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1 Introduction

During the DocCourse 2009 in Barcelona we were presented with the following
problem: we know that the Delaunay graph of a set of n points (n pair) in the
plane in general position always contains a perfect matching [2]. The proof, by
Michael Dillencourt, relies heavily on the properties of the Euclidean metric, so
the question remains open for other popular metrics.

Last year Ábrego et al. proved that for the metrics L1 and L∞ the Delaunay
graph of points in the plane not only contains a perfect matching; the set of
points always contains a Hamiltonian path [1].

The problem presented in the DocCourse was: Is it true that the Delaunay
graph admits a perfect matching for all the Lp metrics?

Although interested in the problem, we faced a little difficulty with it: we
were not able to even visualize how the Delaunay graph looked like in metrics
different to L1, L2 and L∞. So we first started to try and understand what
happens to the Delaunay graph in arbitrary metrics Lp, and this led us to a
different problem, which we called (by a suggestion of Ferran Hurtado) The Last
Delaunay Triangulation.

2 Definitions

The Euclidean metric is defined by the usual distance function

|(x1, y1), (x2, y2)|2 =
√

(x2 − x1)2 + (y2 − y1)2 = (|x2 − x1|2 + |y2 − y1|2)
1
2 .

If we define this distance function as L2, we can generalize it to a family of
metrics Lp:

|(x1, y1), (x2, y2)|p = (|x2 − x1|p + |y2 − y1|p)
1
p .

This family of metrics are sometimes called Minkowski metrics. We define
L∞ in the obvious way as

|(x1, y1), (x2, y2)|∞ = max (|x2 − x1|, |y2 − y1|).
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(a) p = 1 (b) p = 1.5 (c) p = 2

(d) p = 5 (e) p =∞

Figure 1: Spheres in different Lp metrics.

We can think of how the different Lp metrics behave by looking at the unit
sphere in each of them. For L2 it’s a circle, obviously, and it starts to look more
and more like a diamond when p goes to 1, and more and more like a square
when p goes to ∞ (Figure 1).

For 1 < p < ∞ every point in a sphere has exactly one support line, which
is not true for L1 nor L∞ because they have sharp corners; the spheres in Lp

with 1 < p < ∞ are a smooth curve in all of their points. Also, if two spheres
in Lp intersect each other, they do it in one or two points (or they are the same
ball); again, this is not true for L1 nor L∞ because they contain segments of
lines (Figure 2).

Because of these properties, three non-collinear points determine exactly one
sphere that passes through them in Lp, for 1 < p < ∞. Once more, this is not
true for neither L1 nor L∞; In fact, in those metrics there are many sets of three
non-collinear points, for which there is no sphere passing through all of them.

Given a set P of n points in the plane in general position, we define the
Delaunay graph DG(P ) of P as the graph with P as its vertex set, and where
two points are connected by an edge if there is a ball (given a fixed metric) that
covers them but no other point in P .

Obviously it is equivalent to consider empty spheres instead of balls, where
a sphere S is called empty if there are no elements of P in the bounded region
of S.

For L2 the Delaunay graph is a triangulation, and in fact it’s a triangulation
for all Lp with 1 < p < ∞. For L1 and L∞ it is not a triangulation, and even
more, it’s possible that it does not contains the convex hull of P (Figure 3).

Also we observe that for every edge in a Delaunay triangulation we find a
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Figure 2: Differences between L1, L∞ and Lp with 1 < p < ∞.

triangle containing this edge, such that there is an empty sphere through the
vertices of the triangle. Therefore the Delaunay triangulation can be expressed
by the collection of empty spheres passing through three points of P .

3 Delaunay triangulations in Lp

Playing with different examples of sets of points and what happens when we
increase the p in Lp starting from 2, we observed the following: A triangulation
remains unchanged until one of the empty spheres that passes through three
points of P suddenly touches a fourth point. In this moment technically we
loose the general position because this sphere passes through four points, but
we ignore that and keep growing p. What happens then is that we loose one of
the edges of the triangulation, and we win the crossing edge that appears with
the fourth point (Figure 4).

The interesting moment is when the sphere (actually two spheres converging
into one) passes through these four points. Technically we have a crossing or
an empty quadrangle there, but we take only one of the diagonal edges of the
quadrangle so to get only triangulations for all 1 < p < ∞. The two original
spheres converge to a unique sphere that passes through the four points, and
then we have our flip (and consequently two other spheres: we loose the other
two because they now enclose other points of P ). This keeps happening for other
quadrangles in P as we grow p: we have flips in our Delaunay triangulations.

An interesting but erroneous idea that we had was that maybe when we
loose an edge with a flip, that edge does not appear again in any other metric.
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(a) Delaunay triangulation in L2, with Voronoi diagram in dashed
lines.

(b) Non convex Delaunay graph in L1 with the same set.

Figure 3: Delaunay graphs in the same set of points with different metrics.
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Figure 4: A flip between two different Delaunay triangulations of the same point
set.

Unfortunately this is not true: we have an example where we have a flip and
then for a larger p we have another flip (back to the first configuration) in the
same quadrangle (Figure 5).

But what does happen is that there comes a time when the spheres in our
metric Lp are so close to a square that no matter how much we keep growing p,
another flip is not possible.

And then what we have is The Last Delaunay Triangulation.

Figure 5: An edge that reappears when we grow p in Lp.
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Figure 6: How the centes diverges or converges when p grows.

4 The Last Delaunay Triangulation

Instead of focusing on the empty spheres of our Delaunay triangulations, we are
going to look at the centers of those spheres. As we grow p, the centers of those
spheres start to move as curves; we have a flip every time these curves meet
(simultaneously for the same p).

It is obvious that a curve described by a center does not intersect itself,
and we haven’t proved but we are convinced that the curves have the following
behavior (up to symmetry): Take two of the three points that determine a
sphere (without loss of generality lets assume that they do not lie on the same
horizontal line), and consider the rectangle with these two points in its corners.
If the third point is inside this rectangle, the curve described by the spheres
passing through the three points will diverge asymptotically to a line with slope
1 or -1. If the third point is outside this rectangle, the curve will be bounded
(Figure 6).

So when p is sufficiently large, the centers of the spheres will converge to a
fixed point, or they will move away from the set in a stable way. There is no
way in which they could intersect each other, and so the Delaunay triangulation
will remain the same until p “reaches” ∞.

That is The Last Delaunay Triangulation, and the name fits because in ∞
(as we already saw) there is the possibility that the Delaunay graph is not a
triangulation. Although we have sketches of proofs for all of our claims, we will
need to write them down carefully and formally before we present them.

5 Conjectures and future work

We believe that the Delaunay graph in L∞ is a subgraph of The Last Delaunay
Triangulation, and we are trying to prove it. This would give us an efficient
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way to obtain The Last Delaunay Triangulation, because we will only need to
calculate the Delaunay graph in L∞ and then complete the triangulation (in
the right way, of course).

As we saw, it’s possible that a triangulation repeats itself, for growing p.
How many times can this happen? How many times can an edge disappear and
reappear later?

We also would like to know what is the maximum number of triangulations
that a set of points can realize when we grow p starting in 2; we believe that
this number of triangulations is polynomial in the number of points in the set,
and that it will be n2 or n3.

Much of the initial insight in this problem came after we programmed a
little algorithm to calculate the circumcenter of three points in Lp for arbitrary
p. This allowed us to actually see how a given Delaunay triangulation changes
when p is growing; unfortunately our algorithm is not very fast, and we could
only work with small point sets. Although not necessary for the main result
and the conjectures we are investigating, it would be nice to come up with a
better algorithm that would allow us to see how larger sets of points behave
when growing the p.
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[1] B. Ábrego, E. Arkin, S. Fernández, F. Hurtado, M. Kano, J. Mitchell and
J. Urrutia, Matching points with squares, Discrete & Computational Ge-
ometry, 41(1), pp. 77-95, January 2009.

[2] M. B. Dillencourt, A Non-Hamiltonian Delaunay Triangulation, Informa-
tion Processing Letters, 25(3), pp. 149-151, 1987.

[3] M. B. Dillencourt, Toughness and Delaunay Triangulations, Discrete and
Computational Geometry, 5(6), pp. 575-601, 1990.

[4] D. T. Lee Two-Dimensional Voronoi Diagrams in the Lp-Metric Journal
of the Association for Computing Machinery, 27(4), pp. 604-618, 1980.

[5] Okabe A. Okabe, B. Boots and K. Sugihara, Spatial Tessellations: Concepts
and Applications of Voronoi Diagrams, Wiley, Chichester, UK (1992).

7


