8.

What is a modular form? The group
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acts on upper half plane H by fractional 
linear transformations

h 18 = Mordell, 1938

h 216 = Witt, 1941

h 2424 = Niemeier, 1973

h 116210902432 $ King, 2003

Table 1

T−1 I T

(ST )2 S TS

STS ST ST−1 TST

i

−3/2 −1 −1/2 0 1/2 1 3/2

Figure 3  A fundamental domain of the action of SL ( )Z2
on the upper half plane H.
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given a scalar ( , )t 1 1! - , we seek a larg-
est subset of the sphere S Rn n1 3-  such 
that the inner product between any two 
distinct points is at least t. A spherical code 
corresponds to a spherical cap packing 
where we center spherical caps of angle 

( / )arccos t 2  about the points in the code. 
The Cohn–Elkies bound can be seen as a 
noncompact analogue of a similar bound 
for the spherical code problem known as 
the Delsarte linear programming bound. 
However, because of noncompactness this 
sampling approach does not work well for 
the sphere packing problem.

Another approach, based on semidef-
inite programming, does work well for 
noncompact problems such as the sphere 
packing problem. In [8] this approach is 
used to compute upper bounds for pack-
ings of spheres and spherical caps of sev-
eral radii. Semidefinite programming is a 
powerful generalization of linear program-
ming, where we maximize a linear func-
tional over a spectrahedron instead of a 
polyhedron. That is, we maximize a func-
tional ,X X C7G H over all positive semidef-
inite n n#  matrices X that satisfy the lin-
ear constraints ,X A bi iG H=  for , ,i m1 f= . 
Here , trace( )A B B AG H= <  denotes the 
trace inner product. As for linear programs, 
semidefinite programs can be solved effi-
ciently by using interior point methods.

The usefulness of semidefinite program-
ming in solving the above semi-infinite 
linear programs stems from the following 
two observations: Firstly, Pólya and Szegö 
showed that a polynomial is nonnegative 
on the interval [ , )1 3  if and only if it can 
be written as ( ) ( ) ( )s r r s r11 2+ - , where s1 
and s2 are sum of squares polynomials. 
Secondly, a sum of squares polynomial of 
degree 2d can be written as ( ) ( )b r Qb r< , 
where ( ) ( , , , )b r r r1 df= , and where Q 
is a positive semidefinite matrix. (To see 
that a polynomial of this form is a sum of 
squares polynomial one can use a Chole-
sky factorization Q R R= < .) Using these 
observations we can introduce two posi-
tive semidefinite matrix variables Q1 and 
Q2, and replace the infinite set of linear 
constraints ( )f r 0a #  for r 1> , by a set of 
d2 2+  linear constraints that enforce the 

identity

( ) ( ) ( ) ( ) ( ) ( ) .f r r b r Q b r b r Q b r1a 2 1= - -< <

In this way we obtain a semidefinite pro-
gram, which can be solved with a semidef-
inite programming solver, and whose 

where ~ is the normalized invariant mea-
sure on Sn 1- , also satisfies these condi-
tions. For f R Rn "|  radial, we (ab)use 
the notation ( )f r  for the common value 
of f on the vectors of length r. The (in-
verse) Fourier transform maps radial func-
tions to radial functions. Moreover, the 
Gaussian x e x 27 r-  is fixed under the 
Fourier transform, and, more generally, 
the sets

{ ( ) :

} .

P x p x e

p is a polynomial of degree at most d
d

x2 2
7= r-

are invariant under the Fourier transform. 
A computer-assisted approach to find good 
functions for the above theorem is to re-
strict to functions from Pd for some fixed 
value of d. Any function from this set that 
satisfies ( )f 0 1=  can be written as

( ) ! ( )f x a k L x

e

1 /
a k

k

d
k

k
n

x

1

2 1 2

2
#

r r= +

r

=

- -

-

f p/

(2)

for some a Rd! , where L /
k
n 2 1-  is the 

Laguerre polynomial of degree k with pa-
rameter /n 2 1-  (Laguerre polynomials are 
a family of orthogonal polynomials). We 
choose this form for fa, so that its Fourier 
transform is

( ) ,f u a u e1a k
k

d
k u

1

2 2
= + r

=

-f pX / (3)

which means that a 0$  immediately im-
plies ( )f u 0a $X  for all u. Setting r 11 =  in 
the above theorem, we see that the optimal 
sphere packing density is upper bounded 
by the maximum of the linear function-
al ( )a f 0a7  over all nonnegative vectors 
a Rd!  for which the linear inequalities 
( )f r 0a #  for r 1>  are satisfied. For every 

fixed value of d this gives a semi-infinite 
linear program, which is a linear program 
with finitely many variables and infinitely 
many linear constraints.

One approach to solving these semi-in-
finite programs is to select a finite sample 
[ , )S 1 33  and only enforce the constraints 
( )f r 0a #  for r S! . For each S this yields 

a linear program whose optimal solution a 
can be computed using a linear program-
ming solver. Then we verify that ( )f r 0a #  
for all r 1> , or if this is not (almost) true, 
we run the problem again with a different 
(typically bigger) sample S. This approach 
works well in practice for the spherical 
code problem, which is a compact ana-
logue of the sphere packing problem. Here, 

The following theorem, the linear pro-
gramming bound of Cohn and Elkies 
from 2003, can be used to obtain upper 
bounds on the sphere packing density. In 
the statement of this theorem we restrict 
to Schwartz functions because the proof, 
which we give here as it is simple and in-
sightful, uses the Poisson summation for-
mula. A function f R Rn "|  is a Schwartz 
function if all its partial derivatives exist 
and tend to zero faster than any inverse 
power of x. There are alternative proofs 
that do not use Poisson summation and 
for which the Schwartz condition can be 
weakened.

Theorem 2. If f R Rn "|  is a Schwartz 
function and r1 is a positive number 
with ( )f 0 1=V , ( )f u 0$V  for all u, and 
( )f x 0#  for x r1$ , then the densi-

ty of a sphere packing in Rn is at most 
( ) vol( ( / ))f B r0 2n 1$ . 

Proof. Let P be a periodic packing of solid 
spheres of radius /r 21 . This means there is a 
lattice L and points , ,x xm1 f  in Rn such that

( / ) .P v x B r 2i n
i

m

v L
1

1
= + +
! =

^ h''

The density of P is vol( ( / ))/m B r 2n 1$

vol( / )LRn . By Poisson summation we have

( )

vol( / )
( ) ,

f v x x

L
f u e1

R

,

( )

,

i j

m

v L
j i

n
iu x x

i j

m

u L

1

2

1*

j i

+ -

= $

!

!

r

=

-

=

V
//

//

and because ( )f 0 1=V  and ( )f u 0$V  for all 
u, this is at least /vol( / )m LRn2 . On the 
other hand, by the condition ( )f x 0#  for 

x r1$ , we have

( ) ( ) .f v x x mf 0
,

j i
i j

m

v L 1
#+ -

! =
//

Hence, the density of P is at most 
( ) vol( ( / ))f B r0 2n 1$ . The density of any 

packing can be approximated arbitrarily 
well by the density of a periodic packing, 
so this completes the proof.	 □

We can additionally require either 
( )f 0 1=  or r 11 = , without weakening the 

theorem. Moreover, we can restrict to ra-
dial functions, for if a function f satisfies 
the conditions of the theorem for some r1, 
then the function

( ) ( ),x f x d

Sn 1

7 p ~ p
-

#
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Viazovska’s breakthrough
Viazovska made the spectacular discovery 
that a magic function indeed exists for 
dimension n 8= . Building on this, Cohn, 
Kumar, Miller, Radchenko and Viazovska 
found a magic function for n 24= . Viazovs-
ka’s construction is based on a couple of 
new ideas, which we want to explain briefly.

Each radial Schwartz function f R Rn "|  
can be written as a linear combination of 
radial eigenfunctions of the Fourier trans-
form in Rn with eigenvalues 1+  and 1- . 
Viazovska wrote the magic function as a 
linear combination f f fa b= ++ -, where 
f+ is a radial eigenfunction of the Fourier 
transform with eigenvalue 1+  and f- is a 
radial eigenfunction with eigenvalue 1- . 
The coefficients a and b are determined 
later on.

She makes the Ansatz that for r r> 1, 
we can write these functions f+ and f- as 
a squared sine function times the Laplace 
transform of a (quasi)-modular form. That 
is, she proposes that

( ) ( / )

( / )

sinf r r

z z e dz

4 2

1 /
i

n ir z

2 2

0

2 2 2
#

r

}

=-

-
3

r

+

+
-#

and

( ) ( / ) ( ) ,sinf r r z e dz4 2
i

ir z2 2

0

2
r }=-

3
r

- -#

where }+ is a quasi-modular form and }- 
is a modular form.

The ( / )sin r 22 2r  factor insures (assum-
ing the above integrals do not have cusps) 
that the resulting function f (as well as its 
Fourier transform) have double roots at all 
but the first occurring vector lengths.

Viazovska noticed that an analytic ex-
tension of f- exists and that it is an eigen-
function of the Fourier transform having 
eigenvalue 1-  when the following modu-
larity relation holds:

( ) ( )

SL ( ), , , , .

cz d
az b cz d z

a
c

b
d

a d b cfor all odd evenZ

/n2 2

2!

} }+
+ = +-

-
-b

e o

l

For the explicit definition of f- we need the 
theta functions

( ) ( )z e1
n

n in z
01

Z

2
H = -

!

r/

and

( ) .z e ( / )i n z

n
10

1 2

Z

2
H =

!

r +/

to magic functions. They parametrized the 
function fa as in (2). Then they required 
that fa and f a

V  have as many roots and 
double roots as possible, depending on 
the degree d. Afterwards they applied 
Newton’s method to perturb the roots and 
double roots in order to optimize the val-
ue of the bound. In dimension 8 and 24 
they obtained bounds which were too high 
only by factors of .1 000001 and .1 0007071. 
This provided the first strong evidence that 
magic functions exist for these two dimen-
sions. Since the magic functions f have to 
have infinitely many roots, the degree d 
has to go to infinity. Could this method, 
in the limit, actually give the exact sphere 
packing upper bounds?

The Cohn–Kumar paper
The next step was taken by Cohn and Ku-
mar in [2]. They improved the numerical 
scheme and by using degree d 803=  (with 
3000-digit coefficients) they showed that 
in dimension 24 there is no sphere pack-
ing which is .1 1 65 10 30$+ -  times denser 
than the Leech lattice. The actual aim of 
their paper was to show that the Leech 
lattice is the unique densest lattice in its 
dimension. For this they used the numeri-
cal data together with the known fact that 
the Leech lattice is a strict local optimum. 
The proof of Cohn and Kumar is a beauti-
ful example of the symbiotic relationship 
between human and machine reasoning in 
mathematics.

The Cohn–Miller paper
For a long time Cohn and Miller were fasci-
nated by the properties of these conjectur-
ally existing magic functions. In their paper 
[4], submitted 15 March 2016 to the arXiv- 
preprint server, they gave a ‘construction’ 
of the magic functions using determinants 
of Laguerre polynomials. However, they 
could not prove that this construction in-
deed worked. With the use of high pre-
cision numerics they experimented with 
their construction. This resulted in im-
proved bounds, optimality of 24K  within a 
factor of 1 10 51+ - . Even more importantly, 
they detected some unexpected rational-
ities: For instance using their numerical 
data they conjectured that for n 8= , the 
magic function f and fV have quadratic 
Taylor coefficients /27 10-  and /3 2- , re-
spectively. For n 24= , the correspond-
ing coefficients should be /14347 5460-  
and /205 156- .

optimal value upper bounds the sphere 
packing density. For each d this finds the 
optimal function fa.

Producing numerical evidence
Now we want to understand what has to 
happen when the Cohn–Elkies bound can 
be used to prove the optimality of the 
sphere packing given by an even and uni-
modular lattice L.

Then there exists a magic function 
f R Rn "|  and a scalar r1 that satisfy 
the conditions of Theorem 2, such that 
the density of the sphere packing equals 
( ) vol( ( / ))f B r0 2n 1$ . As observed before, 

we may assume ( )f 0 1= , so that r1 is the 
shortest nonzero vector length in L. Un-
der these assumptions on f we can derive 
extra properties that the function f and 
its Fourier transform must satisfy. Since 
( )f x 0#  and ( )f x 0$V  for all x r1$ , and 
( ) ( )f 0 0 1= = , we have equality in the fol-

lowing chain of inequalities

.f x f x1 1
x L x L
# #=

! !

] ]g gV/ /

This says that we have to have 
( ) ( )f x x 0= =  for all \{ }x L 0! . In fact, we 

can apply this argument to any rotation of 
L, so that ( ) ( )f x f x 0= =V  for all x where 

x  is a nonzero vector length in L. As not-
ed before, we may take f to be radial, and 
then we have (again abusing notation)

( ) ( )f r f r 0= =V
for all nonzero vector lengths r in L. This 
also tells us something about the orders of 
the roots. We have ( )f 0 1=  and ( )f r 0#  
for [ , )r r1 3! , so the roots at the vector 
lengths that are strictly larger than r1 must 
have even order. We have ( )f 0 1=V  and fV 
is nonnegative on [ , )0 3 , so the roots at 
the nonzero vector lengths must have even 
order.

If f does not have additional roots, then 
in [1] it is shown that there is no other pe-
riodic packing achieving the same density 
as L. To apply this it is important that E8 
is the only even unimodular lattice in R8 
and 24K  is the only even unimodular lat-
tice in R24 that does not contain vectors 
of length 2 .

The Cohn–Elkies paper
In [1] Cohn and Elkies used this insight 
about the potential locations of the roots 
and double roots to derive a numerical 
scheme to find functions that are close 
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Similarly, but technically much more in-
volved, the analytic extension of f+ is an ei-
genfunction for the eigenvalue 1+  when }+ 
is a quasi-modular form. The forbidden Ei-
senstein series E2 becomes important here.

Now it needs to be shown that there 
exists a linear combination f f fa b= ++ - 
so that ( ) ( )f f0 0 1= =Y  holds, and that 
the sign conditions ( )f r 0#  for r r1$  and 
( )f u 0$V  for all u 0$  are fulfilled. For this, 

and more, we refer to the beautiful original 
papers. Here we want to end by taking a 
look at the magic functions: see Table 2.

E8 24K

( )E E E2 4 6
2

}
D

=
-

+
E E E E E E E E E E25 49 48 25 49

2
4
4

6
2
4 6 4

2
2 6

2
2
2

4
3
2
2

}
D

=
- + + -

+

5 5 201
12

10
8

01
16

10
4

01
20

}
D

H H H H H
=

+ +
-

7 7 2
2

01
20

10
8

01
24

10
4

01
28

}
D

H H H H H
=

+ +
-

( ) ( ) ( )f x i f x i f x8640 240
r

r= ++ - ( ) ( ) ( )f x i f x i f x113218560 262080
r

r=- -+ -

Table 2  The magic functions.

The interview was conducted by Frank 
Vallentin using the online communication 
platform Google Hangouts between 20 May 
and 14 June 2016.

Computer Assistance
Dear Henry, Abhinav, Steve, and Maryna, 
First of all let me congratulate you to your 
breakthrough papers. This issue of the 
‘Nieuw Archief voor Wiskunde’ is a spe-
cial issue focussing on computer-assisted 
mathematics. In it we have two articles 
about sphere packings: One about the 
formal proof of the Kepler conjecture and 
one about your recent breakthrough on 
sphere packings in dimensions 8 and 24. 
At the moment a proof of the Kepler con-
jecture without computer-assistance is not 
in sight, but your proofs in dimension 8 
and 24 require almost no computers. How 
were computers helpful to you when find-
ing the proofs?
Abhinav: “The Cohn–Elkies paper and lat-
er the Cohn-Kumar and the Cohn–Miller 
papers were certainly useful as indicators 
that the solution was out there waiting for 
the right functions. In our new Cohn–Ku-
mar–Miller–Radchenko–Viazovska paper at 
least, the numerical data was quite useful 
because once we had figured out the right 
finite dimensional space of modular or 
quasi-modular forms, the numerics helped 
us pin down the exact form (up to scaling) 
of the function. In particular, we matched 
values and derivatives of f and fV at lat-
tice vector lengths to cut down the space 
by imposing linear conditions. Steve has 
a Mathematica code to do some of this 
but we also used PARI/GP and occasionally 
Maple.

A couple more things — in both the 
proofs the final inequalities needed for the 
functions and Fourier transforms are done 
with computer assistance. There might be 
more elegant hand proofs, but so far we 
haven’t found them. And we did quite a 
lot of messing around with q-expansions et 
cetera, which would have been very painful 
outside of a computer algebra system.”
Steve: “Though I think there will eventual-
ly be a slick proof that can be written by 
hand, computers were completely essential 
in this story. To me the best example is the 
appearance of rational numbers that Henry 
Cohn and I discovered.

I can only speak for myself, but I was 
completely fascinated by the (then pro-
posed) existence of these ‘magic’ func-
tions which completely solve sphere 
packing in special dimensions. To satisfy 
this curiosity, Henry and I began comput-
ing their features to see if we could learn 
more about them. We found — using some 
serendipity with the online ‘inverse sym-
bolic calculator’ website — that their qua-
dratic Taylor coefficients were rational, 
and furthermore related to Bernoulli num-
bers. This was a strong hint that modular 
forms were connected, though we never 
understood why until we saw Maryna’s 
paper. We found other rationalities (such 
as the derivatives at certain points) us-
ing some theoretical motivation, com-
bined with good numerical approxima-
tions. It was a type of ‘moonshine’, with 
a fascinating sequence of numbers and an 
amazing structure we could not otherwise 
access.

Once Maryna’s paper appeared, it took 
just a few days to combine her insight with 

our previous numerics in an exact way. 
It’s important to stress that at this point 
we could derive the magic function for 24 
dimensions without using floating point 
calculations, since we had already extrapo-
lated exact expressions from previous nu-
merics. Maybe we will later understand a 
way to derive the 24-dimensional functions 
without such information, but at the time it 
was highly convenient to leverage them.”

Maryna, did you also use computer as-
sistance when you found the function for 
dimension 8? In your paper you mention 
in passing that one compute the first hun-
dred terms of Fourier expansions of modu-
lar forms in a few second using PARI/P or 
Mathematica.
Maryna: “Numerical evidence was crucial 
to believe in the existence and uniqueness 
of ‘magic’ functions. I used computer calcu-
lations to verify that approximations to the 
magic function computed from linear equa-
tions (similar to the equations considered 
in the Cohn–Miller paper) converge to the 
function computed as an integral transform 
of a modular form. I used Mathematica and 
PARI/GP for this purpose.”

Checking the positivity conditions is the 
only part of the proof which depends on 
the use of computers. How do you make 
sure that your computer proof is indeed 
mathematically rigorous?
Henry: “In her 8-dimensional proof, Maryna 
used interval arithmetic. In the 24-dimen-
sional case, we used exact rational arithme-
tic. Either way, it’s not a big obstacle. The 
inequalities you need have a little slack, 
which means you can bound everything 

Interview with Henry Cohn, Abhinav Kumar, Stephen D. Miller and Maryna Viazovska
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ture of the summation formulas. For exam-
ple, Henry and I derived a relevant Fourier 
eigenfunction with simple zeros using Vo-
ronoi summation formulas and derivatives 
of modular forms.

However, while these ingredients had 
been on the table for a long time, we didn’t 
know how to combine them until Maryna’s 
paper appeared. At that point many of the 
various pieces of evidence we had sudden-
ly fit together. Quasi-modular forms (which 
are derivatives of modular forms) are very 
crucial to this story.”

Collaboration
Maryna’s breakthrough paper which solved 
the sphere packing problem in dimension 
8 was submitted on March 14, 2016 to the 
arXiv-preprint server. Then it took only one 
week until you submitted the solution of 
the sphere packing problem in dimension 

Modular forms
For a long time it has been known that 
the E8 lattice and the Leech lattice have 
strong connections to modular forms, sim-
ply by their theta series. However, one 
thing which puzzles us (we mainly work 
in optimization) is that you solve an opti-
mization problem, an infinite-dimensional 
linear program, with tools from analytic 
number theory, especially using modular 
forms. How surprising was it to you that 
using modular forms was one key to the 
proof?
Henry: “Modular forms are by far the most 
important class of special functions related 
to lattices, so in that sense it’s not so sur-
prising that they come up. Over the years 
many people had suggested using them, 
but it wasn’t clear how. For example, many 
years ago I had tried the Laplace transform 
of a modular form, but without Maryna’s 
sin2-factor. Without that, it seemed impos-
sible to get anything like the right roots, 
and therefore the approach was complete-
ly useless. What I find beautiful about her 
proof is how ingeniously it puts every-
thing together (when I know from person-
al experience that thinking ‘I’d better use 
modular forms’ will not just lead you to 
 this proof ).

Before Maryna’s proof, I could imag-
ine two possibilities. One was that the 
right approach would be to solve the LP 
problem in general, getting the excep-
tional dimensions just as special cases. 
This approach might not have involved 
modular forms at all. The other was that 
there would be particular special functions 
in those dimensions. I always hoped for 
something special in 8 and 24 dimensions 
(e.g., based on the numerical experiments 
Steve and I worked on), but I was a little 
worried that maybe the difficulty of writing 
these functions down indicated that this 
might be the wrong approach (while solv-
ing the problem in general seemed even 
harder). It was great to see that everything 
was as beautiful as we had always hoped.”
Steve: “The use of Poisson summation 
in the Cohn–Elkies paper (and an earlier 
technique of Siegel) had already brought 
methods of analytic number theory into 
the subject. It was clear relatively early 
on that modular forms must be somehow 
involved in the final answer. This is both 
because of the appearance of special Ber-
noulli numbers (that prominently arise in 
modular forms) as well as the overall struc-

in any number of different ways, without 
needing to do anything too delicate.”
Steve: “To elaborate: Our positivity check 
involves showing certain power series ( )f q
in a parameter q are positive, where q 1< . 
It is not difficult to bound the coefficients 
and deduce this positivity for q c<  (where 
c is an effective constant), so the problem 
reduces to showing positivity for q in the 
interval [ , ]c 1 . Numerically one can plot this 
directly, of course. From such a graph we 
see ( )f q b>  for some explicit constant b. 
Write ( ) ( ) ( )f q p q t q= + , where ( )p q  is a 
polynomial consisting of the first sever-
al terms in the power series and ( )t q  the 
tail, with the number of terms chosen so 
that ( )t q  is provably less than /b 2 for q 
in [ , ]c 1 . We are now reduced to showing 
( ) /p q b 2 0>-  for [ , ]q c 1! , and such an 

inequality can be rigorously established 
using Sturm’s theorem.”

Stephen D. Miller Maryna Viazovska

Abhinav KumarHenry Cohn
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ing the finite simple groups, for example.) 
Two dimensions, n 2= , remains open, al-
though of course a solution is known by 
elementary geometry; the LP bounds be-
have rather differently in two dimensions 
compared with 8 or 24.”
Steve: “Yes, dimension two seems very dif-
ferent because of the delicate arithmetic 
nature of the root lengths.”
Henry: “I’m sure Maryna’s wonderful ap-
proach to constructing these functions is 
just the tip of an iceberg, and I’m opti-
mistic that humanity will learn more about 
how LP bounds and related topics work.

One mystery I find particularly intriguing 
is what’s so special about 8 and 24 dimen-
sions. Maryna’s methods give a beautiful 
proof, but I still don’t really know a con-
ceptual explanation as to what’s different 
in, say, 16 dimensions (beyond just the 
fact that the Barnes-Wall lattice isn’t as 
nice as E8 or the Leech lattice). On a slight-
ly different topic, I hope someone solves 
the four-dimensional sphere packing prob-
lem, but it will require different techniques. 
Unlike the cases where the LP bounds are 
sharp, these pair correlation inequalities 
will not suffice by themselves. But the D4 
lattice is awfully beautiful, and the world 
deserves a proof of optimality. The only 
question is how...

Henry, Abhinav, Steve, and Maryna, thank 
you very much for this interview.	 s

search in them. By matching the conjec-
tured rationalities, we found the even ei-
genfunction on Thursday night and the odd 
eigenfunction on Friday morning. We used 
Mathematica and PARI/GP for this. We also 
checked using graphs and q-expansions 
that the necessary positivity conditions in-
deed hold, but did not have a completely 
rigorous proof of this remaining point.

By Friday afternoon I was completely 
exhausted (and in any event do not work 
on the Jewish Sabbath). It’s important to 
note that the positivity analysis was a little 
different in 24 dimensions than in 8 be-
cause of an extra pole that occurs.”

Going further
Now the sphere packing problem has been 
solved in 1, 2, 3, 8 and 24 dimensions and, 
coming close to the end of the interview, 
it is time to make speculations: Are there 
candidate dimensions where a solution is 
in sight? Do you think that your method 
will be useful for this (or for other prob-
lems)?
Henry: “It’s hard to say for sure whether 
there might be further sharp cases in high-
er dimensions, but it seems unlikely that 
they would have remained undetected. (At 
the very least it’s not plausible that they 
could have the same widespread occur-
rences in mathematics as E8 or the Leech 
lattice, since they would presumably have 
been discovered in the process of classify-

24 to the arXiv. Working at five different, 
distant places, how did you collaborate? 
What were the difficulties when going from 
8 to 24 dimensions?
Steve: “That was certainly an exciting and 
memorable week. Once we had assembled 
our team, things moved extremely quickly. 
This is mainly because Maryna’s methods 
are so powerful, but it was also import-
ant that certain pairs of us (Henry–myself, 
Abhinav–Henry, and Danylo–Maryna) were 
established collaborators that had already 
worked together well.

In addition to phone calls and email, 
we used Skype and Dropbox to commu-
nicate our ideas. I particularly like draw-
ing mathematics on a tablet PC and shar-
ing the screen on Skype — this allows 
the others to watch as if I’m writing on 
a blackboard. As soon as we saw Mary-
na’s paper on Tuesday morning, we tried 
to make concrete bridges with the numer-
ical observations Henry and I made in our 
Cohn-Miller paper. After some reformula-
tion of her modular forms as quotients, 
by Wednesday it was then clear what 
properties of the q-expansions would be 
needed to obtain the 24-dimensional func-
tions. We also set up computer programs 
to match potential candidate functions 
with the numerical values that we could 
compute separately.

On Thursday we had the right space 
of modular forms and a program ready to 
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