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Abstract

For a given cardinality we want to find lattice point configurations such
that the number of lattice points with distance 1 to the set is small.
Sets with the smallest number possible are called optimal. It is known
that sets of points with coordinate sum less or equal to some integer
k are optimal. We show that they are unique for their cardinalities.
Also we will discuss the question of how to characterize optimal sets in
general, and if by adding the points of distance 1 to an optimal set we
will always get an optimal set. In both cases the answer is positive for
the plane.
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1 Introduction

Consider the d-dimensional lattice Zd with the distance d(x, y) =
∑

i |xi−yi|,
where x = (x1, . . . , xd) and y = (y1, . . . , yd). Given a finite set X ⊂ Zd, the
neighborhood, N(X), of X is

N(X) =
{

y ∈ Zd\X : d(y, X) = 1
}

,

and the the size of this neighborhood is n(X) = |N(X)|. Further, the
boundary, ∂X, of X are the points of X that are next to some point of N(X),
and the interior, intX, of X are the points of X for which all neighbors are
in X, i.e.,

∂X = {x ∈ X : d(x,N(X)) = 1} ,
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intX = {x ∈ X : d(x,N(X)) > 1} = X\∂X.

For any r ∈ N, the set Bd
r = {x ∈ Zd :

∑
i xi < r} is called the ball (of

radius r). Note that the neighborhood N(Bd
r ) of a ball Bd

r contains exactly
the points of Zd with coordinate sum r.

Figure 1: The ball B2
4 (blue) and its neighborhood (yellow).

A finite set X ⊂ Zd is called optimal if the size of its neighborhood n(X)
is minimal among all sets Y ∈ Zd with |Y | = |X|.

Background. In this paper we consider the problem of characterizing point
sets with minimum neighborhood size among all sets of fixed cardinality.
Isoperimetric problems of this kind have arisen in a number of different
contexts, with several definitions of neighborhood, and several different
underlying finite and infinite lattices. One approach to a solution is providing
an ordering of the lattice points such that the first j of them form an optimal
set of their cardinality for every j. For the Boolean lattice (chains of length
two) this is the celebrated theorem of Harper [Har66]. Kruskal-Katona, and
Clements and Lindström [CL69] solve this for chains of arbitrary length l.
Beruzkov and Serra [BS02] consider the problem for cartesian powers of
graphs.

Macaulay [Mac27] presents an ordering of the nonnegative d-dimensional
integer points Zd

+ having coordinate sum ≤ k such that the first j of them
have a minimum number of neighbors with coordinate sum k + 1 among all
sets of k-sum points. Wang and Wang [WW77a] present, as a similar (and
equivalent) result, sets in Zd

+ that minimize the number of neighbors in Zd
+,

and extended this to an ordering of the points of Zd such that the first j
of them minimize the number of neighbors in Zd. They call these optimal
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sets standard spheres, and we adopt this terminology. Basically, a standard
sphere is a ball plus possibly some points of the neighborhood of the ball.

As it happens, the sequence of standard spheres enjoys the property that
it is closed under the operation of adding the neighborhood. In particular,
balls Bd

r are optimal sets in Zd, which is the analogous result to the classical
isoperimetric problem in Euclidean space. In contrast with its Euclidean
counterpart, standard spheres are not, in general, the only optimal sets in
lattices.

In the case of the Boolean lattice, all optimal sets have been characterized
by Beruzkov [Bez89], while for general lattices the complete characterization
is still an open problem.

For a survey about different types of isoperimetric problems, as well as a
thorough list of references, see [Bez94].

In this paper we address the following questions.

Problem 1.1. Let X ⊂ Zd be an optimal set. Is it true that N(X) is also
an optimal set?

The answer is yes in the Boolean lattice (see [WW77b]). In Section 3 we
give a proof for Z2.

Problem 1.2. Is it true that balls are the only optimal sets of their cardinality
in the d-dimensional lattice?

The answer is again yes for the Boolean lattice (see [Bez94] and references
therein). We prove that it is also true for the d-dimensional lattice (see
Section 2).

Problem 1.3. What are necessary and sufficient conditions for sets X ⊂ Zd

to be optimal?

In Section 3 we explain some necessary conditions for optimality in Z2.

1.1 Some Basic Observations

We call a set X ⊂ Zd connected if, for any x, y ∈ X, there exists a path
(vj)1≤j≤k from x to y in X such that any two consecutive points in the path
differ by at most one in each coordinate, i.e. vj − vj+1 =

∑
i≤d ciei with

ci ∈ {−1, 0, 1}.

Proposition 1.4. A necessary condition for a finite set X ⊂ Zd to be
optimal is that X is connected.
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Proof. Consider a finite set X consisting of two connected components U and
V . Further let umax be some point of U with maximal first coordinate, and
vmin a point of V with minimal first coordinate. Then umax + (1, 0, . . . , 0) ∈
N(X). Thus by translating V such that umax + (1, 0, . . . , 0) = vmin we get a
set X ′ with |X ′| = |X| and n(X ′) ≤ n(X)− 1.

In the following, all considered sets X ⊂ Zd will be finite and connected.

Proposition 1.5. The optimal neighborhood size is increasing with the
cardinality of the point set: if X and Y are optimal sets with |X| < |Y |, then
n(X) ≤ n(Y ).

Wang and Wang show this for standard spheres [WW77a], and thus it
has to be true for all optimal sets.

Proposition 1.6. Consider the ball Bd
r , with |Bd

r | = s. Then the neighbor-
hood of any set X ⊂ Zd with |X| = s + 1 has size n(X) ≥ n(Bd

r ) + d− 1.

Proof. This follows again directly from the results in [WW77a]. The standard
sphere with s+1 points is Bd

r plus a point x ∈ N(Bd
r ) in the positive orthant.

The grid point x has coordinate sum r, and thus it has in each coordinate
direction one neighbor with coordinate sum r + 1. All these neighbors must
lie in N(Bd

r ∪ {x})\N(Bd
r ). Thus the neighborhood of Bd

r ∪ {x} has at least
size n(Bd

r ) + d− 1.
As standard spheres are optimal, any set of cardinality s + 1 needs to

have at least this neighborhood size.

Given a set X ∈ Zd, we want to consider slices of X with respect to some
coordinate direction. To this end we denote by

Lk,l(X) = {x ∈ X : xk = l}

the lth k-level of X. Every k-level lies in a (d− 1)-dimensional hyperplane,
and we denote by Ld−1

k,l (X) ∈ Zd−1 the (d− 1)-dimensional set that results
from Lk,l(X) by omitting the k-th coordinate:

Ld−1
k,l (X) =

{
(x1, . . . , xk−1, xk+1, . . . , xd) ∈ Zd−1 : (x1, . . . , xd) ∈ Lk,l(X)

}
.

In the other direction, given some set Y ∈ Zd−1 then we define the lth

k-extension of Y as the set Y d
k,l ∈ Zd that is obtained by adding a (new) k-th

coordinate with value l:

Y d
k,l =

{
(x1, . . . , xd) ∈ Zd : xk = l, (x1, . . . , xk−1, xk+1, . . . , xd) ∈ Y ⊂ Zd−1

}
4



Observation 1.7. The size of the neighborhood of some k-level, n(Lk,l(X)),
equals the size of the neighborhood of Ld−1

k,l (X) (in d− 1 dimensions) plus
two times the size of X.

Observation 1.8. Let X ⊂ Zd and let Lk,l(X) be some level (in any
coordinate-direction) with nonempty interior I = intLd−1

k,l (X). Then adding
(any subset of) the k-extensions Id

k,l−1 and Id
k,l+1 to X does not increase the

size of the neighborhood n(X).

By adding we here mean taking the union of the point sets.

Observation 1.9. If X ⊂ Zd contains some level Lk,l(X) such that the
following two statements hold:

1. Ld−1
k,j+1(X) ⊆ intLd−1

k,j (X) for all j ≥ l;

2. Ld−1
k,j−1(X) ⊆ intLd−1

k,j (X) for all j ≤ l,

then the size of the neighborhood of X is n(X) = n(Lk,l(X)).

x2

x1

Figure 2: The highlighted level, L2,1(X), satisfies Observation 1.9.

Observation 1.10. The cardinality of any ball |Bd
r | is odd.

Proof. The result is trivial for d = 1. For d > 1 a ball consists of an odd
number of balls of dimension d− 1.
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2 Uniqueness for Balls

2.1 Dimension 2

Given a set X ⊂ Z2, assume w.l.o.g. that the origin (0, 0) is part of X, and
consider the following four diagonal tangents of X:

t++ : +x1 + x2 = c++ ≥ 0
t+− : +x1 − x2 = c+− ≥ 0
t−+ : −x1 + x2 = c−+ ≥ 0
t−− : −x1 − x2 = c−− ≥ 0

where c±,± are chosen so that for each equality there is some point in X
that satisfies it and every point in X satisfies the inequalities obtained by
replacing = with ≤. The diagonal hull DH(X) of X is the set of all integer
points in the region bounded by these tangents. Further, X is called diagonal
convex if X = DH(X).

Figure 3: A set with its diagonals (left) and the diagonal hull of the set
(right).

If a set X ⊂ Z2 is diagonal-convex, then each point on the boundary lies
on at most two of the diagonal tangents, and X resembles a parallelogram.
However, if two diagonal tangents intersect in a non-integer point, then
there is a (connected) portion of ∂X of cardinality 2 that is parallel to some
coordinate direction. We will refer to such parts as axis-aligned components
(of ∂X). Accordingly, for each of the diagonal tangents t we call ∂X ∩ t a
diagonal (of ∂X).

Note that ∂X might have none, two, or four axis-aligned components.
For example, the diagonal hull of the set X in Figure 3 has two axis-aligned
components, both of which are parallel to the horizontal axis.

6



Proposition 2.1. Let X ⊂ Z2, then n(DH(X)) ≤ n(X).

Proof. DH(X) is obtained from X by repeatedly applying the operation
from Observation 1.8 until there are no points in any direction that can be
added.

Theorem 2.2. Balls B2
r are unique optimal sets of their cardinality.

Proof. Assume that X ⊂ Z2 is a set with |X| = |B2
r | and n(X) = n(B2

r ) for
some r ∈ Z+. Then X has to be diagonal convex. Otherwise |DH(X)| > |B2

r |
and n(DH(X)) ≤ n(X) = n(B2

r ), which contradicts Proposition 1.6.
There are four cases for the possible number and relative positions of the

axis-aligned components: ∂X can have four, two parallel (opposite), none,
or two orthogonal axis-aligned components of size 2 (see Figure 4).

Our main strategy will be to transfer parts of ∂X to some part of N(X)
without increasing the size of the neigborhood. For these new sets it is
then easy to see that they cannot simultaneously be optimal and have the
cardinality of a ball.

Figure 4: The four basic shapes of diagonal convex sets in Z2.

Case 1. ∂X has four axis-aligned components.
Consider two opposite diagonals. They both have the same length
k, and are adjacent to k + 1 points of the neighborhood. Remove
all points from one of these diagonals, and add them along the other
diagonal (from bottom to top, see Figure 5). This results in a set
X ′ with n(X ′) = n(X) that is not diagonal convex (as it contains
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an axis-aligned component of size 3), which is a contradiction to the
assumption that X is optimal and has the cardinality of a ball.

Figure 5: Case 1: Arranging all points from a diagonal along the opposite
diagonal gives the same neighborhood-size and a non-diagonal of size 3.

Case 2. ∂X has two parallel non-diagonals.
Consider the levels in the coordinate direction k in which the axis-
aligned components both constitute a level. Then every k-level has
even cardinality, and thus |X| is even. By Observation 1.10, this is a
contradiction to X having the cardinality of a ball.

4

8

6
8

6
4
2

2

10
10

Figure 6: Case 2: Even parity.

Case 3. ∂X has no axis-aligned components.
Let k and l the lengths of the diagonals (each pair of opposite diagonals
has the same length).

Case 3.1 If k = l, then X is a ball.
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Figure 7: Case 3: k = l (left), k = l + 1 (middle), and k > l + 1 (right).

Case 3.2 If k > l, then remove all points from one of the shorter diagonals
and add them along one of the (at least before) longer diagonals.
The resulting set X ′ has n(X ′) = n(X). Further, for k = l + 1 it is a
diagonal convex set with two parallel axis-aligned components of size
2, while for k > l + 1 , it is not diagonal convex. In either case, we
get a contradiction to the assumption that X is optimal and has the
cardinality of a ball.

Figure 8: Case 3: changed point sets. Turquoise points are additional ones.

Case 4. ∂X has two orthogonal axis-aligned components.
Consider the diagonal that connects the two axis-aligned components,
and say it has length k. Then the opposite diagonal has length k + 1
and the two other diagonals both have length l.

Case 4.1. If k = l, then this is exactly a ball minus one diagonal. These
are optimal sets, but obviously cannot have the cardinality of a ball.

Case 4.2. If k = l − 1, then this is exactly a ball plus one diagonal. Again,
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Figure 9: Case 4: left to right: k = l, k = l − 1, k < l − 1, and k > l.

these are optimal sets, but cannot have the cardinality of a ball.

Case 4.3. If k < l − 1, then we remove the diagonal of length k and add it
again along one of the diagonals of length l.
In the resulting point set there is at least one point missing in this new
diagonal, and adding it does not increase the size of the neighborhood.
By Proposition 1.6 this contradicts our assumptions.

Case 4.4. If k > l, then we remove a diagonal of length l and add it
along a diagonal of length k. Again, there is at least one point missing
in the new diagonal and adding it does not increase the size of the
neighborhood.

2.2 The General Case: d Dimensions

In [WW77a] the authors define a transformation of one set to another of the
same cardinality: The k-normalization Nk(X) of a set X ⊂ Zd is obtained
by:

1. replacing all (nonempty) k-levels of X by (d− 1)-dimensional standard
spheres of the same cardinality, and

2. changing the order of the levels such that the largest one is the 0th

k-level and the remaining ones are arranged half of them above and
half of them below the 0th k-level in a way that |Lk,i| ≥ |Lk,i+1| for
i ≥ 0, and |Lk,j | ≥ |Lk,j−1| for j ≤ 0.
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Figure 10: Case 4: changed point sets. Turquoise points are additional ones.

To show that standard spheres are optimal sets, they take an arbitrary
set and repeatedly apply 1-normalization and d-normalization to it. They
prove that this series of transformations terminates with a standard sphere
after a finite number of steps, and that it does not increase the size of the
neighborhood.

We are going to use their proof to show the uniqueness of balls as optimal
sets.

Theorem 2.3. Balls Bd
r are unique optimal sets of their cardinality.

Proof. The proof is by induction on the dimension d, the induction base
d = 2 being Theorem 2.2 from the last section.

For the induction step consider some optimal set X ⊂ Zd with |X| = |Bd
r |

for some r. If we repeatedly apply 1-normalization and d-normalization to
X as in [WW77a], then X is transformed to Bd

r . Consider the set Y that
occurs in this transformation process exactly before the last normalization
step. We assume the last step is in direction 1 to reduce the number of
variables in the following.

Then there is a one-to-one correspondence between the 1-levels of Y and
the 1-levels of Bd

r , such that all cardinalities match. Note that the levels of
Bd

r are (d− 1)-dimensional balls. Define

lmin := min{l ∈ Z : L1,l(Y ) 6= ∅}, and
lmax := max{l ∈ Z : L1,l(Y ) 6= ∅}.
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Then as a lower bound for the size of the neighborhood of Y we have

n(Y ) ≥ |L1,lmax(Y )|+ |L1,lmin
(Y )|+

lmax∑
l=lmin

n(Ld−1
1,l (Y ))

Now as every level L1,l(Y ) has the cardinality of a ball Bd−1
rl

for some rl,
it follows by the induction hypothesis that they all really have to be these
balls (as otherwise n(Ld−1

1,l (Y )) > n(Bd−1
rl

) and thus n(X) ≥ n(Y ) > n(Bd
r ),

which would be a contradiction to the assumption that X is optimal).
Finally consider the order of the 1-levels in Y . If they are not ordered

in the same way as for the according ball Bd
r , then there exist two adjacent

levels L1,i(Y ) = Bd−1
ri

and L1,j(Y ) = Bd−1
rj

such that rj < ri − 1. But then

I = int
(
Ld−1

1,i (Y )
)
\Ld−1

1,j (Y ) 6= ∅

and thus by Observation 1.8 we can add points to Y without increasing
the size of the neighborhood n(Y ). This is, once again, a contradiction
to Proposition 1.6 since Y was assumed to be optimal and of the same
cardinality as some Bd

r .
Thus X = Y = Bd

r which completes the proof.

3 Necessary Conditions for Optimal Sets

3.1 Back to Dimension 2

In Proposition 1.4 we showed that connectedness is a necessary condition for
a set X ⊂ Z2 to be optimal. As a first step towards further conditions we
consider the shapes of X and Y = X ∪N(X) for diagonal convex sets, and
the relation beween n(X) and n(Y ).

Proposition 3.1. If a set X ⊂ Z2 is diagonal convex, then Y = X ∪N(X)
is again diagonal convex and n(Y ) = n(X) + 4.

Proof. The lengths of the axis-aligned parts of N(Y ) and N(X) are identical,
while the lengths of the diagonal parts of N(Y ) are the lengths of the diagonal
parts of N(X) plus one.

This proposition tells us that diagonal convex sets have a shape that is
“stable” under the operation of adding the neighborhood, and that the size of
the neighborhood behaves in a nice way. But there is a far larger class of
sets that behaves in essentially the same way:
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Figure 11: A diagonal convex set X, together with N(X) and N(X ∪N(X)).

Consider some set X ⊂ Z2, such that the neighborhood N(X) is a simple
cycle. By this we mean that for any two points in N(X) there are exactly
two disjoint paths between them (where paths are defined in the same way
as previously for the definition of connectedness).

Note that if we regard the cycle N(X) as a (not necessarily convex)
polygon, the grid points in the interior of the polygon are all points of X.
Observe that the inside and outside angles at any v ∈ N(X) are at least 90
degrees, and at least 135 degrees if one of the polygon edges adjacent to v
is in a coordinate direction. An interior angle smaller than this would give
d(v,X) > 1, and an exterior angle would lead to a subcycle of length 3 in
N(X).

We will proceed through the cycle N(X) in the counter-clockwise direction
and consider the occuring direction changes with respect to the oriented
coordinate directions (ei, σ) with i ∈ {1, 2} and σ ∈ {+,−}:

• Choose as starting (and ending) point the topmost point of the tangent
t++ : x1 + x2 = c > 0.

• Choose as starting (and ending) direction (e1,−).

• When proceeding through the cycle, remember the current coordinate
direction (ei, σ), and the number of occured direction changes. In every
step xk to xk+1

1. keep the direction (ei, σ) if σ = sign(xk+1 − xk)i,

2. otherwise change the direction to (ej , σ
′) with j 6= i and σ′ =

sign(xk+1 − xk)j .
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• as the starting point is reached with a direction different from (e1,−),
the turn to this direction (according to the turning rule above) counts
an as occuring turn.

Every considered (and counted) direction change is a (left or right) turn
by 90 degrees. As we require the starting direction to be identical to the
ending direction, we turn 360 degrees in total. Thus we count an even number
k ≥ 4 of direction changes (each of the oriented directions at least once).

Also, by the above observations about the occuring angles, we notice
that for every turn there is a diagonal part of N(X) of size at least 2, that
could be seen as being in either of the two directions before and after the
turn. We will call such a diagonal part of N(X) a connecting diagonal.

We call a set X close-to-convex if N(X) is a cycle and if in the process
described above there are four changes in direction (i.e. every oriented
coordinate direction appears exactly once).

Figure 12: Proceeding through the neighborhood of a close-to-convex set.
Direction changes occur at the black arrows.

Observation 3.2. If a set X ⊂ Z2 is close-to-convex, then Y = X ∪N(X)
is again close-to-convex, and n(Y ) = n(X) + 4. Moreover, Y has the same
shape as X despite for the four connecting diagonals which each get longer
by one. See Figure 13 for an example.

Note that each connecting diagonal is identical to the intersection of
X ∪N(X) with one of its diagonal tangents.

Observation 3.3. The standard spheres that are presented in [WW77a] are
optimal sets that are close-to-convex, and for any standard sphere S, S∪N(S)
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Figure 13: A close-to-convex set and two layers of neighborhood.

is again a standard sphere (and thus optimal). This implies that for any
optimal set X ⊂ Z2 the inequality n(Y ) ≥ n(X)+4 holds for Y = X ∪N(X).

Let us go back to general connected sets X ⊂ Z2. We denote the cycle
C(X) ⊆ N(X) for which X lies in the interior of the polygon defined by this
cycle as the cycle that surrounds X. Further we call the (finite) set cl(X) of
grid points enclosed by C(X) the closure of X.

An ordered subset {x1, x2, . . . , xn} ⊂ Z2 is a lattice path if the elements
are distinct and d(xi, xi+1) = 1 for all i. For emphasis, we note that every
lattice path is a path, as defined in section 1, but not conversely.
A hole in X is a subset H ⊂ cl(X)\X such that

1. H is connected, and

2. for every h ∈ H, every lattice path from h to C(X) contains some
element of X.

Proposition 3.4. If X ⊂ Z2 is connected, then for Y = X ∪N(X) we have
n(Y ) ≤ n(X) + 4.

Proof. For any close-to-convex set this is obviously true.
Now if X is not close-to-convex, then either its neighborhood N(X) does

not form a cycle or we will get more than four turns when proceeding through
the cycle like described above.

In the latter case assume we have counted 2k + 4 turns. Then we have
counted exactly k + 4 left turns and k right turns. For every left turn the
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connecting diagonal gets longer by (at most) one, while for each right turn
the connecting diagonal gets shorter by (at least) one (see Figure 14). All
parts in between are just translated by 1 and are thus (at most) as long as
they were.
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Figure 14: All possible right turns (up to symmetry).

Note that N(Y ) need not be a cycle, and that the at most and at least
statements from above stem from the fact that points of N(Y ) might be
created duplicately from more than one part of N(X), see Figures 15 and 16
for examples.
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Figure 15: N(Y ) does not form a cycle: creating a hole.
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Figure 16: N(Y ) does not form a cycle: Right turns with short connecting
diagonal.

Now what is left is the situation when N(X) is not a cycle. Here, consider
the cycle C(X) ⊂ N(X) that surrounds X.
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For the part of the neighborhood of N(Y ) that lies outside of C(X) the
same arguments as above can be applied.

For the inside part observe that every component of N(Y ) corresponds
to a hole of X ∪N(X), see Figure 17, and thus the size of the neighborhood
inside C(X) is decreasing.

Figure 17: A connected set X visualizing some possible shapes. The lines
indicate all paths in N(X).

Proposition 3.5. If X ⊂ Z2 is not close-to-convex, then X cannot be
optimal.

Proof. Assume that X is connected but not close-to-convex, and consider
again the cycle C(X) ⊂ N(X) that surrounds X.

If C(X) ( N(X), then the set Y containing all points inside this cycle
C(X) has |Y | > |X| and n(Y ) < n(X). Thus X cannot be optimal.

If C(X) = N(X) then consider Z = X ∪ N(X). From the proof of
Proposition 3.4 we know that if N(Z) is a cycle again, then the length
of every right turn connecting diagonal is shorter than the according one
in N(X). Thus, after finitely many steps of adding the neighborhood we
obtain a set that is not optimal (as its neighborhood is not a cycle). But as
Proposition 3.4 holds for every step of adding the neighborhood, X cannot
be optimal either.

Next we show that adding the neighborhood to a set does not carry us
away from optimality. More precisely, we have:

Proposition 3.6. Consider any connected set X ⊂ Z2 and its union with
its neighborhood X ′ = X ∪N(X). Let Y and Y ′ be the standard spheres of
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cardinality |Y | = |X| and |Y ′| = |X ′|, respectively. If n(X) = n(Y ) + k for
some k ≥ 0, then n(X ′) ≤ n(Y ′) + k.

Proof. |Y ′| = |X ′| = |X|+ n(X) = |Y |+ n(Y ) + k ≥ |Y ∪ n(Y )|. Thus from
Observation 1.5, it follows that

n(Y ′) ≥ n(Y ∪ n(Y )) = n(Y ) + 4 = n(X)− k + 4 = n(X ′)− k.

Now we can state the answer to Problem 1.1, i.e., we have shown that, at
least in dimension 2, the set of optimal sets is closed under the operation of
adding the neighborhood. We record this solution in the following corollary.

Corollary 3.7. If a set X ∈ Z2 is optimal, then n(X ∪N(X)) = n(X) + 4
and X ∪N(X) is also optimal.
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