

Einführung in die Theoretische Informatik

Wintersemester 2016/17

— Lösungsskizze zur Aufgabe 11.4 —

Aufgabe 11.4 (10 Punkte) Für einen Graphen G=(V,E) heißt eine bijektive Abbildung $\sigma:V\to V$ Automorphismus, falls $\{u,v\}\in E$ genau dann, wenn $\{\sigma(u),\sigma(v)\}\in E$. Die Identität ist immer ein trivialer Automorphismus. Zeigen Sie, dass für die Probleme

 $GA = \{\langle G \rangle : G \text{ Graph}, \text{ es existiert ein nicht-trivialer Automorphismus von } G\}$

und

 $1-GI = \{\langle G, H \rangle : G, H \text{ Graphen}, \text{ es existiert genau ein Isomorphismus zwischen } G \text{ und } H\}$

gilt:

$$GA \in P \iff 1\text{-}GI \in P.$$

Lösung

 \implies : Sei G ein Graph. Da die Identität immer ein Isomorphismus von G nach G ist, gibt es genau dann weitere solche Isomorphismen, wenn G nicht-triviale Automorphismen hat. Es gilt also:

$$(G,G) \in 1\text{-GI} \iff G \notin GA.$$

Eine Turingmaschine, die bei Eingabe von $\langle G \rangle$ testet, ob $(G,G) \in 1$ -GI, kann also GA mit Hilfe von 1-GI entscheiden. Falls 1-GI \in P, läuft auch diese Maschine in Polynomialzeit.

⇐ : Um 1-GI mit Hilfe von GA zu entscheiden, gehen wir wie folgt vor:

Bei Eingabe von $\langle (G,H) \rangle$ wird getestet, ob G und H zusammenhängend sind. Falls genau einer der beiden Graphen zusammenhängend ist, gebe $(G,H) \notin 1$ -GI aus. Falls beide nicht zusammenhängend sind, gehe zu ihren Komplementen über.

Teste nun, ob $G \in GA$ oder $H \in GA$. Falls ja, gebe $(G, H) \notin 1$ -GI aus. Falls nein, teste, ob $G \cup H \in GA$, wobei $G \cup H$ die disjunkte Vereinigung der beiden Graphen ist. Gebe $(G, H) \in 1$ -GI aus, falls $G \cup H \in GA$.

Polynomielle Laufzeit (unter Annahme von $GA \in P$): Zusammenhang eines Graphen kann, z.B. mit Tiefensuche, in polynomieller Zeit entschieden werden.

Korrektheit: Falls genau einer der beiden Graphen zusammenhängend ist, sind G und H nicht isomorph. Zwei Graphen G und H sind genau dann isomorph, wenn es ihre Komplemente sind (und die Anzahl der Isomorphismen ist dieselbe). Diese sind zusammenhängend, falls G und H es nicht sind.

Gilt $G \in GA$ und $H \notin GA$ (oder umgekehrt), sind die Graphen offensichtlich nicht isomorph. Gilt $G \in GA$ und $H \in GA$, so sind sie entweder nicht isomorph oder es gibt mehrere Isomorphismen.

Es verbleibt der Fall, dass $G \notin GA$ und $H \notin GA$. Wir zeigen folgende Behauptung für **zusammenhängende** Graphen G und H:

Falls $G \notin GA$ und $H \notin GA$, dann $((G, H) \in 1\text{-GI} \iff G \cup H \in GA)$.

Falls $(G,H)\in 1$ -GI, gibt es einen Isomorphismus ϕ von G nach H. Dann lässt sich aus ϕ ein nicht-trivialer Automorphismus von $G\cup H$ konstruieren.

Falls $G \cup H \in \mathrm{GA}$, gibt es einen nicht-trivialen Automorphismus ψ von $G \cup H$. Die Zusammenhangskomponenten von $G \cup H$ sind G und H. ψ bildet Zusammenhangskomponenten auf Zusammenhangskomponenten ab, also ist $\psi|_G$ entweder ein Isomorphismus von G nach H oder ein Automorphismus von G. Letzteres kann nicht sein, da ψ nicht-trivial ist und $G \notin \mathrm{GA}$. Es gilt also $G \cong H$. Falls es zwei verschiedene Isomorphismen $\tilde{\phi}$ und $\tilde{\psi}$ von G nach H gäbe, so wäre z.B. $\tilde{\phi} \circ \tilde{\psi}^{-1}$ ein Automorphismus von H. Es gilt also $G \in \mathrm{GA}$.