
Routing for analog chip designs at NXP

Semiconductors

Marjan van den Akker∗ Theo Beelen† Rob H. Bisseling‡

Bas Fagginger Auer‡ Frederik von Heymann§

Tobias Müller¶ Joost Rommes†

May 23, 2011

Abstract

During the study week 2011 we worked on the question of how to
automate certain aspects of the design of analog chips. Here we focused
on the task of connecting different blocks with electrical wiring, which is
particularly tedious to do by hand. For digital chips there is a wealth of
research available for this, as in this situation the amount blocks makes
it hopeless to do the design by hand. Hence, we set our task to finding
solutions that are based on the previous research, as well as being tailored
to the specific setting given by NXP.

This resulted in a heuristical approach, which we presented at the
end of the week in the form of a protoype tool. In this report we give a
detailed account of the ideas we used, and describe possibilities to extend
the approach.

1 Introduction

1.1 NXP Semiconductors

NXP Semiconductors N.V. (Nasdaq: NXPI) is a global semiconductor company
and a long-standing supplier in the industry, with over 50 years of innovation
and operating history. The company provides high-performance electronic chips

∗Department of Information and Computing Sciences, Utrecht University, P.O. Box 80089,
3508TB Utrecht, the Netherlands

†NXP Semiconductors Netherlands N.V., High Tech Campus 46, 5656AE Eindhoven, the
Netherlands

‡Department of Mathematics, Utrecht University, P.O. Box 80010, 3508TA Utrecht, the
Netherlands

§Department of Applied Mathematics, Delft University of Technology, P.O. Box 5031,
2600GA Delft, the Netherlands

¶Centrum Wiskunde & Informatica, P.O. Box 94079, 1090GB Amsterdam, the Netherlands

1

to its customers, and produces these building on its expertise in the areas of RF,
analog and digital circuits, power management, and security. These innovations
are used in a wide range of automotive, identification, wireless infrastructure,
lighting, industrial, mobile, consumer and computing applications. Headquar-
tered in Europe, the company has approximately 28,000 employees working in
more than 25 countries and posted sales of USD 3.8 billion in 2009.

1.2 Place and route for analog designs

The increasing demand for smaller, faster, and multi-functional electronic de-
vices such as smart phones is one of the driving forces in the semiconductor
industry. Combined with requirements on power usage, sustainability, and wire-
less functionality this is generating challenges in several domains. During the
design of the layout, which is a representation of the chip in shapes in its physical
layers (silicon, oxide, metal), one of the challenges is to place and route (wire)
the circuit components in an optimal way. Aspects that define optimality may
vary per design/application and are typically related to the area (convex hull)
of the chip, the total wire length, and the unintended side-effects caused by
the wires (crosstalk, i.e., electrical fields between wires). The place and route
problem is further complicated by design rules and geometrical constraints.

The place and route problem has been studied for many years and mature
solutions are available for digital designs [1, 4, 10, 11, 12, 15, 16, 17, 21], which
typically consist of (almost) equally sized blocks and predefined routing chan-
nels. For analog designs, the main interest of NXP, the place and route problem
is more complicated because blocks can vary in size and aspect ratio and may
even overlap (so that there is no need for explicit routing), and because routing
channels are typically not available but defined by the placement. Also, while
typically several layers (metal) are available to route in, often one would like
to limit this to as few layers as possible, and in some cases routing is even re-
stricted to a single layer. Other objectives one can think of are to minimize the
wire length and the number of turns in the wires, and typical constraints are
that wires are either horizontal or vertical (only 90-degree turns) and should
be of a certain minimum distance from each other. Furthermore, it is desirable
to have a routing algorithm that is robust with respect to (small) changes in
the layout, so that it can be used in parametrized designs to update the routing
automatically when parameters change – this allows designers to quickly explore
different physical design variants.

The challenge NXP set for the study week of 2011 was to develop an algo-
rithm that, given a number of circuit blocks and their interconnections, com-
putes an optimal layout including placement and routing.

1.3 Outline

In Section 2 we describe the precise task we discussed during the study week, and
we give a detailed account of the partial results we were able to achieve, including
the prototype of a tool that we think can simplify the work of chip designers. In

2

Section 3 we give an overview of possible extensions and improvements of one
particular aspect of our algorithm, which we believe could be a computational
bottleneck for larger instances; Section 4 outlines a slightly more sophisticated
algorithm than the one in Section 2, which also has the benefit of giving us lower
bounds on the quality of the solutions it produces. We conclude the report with
a summary of our results and an estimation of the success in terms of the original
challenge.

2 Heuristic Method and Implementation

As illustration of the ideas developed for NXP during the study week, we im-
plemented a heuristic for solving the problem as a C++ program. An early
version of this program was demonstrated during the final presentation session
of the study week as well as a later version during a visit to NXP in Eindhoven
(Figure 1).

Because of the time constraints of the study week we chose to focus only on
the routing aspect of NXP’s problem: the program should be able to import
a layout specified in NXP’s circuit design software (Figure 2), where all the
components have already been placed on the chip, and export routing in the
form of wires connecting these components (thin wires in Figure 1). Wires are
formed on the circuit by depositing metal in the production process.

The circuits are produced layer-by-layer, so we know beforehand that there
is an l ∈ N specifying the number of layers (l = 5 in Figure 1) and a bounding
box of the entire circuit board within which all components and wiring should be
contained. We do not want to short-circuit different components on the circuit
board by placing metal at the wrong places, therefore we receive for each layer a
number of solid rectangles, in which no metal can be deposited (solid gray blocks
in Figure 1). These rectangles are characterized by their lower-left and upper-
right corners in R2, as well as the number of the layer in which they are present.
The components in the circuit need to be connected by conducting metal: we
are given a list of pins, conducting rectangles belonging to a certain layer and
having a certain color (the colored blocks in Figure 1). All pins sharing the
same color should be connected by metal. To prevent accidental short-circuiting
and interference, wires should have a minimum distance from each other; these
minima can be different for different layers, so they are represented by a vector
δ ∈ Rl

>0. It is important to note that wires are not restricted to a single layer:
wires can make jumps to other layers by vias.

Our program now needs to find out, given these parameters, where to deposit
metal in the circuit such that

• for each pair of pins sharing the same color there exists a continuous metal
path connecting the pins;

• the distance between two bits of deposited metal in the same layer k that
are connecting pins with different colors is always ≥ δk;

3

Figure 1: Screenshots from the demonstration at NXP, Eindhoven. The top
picture shows generated routing for the tunedCap circuit and the bottom two
pictures show routing for difInvStage. Both these circuits consist of 5 layers.

4

Figure 2: Circuit design software of NXP showing the layout of tunedCap.

• no metal is deposited in the solid areas and no metal is deposited outside
of the circuit board.

These are hard constraints in the sense that any solution which does not satisfy
all these criteria is unacceptable.

2.1 Optimization

If we only took the hard constraints into account, we could end up with very
unfavorable and costly solutions (e.g., paths that needlessly use a lot of metal).
Therefore we will, in addition to satisfying the hard constraints, try to minimize
the following quantities:

• the total amount of metal that needs to be deposited (as depositing metal
costs money and long paths increase the resistance, which increases power
consumption);

• the number of corners in each of the paths (as corners introduce interfer-
ence and are more susceptible to production errors, compare paths 1 and
2 in Figure 3);

• the number of jumps between different layers (as producing vias is expen-
sive).

Depending on the specific circuit for which a routing needs to be generated,
there could be additional objectives, such as

• limiting the amount of metal deposited in a specific layer;

5

2

1

P2

P1

S2

S1

Shi

1

S lo

1

Figure 3: Left: two wires that use the same amount of metal, but turn a different
number of corners. The blocks S1 and S2 are solid area bounding boxes, P1 and
P2 are pin bounding boxes, and Slo

1 and Shi
1 are the lower-left and upper-right

corners of S1. Right: Construction of a Steiner tree (see Section 3) by first
creating the shortest path between the pins farthest away from each other (solid
line) and then connecting the remaining pins to this path (dashed line).

• discouraging paths from lying on top of each other;

• encouraging metal deposition in certain areas of a certain layer, while
discouraging it in others;

• . . .

Hence the optimization criteria should be as customizable and flexible for the
circuit designers as possible.

The heuristic (Algorithm 2) we use to solve the problem described above is
based primarily on Dijkstra’s shortest path finding algorithm [6] (in our imple-
mentation we improved performance by using the A* algorithm [9]; compare [11]
and for possible improvements [17]). Dijkstra’s algorithm is particularly useful
for incorporating flexible optimization goals by viewing the minimization of to-
tal distance as the minimization of a more abstract cost function in which the
goals of the chip designers are incorporated. Hence we look for cheapest paths
with respect to this cost function (an example of which is given in Algorithm 3),
using Dijkstra’s algorithm.

2.2 Dijkstra’s algorithm

Dijkstra’s algorithm [6] computes the shortest path between a single source
vertex s and all vertices v in a directed graph G = (V,E) with non-negative
weights on the edges representing distances or more general costs; for our routing
problem, the weights represent costs of various types. The algorithm works as
follows. For each vertex v, a temporary best distance d(v) is maintained. The

6

distance d(v) is lowered each time a shorter path to v is encountered. The
predecessor of v in that path is then registered, thus storing the shortest path,
and not only its cost. At some stage in the computation, the distance reaches
its final value, the shortest distance to v. Then, v is included in the set D of
finished vertices. Initially, d(s) = 0, d(v) = ∞ for v 6= s, and D = ∅. It can
be shown that the distance obtains its final value once d(v) = minw∈V−D d(w).
Algorithm 1 presents Dijkstra’s algorithm.

Algorithm 1 Dijkstra’s Algorithm.
Input: Directed graph (V,E) with costs c(v, w) ≥ 0 for every edge (v, w) ∈ E,

source vertex s ∈ V .
Output: The cost d(v) for reaching vertex v from s, and a predecessor in a

shortest path to v, for every v ∈ V .
1: for all v ∈ V do
2: d(v)←∞;
3: pred(v)← v;
4: d(s)← 0;
5: D ← ∅;
6: while D 6= V do
7: v ← argmin{d(w) : w ∈ V −D};
8: D ← D ∪ {v};
9: for all w with (v, w) ∈ E do

10: if d(v) + c(v, w) < d(w) then
11: d(w)← d(v) + c(v, w);
12: pred(w)← v;

The A* algorithm is a more efficient variant of Dijkstra’s algorithm, which
makes use of knowledge about a target vertex t that we want to reach, such
as a lower bound l(v) on the cost of reaching t. In our case, we will use the
minimum distance to be covered on a three dimensional grid (see the next
section) as a lower bound, ignoring other costs. The bound is called consistent
if l(v) ≤ c(v, w) + l(w) for all (v, w) ∈ E. For our problem, the bound is
consistent because c(v, w) includes the distance cost of routing from v to w.
Algorithm 1 can be changed from Dijkstra to A* by writing t /∈ D instead of
D 6= V on line 6 and d(w) + l(w) instead of d(w) on line 7.

2.3 Implementation

Algorithm 2 outlines the heuristic employed by the prototype tool. In the al-
gorithm we deposit metal of certain colors in order to be able to differentiate
between wires connecting different sets of pins. Two deposited wires that do not
share the same color should always be separated by the minimum separation
distance as specified by δ. For bounding boxes we use the following notation:
if B is a bounding box, then Blo, Bhi ∈ R2 are the lower-left and upper-right
corner of the bounding box, respectively. The layer where the bounding box is

7

present is indicated by Blayer ∈ N.

Algorithm 2 Discretization and Heuristic Wiring.
Input: Number of layers l ∈ N, minimum wire separation δ ∈ Rl

>0, circuit
board bounding box B, solid area bounding boxes S1, S2, . . . , pin bounding
boxes P1, P2,

Output: Discretized grid in which the metal depositions have been marked.
1: Let ρ← grid spacing based on δ or a specified resolution;
2: Create three-dimensional grid G of d(Bhi −Blo)/ρe by l cells;
3: for all solid area bounding boxes S do
4: Mark all cells lying between b(Slo −Blo)/ρc and d(Shi −Blo)/ρe in layer

Slayer as inaccessible for all colors;
5: for all pins P do
6: Mark all cells lying between b(P lo−Blo)/ρc and d(P hi−Blo)/ρe in layer

P layer as metal with color P color;
7: Mark all cells within distance dδP layer/ρe of P as inaccessible, except for

color P color;
8: Sort pins by their color into nets and then the nets by increasing bounding

box volume;
9: for all nets P in which all pins share the same color Pcolor do

10: Find P1, P2 ∈ P such that the distance between the centers of P1 and P2

is maximal;
11: Create a cheapest path T ⊆ G from P1 to P2 traversing only cells acces-

sible for color Pcolor;
12: Similarly create cheapest paths from T to all P ∈ P not connected to T

and add these paths to T ;
13: for all cells c ∈ T do
14: Mark c as metal with color Pcolor;
15: Mark all cells in layer cz with distance ≤ dδcz/ρe to c as inaccessible,

except for color Pcolor;
16: Output G;

To simplify the problem we first discretize it (line 2) to a regular three-
dimensional grid G, with l layers and spacing ρ within each layer. G will be the
graph in which we perform Dijkstra’s path-finding algorithm. Cells c ∈ G have
three coordinates (cx, cy, cz) ∈ Z3, where 1 ≤ cz ≤ l is the layer in which the cell
resides. To ensure that we never deposit metal in solid regions, we mark these
in G first by discretizing the bounding boxes and flagging the cells contained
in them as inaccessible for metal from any pin. We then proceed at line 5 to
add all pins, marking the cells contained in them as metal of the pin’s color and
ensuring that no metal belonging to pins with a different color can be deposited
near the pin (as this could violate the minimum separation criterion).

After the solid regions and pins have been marked, we generate paths con-
necting all the pins sharing the same color at line 8. First we cluster the pins
together such that we have nets of pins all sharing the same color. Note that the

8

algorithm will yield different results if we connect the pins contained in these
nets in a different order, hence we will fix the ordering by sorting the nets of
pins of the same color by the volume of the bounding box containing the pins.
This idea originates from the fact that connecting all the short paths first will
lead to less conflicts between paths later than first connecting all the long paths
(which could potentially cut off short paths).

Then we will connect, for each net of pins sharing the same color, the pins
belonging to this net. If there are at most two pins in a net, we can directly
use Dijkstra’s algorithm to find the cheapest path connecting them. However, if
we have more than two pins, we need to generate a Steiner tree (see Section 3)
connecting all of them. In our heuristic, this is done by first creating a path
between the two pins that are farthest apart, and then using this long path
as a ‘trunk’ to which the remaining, unconnected, pins connect as branches via
Dijkstra’s algorithm (see the right panel of Figure 3). A path can only be created
along cells that are accessible for the particular color of the current path; this
to ensure that the minimum separation distance is always maintained.

Algorithm 3 Routing Cost Function for Dijkstra’s Algorithm.
Input: Neighboring cells c−1, c0, and c1 in the grid G where c−1 is the prede-

cessor of c0.
Output: The cost k to use cell c1 to continue the path.
1: Initialize k ← 0;
2: if c1 is not marked as metal then
3: We need to deposit metal: k ← k + kmetal;
4: if cz

1 6= cz
0 then

5: We need to create a via: k ← k + kvia;
6: if ‖c1 − c−1‖2 = 2 then
7: We turn a corner if we continue this way: k ← k + kcorner;
8: . . .
9: Output k;

Algorithm 3 gives a simple example cost function for Dijkstra’s algorithm
where we consider continuing an existing path going through cells . . .→ c−1 →
c0 to c0’s neighbor c1 (neighbor in the sense that ‖c1 − c0‖ = 1). The cost
can be influenced by varying three parameters: kmetal, kcorner, and kvia. This
allows the designer to indicate whether he finds minimizing the length of the
wires (increasing kmetal), minimizing the number of corners (increasing kcorner),
or minimizing the number of vias (increasing kvia) more important. In Figure 1
the colored bars on the left are similar cost modifiers, from bottom to top: cost
to deposit metal, cost to turn a corner, cost to create a via, cost to run over
an existing wire, and cost to run over a solid block. By extending the cost
function and permitting the designers to vary the associated weights, a number
of different routing suggestions is easily obtained from the program. Note that
the multiplicative factors such as kmetal can also be made to depend on the
position of c0 or c1, permitting the designer to make certain layers or certain

9

regions of layers more or less attractive for the wires to traverse; this and other
costs can be added at line 8.

The program prototype has been demonstrated to circuit designers of NXP
in Austria and its source code has been provided to NXP.

3 Some Ideas for Steiner Trees

As we mentioned above, if we have more than two pins in one net, we cannot
just use Dijkstra’s algorithm to connect them. If we consider the pure problem
of only one set of pins to be connected, this is an instance of the Steiner tree
problem. Given a set of vertices, called terminals (which will be our pins), and
another set of vertices, called Steiner points (grid points that are not blocked),
a Steiner tree is any tree that contains all terminals and (some) Steiner points.

This section will give a brief account of possibilities to find a good Steiner
tree in a grid (with obstacles). In particular this means that here we ignore
the fact that it might not be possible (depending on the layout) to achieve an
optimal routing solution by considering the nets successively. We defer this
discussion to the next section.

As is true for most aspects of chip design, it is a computationally hard prob-
lem to find a smallest Steiner tree [7], and there is an abundance of strategies
to get reasonably good approximations in acceptable time [2, 18]; and for more
algorithms, see [10, 11, 12, 15]. Here we will restrict our attention to approaches
that seem appealing because of their simple implementability and their compat-
ibility with the strategy we chose for paths.

Most algorithms we found in the literature deal with the rectilinear version
of the Steiner tree problem, i.e., where all terminals and Steiner points are
given in a two-dimensional rectilinear grid. As we want to find Steiner trees
in a three-dimensional grid (with obstacles), these results are to be taken with
some caution, although we believe that on average they are close to what is to
be expected for our setup. The idea presented in the previous section can be
seen as a simplification of ideas from [10], where it is stated that we will get a
tree that is at most a factor of 3/2 away from a minimal Steiner tree, and on
average much closer to it.

It should, however, be mentioned that the authors in [10] consider nets that
include a source. In such a case it is usually desirable to minimize the distance
of the other pins to the source, whereas our focus is more on the total (weighted)
wire-length used in the tree. In the former case one typically gets star-shaped
trees, whereas in the latter a caterpillar-structure is more likely.

As long as the net contains at most 6 pins, a rectilinear Steiner minimal
tree in an obstacle-free grid can be found by going through all permutations
of the order of pins, connecting them in these orders in the way described in
Section 2.3. For larger nets, this approach will not always produce an optimal
tree (not even in this special case of obstacle-free rectilinear trees), but there are
good approximations available [14]. Still restricted to the rectilinear case, and
given that the instances are typically relatively small in the case of analog chip

10

design, one can also consider computing a truly minimal Steiner tree, using,
e.g., GeoSteiner [19, 20]. For more information, the paper by Hentschke et al.
[11] is a good survey on exact results and approximations for rectilinear Steiner
trees, taking into account different priorities of optimization.

4 Integer Programming and Approximations

In this section we propose a mathematically more rigorous approach, which
extends our heuristic from Section 2 but was too elaborate to incorporate in the
prototype tool during the short time span of the study week.

This is a column generation approach (which can also be found in [10] in
somewhat similar form), an approach that has successfully been applied to dif-
ferent real-world optimization problems (see [5]). While we give all formulations
in terms of paths between pairs of pins, they work (with one limitation) also for
larger nets.

4.1 Column Generation

Let us start with decomposing the problem into two levels. The top (or master)
level is the following: given all nets and for each a pool of paths connecting
them (possibly all such paths), we want to select one path for each net, such
that the resulting wiring satisfies our hard constraints and is of high quality
with respect to the optimization goals.

This is an integer linear program (see precise formulation below), which is
known to be computationally hard to solve to optimality [13]. And while the
analog design is not excessively large, here we get a huge number of variables:
one for each pair of a net and a possible path for this net.

We note here that one can reduce the size of the graph involved by using less
vertices and introducing different weights on the edges depending of the capacity
of the space between the vertices. One could construct such a graph with a
Generalized Voronoi Diagram. This method has been used for path planning
in games (see, e.g., [8]), where characters have to move through a landscape
and avoid obstacles. In chip design, electrons move through the wires and avoid
components (except for the locations of their pins). We can define a Generalized
Voronoi Diagram around the components. The edges in this diagram result in a
collection of corridors going through the central areas of the open space between
the components. In this way, they result in edges for our routing network. For
each pin we add an edge representing the shortest line connecting that pin
to the network. In general, this network will be smaller in terms of vertices
and edges than the grid which is attractive from a computational point of view.
Observe that in this setup multiple wires can go through an edge or vertex. One
drawback of this is, however, that the solution is not yet a complete description
of a physical layout. But one could first determine the corridor a net will
use, and then solve sub-problems in this smaller grid. There are some more

11

technicalities to be considered here, so we will just leave it as a suggestion for
further considerations.

In any case, by far not all possible paths are of interest for us. In fact, most
are unnecessarily long or could even include loops.

Thus, we restrict the master problem to a small pool of paths and introduce
a second level, where we try to find good paths outside the pool (using the dual
solution from the restricted problem) to improve the routing.

4.2 Formulation

Let (V,E) be the underlying network, i.e. the grid of Section 2 or an alternative
network. We label the nets by 1, . . . ,m, and denote with Pi the set of all possible
paths for net i.

Define further lip =
∑

e∈p le as the length of path p ∈ Pi (the lengths le
are the weights we give the edges, depending on the optimization goals, e.g.
according to Algorithm 3 in Section 2.3), let

aep =
{

1 if edge e is in path p;
0 otherwise,

and define avp in the same fashion for the vertices that are not in one of the
nets. Finally, we define the edge capacity cedge

e as the maximum number of
wires routed over edge e, and similarly cvertex

v as the maximum number of wires
that are allowed to cross through vertex v. For the grid used in Section 2.3, all
values cedge

e and cvertex
v are set to 1.

Our variables are xip ∈ {0, 1} where xip = 1 indicates that path p ∈ Pi is
selected for net i. Then our master Integer Linear Program (master ILP) is

min
m∑

i=1

∑
p∈Pi

lipxip

s.t.
∑
p∈Pi

xip = 1 (i = 1, . . . ,m), (1)

m∑
i=1

∑
p∈Pi

aepxip ≤ cedge
e ∀e, (2)

m∑
i=1

∑
p∈Pi

avpxip ≤ cvertex
v ∀v not in a net, (3)

xip ∈ {0, 1}. (4)

Constraints (1) ensure that exactly one path is selected for every net. Con-
straints (2) and (3) ensure that the edge and vertex capacities are respected.

To deal with the large number of variables, we are going to solve the problem
by column generation. We start with a limited subset of the variables and solve
the LP-relaxation (i.e., xip ≥ 0) for this subset only. For example, we could

12

use the solutions from Section 2. This way we obtain the restricted master LP.
Then we solve the pricing problem, i.e., we look for variables that are not yet
included in the restricted master LP and can improve the solution.

If such variables are found, they are added to the restricted master LP, it is
solved again, after which pricing is performed, and so on. If pricing does not
find any new variables anymore, we know that the master LP has been solved
to optimality.

Unfortunately, this solution is not likely to be an integer solution. We discuss
methods for finding an integral solution in Section 4.4.

4.3 The Pricing Problem

From the theory of linear programming it is well-known that for a minimization
problem increasing the value of a variable will improve the current solution if
and only if its reduced cost is negative. The pricing problem then boils down
to finding the variable with minimum reduced cost.

Let λi, πe, and σv be the dual variables of the net, edge capacity, and vertex
capacity constraints, respectively. Now the reduced cost of xip is given by

lip − λi −
∑

e

aepπe −
∑

v

avpσv.

We are going to solve the pricing problems for each net separately. Note
that aep and avp are the decision variables and that they have to form a path
connecting the net. Clearly, the values avp (the vertices on the path) are de-
termined by the values aep (the edges on the path). For each vertex v on the
path we have cost −σv. Since on a path each vertex has degree 2 (except for
the first and the last one, but these are in a net), we can remove the variables
avp from the pricing problem by adding cost − 1

2σv to each edge adjacent to v.
The reduced cost is now given by

∑
e

aep

(
le − πe −

∑
v∈e

1
2
σv

)
− λi.

The pricing problem for net i thus reduces to finding a shortest path, where the
edge lengths are modified by the dual variables.

From the theory of linear programming we know that πe ≤ 0 and σv ≤ 0.
Therefore, the cost of the edges are non-negative and the pricing problem can
be solved by Dijkstra’s algorithm.

For a net i with more than two pins, the Pi are all possible Steiner trees,
and hence at this point of the algorithm we are looking for a Steiner minimal
tree. To save CPU-time, we can approximate the minimal Steiner tree, and only
determine the optimal Steiner tree in case the approximation does not find a
solution with negative reduced cost. If we decide to only approximate, we still
have a high probability to find a very good solution to the LP-relaxation.

13

4.4 Integer Solutions

As we mentioned in the introduction, this approach also gives us a measure of
the quality of the routing solution, because the solution of the LP-relaxation
(which we solved to optimality) is a lower bound on the costs of the routing. To
actually produce an integer solution, we can apply different strategies, which
are only shortly mentioned here.

• We can perform branch-and-price, i.e. apply branching and proceeding
with column generation (see, e.g., [3]). This will not lead us away from
optimality.

• We can apply an ILP solver to the restricted master problem, which in all
likelihood will have a manageable amount of variables.

• We can apply heuristics based on the LP solution. For example, we can
first fix all paths that were selected with value 1. Then we proceed by
selecting one by one paths with maximal fractional value that fit (in term
of vertex and edge capacities) with the set of paths that were already
selected. If we end with a solution with unconnected pins, we complete
the solution using the heuristic from Section 2.

As was the case for the heuristic for the prototype tool, this method can also
be applied if part of the routing is fixed, as this is nothing else than removing
certain edges from our grid.

Comparing the ILP method of this section with the heuristic of Section 2, we
note as advantages of ILP that it provides quality guarantees, it can be combined
with the heuristic, and that it can be used on a smaller graph than the grid in
the heuristic, which may save computation time. An advantage of the heuristic
is that it is easy to implement, and that it often gives a fast and satisfactory
solution. Summarizing, we see this ILP method as a natural extension of the
heuristic, to be implemented if the heuristic gets too slow, if the solutions don’t
seem adequate, or to determine a quality measure of the heuristic.

5 Conclusion

Given the limited duration of the study week and the complexity of the prob-
lems connected to chip design, we decided to focus on one aspect which we
felt could ease the work of the chip designers at NXP. Hence we tried to find
an algorithm for connecting nets in a predefined layout, which is as flexible
and customizable as possible, facilitating the designer to choose priorities be-
tween the different aspects that should be optimized, which is stable under local
changes (if needed), and which gives reliably the same answers for identical in-
puts. We were able to present our algorithm in the form of a prototype tool
(see Section 2.3) which showcases all these aspects. Furthermore, we describe
a more generalized approach which provides a quality measure of the solution
and improves our strategy to deal with larger inputs (see Section 4.1).

14

Figure 4: The work done during the study week was well received by NXP and
was mentioned in their newsletter shortly after the final presentation.

The study week permitted us to get acquainted with a large branch of new
and interesting mathematics, as well as provide NXP with a useful prototype
solution (Figure 4) for their routing problem.

References

[1] C.J. Alpert, T.C. Hu, J.H. Huang, A.B. Kahng, and D. Karger. Prim-
Dijkstra tradeoffs for improved performance-driven routing tree design.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 14(7):890–896, 1995.

[2] S. Arora. Polynomial time approximation schemes for Euclidean TSP and
other geometric problems. In Proceedings of the 37th IEEE Symposium on
Foundations of Computer Science, pages 2–11, 1996.

[3] Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauser, Martin W. P.
Savelsbergh, and Pamela H. Vance. Branch-and-price: Column generation
for solving huge integer programs. Operations Research, 46:316–329, 1996.

[4] Cid Carvalho De Souza and Celso Carneiro Ribeiro. Heuristics for the mini-
mum rectilinear Steiner tree problem: new algorithms and a computational
study. Discrete Applied Mathematics, 45(3):205–220, 1993.

15

[5] Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon, editors. Col-
umn generation, volume 5 of GERAD 25th Anniversary Series. Springer,
New York, 2005.

[6] E. W. Dijkstra. A note on two problems in connexion with graphs. Numer.
Math., 1:269–271, 1959.

[7] M. R. Garey and D. S. Johnson. The Rectilinear Steiner Tree Problem
is NP-Complete. SIAM Journal on Applied Mathematics, 32(4):826–834,
1977.

[8] R. Geraerts. Planning short paths with clearance using explicit corridors. In
IEEE International Conference on Robotics and Automation, pages 1997–
2004, 2010.

[9] P. E. Hart, N. J. Nilsson, and B. Raphael. A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

[10] S. Held, B. Korte, D. Rautenbach, and J. Vygen. Combinatorial Optimiza-
tion in VLSI design. In V. Chvátal and N. Sbihi, editors, Combinatorial
Optimization: Methods and Applications. IOS Press, to appear.

[11] Renato F. Hentschke, Jaganathan Narasimham, Marcelo O. Johann, and
Ricardo L. Reis. Maze routing Steiner trees with effective critical sink opti-
mization. In Proceedings of the 2007 international symposium on Physical
design, ISPD ’07, pages 135–142, New York, NY, USA, 2007. ACM.

[12] Huibo Hou, Jiang Hu, and S.S. Sapatnekar. Non-Hanan routing. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 18(4):436–444, April 1999.

[13] Richard M. Karp. Reducibility among combinatorial problems. In Com-
plexity of computer computations, pages 85–103. Plenum Press, New York,
1972.

[14] Christine R. Leverenz and Miroslaw Truszczynski. The rectilinear Steiner
tree problem: algorithms and examples using permutations of the terminal
set. In Proceedings of the 37th annual Southeast regional conference (CD-
ROM), ACM-SE 37, New York, NY, USA, 1999. ACM.

[15] Chih-Hung Liu, Shih-Yi Yuan, Sy-Yen Kuo, and Szu-Chi Wang. High-
performance obstacle-avoiding rectilinear Steiner tree construction. ACM
Transactions on Design Automation of Electronic Systems, 14:45:1–45:29,
2009.

[16] Dirk Müller, Klaus Radke, and Jens Vygen. Faster min–max resource
sharing in theory and practice. Mathematical Programming Computation,
3:1–35, 2011. 10.1007/s12532-011-0023-y.

16

[17] S. Peyer, D. Rautenbach, and J. Vygen. A generalization of Dijkstra’s
shortest path algorithm with applications to VLSI routing. Journal of
Discrete Algorithms, 7:377–390, 2009.

[18] J. Scott Provan. An approximation scheme for finding Steiner trees with
obstacles. SIAM J. Comput., 17(5):920–934, 1988.

[19] David Warme, Pawel Winter, and Martin Zachariasen. GeoSteiner [Com-
puter Software]. www.diku.dk/hjemmesider/ansatte/martinz/geosteiner/.
(version 3.1).

[20] Martin Zachariasen. Rectilinear full Steiner tree generation. Networks,
33(2):125–143, 1999.

[21] Hai Zhou. Efficient Steiner tree construction based on spanning graphs. In
Proceedings of the 2003 international symposium on Physical design, ISPD
’03, pages 152–157, New York, NY, USA, 2003. ACM.

17

