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Abstract

For any given dimension n and unit vector a ∈ Sn−1, we investigate
the well known question of how many sign vectors in {±1}n can have a
scalar product with a between −1 and 1.

We look at reformulations of this, and use simple observations about
a geometric version of the question to derive an algorithm that finds
unit vectors maximizing this number for given dimension. Our results
support the conjectured lower bound of 1/2 of the sign vectors.

1 Introduction

It was always my impression that in mathematics the strong focus on new
results leads to the curious situation that whenever one is confronted with a
new problem, almost everyone tries to solve it in the same way many before
him or her did.

Let us make this more concrete. Consider the following problem, where,
as usual, Sn−1 =

{
a ∈ Rn :

∑n
i=1 a2

i = 1
}

is the n-dimensional sphere:
Let a = (a1, . . . , an) be any point in Sn−1. Of the 2n expressions

|ε1a1 + · · ·+ εnan| with εi = ±1,

can there be more with value > 1 than with value ≤ 1? This is the formulation
in which Bogus lav Tomaszewski was quoted in [Guy86] in 1986. To give an
indication of the general belief of most people who worked on the question,
here is a more suggestive formulation:
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Conjecture 1.1 (e.g. [HK92]). For all a ∈ Sn−1,

| {ε ∈ {±1}n : |ε · a| ≤ 1} |/2n ≥ 1
2
.

Here, and everywhere else in the text, “·” denotes the inner product of
two vectors.

My first thought in cases like this is: “Can I use induction?”, and if that
fails, as it inevitably does for me when I read open problems in articles,
“What happens if it’s not true?”

I strongly suspect that something very similar is true for most mathe-
maticians. And I don’t think this is a bad thing. It is, in my opinion, at
the very foundation of what we do: We try out our tools, starting with the
more basic ones and then increase the level of sophistication, whenever we
encounter new mathematical riddles.

Thus, I would like to spend the larger part of the following lines on
retelling interesting, but ultimately abandoned attempts to use known tools
on this still unsolved problem. I think the connections between different
parts of mathematics, which appear around this question, can be appreciated
even without the great finale of a definitive solution.

2 Say it again, but differently

After an open problem passed an initial sanity check, i.e., we convinced
ourselves that we see no reason why it is obviously right or wrong, probably
one of the most common methods is to restate the problem in a different for-
mulation, preferably using terminology from another branch of mathematics.
So this is what we will do next.

In [HK92], Ron Holzman and Daniel Kleitman propose the below trans-
lations of the Conjecture. They are all equivalent to 1.1, where an indication
of the flavor of the reformulation is given at the beginning of each statement.

(i) Sum partitions. Let
∑

ai be a finite sum, and assume it is normalized
to
∑

a2
i = 1. Then at least half of all partitions of the ai into two parts

lead to partial sums that differ by at most 1.

(ii) Chebyshev-type inequality. We can regard {±1}n as a probability space
with the discrete uniform distribution, and X = ε · a as a random
variable with E(X) = 0 and V ar(X) =

∑
a2

i = 1. Then X lies within
one standard deviation of its mean with probability ≥ 1

2 .
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(iii) Geometric representation. Consider an n-dimensional Euclidean ball
and a smallest n-dimensional cube containing it. Then for any pair of
parallel supporting hyperplanes of the ball, at least half the vertices of
the cube lie between (or on) the two hyperplanes. See Figure 1.

Figure 1: Examples in dimension 2 and 3.

Holzman and Kleitman prove in [HK92] that the left-hand-side in Con-
jecture 1.1 is at least 3

8 , where they primarily use formulation (ii) above, and
in a rather elegant way at that. They also give indications why an approach
similar to theirs will most likely not lead to a bound closer to the conjecture.

While formulation (iii) is my personal favorite and will be discussed
in greater detail below, I am not aware of anyone trying his luck with (i).
But before we proceed to the geometric considerations, let us add another
formulation, to which we will come back in section 5:

(iv) Percolation theory. Consider the Boolean functions fa on {±1}n, with

fa(v) =

{
1 if |a · v| > 1,

0 otherwise.

Then for every a ∈ Sn−1 we have ‖fa‖2 = 1
2n

∑
v∈{±1}n fa(v)2 ≤ 1

2 .

For now, however, we turn to the formulation (iii) above. Although it
speaks of arbitrary spheres and fixes no orientation for the cube, it surely
doesn’t influence the outcome to scale or translate the problem, or to rotate
the cube around its center. Thus we will only consider spheres around the
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origin with radius 1, and we will assume that each facet of the cube around
it is orthogonal to one of the coordinate-axes.

For convenience, let us denote the n-dimensional ±1-hypercube as Cn =
{x ∈ Rn : −1 ≤ xi ≤ 1}. Then each ε ∈ {±1}n corresponds to a vertex of
Cn, which in turn is a smallest cube containing Sn−1.

It should be mentioned that Conjecture 1.1 comes up in various settings,
in addition to the ones cited before also in, e.g., [Ver08] and [BTNR02].
Strongly related questions can be found in, e.g., [Ole96, Pin07, Pin10] and
the references therein.

In fixed dimension, we will exploit formulation (iii) to derive cases that
can be solved explicitly. We then use them to sketch an algorithm that can
exclude large parts of the possible cases in a fast manner. The remaining
cases are checked for counterexamples with quadratic programming. This
can be summarized as follows:

Theorem 2.1. If n ≤ 9, then for all a ∈ Sn−1 we have

|{ε ∈ {±1}n : |ε · a| ≤ 1}|/2n ≥ 1
2
.

Why n ≤ 9? Because due to the rapidly increasing number of sets to check
when the dimension increases, the computation was stopped after n = 9,
which still can be done in reasonable time (see [vH10] for an implementation
of the algorithm).

3 Some Geometric Observations

Now let’s have a closer look at the geometric interpretation of Conjecture 1.1.
There will be some proofs when it seems appropriate, but sometimes it
would be, in my opinion, more distracting than illuminating. Nevertheless,
it certainly gets more technical from here on out.

From now on, when we talk about a point a on the sphere, you should
also think of the supporting hyperplane of the sphere at this point.

Observation 3.1. By symmetry we can assume a = (a1, . . . , an) to lie in the
positive orthant and also it is no restriction to assume a1 ≥ a2 ≥ . . . ≥ an.

Note that this implies that the vertex of Cn with only positive coordinates
has the maximal distance to the hyperplane H at a among all separated
vertices, because H = {x ∈ R : a · x = 1}, and thus the distance of any
x ∈ R to H equals |a · x− 1|. Here we call a set A of vertices separated, if we
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find a supporting hyperplane of the sphere that strictly separates A from
zero.

With this observation we can rephrase the above conjecture as follows:

Conjecture 3.2. Let a ∈ Sn−1 as in Observation 3.1, then v · a > 1 for at
most 2n−2 vertices v ∈ Cn.

One question we did not address so far is if this bound can be strengthened.
This is not the case, as it is achieved in every dimension by, e.g., a =
( 1√

2
, 1√

2
, 0, . . . , 0). An interesting result of the computations, however, is

that this is the only tight example in all dimensions that were checked, up
to small perturbations that cut off the same vertices of Cn, and the above
mentioned symmetries.

At this stage it would be nice to have some form of order on the vertices
of the cube, depending only on a. Then all we had to do is to find the “last”
vertex separated from the sphere by a, and count the partition.

For given a, an obvious candidate to describe this order is the dis-
tance between separated vertices and the hyperplane at a. We get a (non-
antisymmetric) order on the vertices of Cn:

v 4 w ⇔ a · v ≤ a · w.

Therefore, if a vertex v is separated, so are all larger vertices (or of the
same size), and in particular all vertices in the face of minimal dimension
containing both v and (1, . . . , 1).

If v 4 w, then we sometimes say w is implied by v, or that w is a subvertex
of v.

An important observation for our algorithm later on will be that already
the assumptions a1 ≥ · · · ≥ an ≥ 0 give us a partial order, without the need
for any further knowledge about a (see Figure 2 for an example).

Definition 3.3. We call two vertices v, w ∈ Cn antipodal, if v = −w . If v
and w coincide in exactly one coordinate, we call them facet-antipodal.

The second definition is inspired by the fact that any facet of Cn can be
characterized by fixing one coordinate. Thus, facet-antipodal vertices are
antipodal in the lower-dimensional cube that is the common facet they are
in.

Proposition 3.4. Let V ⊆ {±1}n. If v, w ∈ V are antipodal or facet-
antipodal, then v · a ≤ 1 or w · a ≤ 1 (or both).

In both cases, V can not be separated.
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(1)

(2)

(3)

(5)

(4)

(6)

(7)

(8)

(9)

(10)

(1) (1,1,1,-1,-1)
(2) (1,1,-1,1,-1)
(3) (1,1,-1,-1,1)
(4) (1,-1,1,1,-1)
(5) (1,-1,1,-1,1)
(6) (1,-1,-1,1,1)
(7) (-1,1,1,1,-1)
(8) (-1,1,1,-1,1)
(9) (-1,1,-1,1,1)
(10) (-1,-1,1,1,1)

Figure 2: The partial order on the vertices of C5 with two −1’s (under the
symmetry assumptions from Observation 3.1). The vertex (1) is the most
implied in this set.

Proof. If v, w ∈ V are antipodal or facet-antipodal, then ‖1
2v + 1

2w‖ ≤ 1
(equal in the facet-antipodal case), and thus this point lies on or in the sphere.
Now suppose v · a > 1 and w · a > 1, then for every convex combination c of
v and w we also get c · a > 1, in contradiction to the above.

This very simple observation can be used to prove our first result, which
again is not very deep, but powerful enough to solve Conjecture 1.1 for n ≤ 4.

Theorem 3.5. Any supporting hyperplane of Sn−1 can separate at most half
the vertices of every facet of the ±1-cube from the sphere.

Proof. Fix a facet F . As we just observed, every vertex of F that we
separate gives us a facet-antipodal vertex of F that cannot simultaneously
be separated.

Thus, if a hyperplane has empty intersection with the interior of at
least one facet of the cube, then the conjecture is true. But against the
intuition one might have from dimension 2 and 3, this is not fulfilled for
every hyperplane in dimension at least 5:

Proposition 3.6. In dimension n ≥ 5 there are supporting hyperplanes of
Sn−1 that intersect all facets of Cn in their interior.

Proof. Let n ≥ 5. Consider a = ( 1√
n
, . . . , 1√

n
) and v = (v1, . . . , vn) ∈ {±1}n.

Then

a · v > 1 ⇔
n∑

i=1

1√
n

vi > 1 ⇔
n∑

i=1

vi >
√

n,
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and therefore all vertices with exactly one −1 are separated. But as every
facet contains at least one of these (remember that we can characterize them
by fixing exactly one coordinate), the hyperplane with touching point a
intersects all facets in the interior.

We can compute that this particular a will not cause any trouble for the
conjecture:

We claim that for any n ∈ N

P (| 1√
n

n∑
i=1

vi| ≤ 1) = 1− P (
1√
n

n∑
i=1

vi > 1)− P (
1√
n

n∑
i=1

vi < −1)

is bounded from below by 1/2. Note that the last two terms have the same
value because of the symmetric definition of the vi.

Now we can use the Berry-Esseen inequality∣∣∣∣∣P
(

1√
n

n∑
i=1

Xi ≥ x

)
− Φ(x)

∣∣∣∣∣ ≤ C√
n

E|X1|3,

where Xi are i.i.d. zero-mean unit-variance random variables, x ∈ R, n ∈ N, Φ
is the tail of the standard normal distribution, and C is an absolute constant
< 0.48 (see [Tyu09, She11]).

In our situation this implies

P

(
1√
n

n∑
i=1

vi > 1

)
< Φ(1) +

0.48√
n

< 0.159 +
0.48√

n
, (1)

and the right-hand side is < 1
4 for n ≥ 28. The remaining cases n ≤ 27 are

easy to check by computer.
In fact, from Equation (1) we immediately get that the fraction of

separated vertices gets smaller and smaller with growing dimension. This is
also of interest because a conjecture related to Conjecture 1.1 was recently
disproven by Pinelis [Pin12], using a vector similar to this a.

4 The Sketch of an Algorithm

In spite of the negative taste of the above result, we can use it to check
small dimensions. The idea for the algorithm is the following: Given a set
V ⊆ {±1}n which is closed upwards in our partial order, we want to find
properties that imply that V can not be separated. If we cannot separate
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any V with |V | > 2n−2, there is no counterexample to Conjecture 1.1 in
dimension n (and below).

Assume for the moment that we found properties of sets V that are easy
to check, and each of which implies that V cannot be separated. Then fix an
order on the vertices (any order, it does not have to be compatible with our
partial order), and try to find a set V as large as possible while avoiding the
properties, where we potentially go through the whole binary decision-tree.

Our goal now is of course to cut as many branches off as possible. There
are only some details given below, but if you are intrigued beyond the scope of
this text, I will be happy to provide more details in personal communication.

One observation we can handily utilize to restrict our search is the
following: If V does not contain all vertices of Cn with exactly one −1, then
V cannot be a counterexample to the conjecture, as it lies completely in one
facet. Thus, we only have to check closed subsets containing all vertices with
one −1.

Another practical fact is a generalization of the idea of facet-antipodal
vertices. In Theorem 3.5 we showed that a set V containing antipodal or
facet-antipodal vertices cannot be separated.

In a similar fashion, we can deduce the following sufficient condition:

Observation 4.1. If V ⊆ {±1}n contains k vertices v1, . . . , vk with∥∥∥∥∥∥
k∑

j=1

1
k
vj(i)

∥∥∥∥∥∥ ≤ 1,

then V cannot be separated. Such a group of vertices will be called a non-
separable k-set.

The case k = 4 is especially convenient, as we can construct a simple
test from a subset of this to exclude many sets of vertices as possible
counterexamples: Given v, we look for one other vertex w, such that each of
them implies one more vertex, and all four together build a non-separable
4-set. This case has the advantage over higher k, that between all possible
w, there is one that is implied by the others.

The reader is cordially invited to try his/her basic tools on this claim.
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Now suppose we have constructed some set V = {v1, . . . , vm} with
m > 2n−2. We have to unambiguously decide whether it can be separated
or not. This can be done by computing the minimal norm of vectors in the
convex hull of V , as we can separate V if and only if this norm is strictly
larger than 1. That is, we compute

min

{
‖x‖ : x =

m∑
i=1

λivi, λi ≥ 0,
∑

λi = 1

}
,

or equivalently

min
{
t ∈ R : Ay = b, y = (λ1, . . . , λm, t, xT )T , λi ≥ 0, (t, xT ) ∈ Qcone

}
with

A =


0 −1 0

v1 · · · vm
...

. . .
0 0 −1

1 · · · 1 0 0 · · · 0

 , b =


0
...
0
1

 , and

Qcone = {(s, z) ∈ R× Rn : s ≥ ‖z‖}, which is known as the quadratic cone,
second order cone, or Lorentz cone (see, e.g., [LVBL98]).

Note that the zero-column in A is necessary, because t is a slack-variable
to bound the norm of x.

Of course, one could attempt to use this strategy even earlier in the con-
struction to reject sets sooner, but it turns out that the price in computation
time one has to pay for this is much higher (at least for small dimensions)
than the gain one has by checking less sets.

5 Percolations

To conclude, let us have another look at reformulation (iv) of Conjecture 1.1,
as it was stated at the beginning. This is purely an expansion on the claim
that it is indeed a reformulation, plus some basic facts of this field and how
they relate to the conjecture.

Most of the general constructions are taken from the excellent paper
[KS06]; For a milder introduction to the material see, e.g., [TP08].

Observe that if we are handed a set V of vertices of Cn that is equal to the
set of vertices separated by the supporting hyperplane through some a ∈ Sn−1,
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ai ≥ 0, then V can be expressed by the Boolean function fa : {±1}n → {0, 1},
with

fa(v) =

{
1 if a · v > 1,

0 otherwise.

Also, we can equip the space of real functions on {±1}n with the inner
product

〈f, g〉 =
∑

v∈{±1}n

2−nf(v)g(v),

which gives us the norm ‖f‖2 = 〈f, f〉. This space is denoted by L2({±1}n).
The reason why we want to do this is that if f is a Boolean function,

then the squared norm is the probability that f = 1 (with respect to the
uniform distribution on {±1}n), denoted by µ(f). For the fa this is precisely
the fraction of separated vertices. Thus, if every fa as above has norm at
most 1

2 , Conjecture 1.1 is true.

But maybe it is too ambitious to aim directly for settling the conjecture.
Maybe one should first try to find better bounds: For a subset S ⊂ [n]
consider the function

uS(v) = (−1)|{i∈S : vi=1}|.

The set of all such functions form an orthonormal basis in L2({±1}n).
Given a function f ∈ L2({±1}n), the Fourier-Walsh coefficient f̂(S) of f

is
f̂(S) = 〈f, uS〉

(where we note that f̂(∅) = ‖f‖2), and since the functions uS form an
orthogonal basis, it follows that

〈f, g〉 =
∑

S⊂[n]

f̂(S)ĝ(S).

In particular, we get Parseval’s Formula

‖f‖2 =
∑

S⊂[n]

f̂2(S).

To search for upper bounds for µ(fa), we introduce the influence of a
coordinate k on a function f , denoted by Ik(f), as the probability that
flipping the value of the k-th coordinate changes the value of f . Formally,
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define σk(v1, . . . , vn) = (v1, . . . , vk−1,−vk, vk+1, . . . , vn), and the influence of
k on a Boolean function f as

Ik(f) = 2−n · |{v ∈ {±1}n : f(v) 6= f(σk(v))}|,

which is also referred to as the Banzhaf power index of voter k. The total
influence of f is I(f) =

∑n
k=1 Ik(f).

The edge-isoperimetric inequality, going back to the works of Whitney
and Loomis, Harper, Bernstein, Hart, and others, asserts that for every
Boolean function f ,

I(f) ≥ 2µ(f) log2(1/µ(f)).

This certainly implies an upper bound for µ(fa), but can only be made
explicit if we find a way to quantify how close I(fa) is to 1.

6 Summary

Starting with a (rather) analytic problem, we saw four reformulations into
different dialects of mathematics. While we ignored the first one and only
referred to [HK92] for the second, we tried to use the third for a better un-
derstanding of the problem. We used properties of the geometric formulation
to find a reasonably fast algorithm for fixed dimension.

One could certainly pursue this further and, with a more sophisticated
implementation and more computing power, obtain results for slightly higher
dimensions. However, this only seems to be a reasonable effort if one hopes
to find a counterexample in some not too high dimension.

But nothing in the computational studies indicates that such a counterex-
ample should exist. On the contrary, in all we have seen the cases close to
the conjectured bound are the ones that are well understood. The difficulty
lies in showing that the other cases will not start to cause trouble in high
dimensions.

For this, some new idea or technique is needed, and as history tells us it
is likely to be one that already exists in another part of mathematics. As
an appetizer of how different from the original such reformulations can look
like, we inspected the problem in the setting of Boolean functions.
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