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Preface

Why are we doing anything we are doing? Why is it that I studied mathematics and ended
up writing this thesis? There seems to be an unknown force, pushing us forward, driving us
further and further to investigate the unknown. One might say we do so to make sure there
are no lurking dangers, or to learn how to deal with them. Even if this sounds reasonable, the
more convincing reason to me has always been that we want to feel the wonder of discovery.

For me personally, the main reason to study mathematics was to find out how things really
work, interact, and are constructed. The hard lesson I had to learn, like anyone who has
caught a glimpse into research, was that there will always be more things we do not know
and understand, than there are things we do. Or, to quote Socrates: “The only true wisdom is
to know that you know nothing.”

The questions that drew me towards the topics of this thesis can maybe, very much sim-
plified, be formulated as follows: Why can the discrete setting be more difficult than the
continuous? Why is there ambiguity in the discrete counterparts to unique continuous ob-
jects? How can few dimensions be more complicated than many?

These questions will not be answered in this thesis, and maybe it is in their nature to re-
main unanswered, and instead guide us towards new discoveries. Some steps in this direction
might be found on the pages to follow.

There are many people I would like to mention, people that made this thesis possible. First
and foremost I want to thank my promoter Karen Aardal for her relentless support, and for
being the best promoter anyone could ever ask for. I would be honored to call her a friend in
the future.

I also want thank Andrea Lodi and Laurence Wolsey for answering my many questions
and for making me feel welcome from the first meeting on. It was these meetings in Aussois,
Brussels, and Bologna that showed me how much fun research can be when done with the
right group of people.

My first year in Delft would have been very different without Achill Schürmann and
Frank Vallentin, whose enthusiasm for mathematics and overall attitude towards science and
life will always be an inspiration to me.

After my graduation in Berlin, Christian Haase gave me the opportunity to start my ex-
ploration of the discrete (and colorful) mathematics, and I owe him my deepest gratitude for
this.

I thank Dion Gijswijt for always having an open door and for proof-reading parts of this
thesis. The latter also applies to Anna Gundert, and I thank her for that, but even more for
being my partner, keeping me sane, and so much more.
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The time in Delft would have been much more dull without all the great people I had the
pleasure to share the time and space with, and so I thank all (former) PhD students for the
many inspiring and entertaining chats, specifically Sjoerd Dirksen, Matthijs Pronk, Pieter van
den Berg, Sonja Cox, Guido Oud, Evan DeCorte, Shanfei Li, David de Laat, Jan Rozendaal,
and Özlem Cavusoglu.

Finally, working on this thesis has certainly had an impact on my social life. I thank all
my friends and family for putting up with me during this time, and in particular the ones who
were hit the hardest: Anna, Peter, and my parents.

Remarks on the Screen Version
This version is almost verbatim identical with the version submitted and printed. What was
changed is the layout: Here it is based on A4-paper, there are no left and right pages, and the
footer and header are slightly altered for easier navigation on a screen. There is also a touch
of color added, the page numbers correspond to the actual page-number in the document, and
the index was removed since it is vastly inferior to any digital search-function.

The only exceptions to the above are this section and some very minor changes to fix
layout-problems due to the changed text-width.
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Introduction

Integer optimization is a powerful modeling tool both for problems of practical and more
abstract origin. Since the 1970s we have seen huge progress in the size of problem instances
that can be tackled. This progress is mostly due to the many results in polyhedral combina-
torics and to algorithms and implementations related to the polyhedral results. In the theory
of integer optimization we have also seen exciting results related to the algebraic structure of
the set of integer points in polyhedra together with algorithms that exploit them.

One prominent such result is the integer programming algorithm of Lenstra [58] that finds,
in polynomial time, an integer point in a polyhedron or concludes that no such point exists,
if the dimension is fixed. The key ingredient in Lenstra’s result is lattice basis reduction. In
this thesis we will present results that make a step in the direction of merging the approach
of polyhedral combinatorics with a reformulation technique built on lattice basis reduction.

In Chapters 2, 3, and 4, the leading question will be, generally speaking, how to solve the
integer optimization program

max
{
cTx : Ax = b, x ≥ 0, x ∈ Zn

}
, (1)

where A is an integer m × n matrix of full row rank, b an integer m-vector, and c an integer
n-vector.

It is of particular interest here to observe that the presence of equality constraints implies
that the feasible region will lie in an affine subspace of Rn, and thus we can equivalently
express the program in less variables than it is given to us, by reformulating it in terms of this
subspace.

While the methods of branch-and-bound (or branch-and-cut) in connection with linear op-
timization and cutting plane algorithms provide successful all-purpose methods for integer
optimization, they often do not perform satisfactorily if the feasible set of the linear relax-
ation is not full-dimensional.

Starting with the above-mentioned algorithm of Lenstra [58], several lattice-based ap-
proaches to reformulate the feasible region have been proposed, see, e.g., [2, 5, 25, 54, 59,
60, 63]. Here we will consider the reformulation as in [2]:

x := x0 + Qµ , (2)

where x0 ∈ Zn satisfies Ax0 = b, µ ∈ Zn−m, and Q is a basis for the lattice kerZ(A) =
{x ∈ Zn : Ax = 0}. Then Q indeed captures the configuration of the integer points that lie in
the affine subspace containing all feasible points.
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Introduction

Due to the nonnegativity requirements on the x-variables, one now obtains an equivalent
formulation of the integer program (1):

max
{
cT(x0 + Qµ) : Qµ ≥ −x0

}
. (3)

This reformulation has been shown to be of particular computational interest in the case
where Q is reduced in the sense of Lovász [57].

Chapter 1 provides the basic notations and results we will make use of in the other chapters.
A fair amount of details is provided, and where the technicalities seem to lead too far from
the topic of the other chapters, further references are provided.

In Chapter 2, we will bring the reformulation given in (3) together with cutting plane algo-
rithms, a type of algorithm that was first developed in the 1960s and 1970s (see, e.g., [10, 11,
20, 41, 42, 43, 69]) and is now an integral part of the most successful integer optimization
programs: Given P = {x ∈ Rn : Ax = b, x ≥ 0}, we want to find inequalities that are satis-
fied by all x ∈ P ∩ Zn but violated by some points in P, ideally leading us to the convex hull
of P ∩ Zn.

We will show that while all inequalities we obtain in the reformulation will theoretically
be obtainable in the original space by similar methods, the reformulation still provides a good
heuristic for inequalities that are more difficult to find without this technique.

This chapter is based on joint work with Karen Aardal, Andrea Lodi, and Laurence
Wolsey.

In Chapter 3 we observe that one can enrich the reformulation given in (3) by not only
taking the lattice kerZ(A) into consideration, but also the general shape of the polytope P̂ ={
x ∈ Rn−m : Qµ ≥ −x0

}
in this lattice.

Taking the shape into account when reducing the lattice has already been observed by
Lovász in [44], as part of a proof of the theorem of Lenstra we mentioned before. However,
this result is of theoretical nature based on the ellipsoid method for linear programming, and
to date no implementation of the ellipsoid method has managed to convince the community
of being more useful for the settings described in (1) and (3) than the classical approaches of
branch-and-bound and cutting planes.

In [70], Nemirovski provided a constructive way of finding ellipsoids of large volume
inside polytopes, even in the case where the polytope is not full-dimensional. We use this
result to obtain an implementation of the idea to reduce the lattice kerZ(A) with respect to
the shape of P̂. We therefore obtain that the longer a reduced basis vector is, the smaller the
number of lattice hyperplanes orthogonal to it we will need to cover all integer points in P̂.

This chapter is based on joint work with Karen Aardal and Pim Otte.

Chapter 4 is more theoretical in nature. Some of the hard instances in the literature that
have been successfully tackled by lattice-based techniques, such as market split and cer-
tain classes of knapsack instances, have randomly generated input A. Since the considered
instances are very hard even in low dimension, less experience is available for larger in-
stances. In Chapter 4 we study such larger instances and observe that the LLL-reduced basis
of kerZ(A) has a specific sparse structure.
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In particular, this implies a map in which some of the original variables get a “rich”
translation into a new variable space, whereas some variables are only substituted in the new
space. If an original variable is important in the sense of branching or cutting planes, it is
generally desirable to translate this variable in a non-trivial way.

We partially explain the obtained structure of the LLL-reduced basis in the case that the
input matrix A consists of one row a. Since the input is randomly generated, our analysis
will be probabilistic. The key ingredient is a bound on the probability that the LLL algorithm
will interchange two subsequent basis vectors.

This chapter is based on joint work with Karen Aardal, a conference-version of this work
was published in the proceedings of IPCO 2013 [4], and a version similar to this chapter was
accepted to Mathematics of Operations Research.

Chapter 5 marks a shift in focus and presents a topic from the more combinatorial side of
optimization. Instead of optimizing a linear function in a lattice, with some given inequalities,
we now want to optimize the shape of a set X of lattice points, such that the amount of lattice
points in the vicinity of X is minimized.

This question is induced by the related continuous question of how to minimize the sur-
face of a set of given volume. While for the continuous setting there is a unique solution in
the form of the ball, in the discrete setting there is not always a unique optimal solution.

We study conditions for optimal solutions, in particular for dimension 2, and show that
for a certain family of cardinalities the optimal solutions (in general dimension) are indeed
unique.

This chapter is based on joint work with Aaron Dall and Birgit Vogtenhuber, and a version
of it was published as a research report for the DocCourse Combinatorics and Geometry
2009 [31].
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C O

Lattices and Optimization Basics

In this thesis, we will consider integer optimization programs connected to lattices. The
current chapter contains the basic definitions and some introductory examples. Readers well-
versed in the theory of lattices, linear optimization, and polyhedral combinatorics will not
discover any new theorems here and can safely skip to the next chapter.

The material and presentation of this chapter is largely inspired by the first parts of [1] by
Aardal and Eisenbrand and [66] by Micciancio and Goldwasser. We assume that the reader
is somewhat familiar with the basic notions from linear algebra as, e.g., the real numbers R,
vector spaces, and basic matrix-arithmetic. There is an abundance of books on these topics
one could mention here as references. Without any claim that others are less suited, one in
which all prerequisites are contained is the book [56] by Lang.

We begin by defining what we mean by a “lattice”. Given m ≤ n linearly independent
vectors b1, . . . , bm ∈ R

n, the set

L(b1, . . . , bm) :=

 m∑
i=1

xibi : xi ∈ Z

 (1.1)

is called the lattice in Rn generated by (or associated to) b1, . . . , bm.
The integer n is called the dimension of the lattice, and m is the rank. If n = m, we call

the lattice full-dimensional.
The vectors b1, . . . , bm are called a lattice basis (or basis of the lattice), and we often

represent them as a matrix B = [b1, . . . , bm]. Accordingly, we often write L(b1, . . . , bm) =
L(B), or even just L, if there is no danger of confusion.

Observe that (1.1) is also well-defined if b1, . . . , bm are not linearly independent, and
we will sometimes use L(b1, . . . , bm) to describe the smallest lattice (with respect to set-
containment) containing b1, . . . , bm.

From Figure 1.1 we can already extract a very important observation: While every de-
picted basis is a basis of R2, the lattices are not all the same. We say that K is a sublattice of
some given lattice L if K ⊆ L is nonempty and again a lattice. This means that L and K might
have the same rank, in contrast to the common definition of subspaces and their dimension.
Let K be a sublattice of L, then K is a pure sublattice of L if K = span(K)∩ L, i.e., if K is the
restriction of L to some subspace. Note that in this case K and L are either identical, or K has
smaller rank than L.

Equivalently to (1.1), one can also define a lattice L as a discrete additive subgroup of Rn.
Here discrete means that there is a real number r > 0 such that for any two distinct elements
x, y ∈ L we have ‖x−y‖ > r. An additive subgroup of Rn is a set L with 0 ∈ L and if x, y ∈ L,
then also x ± y ∈ L.

10



Chapter 1 Lattices and Optimization Basics

Figure 1.1: Some examples of 2-dimensional lattices with a basis given.

Although the latter is certainly the more elegant definition, we will primarily make use of
the former one, as it is in many cases advantageous to have a concrete basis of the lattice at
hand.

Given two sets of linearly independent vectors, we might wonder if they will generate the
same lattice. To this end, recall that a square integer matrix is called unimodular, if it has a
determinant of value ±1. Also note that from this definition it follows that the inverse of a
unimodular matrix is again unimodular.

The following operations on a matrix are called elementary column operations:

• exchanging two columns,

• multiplying a column by −1,

• adding an integer multiple of one column to another column.

It is well known that applying any finite number of operations of this kind to a matrix M
can be expressed by multiplying M by a unimodular matrix.

With this it is easy to check that B and B̂ generate the same lattice if and only if we can
find a unimodular matrix U with B = B̂U.

1.1 Lattice Invariants
The determinant det(L) of a lattice L is the volume of the fundamental parallelepiped spanned
by a basis B of L. Here we compute the volume with respect to the rank of L, i.e., the
determinant is always positive for a lattice with positive rank.

This determinant is invariant under the choice of the basis: Recall that the volume of a
parallelepiped spanned by the columns of the matrix B is given by

√
det(BTB), where BT

denotes the transpose of B. Then given two bases of the same lattice we can see that the
unimodular matrix we need to transform one into the other will lead to a factor of 1 in the
square root.

Another way to see that det(L) is an invariant under the choice of the basis is to observe
that the volume of the parallelepiped is inverse to the density of the lattice: The sparser the
lattice, the larger the determinant. More formally we have

det(L) = lim
r→∞

vol(Bm
r )

|{x ∈ L : ‖x‖ < r}|
,

11



Chapter 1 Lattices and Optimization Basics

where vol(Bn
r ) is the volume of the m-dimensional ball of radius r, and m is the rank of L.

Yet another way to compute the determinant comes from the Gram-Schmidt orthogonal-
ization: Let b1, . . . , bm be a basis of L, and let xT denote the transpose of vector x. Then we
define

b∗1 = b1,

b∗i = bi −

i−1∑
j=1

µi jb∗j, 2 ≤ i ≤ m, where

µi j =
bT

i b∗j
‖b∗j‖2

, 1 ≤ j < i ≤ m.

Geometrically, b∗i is the component of bi orthogonal to span{b∗1, . . . , b
∗
i−1} (and thus to

span{b1, . . . , bi−1}), while µi j is the length, relative to the length of b∗j, of the component of bi

in the direction of b∗j.
Note that b∗1, . . . , b

∗
m are in general not in the lattice spanned by b1, . . . , bm, although

they span the same Euclidean space. We also remark that we can express the relationship
between a set of linearly independent vectors and their Gram-Schmidt orthogonalization by
the equation B = B∗R, where B∗ = [b∗1, . . . , b

∗
m] and

R =


1 µ21 · · · µm1

0 . . .
. . .

...
...
. . .

. . . µmm−1

0 · · · 0 1

 .
In particular this implies that det(BTB) = det(B∗TB∗) and we compute

det(L) =
√

det(B∗TB∗) = ‖b∗1‖ · . . . · ‖b
∗
m‖, (1.2)

where the last equality holds, because the vectors b∗i , i = 1, . . . ,m, are pairwise orthogonal.
For an arbitrary matrix A ∈ Rn×m we get Hadamard’s inequality instead of the above

equality: √
det(AT A) ≤ ‖a1‖ · . . . · ‖am‖. (1.3)

To every lattice L we can also associate the dual lattice

L† = {x ∈ span(L) | xTy ∈ Z for all y ∈ L}.

Notice that L†† = L, and that, if L is full-dimensional, the rows of B−1 form a basis of L†,
where B is any basis of L.

Indeed, any row of B−1 is in L†, as B−1B = I. Conversely, if x ∈ L†, then xTB is integer
and thus xT = (xTB)B−1 is an integer combination of the rows of B−1. In particular, this also
implies that

det(L†) =
1

det(L)
. (1.4)

It is not hard to see that Equation (1.4) also holds if L is not full-dimensional.

12



Chapter 1 Lattices and Optimization Basics

If K is a sublattice of L, then we define K⊥ to be the sublattice of L† orthogonal to K, i.e.,
K⊥ = {x ∈ L† | xTy = 0 for all y ∈ K}. Let π denote the orthogonal projection of Rn onto
span(K⊥), then we define L/K = π(L).

Then by construction K⊥ is a pure sublattice of L†, and furthermore we get yet another
way of computing det(L).

Proposition 1.1. Let K be a sublattice of L, then

K⊥ = (L/K)†, (1.5)

and if K is a pure sublattice of L, then

det(L) = det(L/K) · det(K) . (1.6)

Proof. If x ∈ (L/K)†, then x ∈ span(K⊥) and thus xTy = 0 for all y ∈ span(K) and in
particular for y ∈ K. Given y′ ∈ L, we can write y′ = y1 + y2 for some y1 ∈ L/K and
y2 ∈ span(K), and thus xTy′ = xTy1 ∈ Z. Therefore, x ∈ L† and thus x ∈ K⊥.

Conversely, let x ∈ K⊥ and y ∈ L/K. Then we know that there are vectors y1 ∈ L and y2
orthogonal to K⊥, such that y = y1 + y2. Therefore, since x ∈ L†, we get xTy = xTy1 ∈ Z, and
together with the observation span(K⊥) = span(L/K) we get equation (1.5).

For equation (1.6) we first note that if K is a pure sublattice, then any basis b1, . . . , bk of K
can be completed to a basis b1, . . . , bk, bk+1, . . . , bm of L. Let P be the parallelepiped spanned
by this basis.

Then the orthogonal projection of bk+1, . . . , bn onto the space orthogonal to K (and thus
the first k basis vectors) does not change the volume of P.

Furthermore, the projected vectors are linearly independent and lie in L/K, and since the
volume of P is the product of det(K) and the parallelepiped spanned by the projected vectors,
they must form a basis of L/K. �

Lemma 1.2. If K is a pure sublattice of Zn, then

det(K) = det(K⊥) . (1.7)

Proof. By combining (1.6), (1.4), and (1.5), and letting L = Zn, we obtain

det(K) =
det(L)

det(L/K)
=

1
det(L/K)

= det((L/K)†) = det(K⊥) .

�

Let M ∈ Rm×n be a matrix of full row rank. We say that M is in Hermite Normal Form,
if it has the form [H, 0m×(n−m)], where H is a lower triangular non-negative m × m matrix in
which the unique row maxima can be found along the diagonal.

Every rational m × n matrix M of full row rank has a unique Hermite normal form,
HNF(M) = [H, 0m×(n−m)] = MU, where U is unimodular. We can find HNF(M) by a series
of elementary column operations, where constructing the lower triangular matrix H corre-
sponds to the Euclidean algorithm (see Frumkin [37], based on work of von zur Gathen and
Sieveking and Votjakov and Frumkin [40, 38], and references therein). Kannan and Bachem
[9] also gave a direct polynomial-time method to bring a matrix into Hermite normal form.
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Chapter 1 Lattices and Optimization Basics

To see the uniqueness, consider the lattice generated by the columns of M (and hence
also H). If there was another Hermite normal form of M with H′ , H, then the first row
where they differed (in, say, the jth column) would give us a contradiction to the maximality
of the diagonal elements, when looking at the difference of the jth columns (as this difference
is also in the lattice).

In this context, let us also define what we mean by the size of a matrix or vector. The size
of an integer is the length of a reasonable encoding, e.g., its binary representation. The size
of a rational number p/q (with p, q relatively prime) is 1+ size(p)+ size(q). Then the size of
a rational n × m-matrix A is defined as

size(A) = nm +
∑

i, j

size(ai j),

and the size of a vector of length n is given the same way, with m = 1.
When we said above that there is a polynomial-time algorithm to find the Hermite normal

form of a matrix, then this means that the running time (and space-requirement) of the algo-
rithm is polynomially bounded in the size of the input-matrix. In particular, the sizes of H
and U are polynomial in size(M).

Lemma 1.3. L(B) is a pure sublattice of Zn if and only if HNF(BT) = [I, 0].

Proof. First note that L(B) is a pure sublattice of Zn of rank m if and only if B has column-
rank m and for every z ∈ Rm it holds that

zTBT integer ⇒ z integer.

Let HNF(BT) = [H, 0]. Then the above is equivalent to the condition that for every z ∈ Rm it
holds that

zTH integer ⇒ z integer.

Clearly, this is satisfied for H = I. For j = m, . . . , 1 define recursively z j =
1

h j j
−

∑m
i= j+1 hi jzi.

Then it is not difficult to check that zTH = 1, and, by looking at the last column of H we see
that hmm must be 1 to ensure that z is integer. As H is a non-negative integer matrix, and its
unique row maxima are on the diagonal, the other entries in the last row of H must be zero.
We can now extend this argument inductively to the rest of H. �

Lemma 1.4. Let A be a rational m × n-matrix of full row rank, and let HNF(A) = [H, 0].
Then for any rational vector b we have:

Ax = b has an integer solution ⇔ H−1b is integer.

Proof. Let x be given with Ax = b, and let [H, 0] = AU where U is unimodular. Then we
can compute

H−1b = H−1 Ax = H−1[H, 0]U−1x = [I, 0]U−1x.

Since U is unimodular, we know that U−1 is integer, and therefore if x ∈ Zn, then H−1b =
[I, 0]U−1x ∈ Zm.

Conversely, let H−1b be integer. Then we know that

x := U
(
H−1b

0

)
14
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is an integer vector, and furthermore that

Ax = AU
(
H−1b

0

)
= [H, 0]

(
H−1b

0

)
= b.

�

Note that the proof tells us even more:

Lemma 1.5. Given A and b, there is a polynomial time algorithm that gives us an integer
vector x with Ax = b, such that the size of x is polynomially bounded by the size of A and b,
or concludes that Ax = b has no integer solution.

Proof. The Hermite normal form of A can be computed in polynomial time and the size of
H−1 is polynomially bounded in the size of A. �

The successive minima λ1, . . . , λm of a lattice L are the numbers defined as

λi = inf
{
r ∈ R : dim(span(L ∩ B(0, r))) ≥ i

}
.

Thus, λi is the radius of the smallest sphere around the origin containing i linearly independent
vectors.

To find an upper bound on λ1, we will use the following celebrated result of Minkowski.

Theorem 1.6 (Convex Body Theorem [67]). Let K be a compact convex set in Rn of volume
vol(K) that is symmetric about the origin. Let h be an integer and let L be a full-dimensional
lattice with determinant det(L). Suppose that vol(K) ≥ h2n det(L). Then K contains at least
h pairs of points ±x j, 1 ≤ j ≤ h that are distinct from each other and from the origin.

Let L be a lattice and let S be the ball of radius
√

m det(L)1/m in span(L), where m is the
rank of L. Notice that S is indeed a compact convex set and is symmetric about the origin.
Furthermore, S contains an m-dimensional hypercube with edges of length 2 det(L)1/m, and
thus vol(S ) > 2m det(L). We conclude that there is a ball S ′ of smaller radius, such that we
still have vol(S ′) ≥ 2m det(L). Then by Minkowski’s theorem there is a nonzero lattice vector
u with u ∈ S ′, which implies that

λ1 <
√

m det(L)1/m. (1.8)

A slightly stronger form of this inequality is known as Minkowski’s First Theorem. Minkow-
ski also proved a result involving all successive minima:

Theorem 1.7 (Minkowski’s Second Theorem [67]). For any lattice L of rank m, the succes-
sive minima λ1, . . . , λm satisfy  m∏

i=1

λi

1/m

<
√

m det(L)1/m.

Note that this implies the bound (1.8). We can also get a lower bound on λ1 in the
following way.

15
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Lemma 1.8. Let B be a basis of L, and let B∗ be the corresponding Gram-Schmidt orthogo-
nalization. Then

λ1 ≥ min
j
‖b∗j‖ > 0 . (1.9)

Proof. Let Bx be a nonzero lattice vector (i.e., x ∈ Zm, x , 0), and let i be the maximal index
with xi , 0. We will show that |(Bx)Tb∗i | ≥ ‖b

∗
i ‖

2. Using |cTd| ≤ ‖c‖ · ‖d‖ for any two vectors
c, d, we then get ‖Bx‖ ≥ ‖b∗i ‖ ≥ min j ‖b∗j‖. As this holds for all lattice vectors, it must also
be true for the shortest ones.

Now we compute

(Bx)Tb∗i =
i∑

j=1

bT
j b∗i x j

= bT
i b∗i xi

= (b∗i +
∑
j<i

µi jb∗j)
Tb∗i xi

= (b∗i )Tb∗i xi +
∑
j<i

µi j(b∗j)
Tb∗i xi

= ‖b∗i ‖
2xi,

and since xi is a nonzero integer, the claim follows. �

It is a classical problem for lattices to find λ1, i.e., the length of a shortest nonzero vector
in the lattice. This problem is commonly called the Shortest Vector Problem, or SVP. Very
much related is the Closest Vector Problem, or CVP, in which we are given a point r (not
necessarily in the lattice), and are asked to find the lattice vector closest to r.

While the bound in (1.8) is asymptotically tight in the sense that there is a c > 0 such that
for all n ∈ N we can find a lattice L of rank n with λ1(L) > c

√
n det(L)1/n, in general this is

not the case.
As an example consider the lattice L generated by (ε, 0)T and (0, 1/ε)T, for small positive

ε. Then det(L) = 1 and the above bound gives us λ1(L) ≤
√

2, while in fact we have λ1(L) = ε.
Furthermore, the proof of Minkowski’s Theorem is not constructive, so we are still lack-

ing a computationally efficient method to even get a lattice vector of the above size. In fact,
finding such a vector is a very challenging problem, as a look at the computational complex-
ity of this problem will reveal. This also motivates why it is interesting to look at efficient
algorithms for approximations of shortest vectors.

1.1.1 Complexity of some lattice problems
The way we defined SVP above is known as the optimization version of the problem. Finding
a vector of minimal length is the search version, which is at least as difficult as the optimiza-
tion version. Deciding whether there is a vector of length at most r, where r > 0 is given, is
the decision version, which is at most as difficult as the previous two. Similar versions exist
for CVP.

Without going too much into the technicalities (which are plentiful in this field), we will
repeat some results on the complexity of these problems. (See the book of Micciancio and
Goldwasser [66] for a more thorough treatment.)
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In this spirit, we will in this section think of a problem as a question that, given some input,
can be answered with yes or no. Given some valid input, a problem becomes an instance of
the problem. Note that in most of this thesis, we will call problems programs when we are
most interested in algorithms, and problems when we are interested in their complexity or
other more structural properties.

A problem for which every instance can be solved by a deterministic Turing machine
whose running-time is bounded by a polynomial in the size of the input, is said to belong
to the class P. If instead for every yes-instance of the problem we can give a certificate of
polynomial size that can be checked in polynomial time, then the problem belongs to the
class NP. Clearly P ⊆ NP since we can use the algorithm itself as certificate, and it is widely
believed that the reverse is false. Even if it turns out that the classes P and NP are in fact
equal, to date they provide a very useful tool to estimate how difficult it is for us to develop
reasonably fast algorithms.

The most prominent method to show that a problem lies in one of these classes is by
reduction: If A and B are two problems, then we say that A reduces to B if we can find
a polynomial time algorithm which translates any instance of A into an instance of B of
polynomial size (in terms of the size of the instance in A). Hence, if B ∈ P and A reduces
to B, then we can also solve any instance of A in polynomial time. On the other hand, there
are problems for which it is known that every problem in NP can be reduced to them. Such
problems are called NP-hard, and if they lie in NP themselves, they are called NP-complete.

Theorem 1.9 ([34]). The decision version of CVP is NP-complete.

Theorem 1.10 ([64, 65]). The decision version of SVP is in NP, and it is NP-complete under
randomized reductions, or under the assumption that a conjecture on the density of square-
free integers with bounded prime factors is true.

A related problem comes from cryptography: A message is sent in the form of a {0, 1}-
vector x = (x1, . . . , xn). This message is encrypted using the public integer weights a1, . . . , an,
and the encrypted message is a0 =

∑n
i=1 aixi. There is a hidden structure, called a trapdoor,

between the weights, which is only known to the receiver. The idea is now that the following
problem should be easy to solve if the trapdoor is known, but difficult without it:

Determine a {0, 1}-vector x such that
n∑

i=1

aixi = a0. (1.10)

Note that (1.10) is the search version of the knapsack problem, a problem class which is
known to be NP-complete for the decision version and NP-hard for the other ones. Therefore
one could expect that it will be difficult to solve. However, the additional information that
(1.10) describes an encrypted message is enough to make it easier. To see this, define the
density of the coefficients ai, i = 1, . . . , n, as

δ(a) =
n

log2(max1≤i≤n{ai})
,

which is an approximation of the information rate at which bits are transmitted. The interest-
ing case here is δ(a) ≤ 1, as for δ(a) > 1 the problem (1.10) has in general several solutions,
which makes it unsuitable for transmitting a message. Earlier research had already shown
that if the δ(a) is high, the trapdoor information is relatively hard to conceal.
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Lagarias and Odlyzko [55] proposed a polynomial-time algorithm based on the Lenstra-
Lenstra-Lovász basis reduction algorithm (see Chapter 1.2.2) that looks for short vectors in
certain lattices. It is not guaranteed that this algorithm will find a solution x of (1.10), but
nicely complementing the above results it almost always works for small densities. See also
Aardal and Eisenbrand [1] for more details, and Coster, Joux, LaMaccia, Odlyzko, Schnorr,
and Stern [30] for some improvements on the results in [55].

1.2 Lattice Bases
We will use the shortest vector problem to investigate which differences occur when we con-
sider different bases of a lattice L.

As before, let b1, . . . , bm ∈ R
n be a basis of L, and let b∗1, . . . , b

∗
m be the corresponding

Gram-Schmidt vectors. Then
c =
‖b1‖ · . . . · ‖bm‖

det(L)
is called the orthogonality defect of the basis. Note that by Hadamard’s inequality we will
always have c ≥ 1 with equality if and only if the vectors bi are pairwise orthogonal. We will
see that it is desirable to find bases with small orthogonality defect. In the case of the shortest
vector problem the reason is the following.

Proposition 1.11. Let u be a lattice element, expressed in the basis as u =
∑m

i=1 νibi. If u is a
shortest vector, then |νi| ≤ c for all i.

Note that this implies that we can find the shortest vector by enumerating the (2 bcc + 1)m

vectors that, when expressed in the basis, have coefficients of magnitude at most c.

Proof. Suppose there is a j with |ν j| > c. Since c is independent of the order in which the
basis vectors are given, we may assume j = m. Note that, since b∗i is an orthogonal projection
of bi, we have ‖b∗i ‖ ≤ ‖bi‖ for all i. Together with ‖b1‖ · . . . · ‖bm‖ = c · ‖b∗1‖ · . . . · ‖b

∗
m‖, we get

‖bm‖ ≤ c‖b∗m‖. Furthermore,

‖u‖ = ‖νmbm +

m−1∑
i=1

νibi‖ = ‖νmb∗m + u‖,

where u is some vector in span{b1, . . . , bm−1}. Since bm is orthogonal to u, in conclusion we
get

‖u‖ = |νm|‖b∗m‖ + ‖u‖ > c‖b∗m‖ ≥ ‖bm‖.

But this implies that u cannot be a shortest vector. �

We will see in the next sections how to derive such a basis with bounded orthogonality
defect in polynomial time.

1.2.1 Reduced Bases
Let L be a lattice of rank m. Given a basis of L, we will use their Gram-Schmidt vectors
to check whether the basis has small orthogonality defect. Note that for reduced bases the
indices of the basis vectors is important. Thus, if we change the order in which the basis
vectors are given, this can also change whether or not a basis is reduced.
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For fixed y ∈ ( 1
4 , 1) we call {b1, . . . , bm} y-reduced, if

|µi j| ≤
1
2
, for 1 ≤ j < i ≤ m, and (1.11)

‖b∗i + µi i−1b∗i−1‖
2 ≥ y ‖b∗i−1‖

2, for 1 < i ≤ m . (1.12)

Condition (1.11) can be satisfied in two ways, depicted in Figure 1.2. Remember that we
observed that |µi j| is the length of the projection of bi onto b∗j, relative to the length of b∗j. If
bi is indeed almost orthogonal to b∗j, this projection will be short. However, it is also possible
to satisfy (1.11) if bi is much shorter than b∗j. Then |µi j| will be small, even if bi and b∗j are
almost parallel.

Without Condition (1.12), we could therefore end up with a basis with ‖b1‖ � ‖b2‖ �

· · · � ‖bm‖, and very large orthogonality defect.

b∗j b∗j

bi

bi

Figure 1.2: Two cases how Condition (1.11) can be satisfied.

Notice now that b∗i−1 is the projection of bi−1 onto the orthogonal complement of the
subspace given by span{b∗1, . . . , b

∗
i−2}, and b∗i + µi i−1b∗i−1 is the projection of bi onto the same

space. If bi is short compared to b∗i−1, then its projection will be even shorter, and (1.12) is
violated.

Lemma 1.12. If {b1, . . . , bm} is y-reduced, then

‖b1‖ ≤

 2√
4y − 1

m−1

λ1.

In particular, if y = 1
4 +

(
3
4

)m/(m−1)
, then ‖b1‖ ≤

(
2
√

3

)m
λ1.

Proof. As the basis is y-reduced, we know that for all i = 2, . . . ,m we have

y‖b∗i−1‖
2 ≤ ‖b∗i + µi i−1b∗i−1‖

2

= ‖b∗i ‖
2 + µ2

i i−1‖b
∗
i−1‖

2

≤ ‖b∗i ‖
2 +

1
4
‖b∗i−1‖

2.

Rearranging the terms, we then get

(y − 1/4)‖b∗i−1‖
2 ≤ ‖b∗i ‖

2.
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Note that this implies a lower bound on how much the length of the vector b j can be shorter
than basis vectors of smaller index, for any 2 ≤ j ≤ m. This is precisely the effect we expected
from Condition (1.12).

Iterating this estimate, we get that for all j ≤ i we have(
y −

1
4

)i− j

‖b∗j‖
2 ≤ ‖b∗i ‖

2,

and thus in particular, for all i = 1, . . . ,m,

‖b∗i ‖ ≥
(
y −

1
4

) i−1
2

‖b∗1‖ ≥
(
y −

1
4

)m−1
2

‖b1‖,

where for the last inequality we recall that b∗1 = b1 by the definition of the Gram-Schmidt
vectors.

Using the lower bound λ1 ≥ mini ‖b∗i ‖ from Lemma 1.8, we are done. �

Lemma 1.13. Let {b1, . . . , bm} be 3
4 -reduced. Then the orthogonality defect is

c ≤ 2m(m−1)/4 .

Proof. Let {b1, . . . , bm} be y-reduced. Then, as in the proof of Lemma 1.12, we estimate

‖b∗i ‖
2 ≤

(
4

4y − 1

) j−i

‖b∗j‖
2 ,

for j ≥ i. Thus, if we set µii = 1, we get by the definition of the Gram-Schmidt vectors and
the previous considerations

‖b j‖
2 =

j∑
i=1

µ2
i j‖b

∗
i ‖

2 ≤ ‖b∗j‖
2 +

1
4

j−1∑
i=1

‖b∗i ‖
2

≤ ‖b∗j‖
2 +

1
4

j−1∑
i=1

(
4

4y − 1

) j−i

‖b∗j‖
2 ,

and for y = 3
4 we have 1 + 1

4

∑ j−1
i=1

(
4

4y−1

) j−i
= 1 + 1

4

∑ j−1
i=1 2 j−i ≤ 2 j−1. The result then follows

from the definition of the orthogonality defect. �

1.2.2 The LLL basis reduction algorithm
We are now ready to describe the lattice basis reduction algorithm of Lenstra, Lenstra, and
Lovász [57]. We will not give a precise description of every step of the algorithm, but instead
outline it to an extend such that the intrigued reader can complete it.

Let L(b1, . . . , bm) ⊆ Zn be a lattice of rank m. The two main operations, which will be
applied repeatedly are

Length-reduction: Set bi := bi − ci jb j, where ci j =

⌈
bT

i b∗j
‖b∗j‖2

⌋
=

⌈
µi j

⌋
;

and
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Swap: Swap the indices of bi and b j.

The reduction-step is designed to make sure that (1.11) is satisfied, while the swap-step
will ensure that (1.12) holds. An important observation is that applying the reduction step
with j < i − 1 will not influence the the validity of (1.12), and no reduction step changes any
of the Gram-Schmidt vectors. The LLL-algorithm now works as follows:

For i = 2, . . . ,m and

While Conditions (1.11) and (1.12) are not satisfied

Do reduction-steps;

If index i violates (1.12), do a swap-step on i and i − 1 and restart.

The reason we restart is that by swapping indices i and i − 1, we influence all µk j with k ∈
{i, i−1} and j < k. Note that for j < i−1 Condition (1.12) will now not be violated. However,
it might be for i − 1.

At this point it might not even be clear that this algorithm always terminates, let alone in
polynomial time. The key ingredient to see that we do not have too many swap-steps is the
potential function

Φ(B) = ‖b∗1‖
2m‖b∗2‖

2(m−1) · . . . · ‖b∗m‖
2.

Notice that if we set Lk = L(b1, . . . , bk) for all k = 1, . . . ,m, then

Φ(B) =
m∏

k=1

det(Lk)2,

and thus Φ(B) is a positive integer, because det(K)2 also is, for any K ⊆ Zn.
Suppose now that we swap bi and bi−1, because Condition (1.12) is violated. Let B′ be

the basis with the changed order. Note that Lk is unchanged for all k , i − 1. Then let L′i−1 be
the lattice corresponding to the new order and we compute

Φ(B′)
Φ(B)

=
det(L′i−1)2

det(Li−1)2 =
(
∏i−2

j=1 ‖b
∗
j‖

2) · ‖b∗i + µi i−1b∗i−1‖
2∏i−1

j=1 ‖b
∗
j‖

2

=
‖b∗i + µi i−1b∗i−1‖

2

‖b∗i−1‖
2

< y ,

where the second equality holds because, as we have observed before, b∗i + µi i−1b∗i−1 is the
projection of bi onto the space which is orthogonal to span{b∗1, . . . , b

∗
i−2}, which is precisely

the definition of how to construct the (i− 1)st Gram-Schmidt vector. The last inequality holds
because Condition (1.12) was violated by bi and bi−1.

Therefore, Φ(B) decreases at least by a factor of y at every swap step. Notice that we
needed to assume y < 1 to make this argument work.

Using the bound Φ(B) ≤ (‖b1‖ · . . . · ‖bm‖)2m, and taking care of the amount of operations
needed for the reduction steps, one can now show that the number of iterations of the algo-
rithm is bounded by O(m log(‖b1‖+ . . .+‖bm‖)), and the running time is O(m6(log β)3), where
β ≥ 2 is such that ‖bi‖

2 ≤ β for 1 ≤ i ≤ m.
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For more detailed accounts of the running time see, e.g., [57, 22, 39]. Akhavi showed
that the running time is linear even when y = 1 if we fix the dimension [7], but for general
dimension no polynomial upper bound on the running time seems to be known.

1.3 Linear and Integer Optimization
Here and throughout this thesis, let A be a m × n-matrix, and let b be a vector of length
m. In most cases, we will assume that both are integer. While many statements will remain
true also for rational or even irrational input, this is not always the case, and since we are
particularly interested in algorithmic results, we will pass up on always achieving the most
general statement. Also note that, given rational A and b, multiplying with the least common
multiple of all denominators will not change the input size, in the sense of polynomiality.

The classical (Linear) Integer Optimization Program is

max
{
cTx : Ax ≤ b, x ≥ 0, x ∈ Zn

}
, (IP)

where c ∈ Qn.
If we allow some of the variables to be continuous, we get a (Linear) Mixed Integer

Optimization Program

max
{
cTx : Ax ≤ b, x ≥ 0, xi ∈ Z for i ∈ I

}
, (MIP)

where again c ∈ Qn, and I ⊆ {1, . . . , n}.
Not surprisingly, if we drop the integrality requirements completely, we get a (Linear)

Optimization Program
max

{
cTx : Ax ≤ b, x ≥ 0

}
. (LP)

The way the above programs are given is called the canonical form. In particular for (IP)
and (LP) we will frequently use the standard form instead:

max
{
cTx : Ax = b, x ≥ 0

}
, (s-OP)

where b ≥ 0, and for (IP) we of course additionally require x ∈ Zn.
Note that also more general problems can be written in these forms. For example, if there

is an unconstrained variable z in the program, we can replace it by z = z+ − z− with z+, z− ≥ 0.
Any equality-constraint

∑n
j=1 ai jx j = bi can be replaced by the two inequalities

n∑
j=1

ai jx j ≤ bi and
n∑

j=1

(−ai j)x j ≤ −bi,

and conversely, given an inequality
∑n

j=1 ai jx j ≤ bi, we can introduce an additional variable
xn+i and then write

n∑
j=1

ai jx j + xn+i = bi, xn+i ≥ 0.

Such a variable xn+i is called a slack variable. If bi < 0, additionally multiply both sides of
the equation by −1. We will give a more formal definition of these correspondences at the
end of the next subsection.
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The vector c is often called the objective function, and the value cTx for x ∈ Rn is the
objective value.

A vector x is called feasible for a program, if x satisfies all properties defining the set we
want to optimize over. This set is also called the feasible set for the program.

1.3.1 Polytopes and Polyhedra
As we will frequently take a rather geometric viewpoint on lattice problems, let us review
some of the basic concepts here. See, e.g., the book of Ziegler [85] for a very thorough
treatment of this topic.

Given a system of inequalities Ax ≤ b, we can view this as an intersection of finitely
many closed halfspaces. We will denote this intersection as P, i.e.,

P = {x ∈ Rn : Ax ≤ b} .

Such a set is a polyhedron, and if it is also bounded, we call it a polytope. It is easy to see
that polyhedra, when defined this way, are always convex.

Given a set K ⊆ Rn, the convex hull conv(K) of K is the intersection of all convex sets
containing K.

It is a celebrated result due to Minkowski that any polytope can also be described as the
convex hull of a finite set of points. However, the way a polytope is described can make a big
difference algorithmically (see below).

A similar result can be formulated for polyhedra in general. To this end, define a cone
as a subset of Rn that with any finite set of vectors also contains any non-negative linear
combination of them. Then the conical hull of a set Y is the intersection of all cones that
contain Y , and one can show that any polyhedron is the Minkowski sum of the convex hull of
a finite set of points and the conical hull of a finite set of vectors.

Let P ⊆ Rn be a polyhedron. A linear inequality cTx ≤ c0 is valid for P if it is satisfied for
all points x ∈ P. A face of P is any set of the form

F = P ∩
{
x ∈ Rn : cTx = c0

}
,

where cTx ≤ c0 is a valid inequality for P. The dimension of a face F is the dimension of the
smallest affine subspace it is contained in. Note that 0Tx = 0 is a valid inequality for any P
and thus P itself is a face of P.

We will in particular be interested in faces of dimension 0, which are called vertices, and
of dimension one less than the dimension of P, called facets. For linear optimization (see
next subsection), we will also be interested in faces of dimension 1, called edges.

Note that if u1, . . . , uk are all of the vertices of P, then P = conv{u1, . . . , uk}. On the other
hand, if the inequalities cT

1 x ≤ c1
0, . . . , c

T
h x ≤ ch

0 are valid for P and each facet of P is given by
setting one of these inequalities to equality, then P =

⋂h
i=1 cT

i x ≤ ci
0. Inequalities or this form

are called facet-defining. Note that the second characterization can also be used to describe
unbounded polyhedra.

Without any additional knowledge about a polytope P, we do not know whether de-
scribing it by its facets or by its vertices will be shorter. For example, the n-cube Cn =

{x ∈ Rn : −1 ≤ xi ≤ 1} has 2n vertices and 2n facets, while its dual (or polar), the crosspoly-
tope C∆n = {x ∈ Rn :

∑
i |xi| ≤ 1}, has 2n vertices and 2n facets.
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Another observation we can derive from the above definitions is that if we have a point x
that lies in a face of dimension k of a polytope P, then we can express x as convex combination
of vertices of P, such that these vertices lie in an affine subspace of dimension at most k.

Let a polyhedron P be given, together with two inequalities cT
1 x ≤ c1

0 and cT
2 x ≤ c2

0. Then
we say that cT

1 x ≤ c1
0 dominates cT

2 x ≤ c2
0 (with respect to P), if we can write cT

2 x ≤ c2
0

as a non-negative linear combination of cT
1 x ≤ c1

0 and the facet-defining inequalities of P.
Geometrically, this means that cT

2 x ≤ c2
0 is valid for P ∩

{
x ∈ Rn : cT

1 x ≤ c1
0

}
.

Proposition 1.14 (See [76], Theorem 5.7). Let P = {x ∈ Rn : Ax ≤ b} be a polyhedron and
z ∈ P. Then z is a vertex of P if and only if there are n linearly independent rows ai of A with
ai z = bi.

Proof. Let z ∈ P and let Az be the matrix consisting of all rows ai of A with ai z = bi. We
will now show that z is a vertex of P if and only if rank(Az) = n.

Suppose first that rank(Az) < n. Then there exists a c , 0 with Azc = 0. Since a j z < b j

for any row of A not in Az, we find a δ > 0 such that

a j(z + δc) ≤ b j and a j(z − δc) ≤ b j.

Since Azc = 0 and Az ≤ b it follows that

A(z + δc) ≤ b and A(z − δc) ≤ b.

Hence, z + δc and z − δc belong to P, and as z is a convex combination of them, z lies in a
face of dimension ≥ 1 of P and is therefore not a vertex.

Conversely, suppose z is not a vertex. Then there exist points x, y ∈ P such that x , z , y
and z = 1

2 (x + y). By construction, for every row ai of Az we have ai z = bi and aiu ≤ bi for
any u ∈ P. Hence we get ai(x − z) ≤ 0 and ai(y − z) ≤ 0. As y − z = −(x − z), this implies
ai(x − z) = 0 and thus Az(x − z) = 0. Since x − z , 0, we have shown that rank(Az) < n. �

We will next give an explicit algebraic link between feasible points for the canonical form
and feasible points for the standard form of a given optimization program.

Let A and b be given, and let P = {x ∈ Rn : Ax = b, x ≥ 0}. Assume for a moment that
the last m columns of A are linearly independent. We will see below that this assumption
on the rank of A is no restriction for our considerations. Also, let N = {1, . . . , n − m} and
B = {n − m + 1, . . . , n}.

If we define B as the matrix consisting of the columns of A with indices in B, then we
can reformulate Ax = b as B−1 Ax = B−1b, and define

Ā = B−1 A and b̄ = B−1b. (1.13)

This leads to the equations
xi = b̄i −

∑
j∈N

āi jx j, i ∈ B, (1.14)

and thus the fact that x is in P can equivalently be expressed by

b̄i −
∑
j∈N

āi jx j ≥ 0 i ∈ B

x j ≥ 0 j ∈ N.
(1.15)
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Observe that (1.15) defines a polyhedron P̂ ⊆ Rn−m, and if P is bounded, P̂ is a polytope.
Conversely, let P̂ ⊆ Rn−m be a polytope given by n halfspaces, where the first n−m are of

the form
xi ≥ 0, i = 1, . . . , n − m,

and the remaining inequalities are given as

hi1x1 + · · · + hi,n−mxn−m ≤ gi, i = 1, . . . ,m.

Then we can introduce m slack variables xn−m+1, . . . , xn to obtain the equivalent system

Āx = b̄
x ≥ 0

where Ā = [H, I] and b̄ = (g1, . . . , gm)T.
Thus, any polytope P̂ ⊆ Rn−m in the positive orthant can be viewed as the feasible region

P of a program (s-OP). Furthermore, any point x̂ ∈ P̂ can be transformed to x ∈ P by defining
x j = x̂ j for j ∈ N and

xi = gi −
∑
j∈N

hi j x̂ j, i ∈ B,

and any x ∈ P can be transformed to x̂ ∈ P̂ by deleting the m coordinates with indices in B
from x.

We say that the points x ∈ P and x̄ ∈ P̄ are corresponding to each other, if we can obtain
them from each other in the above manner.

1.3.2 Linear Optimization

We will describe how to solve a linear optimization program with a fair amount of details,
since it will turn out that the method given below can be used in integer optimization programs
as well, as we will explain later on.

Given (LP) in the standard form (s-OP), let P be the set of feasible points, where we
assume that A ∈ Zm×n with rank(A) = m.

We will now describe the simplex method (introduced by Dantzig [32]) in tableau form,
which is one of the most influential algorithms in optimization. While in its most popular
forms it was proven to not be a polynomial-time algorithm by Klee and Minty [53], in practice
it is very fast and one can usually expect linear runtime (in the problem dimension). We will
follow in large parts the exposition in the book of Papadimitriou and Steiglitz [71].

Generally speaking, the algorithm will turn out to work as follows: We start with some
vertex u of P, and if it is not optimal (i.e., the maximum is not achieved there), we go to a
vertex u′ sharing an edge with u, such that cTu′ > cTu. This gives us a path along the edges of
P that leads to an optimal vertex.

We will see in Theorem 1.17 how to determine whether or not a vertex is optimal. Fur-
thermore, the way the algorithm is set up does not immediately reveal this view of things.
However, it might be useful to keep it in mind, as the precise description can be quite techni-
cal at times.
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A basis of A is a set of m linearly independent columns ai1 , . . . , aim of A, often expressed
as B = [ai1 , . . . , aim]. The basic solution corresponding to B is the vector x ∈ Rn with

x j = 0 if a j < B,
xik = the kth component of B−1b, k = 1, . . . ,m.

Observe that, given B, we can find the basic solution by setting all coordinates corresponding
to columns not in B to zero and solving the m remaining equations to determine the remaining
coordinates of x. The latter coordinates are called the basic variables corresponding to B,
and we set B = {i1, . . . , im} and N = {1, . . . , n}\B.

If a basic solution x is in P, then x is a basic feasible solution.

Lemma 1.15. Let x be a basic feasible solution corresponding to the basis B. Then there
exists a vector c such that x is the unique optimal solution of (s-OP).

Proof. Consider the vector c given by

c j =

0 if a j ∈ B
−1 if a j < B

where j = 1, . . . , n. Then cTx = 0 and clearly x is optimal, since any feasible solution of
(s-OP) is non-negative.

Moreover, any x̂ ≥ 0 with cT x̂ = 0 must be zero in all non-basic components. Since B
determines the feasible solution x uniquely, we must have x̂ = x. �

If we assume that P is nonempty, one can show that there is at least one basic feasible
solution. Furthermore, if there is an upper bound for (s-OP), we can assume that P is bounded.
(See [71], Theorem 2.1 and 2.2)

If we go back to the description of how to translate a linear program back and forth
between standard and canonical form, observe that indeed we chose a specific basis to obtain
P̂ ⊆ Rn−m. Therefore, we can now be more specific and, given a basis B, obtain the equivalent
sets

P = {x ∈ Rn : Ax = b, x ≥ 0} and PB =
{
y ∈ Rd : Āy ≤ b̄, y ≥ 0

}
, (1.16)

where d = n − m, and Ā and b̄ are defined as in (1.13) (where we delete the basic columns).
Note that we can reconstruct P from PB as is described in (1.14), up to reordering of the
indices. On the other hand, if B and B′ are different bases, then PB and PB′ are in general
geometrically not the same polytope, but combinatorially they are.

Indeed, we can interpret going from P to PB as setting all basic variables to zero, which
is nothing else than projecting orthogonally onto the linear subspace defined by xi = 0 for
i ∈ B. Since P was bounded, and the only inequalities are the nonnegativity of the variables,
it is not hard to see that the dimension of P and PB must be the same. Similar arguments
apply for all faces.

However, there are certain things that do change. For example, it could easily happen that
P does not contain integer points, while PB does. Thus, although this reformulation is very
useful for linear programs, it is less so for integer programs.

Proposition 1.16 (See, e.g., [71], Theorem 2.4). Let x ∈ P. Then x is a basic feasible solution
of P corresponding to B if and only if the corresponding point x̂ ∈ PB is a vertex of PB.
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Let x be a basic feasible solution. If at least one basic variable has value zero, i.e., x
contains more than n − m zeros, then x is called degenerate.

Theorem 1.17 (See, e.g., [71]). If two distinct bases B and B′ correspond to the same basic
feasible solution x, then x is degenerate.

Proof. Suppose B and B′ both determine the basic feasible solution x. Then x has zeros in
the n − m coordinates corresponding to columns not in B. But there is at least one column in
B that is not in B′, and x must also be zero in that coordinate. �

Together with the observation that any linear function has its maximum over any polytope
P̂ in a vertex (using the representation of P̂ as the convex hull of the vertices), we have thus
shown that we can solve (s-OP) by finding a maximal basic feasible solution in P, and there
are only finitely many of them. What is still missing is the rule how to get from one basis to
a potentially better one.

Let x0 be a basic feasible solution of (s-OP) corresponding to the basis B given as B =
[aB(1), . . . , aB(m)]. If the basic variables of x0 are given by x1,0, . . . , xm,0, then

m∑
i=1

xi,0aB(i) = b, where xi,0 ≥ 0. (1.17)

As the columns of B are linearly independent, any nonbasic column a j < B can be written
as a linear combination of the columns of B:

m∑
i=1

āi, jaB(i) = a j. (1.18)

Now we can multiply (1.18) by a scalar θ > 0 and subtract it from (1.17). This leads to

m∑
i=1

(xi,0 − θāi, j)aB(i) + θa j = b. (1.19)

If x0 is non-degenerate, let θ0 = mini≤m

{
xi,0

āi, j
: āi, j > 0

}
. Then we see that for θ = θ0, Equa-

tion (1.19) is of the form (1.17) for a different basis, and we have found a new basic feasible
solution. If x0 is degenerate because some xi,0 = 0, but the corresponding āi, j is positive,
then we still replace aB(i) by a j. We are then still at the same vertex, but we represent it
by a different basis. Also note that if all āi, j, i = 1, . . . ,m, were non-positive, P would be
unbounded.

This method of moving from one basic feasible solution to another is called pivoting.

What we have yet to describe is how we choose the column we want to pivot on. To this
end observe that the objective value cTx0 of a basic feasible solution x0 is given by

z =
m∑

i=1

xi,0cB(i).
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If we now write

a j =

m∑
i=1

āi, jaB(i)

as in (1.18), then we can interpret this equality as meaning that if we want to increase the
variable x j by one unit, then, to keep the vector feasible, we need to reduce each of the
variables xB(i) by the amount āi, j.

Thus, a unit increase in x j results in a change in the objective of

c̄ j = c j −

m∑
i=1

āi, jcB(i), (1.20)

the relative cost of column j. As we are maximizing cTx, it is profitable to pivot on column
j exactly if c̄ j > 0.

The simplex tableau now works as follows: Given the original equality constraints Ax = b,
we represent them in the form

x1, . . . , xn

z c̄

b A

where z and c̄ are defined as before.
Now we multiply rows in the lower part by nonzero constants and add these rows to other

rows, until the columns aB(i) are transformed into the ith unit vector. Note that these operations
do not change the information in the equations. We also update the values of c̄ and z.

Observe that the lower part of the left-most column will now contain the values of the
basic variables xB(i) = xi,0, i = 1, . . . ,m. Furthermore, if x j is a nonbasic variable, then the jth

column contains precisely the numbers āi, j, i = 1, . . . ,m.
Therefore, if we want to pivot on column j, everything we described before can directly

be read from the corresponding row in the tableau, and we can find the new tableau by the
appropriate row operations again.

Also note that, since we carried out the row-operations to get unit vectors in the basic
columns, the part of the tableau replacing the matrix A from the initial tableau is nothing else
but B−1 A.

Theorem 1.18 (Optimality Criterion (see, e.g., [33])). Let x0 be a basic feasible solution,
and let c̄ be defined as in (1.20). If

c̄ ≤ 0
then x0 is optimal.

Proof. Let y ≥ 0 be any feasible vector, not necessarily basic. Define z j =
∑m

i=1 āi, jcB(i) for
j = 1, . . . , n, and z = (z1, . . . , zn)T. Let cB = (cB(1), . . . , cB(m))T be the vector of components of
c corresponding to basic variables. Then if Ā denotes the current matrix replacing A in the
tableau, we have by definition zT = cB Ā = cBB−1 A and thus

cTy = (c̄ + z)Ty ≤ zTy = cBB−1 Ay = cBB−1b = cTx0,

so x0 is optimal. �
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Before we arrive at an optimal solution, there might be several columns we can pivot
on. How to choose the next column can be done in several ways and this is known as pivot
selection or pivot rules. As was mentioned in the beginning of this subsection, there are pivot
rules that are proven to have non-polynomial running time for some instances, but are very
fast in practice nonetheless.

As a final piece of the puzzle, we observe how to get an initial basic feasible solution, and
why we can assume that A has full row rank.

Let us find a basic feasible solution first. If our program is given in the form Ax ≤ b with
b ≥ 0, then the slack-variables we add to get equality-constraints form can be used as initial
basic variables and we are done.

Otherwise, we bring the program into standard form, i.e., we find a matrix A and a vector
b ≥ 0 such that the goal is to maximize over cTx where x satisfies Ax = b and x ≥ 0. Now
we solve the program in two phases. The first one will get us a basic feasible solution for the
program, and the second one is simply the one we described above.

For the first phase, we attach new artificial variables xa
1, . . . , x

a
m ≥ 0 and replace A by

Â = [A, I]. Then with xa
i = bi, i = 1, . . . ,m, we have a basic feasible solution. Now we want

to get one where all artificial variables are nonbasic.
To this end we minimize

∑m
i=1 xa

i (or maximize the negative sum). If we can achieve zero
as an objective value, then all artificial variables will indeed be zero. If the optimum is not
zero, then Ax cannot be equal to b for any non-negative x, and we can conclude that the
system is infeasible.

The only detail remaining is that we have to make sure that the artificial variables are
nonbasic in the optimal solution. If we stop with an artificial variable still in the basis, then
we take a closer look at the corresponding row in the tableau. If all non-artificial variables
have a zero as coefficient, then we have shown that this row in the original matrix A is not
linearly independent from the others, since we arrived at the tableau by elementary row-
operations. Thus we can just delete the row and continue. Thus, as a byproduct, we have
shown how to make sure that A has full row-rank.

If some non-artificial coefficient is non-zero, we can pivot on that column, since it will
neither change the objective nor lead to infeasibility. Strictly speaking this is not pivoting,
since the relative cost might be negative. However, it is a valid way to remove one by one all
artificial variables from the basis. We can then proceed with phase two, solving the original
program.

1.3.3 Integer Optimization
When we want to solve integer linear programs, the most powerful tool to this date is using
information from linear programs. We will briefly sketch two ways of doing so: Cutting
plane algorithms and branch-and-bound methods.

The idea of cutting planes is based on the following observation: If we were to know
that the rational polyhedron P we want to optimize over has only integer vertices, then any
method solving the linear program will also solve the integer linear program. Thus, in the
best of worlds, given P we would like to compute the convex hull of the integer points in P,
called the integer hull PI of P.

Let H =
{
x ∈ Rn : cTx ≤ c0

}
be the halfspace defined by a valid inequality of P (see

Subsection 1.3.1), where the components of c are relatively prime integers. Then we know
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that cTx will be integer for any x ∈ P ∩ Zn, and therefore cTx ≤ bc0c is valid for the integer
hull of P. Geometrically, this corresponds to shifting the bounding hyperplane of H, until it
contains an integer point.

Let HI =
{
x ∈ Rn : cTx ≤ bc0c

}
, then the bounding hyperplane of HI is called a cutting

plane, and we call the inequality cTx ≤ bc0c a cut for P. Note that by this definition a cut for
P is not necessarily a valid inequality for P, but it is a valid inequality for PI . More generally,
any inequality we can derive by algebraic reasoning from a finite set of valid inequalities for
P, such that the result is a valid inequality for PI , will be called a cut. The cuts we derived
above are equivalent to Chvátal-Gomory rounding cuts. We will introduce these cuts and
several other families of cutting planes in greater detail in Chapter 2.

Cuttings planes can indeed be used to solve integer programs: If we define

Pcl =
⋂
H⊇P

HI ,

then it follows that P ⊇ Pcl ⊇ PI , and, by repeating this procedure, P ⊇ Pcl ⊇ (Pcl)cl ⊇ · · · ⊇

PI . It turns out that in fact Pclt = PI for some integer t. This was proven for polytopes by
Chvátal [20] (and indeed the smallest such t is called the Chvátal rank of P), and for rational
polyhedra by Schrijver [74].

Moreover, Pclk is a polyhedron for any integer k [74]. Note that the latter implies that we
only need to consider a finite set of halfspaces in every iteration. Since the cuts described
above are, in some sense, the weakest type of cuts we will consider, all families of cutting
planes in Chapter 2 will find the integer hull in finitely many iterations.

It should be noted, though, that this method is by far not guaranteed to terminate in poly-
nomial time. To see this, consider the two-dimensional polytope P with the vertices (0, 0),
(0, 1), and (h, 1/2), for some integer h > 0 (see Figure 1.3; first mentioned in [20]). Then the
integer hull of P is conv{(0, 0), (0, 1)}. However, it is not hard to show that P′ will contain the
point (h − 1, 1/2), and therefore by induction we will need at least h iterations until we arrive
at the integer hull.

(0, 0)

(0, 1)

(h, 1/2)

Figure 1.3: A polytope where we need at least h iterations of the cutting plane algorithm to
find the integer hull.

As a positive result Cook, Coullard, and Turán [23] showed that if PI = ∅, then there is a
bound on the number of cutting planes in terms of the dimension. We will give more explicit
descriptions of families of cutting planes in the next chapter.

The method known as branch-and-bound is also an iterative method, although based on a
different principle: At stage 1 we have Π1 = {P}. Suppose at stage k we have a collection
Πk = {P1, . . . , Pt} such that

(i) P1, . . . , Pt are pairwise disjoint polyhedra in Rn;
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(ii) all integer vectors in P are contained in P1 ∪ · · · ∪ Pt.

Then for j = 1, . . . , t we determine δ j = max
{
cTx : x ∈ P j

}
, and let j∗ be an index with

δ j∗ ≥ δ j for all j.
Let x∗ ∈ P with cTx∗ = δ j∗ . If x∗ is integral, we have found an optimal solution to the

integer optimization program. If x∗ is not integer in, say, component i, then define

Q1 =
{
x ∈ P j∗ : xi ≤

⌊
x∗i

⌋}
and Q2 =

{
x ∈ P j∗ : xi ≥

⌈
x∗i

⌉}
.

LetΠk+1 = {P1, . . . , P j∗−1,Q1,Q2, P j∗+1, . . . , Pt}. It could happen that one or both of the Qi are
empty, in which case they are dropped from the collection. If the collection becomes empty,
we conclude that the program is infeasibe.

Otherwise Πk+1 satisfies (i) and (ii), and thus we can start stage k + 1. Note that we will
only need to compute the δ j for the two new polyhedra.

Again, the running time of this method is not polynomially bounded by the input size.
Indeed, consider the integer program

max {x1 : 2mx1 = (2m + 1)x2, 0 ≤ x1 ≤ 2m, x1, x2 ∈ Z} .

It is not hard to see that at stage k we have δ j∗ ≥ 2m − k, while the only feasible solution is
(0, 0). Thus, the branch-and-bound method needs at least 2m iterations, while the size of the
program is linear in m.

Even if we assume that there is a family of collectionsΠk which leads to an optimal solution
with not too many stages, it is not obvious how to find it: at every stage we have up to n
choices of components to branch on. Selecting good directions is a major challenge when we
want to apply this method.

Note that the way we described the algorithm above, we do not necessarily stop when we
find an integer solution, since it might have a smaller objective value than some δ j for another
P j. However, we can at least use this to discard some of the polyhedra in our collection.

Suppose at some point the best completely integer solution we have found has objective
value zm. Then there is no hope of finding a better solution in a polyhedron Pi with δi ≤ zm,
and we can delete such polyhedra from the collection.

It should also be mentioned that the rule of branching on the maximal upper bound δ j∗

bares the risk of needing a large amount of storage-space, and a depth-first approach might
be better in this respect. The other choice we make – which non-integer component to use
for the branching – can also have an impact on the running time. One rule one can use, and
that has proven to be useful in practice, is to choose the component that reduces the value δ j∗

the most and thus gives us the best chance to cut quickly.
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Reformulation-induced Cuts

In the following chapters, the leading question will be, generally speaking, how to solve the
integer program

max
{
cTx : Ax = b, x ≥ 0, x ∈ Zn

}
, (eq-IP)

where A is an integer m × n matrix of full row rank and b an integer m-vector.
In this chapter, we will see how cutting plane algorithms can be combined with a reformu-

lation of the program into a space of lower dimension (cf. Aardal, Hurkens, and Lenstra [2]).
In Chapter 1 we already described a method of how to reformulate the set of feasible

points for the linear program. However, this method did not take into account the shape of
the set relative to the integer lattice. Instead we therefore need a reformulation that preserves
the structure of the sublattice we get when we intersect Zn with the smallest affine subspace
containing all feasible points of (eq-IP).

Recall that in Lemma 1.5 we were given a way to find, in polynomial time, a vector
x0 ∈ Z

n with Ax0 = b, or certify that no such vector exists. Clearly, if there is no integer
solution to Ax = b, then (eq-IP) is infeasible. Further below we will describe a variation of
this method to find such a vector x0, which arises naturally from other calculations. For the
moment, however, let us assume we have x0 with the above properties.

Let y ∈ Zn with Ay = b. Then z := x0 − y ∈ Z
n and Az = 0. Conversely, any z ∈ Zn with

Az = 0 also defines a vector y := x0 − z ∈ Zn with Ay = b.
We have therefore found a way to translate all feasible points of (eq-IP) into a linear

subspace. Observe that if x1, x2 ∈ Z
n with Axi = 0, i = 1, 2, then also A(x1 ± x2) = 0 and

therefore {x ∈ Zn : Ax = 0} is a lattice. Note that it is a pure sublattice of Zn. We will call
this the kernel lattice of A and denote it by kerZ(A).

Hence, we have found a direct correspondence between the integer solutions of Ax = b
and the lattice kerZ(A). More explicitly, let Q be a basis of kerZ(A). Then a vector x ∈ Zn

satisfies Ax = b if and only if there is a vector µ ∈ Zn−m with x = x0 + Qµ.
Due to the nonnegativity requirements on the x-variables in the integer program (eq-IP),

we now obtain an equivalent formulation

max
{
cT(x0 + Qµ) : Qµ ≥ −x0,µ ∈ Z

n−m
}
. (2.1)

Note that this program is not necessarily of the form (IP) yet, as we do not require µ ≥ 0.
We will come back to this in a little while. However, we now have a program in n − m
variables, and with n inequalities.
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To obtain the vector x0 and the basis Q, we construct an auxiliary lattice L ⊆ Rn+m+1. Let
ai denote the ith row of A, and we may assume gcd(ai1, . . . , ain) = 1, for i = 1, . . . ,m. The
elements of L will now have the form

(x1, . . . , xn,N1y,N2(a1x − b1y), . . . ,N2(amx − bmy))T,

where y is a new integer variable, and N1 and N2 are nonzero integer numbers. A basis of L
is then given by the (n + 1 + m) × (n + 1)-matrix

B =

 I 0
0 N1

N2 A −N2b

 .
Proposition 2.1 ([2]). Let L ⊆ Rn+m+1 be defined as above. Then

(i) an integer vector x satisfies Ax = b if and only if the vector (xT,N1, 0)T belongs to L,

(ii) an integer vector x̂ satisfies Ax̂ = 0 if and only if the vector (x̂T, 0, 0)T belongs to L.

Proof. In (i) we set the variable y = 1. Observe that Ax = b is satisfied if and only if the last
m coordinates are zero. Similarly in (ii) we set y = 0. �

We will see in Theorem 2.3 that if there is an integer solution to Ax = b and the numbers
N1,N2 are chosen large enough, then the first n − m columns of the basis we obtain by LLL-
reducing B will be lattice vectors of the form given in (ii), and the (n − m + 1)st column is a
vector of the form given in (i).

Lemma 2.2 ([40, 38]). Let HNF(A) = [H, 0] = AU, where U is a unimodular matrix of
dimension n × n. Define n − m + 1 vectors by

(x0, x1, . . . , xn−m) = U
[

H−1b 0
0 I

]
Then Ax0 = b and Ax j = 0 for 1 ≤ j ≤ n − m. Moreover, the vectors x0, x1, . . . , xn−m are
linearly independent and their sizes are polynomially bounded by the sizes of A and b.

Proof. The equation Ax0 = b is the same we computed in the proof of Lemma 1.4. Let e j be
the jth column of the identity matrix I, then for each x j, 1 ≤ j ≤ n − m, we have

Ax j = AU
(

0
e j

)
= [H, 0]

(
0
e j

)
= 0.

The rest is clear from construction and Lemma 1.5. �

Theorem 2.3 ([2]). Assume that Ax = b has an integer solution, and let B̂ = [b̂1, . . . , b̂n+1]
be the basis of L we obtain by applying the LLL algorithm to the basis B.

Then there exist numbers N01 and N02, such that for numbers N1,N2 with N1 > N01 and
N2 > 2n+mN2

1 + N02 the following holds:

• In b̂ j, all coordinates after the nth are zero, for 1 ≤ j ≤ n − m;

• In b̂n−m+1, all coordinates after the (n + 1)st are zero;
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• The (n + 1)st coordinate of b̂n−m+1 has cardinality N1.

In practice, the integers N1 and N2 can be chosen considerably smaller than the bounds
given in the theorem. This is due to the fact that the bounds on the lengths of the vectors in a
reduced basis are pessimistic for the huge majority of lattices one encounters.

Lemma 2.4. Let x0 ∈ Z
n with Ax0 = b and let Q be a basis of kerZ(A). Then in polynomial

time we can find x̂0 ∈ Z
n such that Ax̂0 = b and µ ≥ 0 for all µ ∈ Rd with Qµ ≥ −x̂0, or

conclude that no such vector exists.

Proof. For each i = 1, . . . ,m, we solve the linear program min {µi : Qµ ≥ −x0}. If one of
them is unbounded, we are done. Otherwise let µ∗ be vector of the corresponding optimal
values and define x̂0 = x0 + Q bµ∗c. Then x̂0 is integer and satisfies Ax̂0 = b.

Furthermore, µ satisfies Qµ ≥ −x̂0 if and only if

Qµ ≥ −x0 − Q bµ∗c ,

which, in turn, is equivalent to
Q(µ + bµ∗c) ≥ −x0.

But then by the definition of µ∗ we have µ + bµ∗c ≥ µ∗ ≥ bµ∗c and thus µ ≥ 0. �

Since we can check with linear programming whether an integer program is unbounded,
we have now a complete description of a correspondence between the integer program (eq-IP)
in dimension n in standard form, and the integer program (2.1) in dimension d = n − m in
canonical form.

Recall from Chapter 1.3.3 that given the set P of feasible points for the linear program,
we can find the integer hull PI by cutting planes, i.e., by taking valid inequalities for P and
shift them in a way so they remain valid for PI , and then iterating this procedure.

What we will do in this chapter is to combine cutting plane algorithms with the reformu-
lation given above.

Note that the following section is quite long, because we will not simply state the cuts,
but instead derive why they are valid for PI . Subsequently, we will show that a cut derived
for the reformulation by one of the (general) constructions below can also be found through
the same method in the original formulation. However, as we show in the last section, if
we restrict our attention to the constructions most commonly used in practice, cuts from the
reformulation can be strictly stronger.

2.1 Families of Cutting Planes
The main reference this section is based on is the paper [27] by Cornuéjols and Li. While
most of the cuts below are defined for mixed integer programs, we will formulate them for the
pure integer case here. Furthermore, we will assume that the polyhedra are bounded, since
these are the cases where integer programs differ from their linear relaxation.

Let A ∈ Zm×d and b ∈ Zm be given, and as we have seen in (1.16), the sets

P =
{
x ∈ Rd : Ax ≤ b, x ≥ 0

}
and P′ =

{
z ∈ Rd+m : A′z = b, z ≥ 0

}
are equivalent expressions, where A′ = [A, I].
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We already established that this kind of reformulation is not suited for integer programs
with feasible set P′. However, it is not hard to see that an integer point in P′ does translate to
an integer point in P, so we may use this reformulation to go up in dimensions. Furthermore,
we want to make use of the simplex method, which is constructed to take programs with
equality-constraints as input.

We will from now on, for convenience, assume that x ≥ 0 is part of the constraints
Ax ≤ b. Recall that we defined the convex hull of the set of integer points in P as

PI = conv(
{
x ∈ Zd : Ax ≤ b

}
),

and similarly P′I for P′.
Finally, observe that for any u ∈ Rm the equation uT A′z = uTb is satisfied by all z ∈ P′.

To be able to speak about how useful a family of cuts is in the description of PI , we define
the elementary closure associated with the family. Given a polytope P and a family F of cuts
(see 1.3.3) for P, we define PF as the convex set obtained as the intersection of all inequalities
in F. While it is not obvious from this definition, it turns out that PF is indeed a polyhedron
again, for all families of cuts described in this section [20, 74, 24]. The concept of elementary
closures was introduced by Chvátal [20].

Iterating this procedure will, in the pure integer case, stabilize at conv(PI) in finitely many
steps (first proven by Gomory [41, 43]). If we allow for continuous variables as well, this
finite convergence does not always occur, as was shown with a beautifully simple example
by Cook, Kannan, and Schrijver in [24].

A function g : R → R is called subadditive, if g(p) + g(q) ≥ g(p + q) for all p, q ∈ R. The
following proposition forms the basis on which we will show the validity of some very useful
inequalities for PI .

Proposition 2.5 (See [69], Prop. II.1.4.1). If αT z = β is satisfied for all z ∈ P′ and g is a
subadditive function with g(0) = 0, then

d+m∑
j=1

g(α j)z j ≥ g(β) (2.2)

is a valid inequality for P′I .

Proof. Note that g(α j) · 0 = 0 = g(0) = g(α j · 0), and thus by induction

g(α j) · k = g(α j) + g(α j) · (k − 1) ≥ g(α j) + g(α j · (k − 1))
≥ g(α j + α j · (k − 1)) = g(α j · k)

for all k ∈ Z, k ≥ 1. Note that the first inequality holds because of the induction hypothesis,
while the second inequality holds because g is subadditive.

Since z ≥ 0, we can now compute for all z ∈ P′I ∩ Z
d+m

d+m∑
j=1

g(α j)z j ≥

d+m∑
j=1

g(α jz j) ≥ g

d+m∑
j=1

α jz j

 = g(αT z) = g(β),

where the last inequality again holds because g is subadditive. The inequality is then also
valid for any point in the convex hull of P′I ∩ Z

d+m. �
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Note that here we forced the slack variables (zd+1, . . . , zd+m) to be integer as well. This
could theoretically lead to unwanted effects, since there are no explicit integrality require-
ments for the slack variables and thus P′I might be empty while PI is not. To deal with this,
we introduce another function h to take care of the slack variables separately.

The step in the proof where we used integrality was when we showed that g(α j)z j ≥

g(α jz j). This is certainly preserved if h is positive homogeneous, i.e., h(p)λ = h(pλ) for all
λ ≥ 0 and p ∈ R. Secondly, to keep the inequality valid, we want h to dominate g, i.e.,
h(p) ≥ g(p) for all p ∈ R.

Thus, we get the following proposition.

Proposition 2.6. If αT z = β is satisfied for all z ∈ P′, g is a subadditive function with
g(0) = 0, and h is positive homogeneous and dominates g, then

d∑
i=1

g(αi)zi +

d+m∑
j=d+1

h(α j)z j ≥ g(β) (2.3)

is a valid inequality for conv(P′ ∩ (Zd × Rm). �

Chvátal-Gomory cuts and PCG

Let u ∈ Rm with u ≥ 0. Then the inequality uT Ax ≤ uTb is valid for P, and, since x ≥ 0,
we only weaken the inequality by rounding down each coordinate of uT A. Therefore, the
inequality

⌊
uT A

⌋
x ≤ uTb is also valid for P, where buc denotes the vector we get by rounding

down every entry of the vector u.
For all elements of PI ∩ Z

d we can also round down the right-hand side and obtain the
inequality ⌊

uT A
⌋

x ≤
⌊
uTb

⌋
. (2.4)

Once again, this inequality must then also be satisfied for convex combinations of points in
PI∩Z

d, and thus we have found a valid inequality for PI . Cuts of this form were developed by
Chvátal [20], and are generally referred to as Chvátal cuts [27]. we will see in Theorem 2.7
that we can concentrate on the case where 0 ≤ u < 1.

There is, however, a different way to obtain them, developed earlier by Gomory [41,
42, 43]. We describe it here as well, as from this description we can easily obtain a very
interesting subfamily of cuts from basic feasible solutions (see Subsection 1.3.2).

Note that g(p) = p − bpc is subadditive, and since (zd+1, . . . , zd+m)T = b − Ax implies that
z is integer if x is integer (recall that we assumed A and b to be integer as well), we can use
Proposition 2.5. Thus (

uT A′ −
⌊
uT A′

⌋)
z ≥ (uTb −

⌊
uTb

⌋
)

is a valid inequality for P′I . Now we substitute (zd+1, . . . , zd+m)T = b− Ax and obtain uT A′z =
(uT A)x + uT(b − Ax). Hence⌊

uT A
⌋

x − bucT Ax ≤
⌊
uTb

⌋
− bucT b (2.5)

is a valid inequality for PI . Cuts of this form are called Gomory fractional cuts [27].
Note that if 0 ≤ u < 1, then (2.4) and (2.5) are the same. In fact, we get the following

more general relationship.
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Theorem 2.7 (see, e.g., [69]). Any cut of the form (2.5) with the vector u can be derived as a
cut of the form (2.4) with the vector ũ = u − buc.

Conversely, any cut of the form (2.4) is equal to or dominated by a cut of the form (2.5).

Proof. First note that ũ = u − buc ≥ 0 and
⌊
ũT A

⌋
=

⌊
uT A − bucT A

⌋
=

⌊
uT A

⌋
− bucT A, and⌊

ũTb
⌋
=

⌊
uTb − bucT b

⌋
=

⌊
uTb

⌋
− bucT b, where we use that bucT A and bucT b are integer.

The first statement of the theorem then follows, as we have⌊
uT Ā

⌋
x̄ − bucT Āx̄ ≤

⌊
uTb

⌋
− bucT b

⇔
⌊
ũT Ā

⌋
x̄ ≤

⌊
ũTb

⌋
,

For the second statement we first show that any cut of the form (2.4) with the vector u ≥ 0
can be written as a non-negative integer linear combination of a cut of the same form with
the vector ũ = u − buc and the inequalities Ax ≤ b.

Indeed, by the above equations we have that
⌊
uT A

⌋
x ≤

⌊
uTb

⌋
can be obtained as the sum

of
⌊
ũT A

⌋
x ≤

⌊
ũTb

⌋
and bucT Ax ≤ bucT b.

As we have noted before, the cut
⌊
ũT A

⌋
x ≤

⌊
ũTb

⌋
is of the form (2.5). �

We also observe that had we used the seemingly weaker Proposition 2.6 instead of 2.5
(with h = id), we would have directly gotten Inequality (2.4).

As the inequalities in (2.4) and (2.5) form (basically) the same family of cuts, we will
refer to them as Chvátal-Gomory cuts, which is also the name most commonly found in the
literature. Let PCG be the corresponding elementary closure.

Gomory mixed integer cuts and PGMI

For the Chvátal-Gomory cuts we used the fractional parts of the reals as our subadditive
function, now we will use a slightly more complicated function to derive potentially stronger
cuts. For 0 ≤ f0 < 1 and p ∈ R define f (p) = p − bpc and

γ f0(p) =

 f (p) if f (p) ≤ f0
f0

1− f0
(1 − f (p)) otherwise.

Proposition 2.8 (See [69], Prop. II.1.4.7). The function γ f0 is subadditive for 0 ≤ f0 < 1.

Proof. Define (q)+ = max{0, q} for q ∈ R. Then it is not hard to see that γ f0(p) = f (p) −
( f (p)− f0)+

1− f0
. Let p, q ∈ R.

Case 1: f (p) + f (q) < 1. We compute

γ f0(p) + γ f0(q) = f (p) −
( f (p) − f0)+

1 − f0
+ f (q) −

( f (q) − f0)+

1 − f0

= f (p + q) −
( f (p) − f0)+ + ( f (q) − f0)+

1 − f0
≥ γ f0(p + q)

Case 2: f (p) + f (q) ≥ 1 and f (q) ≤ f0. Then

γ f0(p) + γ f0(q) = f (p) −
( f (p) − f0)+

1 − f0
+ f (q) > f (p) + f (q) − 1

= f (p + q) ≥ γ f0(p + q)
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Case 3: f (p) + f (q) ≥ 1 and f (p), f (q) > f0. then

γ f0(p) + γ f0(q) = f (p) −
f (p) − f0

1 − f0
+ f (q) −

f (q) − f0

1 − f0

= f (p) + f (q) −
f (p) + f (q) − f0 − 1 + 1 − f0

1 − f0

= f (p) + f (q) − 1 −
f (p) + f (q) − 1 − f0

1 − f0

= f (p + q) −
f (p + q) − f0

1 − f0

≥ γ f0(p + q)

�

Let u ∈ Rm, and define âT = uT A′ and b̂ = uTb. Then, as we have observed before, âT z =
b̂ is satisfied by all z ∈ P′. Furthermore, we define the fractional parts fi = f (âi) = âi − bâic,
for i = 1, . . . , d + m, and f0 = b̂ −

⌊
b̂
⌋
. Then, using again Proposition 2.5, we can conclude

that the inequality ∑
fi≤ f0

fizi +
f0

1 − f0

∑
fi> f0

(1 − fi)zi ≥ f0 (2.6)

is valid for P′I . Using the substitutions (zd+1, . . . , zd+m)T = b − Ax, we get a valid inequality
for PI from this.

If we want to use Proposition 2.6 instead (as one might if A and b are not integer), then
we can define δ f0(p) = p for p ≥ 0 and δ f0(p) = − f0

1− f0
p for p < 0. It is not hard to check that

δ f0 is positive homogeneous and dominates γ f0 and thus∑
i≤d; fi≤ f0

fixi +
f0

1 − f0

∑
i≤d; fi> f0

(1 − fi)xi +
∑
u j≥0

u jzd+ j −
f0

1 − f0

∑
u j<0

u jzd+ j ≥ f0 (2.7)

is a valid inequality for conv(P′ ∩ (Zd × Rm). Again, we can derive a valid inequality for PI

from this by substituting the last m variables. The derivation of these cuts via subadditive
functions is also nicely illustrated by Fischetti and Saturni in [36].

Cuts of the form (2.6) and (2.7) are called Gomory mixed integer cuts. They are of par-
ticular interest for mixed integer programs, but as we will see in Lemma 2.11 they are also a
strengthening of Chvátal-Gomory cuts in the pure integer case. Let PGMI be the correspond-
ing elementary closure.

Split cuts and PS

Let (π, π0) ∈ Zd+1, and let

cx − α(πx − π0) ≤ c0 and (2.8)
cx + β(πx − π0 − 1) ≤ c0 (2.9)

be valid inequalities for P with α, β ≥ 0, then

cx ≤ c0 (2.10)
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πx ≤ π0 πx ≥ π0 + 1 πx ≤ π0

πx ≥ π0 + 1

Figure 2.1: Geometric interpretation of split cuts.

is valid for S 1 = PI ∩
{
x ∈ Zd : πx ≤ π0

}
due to (2.8), and (2.10) is also valid for S 2 =

PI ∩
{
x ∈ Zd : πx ≥ π0 + 1

}
, due to (2.9). Since PI = conv(S 1 ∪ S 2), Inequality (2.10) must

be valid for PI as well.
Cuts of this form are called split cuts or disjunctive cuts [11, 24] and were introduced by

Balas [11]. A geometric interpretation of this argument can be found in Figure 2.1. Let PS

be the corresponding elementary closure.

Mixed integer rounding cuts and PMIR

Assume the inequalities
c1x ≤ c1

0 and c2x ≤ c2
0

are valid for P, and π = c2 − c1 ∈ Z
d. Define π0 =

⌊
c2

0 − c1
0

⌋
and γ = c2

0 − c1
0 − π0. We will

show that this implies that

πx + (c1x − c1
0)

1
1 − γ

≤ π0 (2.11)

is valid for PI .

Proposition 2.9. Let a ∈ Rd, b, g ∈ R, g ≥ 0, and consider the set

T =
{
(x, q) ∈ Zd × R : aTx − gq ≤ b, x ≥ 0, q ≥ 0

}
.

Then

bacT x −
1

1 − f0
gq ≤ bbc

is valid for T , where f0 = b − bbc.

Proof. Consider first the case −gq > f0 − 1. Then for any (x, q) ∈ T we know that x is
non-negative and therefore

bacT x ≤ aTx ≤ b + gq < b − ( f0 − 1) = bbc + 1.

Since bacT x ∈ Z, this implies the inequality bacT x ≤ bbc, which we can add to − 1
1− f0
gq < 0.

39



Chapter 2 Reformulation-induced Cuts

If we instead have −gq ≤ f0 − 1, then for any (x, q) ∈ T we get

bacT x −
1

1 − f0
gq ≤ aTx −

1
1 − f0

gq ≤ b + gq − gq
1

1 − f0
= b − gq(

1
1 − f0

− 1)

= b +
f0

1 − f0
( f0 − 1) = b − f0 = bbc .

�

Note that it is not hard to get a more general statement from this, with more real-valued
variables and coefficients of different signs, see [69].

Now we observe that

c1x ≤ c1
0 ⇔ q := c1

0 − c1x ≥ 0

and

c2x ≤ c2
0 ⇔ (c2 − c1)x − (c1

0 − c1x) ≤ c2
0 − c1

0

⇔ (c2 − c1)x − q ≤ c2
0 − c1

0,

which together means that we can use Proposition 2.9 (with g = 1), and thus we have shown
the validity of (2.11).

Cuts of the form (2.11) were introduced by Nemhauser and Wolsey [68] and are called
mixed integer rounding cuts. Let PMIR be the corresponding elementary closure.

There are several other families of cuts. In particular for the case x ∈ {0, 1}n (plus possibly
some continuous variables) one could name lift-and-project cuts [12, 77, 61], Sherali-Adams
cuts [77], and Lovász-Schrijver cuts [61]. A description of them, as well as a comparison of
their strengths, can be found in [27].

All the above families have the well-studied sub-families which are derived from basic
(feasible) solutions, and are in some sense easier to obtain: Note that the cuts described above
start with either taking some valid inequalities for P, or some arbitrary (positive) vector u.
How these should be obtained in a way that will lead to a strong cut (i.e., a cut which is close
to PI in some meaningful way), is not part of the definition.

Cuts from basic feasible solutions
Recall that if ẑ is a basic feasible solution of P′ with basis B and where B and N are the index
sets of the basic and nonbasic variables, then, for i ∈ B,

ẑi +
∑
j∈N

āi jẑ j = b̄i

is obtained as a linear combination of the equations in A′z = b, with some multipliers
u1, . . . , um. Thus, every basic variable in a basic feasible solution leads to a vector u of
multipliers that we can use for Chvátal-Gomory or Gomory mixed integer cuts.

Let x̂ be the vertex of P corresponding to a basic feasible solution ẑ of P′. Then, as
we have seen in the construction of the simplex algorithm, each of the d nonbasic variables
in ẑ gives us a ray originating in x̂. Let C denote the cone defined by these d rays. Then
inequalities that are valid for C ∩

{
x ∈ Rd : xk ≤ bx̂kc

}
and C ∩

{
x ∈ Rd : xk ≥ bx̂kc + 1

}
are
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also valid for PI . Split cuts of this form are sometimes also called intersection cuts from basic
feasible solutions [10] or simple disjunctive cuts [14].

Note that one can strengthen this last type of cuts by taking into account the integrality of
the remaining variables, which is an alternative way of finding basic Gomory mixed integer
cuts. This was shown by Balas and Jeroslow in [13].

Also note that we can get more (and possibly stronger) cuts if we replace basic feasible
solutions by basic solutions that are not necessarily feasible.

We will come back to this approach of using basic feasible solutions for obtaining cuts in
Section 2.3, where we give more details and illustrate the procedure with an example.

k-cuts
This family of cuts adds another twist to cuts from basic feasible solutions: Given a ba-
sic variable of such a solution, then, as we mentioned above, the corresponding row of the
simplex-tableau is a linear combination of the original equations A′z = b. If we now multiply
this row by a non-zero integer k, then the corresponding equation is still satisfied by all points
in P′, and we can obtain a Gomory mixed integer cut from it as we described before.

2.1.1 Comparing Elementary Closures
While it is certainly not obvious from the definitions, many of the above families define the
same elementary closures.

Lemma 2.10 ([68]). PMIR = PS = PGMI.

Proof. We will show the inclusions PMIR ⊆ PS ⊆ PGMI ⊆ PMIR.

PMIR ⊆ PS : Suppose cTx ≤ c0 is a split cut. By definition this means that there is an integer
vector (π, π0) ∈ Zd+1 and α, β ≥ 0 such that

cx − α(πx − π0) ≤ c0 and
cx + β(πx − π0 − 1) ≤ c0

are valid for P. If α = β = 0, then cTx ≤ c0 is valid for P and there is nothing to show.
Otherwise we can multiply both inequalities by 1

α+β
and get

1
α + β

(c − απ)Tx ≤
c0 − απ0

α + β
and

1
α + β

(c + βπ)Tx ≤
c0 + βπ0 + β

α + β
.

(2.12)

Note that 1
α+β

(c + βπ − (c − απ)) = π ∈ Zd and the mixed integer rounding cut derived
from the two above inequalities is again cTx ≤ c0.

PS ⊆ PGMI : Let â, b̂, and fi, i = 0, . . . , d +m be defined as before. We want to derive the cut∑
fi≤ f0

fizi +
f0

1 − f0

∑
fi> f0

(1 − fi)zi ≥ f0
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as a split cut. Define π0 =
⌊
b̂
⌋

and for i = 1, . . . , d + m

πi =

bâic if fi ≤ f0

dâie if fi > f0.

It is not hard to check that πz ≤ π0 together with âT z = b̂ implies the above inequality,
and similarly for πz ≥ π0 + 1 together with −âT z = −b̂.

We can do the same for P instead of P′.

PGMI ⊆ PMIR : Let c1x ≤ c1
0 and c2x ≤ c2

0 be two valid inequalities for P, with π := c2 − c1 ∈

Zd.

Then we can find non-negative λ1, λ2
∈ Rm such that λ1 Ax ≤ λ1b dominates c1x ≤ c1

0,
and λ2 Ax ≤ λ2b dominates c2x ≤ c2

0.

Indeed, given a valid inequality (V) for P, there are rows of Ax ≤ b which dominate
(V). Thus we can find a parallel hyperplane to the bounding hyperplane of (V) as a non-
negative linear combination of the equalities Ax = b, and then scale the coefficients
such that they sum up to 1 (i.e., we find a convex combination). It is not hard to see
that if the equalities with non-zero coefficients were tight for P (i.e., the inequalities
are not strictly dominated by others of Ax ≤ b), then the inequality given by this new
hyperplane is also tight for P.

We will assume that the inequalities we are given are indeed equal to the ones we
constructed as a convex combination of Ax ≤ b.

Now define u = λ2
− λ1 and note that uA′z = ub is satisfied by all points z in P′.

Furthermore, let s be the vector of slack variables (zd+1, . . . , zd+m)T, and observe that

uA′z = uAx + us = (c2 − c1)x + λ2s − λ1s and ub = c2
0 − c1

0.

Then the Gomory mixed integer cut we can derive from the equation uA′z = ub is,
according to (2.7),

λ2s +
γ

1 − γ
λ1s ≥ γ,

where γ = c2
0 − c1

0 −
⌊
c2

0 − c1
0

⌋
. Using λ2s = c2

0 − c1
0 + λ

1s− (c2 − c1)x and λ1s = c1
0 − c1x

(which follows from s = b − Ax and our assumptions on λ1), we transform this to

(c2 − c1)x − λ1s −
γ

1 − γ
λ1s ≤

⌊
c2

0 − c1
0

⌋
⇔ (c2 − c1)x −

1
1 − γ

(c1
0 − c1x) ≤

⌊
c2

0 − c1
0

⌋
⇔ πx + (c1x − c1

0)
1

1 − γ
≤

⌊
c2

0 − c1
0

⌋
.

�

Lemma 2.11. PGMI ⊆ PCG, and there are polytopes where the inclusion is strict.
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Proof. If u ∈ Rm is nonnegative, then the Gomory mixed integer cut from (2.7) simplifies to

∑
i≤d; fi≤ f0

fixi +
f0

1 − f0

∑
i≤d; fi> f0

(1 − fi)xi +

m∑
j=1

u jzd+ j ≥ f0.

If we now substitute (zd+1, . . . , zd+m)T = b − Ax and multiply both sides of the inequality by
(1 − f0), we get

(1 − f0)
∑

i≤d; fi≤ f0

fixi +
∑

i≤d; fi> f0

f0(1 − fi)xi + (1 − f0)(uTb − uT Ax) ≥ f0(1 − f0),

which in turn is equivalent to∑
i≤d; fi≤ f0

fixi +
∑

i≤d; fi> f0

f0xi − uT Ax + uTb − f0(
∑
i≤d

fixi − uT Ax + uTb) ≥ f0(1 − f0).

Then, since
∑

i≤d; fi> f0 f0xi ≤
∑

i≤d; fi> f0 fixi, this implies the cut∑
i≤d

fixi − uT Ax + uTb − f0(
∑
i≤d

fixi − uT Ax + uTb) ≥ f0(1 − f0),

and by dividing by (1 − f0) and by the definition of fi for i ≥ 0 we get indeed the Chvátal-
Gomory cut

⌊
uT A

⌋
x ≤

⌊
uTb

⌋
.

To show that the inclusion is strict in some cases, define

P̄ = {(x1, x2) : −2x1 + x2 ≤ 0, 2x1 + x2 ≤ 2, x1, x2 ≥ 0} .

A basic Gomory mixed integer cut we get from the optimal simplex tableau for max−x1 + x2

is z3 + z4 ≥ 2 or, in terms of the original variables, x2 ≤ 0. In fact, it is not hard to see that
therefore we have P̄GMI = P̄I = conv{(0, 0), (1, 0)}.

On the other hand, we will show that the point (1/2, 1/2) satisfies any Chvátal-Gomory
cut. Indeed, since P̄ is a triangle with the vertices (0, 0), (1, 0), and (1/2, 1), any valid in-
equality for P̄ must be valid for both (0, 0) and (1, 1), or both (1, 0) and (0, 1). Since the
Chvátal-Gomory cut we derive from it will preserve validity for integer points, it will also be
valid for the center point (1/2, 1/2). �

2.1.2 A Non-Fulldimensional Example
Consider the integer program

max {x1 : 5x1 + 7x2 = 23, x1, x2 ≥ 0, x1, x2 ∈ Z} ,

see Figure 2.2.
If we now solve the linear relaxation of this program, the optimal solution is ( 23

5 , 0). Since
x2 is already integer, it is not unreasonable to try the disjunction x1 ≤ 4 and x1 ≥ 5, which
corresponds to the basic Chvátal-Gomory cut and also the basic Gomory mixed integer cut.

Thus, we add the inequality x1 ≤ 4 to the program and solve again, which leads to the
optimal point (4, 3

7 ). Now x2 is integer and we repeat the game with alternating roles, until
we conclude infeasibility after adding 6 cuts.

43



Chapter 2 Reformulation-induced Cuts

max x1

Figure 2.2: The linear relaxation of the program.

One can easily imagine an example that will require even more steps of this kind. What
makes this program difficult to solve with cutting planes is the fact that we repeatedly find
integer points that are close to the linear relaxation and thus prevent the more conservative
methods from finding strong cuts.

However, since these integer points do not lie in the smallest affine space containing the
linear relaxation of the program, we can exclude them from our consideration by applying
the reformulation (2.1).

2.2 Cutting Planes in the Reformulation

Strictly speaking, the cuts we want to study in this chapter do not form a different family of
cuts. Instead we describe an additional procedure, which we apply to the polytope before we
use cuts from the above mentioned families. We first reformulate P in the lowest-dimensional
affine subspace it is contained in, find cuts (by any method) in this reformulation, and then
translate these cuts back to the original space.

The family of cuts we find by reformulating, finding all Chvátal-Gomory cuts in the new
space, and translating them back to the original space, will be denoted by RCG, and the cor-
responding elementary closure by PRCG. The elementary closure PRS is defined analogously
for split-cuts.

We restrict our attention to these two families of cuts, since we have seen in Lemma 2.10
that the elementary closures of Gomory mixed integer cuts and of mixed integer rounding
cuts are the same as PS.

We will now show that these elementary closures do not differ from the closures we obtain
with these families without the reformulation. However, in Section 2.3 we will see that some
of the most popular methods to derive cuts from these families do lead to cuts that will not be
discovered using the same methods without the reformulation.

To show the equivalence of the elementary closures, we first observe the following.

Theorem 2.12 ([63]). Let B be a basis of kerZ(A). Then there exists a matrix W ∈ Z(n−m)×n

such that
WB = I.
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Proof. Let U be unimodular with AU = [H, 0] = HNF(A). Then the last n − m columns of
U form a basis of kerZ(A), call this basis B̂. We claim that for this basis the last n − m rows
of U−1 form the desired matrix Ŵ.

Indeed, U−1 and hence Ŵ are integer matrices because U is unimodular, and ŴB̂ = I by
construction.

Now let B be any basis of kerZ(A). Then there is a unimodular matrix V with B = B̂V,
and this directly implies that W = V−1Ŵ is a matrix with the desired properties. �

We will assume from now on that HNF(A) = [I, 0]. If it is not, we can multiply both
sides of the equation Ax = b by H−1 to achieve it. Recall that this assumption is equivalent
to the fact that the lattice generated by the rows of A is a pure sublattice of Zn.

Corollary 2.13. Let P = {x ∈ Rn : Ax = b, x ≥ 0} with A ∈ Zm×n and b ∈ Zm. Then
PCG = PRCG.

Proof. Let x ∈ Rn such that Qµ = x − x0 for some µ ∈ Rn−m, and Q and x0 as in (2.1).
By Lemma 2.4 we may assume that Qµ ≥ −x0 implies µ ≥ 0, or conclude that (eq-IP) is
unbounded.

We know from Theorem 2.12 that we can find an integer matrix W with WQ = I. Then

µ = Iµ =WQµ =W(x − x0),

where W and Wx0 are both integer.
Define P̂ =

{
µ ∈ Rn−m : Qµ ≥ −x0

}
and let dx ≤ d0 be valid for P, where d is integer.

Note that this is the situation as described in Chapter 1.3.3. The cut dx ≤ bd0c we derive from
this is clearly equal to or dominated by a Chvátal-Gomory cut.

We now reformulate this inequality as

dQµ ≤ d0 − dQx0,

where dQ is integer. Since x0 is also integer, we have

(d0 − dQx0) −
⌊
d0 − dQx0

⌋
= d0 − bd0c ,

and thus the cut from the reformulated inequality is again dominated by a Chvátal-Gomory
cut for P̂.

Conversely, let pµ ≥ p0 be valid for P̂ and such that p is integer. Then this is translated to

pWx ≥ p0 + pWx0,

where again pW is integer and thus p0 is the only possibly non-integer part on the right-hand
side. �

Corollary 2.14. Let P = {x ∈ Rn : Ax = b, x ≥ 0} with A ∈ Zm×n and b ∈ Zm. Then
PS = PRS.

Proof. Define again P̂ =
{
µ ∈ Rn−m : Qµ ≥ −x0

}
. As in the previous proof, we can use Q

and W to translate the valid inequalities between the spaces. Thus, every split cut for P is a
split cut for P̂ and vice versa. �
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2.3 Basic Cuts in the Reformulation
As was mentioned before, when we are asked to find a cut we are confronted with the chal-
lenge of how to choose the initial inequalities and possibly additional parameters like scaling-
factors. The method of using basic feasible solutions has been applied quite successfully, and
therefore we will use it to see how the reformulation-method described above can improve it.

In basic feasible solutions for P′, the variables can have fractional coefficients which we
can then use to derive, e.g., Chvátal-Gomory cuts or Gomory mixed integer cuts.

Note that, as we mentioned before, these cuts will always be split cuts. In particular,
Chvátal-Gomory cuts can be expressed as split cuts, where one of the sets S 1 and S 2 is
empty.

If we now do the reformulation first, and then find basic feasible solutions, we can find
splits which, when translated back, are not cuts from basic feasible solutions as we described
them before.

Interestingly, it turns out that they are k-cuts. Since there is no method known to determine
useful values k from the original formulation, this observation provides a positive spin on the
results of Cornuéjols, Li, and Vandenbussche [28], where it was, roughly speaking, shown
that using k-cuts instead of just the standard Gomory mixed integer cuts will only lead to an
improvement in half of the cases.

We will now describe the procedure of deriving cuts from basic cuts in the reformulation
in more detail, where we illustrate each step with the integer program

max {x1 : 16x1 + 25x2 + 47x3 = 182, x ≥ 0} .

Applying the reformulation first, we get (1, 1, 3)T as our initial solution as described in the
beginning of this chapter, and three inequalities corresponding to the nonnegativity:

−µ̄1 + 9µ̄2 ≥ −1
−5µ̄1 − 2µ̄2 ≥ −1

3µ̄1 − 2µ̄2 ≥ −3

By chance this initial solution is feasible, which we did not require and will not make use of.
To make sure that we can apply all our cut-procedures, all points satisfying the new con-

straints must lie in the positive orthant. This can be achieved, for instance, by using the
LP-relaxation and finding the minimum µ∗i for each of the coordinates µi (see Lemma 2.4). If
we now shift the program by −(

⌊
µ∗1

⌋
, . . . ,

⌊
µ∗n−m

⌋
)T, it will indeed lie in the positive orthant.

Doing this shifting in the example, we get µ1 = µ̄1 + 2 and µ2 = µ̄2 + 1, and our system
becomes (see Figure 2.3)

−µ1 + 9µ2 ≥ 6
−5µ1 − 2µ2 ≥ −13

3µ1 − 2µ2 ≥ 1

Next, we apply the simplex method to find a basic feasible solution. For the example the
optimal tableau looks as follows:
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x1

x2

x3

µ1

µ2

Figure 2.3: The example in the original space, and after reformulation and shift.

basis b̄ µ1 µ2 s1 s2 s3

z 139
8 −25

16 −47
16

µ1
7
4 1 1

8 −1
8

µ2
17
8 1 3

16
5
16

s1
91
8 1 25

16
47
16

Observe that there is a 1-to-1 correspondence between the variables x in the original space
and the slack-variables s, because both are defined as Qµ + x̄0, where x̄0 is the shifted initial
solution. Moreover, because of the shift, all µi will be positive and thus basic in the optimal
tableau. The remaining n − m basic variables will be corresponding to basic variables in the
original space. In our example, this is x1 by our choice of objective function.

As a consequence, any cut generated from a row corresponding to a basic slack variable
will be identical to the cut generated from the corresponding row in the tableau of the original
space. In the example, the equation we get from the tableau is

s1 +
25
16

s2 +
47
16

s3 =
91
8
.

To get the Gomory mixed integer cut, we compute the fractional parts f0 =
3
8 , f1 = 0, f2 =

9
16 ,

and f3 =
15
16 . Then if we enter this into Inequality (2.6), we get the cut 7s2 + s3 ≥ 10, or

7x2 + x3 ≥ 10.

Therefore, we are most interested in the Gomory mixed integer cuts we can get from the
rows where the µi are basic. In our example, we get s2 + 3s3 ≥ 6 from the µ1-row, and
13s2 + 11s3 ≥ 14 from the µ2-row. And again, we can just express the same cuts in x-
variables: x2 + 3x3 ≥ 6 and 13x2 + 11x3 ≥ 14.

Let us look at the cut from the µ1-row more closely. If we translate it into the µ-variables,
we get −µ1 + 2µ2 ≤ 1. As a split cut, the inequalities are

µ1 ≤ 1 and µ1 ≥ 2,

see Figure 2.4.
Using the translation

µ̄1 = −23 + 2x1 + 3x2 + 6x3

47



Chapter 2 Reformulation-induced Cuts

x1

x2

x3

µ1

µ2

Figure 2.4: The cut −µ1+2µ2 ≤ 1 and the corresponding split, and the cut and split translated
to the original space. The dots mark the feasible integer solutions.

we get the corresponding split-inequalities

2x1 + 3x2 + 6x3 ≤ 22 and 2x1 + 3x2 + 6x3 ≥ 23

in the original variables.
We could also use this translation, together with µ̄2 = 58 − 5x1 − 8x2 − 15x3, to express

the µ1-cut in the form 12x1 + 19x2 + 36x3 ≥ 138, but this is equivalent to the inequality
x2 + 3x3 ≥ 6, which we were able to read directly from the tableau of the reformulation.

We can recover the multiplier u that leads to this cut as a Gomory mixed integer cut, see
Balas [10] and also, e.g., Fischetti, Lodi, and Tramontani [35]. In this example, we can certify
that we have found a Gomory mixed integer cut by multiplying the original equation by 1/8.
Indeed, this leads to fractional parts f0 = 6/8, f1 = 0, f2 = 1/8, and f3 = 7/8.

While this shows that we can indeed find much stronger cuts by applying this reformula-
tion-technique, there are also some signs for caution: Note, for example, that we only looked
at one row of the simplex tableau in the reformulation. Repeating the same steps for the
µ2-row reveals that this is a Chvátal-Gomory cut and is dominated by the cut we get from
the s1-row, see Figure 2.5. Thus, a cut derived from the reformulation is not automatically
stronger and might in fact actually be weaker than basic cuts generated from the original
formulation.

µ1

µ2 cut from s1-row

cut from µ1-row

cut from µ2-row

Figure 2.5: The cuts generated from the reformulation for max x1.

However, we are confident that this approach is worth pursuing further and can be devel-
oped into a method that can be applied as a heuristic to find strong cuts, in particular for the
cases in which classical methods turn out to be slow.
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This is based also on a (very) small number of experiments we performed: Using eight
knapsack-instances, five with 5 and three with 3 variables, we compare the average of how
much of the gap we close by using Chvátal-Gomory cuts. Since this comparison is somewhat
unfair for the original formulation, where we have only one row and thus one cut, we run up
to 5 rounds of cuts in the original space, and a single round in the reformulation.

In Table 2.1 we record the average of the fraction of the gap closed, and the sum of all
cuts (over all 8 instances). In the reformulation, we close an average of 38% of the gap and
have a total of 34 cuts.

Table 2.1: Performance of Chvátal-Gomory cuts in the original space.

# of rounds 1 2 3 4 5
% Gap closed 12 19 38 63 91

# of cuts 8 20 41 81 135

2.4 Notes
While in Theorem 2.12 shows the existence of an integer matrix that lets us translate back
and forth between the coordinates given in Rn and the coordinates given in the basis Q, it
does not provide us with a direct way to find such a matrix. First, we observe that the matrix
can be chosen such that it has polynomial size.

Proposition 2.15 ([63]). We can compute a matrix W as in Theorem 2.12 in polynomial time
and the size of its entries can be polynomially bounded in the number of bits required to store
A and B.

Proof. The entries of U (and thus also of U−1 and Ŵ) are clearly polynomially bounded in
the number of bits required to store A.

Next we observe that the matrix W is not unique, since

(W + [a1, · · · , an−m]T)B = I

for any a1, . . . , an−m in the lattice {x ∈ Zn : Ax = b}.
Let wi be the ith row of the matrix W we constructed in the proof of Theorem 2.12, and

let πi = (AT A)−1 ATwT
i . Note that

wT
i = [I − A(AT A)−1 AT]wi + Aπi = (B(BTB)−1BT)wT

i + Aπi.

Set π̂i = πi − dπic and w̃T
i = w

T
i − A dπic = (B(BTB)−1BT)wT

i + Aπ̂i. Then

‖w̃i‖
2 = |(B(BTB)−1ei + Aπ̂i)T(B(BTB)−1ei + Aπ̂i)|
= |eT

i (BTB)−1BTB(BTB)−1ei + BT A + ATB + π̂T
i AT Aπ̂i|

= |eT
i (BTB)−1ei + π̂

T
i AT Aπ̂i|

and the cardinality of the elements in π̂i are bounded by 1/2.
The polynomial runtime for finding such a W̃ is then clear from the proof of Theo-

rem 2.12. �
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However, there is also another way to aquire W, which may be considered a bit more
direct: Since kerZ(A) is a pure sublattice of Zn and Q is a lattice basis of kerZ(A) we know that
HNF(QT) = [I, 0] (see Lemma 1.3), and therefore we find, in polynomial time, a unimodular
matrix U such that

UTQ =
[
I
0

]
.

The first n − m rows of UT form the desired matrix W.
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Ellipsoidal Basis Reduction

Given the integer program

max
{
cTx : Ax = b, x ≥ 0, x ∈ Zn

}
, (eq-IP)

and performing the reformulation

max
{
cT(x0 + Qµ) : Qµ ≥ −x0,µ ∈ Z

n−m
}
. (3.1)

as we described it in Chapter 2, we notice a potential difficulty:
When reducing the basis of kerZ(A) we do not take into account the shape of the feasible

region of the relaxation P = {x ∈ Rn : Ax = b, x ≥ 0}.
As long as the vertices of P have more or less the same distance to each other, i.e., P is

more or less regular, not looking at the shape of P does not pose any problems. Potentially,
however, we could get an irregular shape of P, as shown in Figure 3.1. When we now reduce
the basis to identify directions for cuts or for branching, this can lead to undesirable effects:
While the basis has a long vector in some direction, the polytope is flat in a different one.
Thus, the effect one hopes to obtain by identifying long basis vectors will not occur.

Figure 3.1: A polytope with properties reversing the effect of the reformulation.

Instead of looking at the lattice alone, we will now also take the general shape of P into
account, as was already suggested by Lenstra in [58].

Before we treat the general case, we briefly look at an idea suggested by Aardal and
Wolsey [6] for the case where A has only one row a and all elements ai are positive. Aardal
and Wolsey applied a map D1 to the standard lattice and to the polytope

P = {x ∈ Rn : ax = b, x ≥ 0} ,

which is a simplex, such that the mapped simplexx ∈ Rn :
n∑

i=1

xi = b


51



Chapter 3 Ellipsoidal Basis Reduction

intersects the coordinate axes at the point be j, j = 1, . . . , n, yielding a perfectly regular
polytope. The map D1 is given by the diagonal matrix

D1 =


a1 0 · · · 0
0 a2 · · · 0
...
...
. . .

...
0 0 · · · an

 . (3.2)

Under this map, the lattice kerZ(a) becomes

kerD1Z(1) = D1 kerZ(a) =

x ∈ D1Z
n :

n∑
i=1

xi = 0

 .
Reducing a basis for the lattice kerD1Z(1) with respect to the Euclidean norm is equivalent

to reducing a basis for kerZ(a) with respect to the norm ‖x‖2D1
=

∑n
i=1 a2

i x2
i . Computations

indicate that reducing a basis for kerZ(a) with respect to the norm ‖x‖2D1
=

∑n
i=1 a2

i x2
i rather

than the Euclidean norm yields a significant reduction in the number of branch-and-bound
nodes needed to solve randomly generated instances. Selected results for instances with
n = 100, 200, 300 are given in Table 3.1. The elements ai are generated uniformly at
random from the integers in the interval [15, 000, 150, 000]. The first column in the table
gives the instance number. In columns 2–4 we report on the number of branch-and-bound
nodes needed to solve the instance for the original formulation (eq-IP), the reformulation
(3.1) in which Q is reduced with respect to the Euclidean norm, and the reformulation in
which Q is reduced with respect to the norm ‖x‖2D1

.

Table 3.1: The number of branch-and-bound nodes needed to solve the various reformula-
tions.

n eq-IP (3.1) classical (3.1) D1-norm
100_1 191, 968 2, 077 130
100_2 104, 367 1, 880 103
200_1 94, 761 597 47
300_1 48, 146 1, 230 710

If the matrix A consists of more than one row we do not know the extreme points of
the corresponding polytope P explicitly. The result we will treat further in this chapter can
roughly be described as follows:

One can use an ellipsoid of maximum volume inside P to transform the original
set of inequalities to a set of inequalities that yields a regular description of P.

We will of course need to define what we mean precisely by these notions. First, let M be
a d×d non-singular matrix, and t ∈ Rd. Then the mapping T (x) = t+M · x is called an affine
transformation. Note that, since M is non-singular, T−1 is well-defined and again an affine
transformation. Let S = B(0, 1) be the unit ball, then if T is an affine transformation, T (S ) is
called an ellipsoid. Define D = MMT. We observe that we can describe T (S ) alternatively
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the other way around: instead of mapping the elements of S , we collect all points that have
an inverse under T with norm at most 1, i.e.,

T (S ) = ell(t, D) =
{
x ∈ Rd : (x − t)T D−1(x − t)T ≤ 1

}
.

Note that from this expression we can easily derive vol(T (S )) =
√

det(D) · vol(S ), and, since
M is non-singular, D is a positive definite matrix.

The above observations on the shape of a compact convex set K, relative to a lattice L, are
very much connected to the lattice-width of K, which is defined as

min
c∈L†\{0}

{
max

{⌊
cTx

⌋
: x ∈ K

}
−min

{⌈
cTx

⌉
: x ∈ K

}}
,

where L† is the dual lattice to L (see Chapter 1). This tells us the smallest number of lattice
hyperplanes we need in order to cover K ∩ L: One more than its width. Note that in contrast
to the definition given in much of the literature, we here define the lattice width to be integer
for any compact convex set.

It should be mentioned that we will make no direct use of the lattice width. It is given
here simply because it is a guiding concept one should keep in mind in the following consid-
erations.

As we will see, finding a direction in which we only need a small amount of lattice slices
to cover the lattice points in a polytope P is of key importance in the proof below for the
seminal theorem of H.W. Lenstra, Jr. [58], which demonstrates that integer programs can be
solved in polynomial time if the dimension is fixed.

In the original proof, Lenstra constructs a simplex of positive volume inside of P which
contains integer points if and only if P contains integer points. The advantage over the com-
plete description of P is, that a simplex has the minimal amount of facets and vertices for its
dimension, while still being full-dimensional.

However, Lovász noticed a different way of proving this (see [44, 75]), combining basis
reduction with the ellipsoid method. Thus, before we have a closer look at this proof, we
briefly review the ellipsoid method.

3.1 The Ellipsoid Method

This method was developed by Shor [78, 79] and Yudin and Nemirovski [83, 84], and gives
us an alternative way to solve linear programs. It was refined and, most importantly, shown
to have polynomial runtime by Khachiyan [52, 51]. The ellipsoid method solves the (linear)
feasibility program: Given A and b, find a vector y with Ay ≤ b, or conclude that no such
vector exists. However, we will see in Lemma 3.3 that this method can be adapted to solve
the optimization program (LP) in polynomial time as well.

Recall that, as we mentioned before, the simplex method for (LP) the way it is commonly
used is not a polynomial time algorithm. Surprisingly, however, there is no implementation
known so far for the ellipsoid method with an average running-time anywhere near competi-
tive to the simplex method.
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Let P =
{
x ∈ Rd : Ax ≤ b

}
be a polyhedron and let us assume, for the moment, that P

is bounded and full-dimensional. We will determine a sequence of ellipsoids E0, E1, E2, . . .
with decreasing volume, such that P ⊆ Ei for every i. We stop when we find that the center
zi of Ei lies in P.

Let v = 4d2φ, where φ is the maximal row size of [A, b]. It can be shown that each
vertex of P has size at most v (see [75], Theorem 10.2). Then, if we set R = 2v, we get
P ⊆

{
x ∈ Rd : ‖x‖ ≤ R

}
=: E0.

Suppose now Ei ⊇ P has been determined. If its center zi satisfies all inequalities in Azi ≤

b, we stop. Otherwise, let akx ≤ bk be an inequality violated by zi. Then we construct Ei+1

as the ellipsoid of smallest volume containing the half-ellipsoid Ei ∩
{
x ∈ Rd : akx ≤ ak zi

}
.

Note that again we have P ⊆ Ei+1, since P ⊆ Ei and

P ⊆
{
x ∈ Rd : akx ≤ bk

}
⊆

{
x ∈ Rd : akx ≤ ak zi

}
.

We will show that the volume of Ei+1 is smaller than the volume of Ei, by at least a
factor depending only on the dimension d. Since P was assumed to be full-dimensional, it
has positive volume. Therefore we can already conclude that there is a finite N such that the
center zN of EN lies in P. We will show below how to bound it polynomially in the size of A
and b.

First, however, we describe how to find an ellipsoid of smallest volume containing a given
half of an ellipsoid, and also how to bound its volume.

Theorem 3.1 (see, e.g., [75]). Let E = ell(z, D) ⊆ Rd, and a ∈ Rd. Then there is a unique
ellipsoid E′ = ell(z′, D′) containing E ∩

{
x ∈ Rd : ax ≤ az

}
such that E′ has the smallest

possible volume. More specifically,

z′ = z −
1

d + 1
·

Da
√

aT Da
,

D′ =
d2

d2 − 1

(
D −

2
d + 1

·
DaaT D
aT Da

)
.

(3.3)

Moreover,
vol E′

vol E
< e−

1
2d+2 . (3.4)

Proof. It is not hard to check that for E = ell(0, I) the ellipsoid E′ as given in (3.3) is indeed
the unique ellipsoid containing half the unit ball split along ax = 0, with minimal volume.

The uniqueness and construction for general ellipsoids follows from this, since any el-
lipsoid is an affine transformation of the unit ball and such transformations preserve set-
inclusions.

What is left to show is the bound on the volume. Note that vol(ell( ẑ, D̂)) =
√

det(D̂) ·
vol(ell(0, I)) implies

vol E′

vol E
=

√
det(D′)
det(D)

.

We can again assume that E = ell(0, I), and therefore√
det(D′)
det(D)

=
√

det(D′) =
(

d2

d2 − 1

)d/2

·

(
det

(
I −

2
d + 1

·
aaT

ata

))1/2

,
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by the definition of D′. Note that the matrix aaT

aT a has 1 as its unique nonzero eigenvalue, and
thus √

det(D′) =
(

d2

d2 − 1

)d/2 (
1 −

2
d + 1

)1/2

=

(
d2

d2 − 1

)(d−1)/2 (
d

d + 1

)
.

Finally, we use that 1 + q < eq for all q , 0, and therefore

d2

d2 − 1
= 1 +

1
d2 − 1

< e1/(d2−1) and
d

d + 1
= 1 −

1
d + 1

< e−1/(d+1).

Thus,
vol E′

vol E
< e(d−1)/(2d2−2)e−1/(d+1) = e−

1
2d+2 .

�

As we started the algorithm with E0 of volume at most (2R)d, we can conclude by induc-
tion that

vol Ei ≤ e−
i

2(d+1) · (2R)d.

On the other hand, if x0, . . . , xd are affinely independent vertices of P, then

vol(P) ≥ vol(conv(x0, . . . , xd)) =
1
d!

∣∣∣∣∣∣det
(

1
x0
· · ·

1
xd

)∣∣∣∣∣∣ .
Since for each i = 0, . . . , d the vertex xi has size at most v, we know that the determinant has
denominator at most 2dv.Therefore, we can conclude that

vol(P) ≥ d−d2−dv ≥ 2−2dv.

Suppose we have not found a center zi ∈ P for some i ≤ N and N = 16d2v. If P is nonempty,
this implies

2−2dv ≤ vol(P) ≤ vol(EN) < e−N/(2d+2) · (2R)d ≤ 2−2dv,

which is a contradiction.
Therefore, if P is nonempty, we find a feasible zi before reaching EN . As N is polynomi-

ally bounded in the sizes of A and b, we will find a feasible point in polynomial time, if it
exists.

There are some technicalities we glossed over here. The first one is that we assumed that
we can calculate with infinite precision for the construction of E′ in Theorem 3.1. As this
included calculations with square-roots, it is not a realistic assumption for actual computa-
tions. There are ways to approximate with sufficient precision, see, e.g., [71] (Section 8.7.4).
Going into these details here, however, would lead us too far away from the main topic.

Second, we assumed that P is full-dimensional and bounded. Detecting whether P is full-
dimensional is easy to achieve: If we reach EN without finding a center zi in P, then P is not
full-dimensional.

However, this does not give us a direct indication of how to proceed, thus we need more
technicalities. As is, e.g., described in [75] (Section 13.4), we can “inflate” P by a tiny amount
to make it full-dimensional. Given a solution for the inflated version of P, we can then find
one for the original version. To ensure boundedness, one can show that P is nonempty if and
only if we find a feasible point inside a “very large” sphere (whose radius is polynomially
bounded by the sizes of A and b). See, e.g., [75] Chapters 14 and 15 for more details.

In particular, we get the following refinement of the idea of finding a sequence of ellip-
soids of decreasing volume, all containing P:
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Theorem 3.2 (See [75] p.206). If P = {x ∈ Rn : Ax ≤ b} is full-dimensional and bounded,
and a rational γ with 0 < γ < 1/n is given, then there is an algorithm that finds an ellipsoid
ell(z, D) such that z is rational and ell(z, γ2 D) ⊆ P ⊆ ell(z, D), in time polynomially bounded
by n, 1

1−γn , and the sizes of A, b, and γ.

Lemma 3.3 (see [75], Corollary 14.1a). If we can solve the linear feasibility program in
polynomial time, then we can also solve the optimization program (LP) in polynomial time.

Proof. Let P ⊆ Rn be a rational polyhedron of size at most ϕ, where n, ϕ ∈ N. We have seen
in Chapter 1 that if max

{
cTx : x ∈ P

}
is finite, then it is attained by a vertex of P. Since

vertices of P have size at most 4n2ϕ (see again Theorem 10.2 in [75]), the size of any finite
maximum will be bounded by 2(size(c) + 4n2ϕ).

Next, define τ = 3 size(c)+12n2ϕ and set m0 = −2τ and M0 = 2τ. We will now repeatedly
update these values and use the algorithm for the feasibility program to test whether

P ∩
{

x ∈ Rn : cTx ≥
1
2

(mi + Mi)
}

is empty.
If it is, we set mi+1 = mi and Mi+1 =

1
2 (mi + Mi). If the set is not empty, then instead we

set mi+1 =
1
2 (mi + Mi) and Mi+1 = Mi. We stop when we reach i = 3τ + 2 =: K. We thus

performed polynomially many iterations and there are now three possibilities.

Case 1. mK , m0 and MK , M0.

Then M := max
{
cTx : x ∈ P

}
must be finite, with mK ≤ M < MK . Note that

(MK − mK) = 2−2τ−1. Since size(M) < τ, the denominator of M is at most 2τ, and
using continued fractions it is not hard to see that this determines M uniquely (see also
Corollary 6.3a in [75]).

We can find a vector x ∈ P with cTx = M by using the feasibility algorithm on P ∩{
x ∈ Rn : cTx = M

}
.

Case 2. MK = M0.

Then max
{
cTx : x ∈ P

}
is unbounded, since there is a vector x ∈ P with cTx ≥ mK =

2τ − 2−2τ−1 > 22(size(c)+4n2ϕ).

Case 3. mK = m0.

Then P is empty, since otherwise there would be an x ∈ P with size(x) ≤ 4n2ϕ. But
then cTx ≥ −2size(c)+4n2ϕ ≥ −2τ + 2−2τ−1 = MK , and since we did not change mi in the
last step, this is a contradiction to the definition of MK .

�

Lemma 3.4. If we can solve the linear feasibility program in polynomial time, then we can
also find the smallest affine subspace containing P in polynomial time.

Proof. We first show the statement for the case that P = L is a linear subspace of Rn. To this
end, we want to find linearly independent vectors c1, . . . , ct, x1, . . . , xd, such that

L =
{
x ∈ Rn : cT

1 x = · · · = cT
t x = 0

}
= span{x1, . . . , xd}.
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We will do this iteratively, starting with d = 0.
Suppose we have found linearly independent vectors x1, . . . , xd, then, possibly after per-

muting coordinates, we get that

[x1, . . . , xd] =
[
X1

X2

]
,

such that X1 is a non-singular matrix of rank d.
Let Ld consist of all vectors in L with zeros in the first d coordinates, i.e.,

Ld = L ∩
{(

0
y

)
∈ Rn : y ∈ Rn−d

}
.

To find xd+1 (if it exists), we just need to find a non-zero vector in Ld. We can do so by solving
the feasibility program for the polyhedra

Pd,i := Ld ∩ {x ∈ Rn : xi ≥ 1}

for i = d + 1, . . . , n.
If we find a vector in one of these polyhedra, we can permute coordinates again such that

it is in Pd,d+1. We then call this vector xd+1 and restart the procedure for d + 1.
If all of the Pd,i are empty, then Ld = {0} and hence L = span{x1, . . . , xd}. It is also not

difficult to check that furthermore

L =
{
x ∈ Rn : [X2 · X−1

1 ,−I]x = 0
}
,

which gives us the vectors c1, . . . , ct as required; we just need to extract a maximal system of
linearly independent rows.

Now let P be any polyhedron. With the feasibility program we determine some x0 ∈ P or
conclude that P is empty (in which case the alline hull is also empty).

If P is not empty, let L be the linear space we get by shifting the affine hull of P by −x0.
Note that we ca also solve the feasibility program for L in polynomial time. Indeed, to test
whether z , 0 is in L, we can invoke the optimization program of Lemma 3.3 for P with
objective z and −z. The optimal vectors in P are identical if and only if z < L.

Now we can, as we did above, find linearly independent vectors c1, . . . , ct such that L ={
x ∈ Rn : cT

1 x = · · · = cT
t x = 0

}
, and thus the affine hull of P is given by{

x ∈ Rn : cT
1 x = cT

1 x0, · · · cT
t x = cT

t x0

}
.

�

3.2 Lenstra’s Algorithm
We reproduce Lenstra’s algorithm here in the version given by Schrijver in [75]. The main
tool is the following theorem, which gives us a constructive upper bound on the lattice-width.
The key to the proof is applying lattice reduction to the lattice we get from Zn after the affine
transformation that makes the polytope as round as possible. In other words, we reduce with
respect to the shape of the polytope.
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Theorem 3.5 ([44]). There exists a polynomial algorithm which finds, for any system Ax ≤ b
of rational linear inequalities, either an integer vector y satisfying Ay ≤ b, or a nonzero
integer vector c such that

max {cx : Ax ≤ b} −min {cx : Ax ≤ b} ≤ 2n(n + 1)2n(n−1)/4, (3.5)

where n is the number of columns of A.

Proof. Define P = {x ∈ Rn : Ax ≤ b}. With the ellipsoid method, following Lemma 3.4,
we determine the smallest affine subspace containing P. If P is not full-dimensional, this will
give us a nonzero vector c and a rational δ such that P ⊆

{
x ∈ Rn : cTx = δ

}
, and we can

stop.
Thus we may assume that P is full-dimensional and, for the moment, additionally we

assume that P is bounded.
Then by Theorem 3.2 we find, in polynomial time, a rational vector z and a positive

definite matrix D such that

ell
(
z,

1
(n + 1)2 D

)
⊆ P ⊆ ell(z, D).

Let D−1 = MMT where M is non-singular. Note that we can find M by using the eigende-
composition of D−1. If we now consider the lattice L with basis MT, then this is the image of
Zn under the affine transformation we need to apply to P to ensure that the ellipsoid we get
from Theorem 3.2 is the unit ball.

Note that, given a basis of L, the inverse under this transformation will always give us a
basis of Zn. Therefore, instead of applying the LLL-reduction algorithm to MT, we apply it
to the standard unit basis of Zn, where we use the norm //x// := ‖MTx‖ =

√
xT D−1x instead

of the Euclidean norm.
Let b1, . . . , bn be the basis of Zn we find this way. Note that the reduced basis of L is given

by MTb1, . . . ,MTbn.
We know by Lemma 1.13 that the orthogonality defect of L is at most 2n(n−1)/4 and thus

//b1// · . . . · //bn// ≤ 2n(n−1)/4
√

det(D−1).

Now we can write the center of the ellipsoids z in terms of this new basis, z = λ1b1+ · · ·+

λnbn and define
y = bλ1c b1 + · · · + bλnc bn.

If y satisfies Ay ≤ b, we are done. Otherwise, y will also not be in the smaller ellipsoid
ell

(
z, 1

(n+1)2 D
)
, which means

1
(n + 1)2 < (y − z)T D−1(y − z) = //y − z//2

= //λ1 − bλ1c b1 + · · · + λn − bλnc bn//
2.

Therefore,

1
n + 1

< (λ1 − bλ1c)//b1// + · · · + (λn − bλnc)//bn//

≤ //b1// + · · · + //bn//.
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Without loss of generality we can assume that bn has the maximal norm among the basis
vectors. Then we know that //bn// ≥

1
n(n+1) .

Let Bi be the matrix with columns b1, . . . , bi, for i = 1, . . . , n. If c is a nonzero vec-
tor that is orthogonal to b1, . . . , bn−1, then M−1c is a nonzero vector that is orthogonal to
MTb1, . . . ,MTbn−1. Furthermore, observe that det(Bn) = 1 by construction.

Thus we can compute

det L =
√

det(D−1) =
√

det(BT
n MMTBn)

=
|(M−1c)T MTbn|

‖M−1c‖

√
det(BT

n−1 MMTBn−1)

=
|cTbn|
√

cT Dc

√
det(BT

n−1 D−1Bn−1) ,

and therefore
(cT Dc) det(D−1) = (cTbn)2 det(BT

n−1 D−1Bn−1).

We may further assume that c is integer and that the components are relatively prime. Since
Bn is a basis of Zn and c is orthogonal to all bi with i < n, we conclude that in fact we must
have c = ±bn and therefore in particular (cTbn)2 = 1.

By Hadamard’s inequality (see (1.3)), we have furthermore

det(BT
n−1 D−1Bn−1) ≤ (bT

1 D−1b1) · . . . · (bT
n−1 D−1bn−1)

= //b1//
2 · . . . · //bn−1//

2.

Thus, taking all this together, if xT D−1x ≤ 1, then we have

|cTx| ≤ ‖cT M‖ · ‖M−1x‖ =
√

cT Dc ·
√

xT D−1x ≤
√

cT Dc

=
√

det D ·
√

det(BT
n−1 D−1Bn−1) ≤

√
det D · //b1// · . . . · //bn−1//

≤ 2n(n−1)/4//bn//
−1 ≤ n(n + 1)2n(n−1)/4,

where we use the Cauchy-Schwarz inequality for the first step.
In conclusion, if y1, y2 are in ell(z, D), then

|cTy1 − cTy2| ≤ |c
T(y1 − z)| + |cT(y2 − z)| ≤ 2n(n + 1)2n(n−1)/4,

and thus c satisfies (3.5).
What remains now is to show what to do if P is unbounded. Using Lemma 1.5, we observe

that if we intersect P with a large enough ball (that still has a radius of polynomial size), all
vertices of P and a good part more lies in the intersection (see [75] p.258 for details). Then it
is just a matter of choosing the radius correctly to see that if the vector y we construct above
does not lie in the intersection, then the c this leads to satisfies (3.5) for the whole polyhedron
P. �

Corollary 3.6 (Lenstra’s algorithm). For each fixed natural number n, there exists a poly-
nomial algorithm which finds an integer solution for a given rational system Ax ≤ b, in n
variables, or decides that no such solution exists.
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Proof. We use induction on n, where the case n = 1 is easy. Now let Ax ≤ b be given, where
A has n columns, and apply the algorithm of Theorem 3.5 to this system of inequalities. If
we get an integer solution from this, we are done. Suppose we get a nonzero integer vector c
that satisfies (3.5). We may assume that the components of c are relatively prime.

We define P = {x ∈ Rn : Ax ≤ b}, and determine µ := min
{
cTx : x ∈ P

}
. Then for

t = dµe , . . . ,
⌈
µ + 2n(n + 1)2n(n−1)/4

⌉
, consider the polyhedra

Pt =
{
x ∈ P : cTx = t

}
.

Each integer solution of Ax ≤ b is in one of these Pt.
Let U be such that

[
cT

U

]
is an n × n unimodular integer matrix. Then U maps any x ∈ Pt

into

Qt =

y ∈ Rn−1 : A
[
cT

U

]−1( t
y

)
≤ b

 ,
and moreover, if x ∈ Pt∩Z

n then Ux ∈ Qt∩Z
n−1, and if y ∈ Qt∩Z

n−1 then
[

cT

U

]−1( t
y

)
∈ Pt∩Z

n.
Note that we can indeed always find such a matrix U: Perform elementary column oper-

ations on cT until we have a unit vector, say ei. This must occur at some point because the
components of c are relatively prime. Then we get U by inserting 0 as ith column into the unit
matrix and reversing the column operations one by one.

Thus, we have reformulated the program to at most 2n(n + 1)2n(n−1)/4 + 1 programs of
dimension n − 1. �

3.3 Ellipsoids and Reformulations
We are now ready to return to our original question: Let

P′ =
{
µ ∈ Rn−m : Qµ ≥ −x0

}
be the polytope we get from reformulating P = {x ∈ Rn : Ax = b, x ≥ 0} as in Chapter 2.
How can we incorporate the general shape of P′ when we reduce the lattice kerZ(A)?

Note that, by construction, P′ will be full-dimensional and we may assume bounded, thus
we can describe its shape directly as we did in the proof of Theorem 3.5. We want to find a
rational vector z and a positive definite matrix D, such that

ell
(
z,

1
(n + 1)2 D

)
⊆ P′ ⊆ ell(z, D).

If we then take M to be the non-singular matrix with D−1 = MMT and consider the lattice
L(MTQ), then a reduced basis will have the desired property that lattice hyperplanes gener-
ated by all basis vectors but one long one will give us a decent approximation of the lattice
width, or in other words, the length of a basis vector is now related to the width of P′ in the
direction of the vector.

At this point, the question arises why this is not used in practice. As we mentioned before,
the idea has been around for some time, and was explicitly described already at least 30 years
ago. If we observe the steps once more, there are two large building blocks: finding a small
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ellipsoid around P′, and reducing lattice bases (once to get a basis of the kernel lattice of A,
once to reduce it with respect to the ellipsoid).

While lattice reduction is known to slow down considerably when we go from dozens of
variables to hundreds, our experiments indicate that the larger issue is the ellipsoid. Indeed,
the time spent on finding an improved basis based on the ellipsoid (in comparison to the
reformulation from Chapter 2) always significantly exceeded the amount of time saved on
branching afterwards. Note that because of the discouraging nature of this, we only did a
very limited number of experiments in this setting.

Instead of trying to find an ellipsoid containing P′ with minimum volume (also called
Loewner ellipsoid), we can try to find an ellipsoid contained in P′ of maximum volume (also
called John ellipsoid). See, e.g., the short survey of Henk [47] for some historical remarks.

While the Loewner ellipsoid gives us a lower bound on the volume of the John ellipsoid
by Theorem 3.2, there is no exact relationship known between these ellipsoids, ecxept for
some special cases, where the polytope has particular symmetries.

The task to find such an ellipsoid of maximum volume is of interest for Control Theory
[18], and in particular for the Inscribed Ellipsoid method, see [80].

In [70], Nemirovski describes a path-following interior point method for approximating
saddle points of a certain kind of functions, which can be used for finding approximations
of the ellipsoid with largest possible volume inside P′. To find an ellipsoid with volume at
least (1 − ε) times the maximal one, the running time of this method is O(d3.5 ln(dε−1R)),
where d is the dimension of P′ and R is the ratio of two radii such that, for a fixed center, the
Euclidean ball of the smaller radius is contained in P′, and the Euclidean ball of the larger
radius contains P′.

A restriction of this method is, that we need to know a bound on the size of the elements of
P′, which is passed to the algorithm. By Lemma 1.5 this bound can be chosen of polynomial
size, but choosing a large bound here will slow down the algorithm significantly.

However, this algorithm does not require the polytope to be full-dimensional, and we can
thus apply it also to the polytope P in the original space. This has the additional advantage
that we can use the positive definite matrix D describing the ellipsoid precisely the way we
used the diagonal matrix for the knapsack-program at the beginning of the chapter.

Since prgrams where the components are required to be binary are particularly suitable
for the algorithm of Nemirovski (as they come with a small bound R), we used the notorious
market split problems (see Cornuéjols and Dawande [26]) to test the practicability of this pro-
cedure. We get indeed a correct procedure. However, there was no consistent improvement
in the running time, when compared to using the reduction described in Chapter 2, and in
fact for small dimensions the additional time we spend on the computation of the ellipsoid is
most of the time not recovered, see Table 3.2.

We tested five instances with 40 variables and four instances with 50 variables. The par-
ticular method we used for solving the instances (after reformulating) did not permit larger in-
stances. We have done some tests with different solving methods and slightly more variables,
with similarly inconsistent outcome. Note that the time spent on computing the ellipsoid is
not part of the table, but lies consistently by about 2-5 seconds.

These results come as no surprise if we take a closer look at the ellipsoids we get, because
as it turns out, they are on average very close to a Euclidean sphere, in particular for a larger
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Table 3.2: Running time (in seconds) for market split problems with and without ellipsoidal
norm.

instance 5x40_1 5x40_2 5x40_3 5x40_4 5x40_5
LLL 0.3 0.12 0.26 0.15 0.15

LLL+E 0.34 0.22 0.3 0.24 0.29
instance 6x50_1 6x50_2 6x50_3 6x50_4

LLL 97.7 61.6 40.6 286.9
LLL+E 36 35.4 140.2 147.9

number of variables. Thus, the improvement we might get from obtaining a different reduced
basis is often smaller than the additional time we spent on investigating the shape of P.

This observation also raises the question of how to capture the difficulty of market split
instances mathematically.

Thus, an exciting challenge for further research will be to investigate possibilities of de-
tecting whether the feasible region of a program might have a more accentuated shape and
will therefore enable the method of reducing with respect to the ellipsoidal norm to have a
more consistently positive effect on the running time.
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C F

On the Structure of Kernel Lattice Bases

We again look at the integer program

max
{
cTx : Ax = b, x ≥ 0

}
, (eq-IP)

where A is an integer m × n matrix of full row rank and b an integer m-vector. As before, we
are interested in the reformulation

x := x0 + Qλ , (4.1)

where x0 ∈ Zn satisfies Ax0 = b, λ ∈ Zn−m, and Q is a basis for the lattice kerZ(A) =
{x ∈ Zn : Ax = 0}. The equivalent formulation of the integer program (eq-IP) is then

max
{
cT(x0 + Qλ) : Qλ ≥ −x0

}
. (4.2)

Several authors have studied knapsack instances that have a certain structure that makes
them particularly difficult to solve by “standard” methods such as branch-and-bound. Exam-
ples of such instances can be found in [3, 29, 54]. Common for these instances is that the
input is generated in such a way that the resulting lattice kerZ(A) has a very particular struc-
ture that makes the reformulated instances almost trivial to solve. Other instances that are
randomly generated without any particular structure of the A-matrix, such as the market split
instances [26] and knapsack instances studied in [3, 5], have no particular lattice structure.
Yet they are practically unsolvable by branch-and-bound in the original x-variable space,
whereas their lattice reformulation solves rather easily, at least up to a certain dimension. It
is still to be understood why the lattice reformulation for these instances is computationally
more effective.

If we consider randomly generated instances without any particular lattice structure and
solve small instances, such as n − m ≤ 50, one typically observes that the number of zeros in
the LLL-reduced basis Q is small. In higher dimension, and here “high” is depending on the
input, a certain sparser structure will start to appear.

More specifically, we observe computationally that Q has a certain number of rows with
rich interaction between the variables x and λ, but from some point on this interaction breaks
down almost instantly and we get one ‘1’ per row, i.e., Q yields variable substitutions. To be
able to better understand the relative effectiveness of the lattice reformulation, and in order
to be able to apply the lattice reformulation in a (more) useful way in higher dimension, it is
important to identify the variables that have a nontrivial translation into the new λ-variable
space.

In this chapter we partially explain the phenomenon described above for the case that
m = 1, that is, A consists of a single row a = (a1, . . . , an). As the structure of Q depends
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on the choice of a, our analysis will be probabilistic. To this end, we assume that the entries
of our input vector a are drawn independently and uniformly at random from an interval
[l, . . . , u] := [l, u] ∩ Z, where 0 < l < u. We notice that explaining the phenomenon is
related to the analysis of the probability that the LLL-algorithm (see Chapter 1.2.2) performs
a basis vector interchange after a basis vector with a certain index k has been considered by
the algorithm.

Let Q = [b1, . . . , bn−1] be an LLL y-reduced basis of kerZ(a), and let b∗1, . . . , b
∗
n−1 be the

Gram-Schmidt vectors corresponding to b1, . . . , bn−1. If ‖b∗i+1‖
2 ≥ y‖b∗i ‖2, then basis vectors

i + 1 and i will not be interchanged. We will show that, starting with a basis Q̄ of kerZ(a) of
a certain structure, the probability that the LLL-algorithm performs basis vector interchanges
becomes increasingly small the higher the index of the basis vector. In particular, for given
l, u, and reduction factor y, we derive a constant c and a k0, such that for k ≥ k0 we have

Pr
(
‖b∗k+1‖

2 < y‖b∗k‖
2
)
≤ e−c(k+1) + 2−(k+1)/2.

Note that, stated in this form, it is an asymptotic result, but we will see that the values of k0

are very similar to the ones observed in the experiments.
To derive a bound on Pr

(
‖b∗k+1‖

2 < y‖b∗k‖2
)

we first need to be able to express the length
of the Gram-Schmidt vectors b∗j in terms of the input vector a. This is done in Section 4.1
and results in Expression (4.9). The bound on Pr

(
‖b∗k+1‖

2 < y‖b∗k‖2
)

is derived through several
steps in Section 4.2. In this derivation, the challenge is that ‖b∗k+1‖

2 and ‖b∗k‖2 are not inde-
pendent. To estimate the mean of the ratio ‖b∗k+1‖

2/‖b∗k‖2, we use a result by Pittenger [72],
and to estimate how much this ratio deviates from the mean we use the Azuma-Hoeffding
inequality [8, 48]. Some further discussion and computational indications are provided in
Sections 4.3 and 4.4. We notice that the theoretical results correspond well to the observed
practical behavior of the LLL algorithm on the considered class of input.

4.1 More on lattices and reduced bases
We first repeat some facts about lattices and reduced bases of lattices from Chapter 1, and
prove the Key-Lemma 4.2.

Let L be a lattice in Rn, and let b1, . . . , bm, m ≤ n, be a basis of L. Recall from Chapter 1
that the Gram-Schmidt vectors are defined as follows:

b∗1 = b1,

b∗i = bi −

i−1∑
j=1

µi jb∗j, 2 ≤ i ≤ m, where

µi j =
bT

i b∗j
‖b∗j‖2

, 1 ≤ j < i ≤ m.

We also recall that a basis {b1, . . . , bm} is called y-reduced, if

|µi j| ≤
1
2
, for 1 ≤ j < i ≤ m − 1, and (4.3)

‖b∗i + µi,i−1b∗i−1‖
2 ≥ y ‖b∗i−1‖

2, for 1 < i ≤ m − 1 . (4.4)
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Notice that, as b∗1, . . . , b
∗
m are pairwise orthogonal, Inequality (4.4) is satisfied if

‖b∗i ‖
2 ≥ y‖b∗i−1‖

2, for 1 < i ≤ m − 1 . (4.5)

If Condition (4.3) is violated, i.e., |µk j| > 1/2 for some j < k, then the LLL-algorithm will
perform a size reduction by setting bk := bk − bµk jeb j. Notice that this operation will not
change the Gram-Schmidt vector b∗k. If Condition (4.4) is violated for i = j, then vectors b j−1

and b j are interchanged. This operation does affect several of the µ-values. Moreover, the
new vector b∗j−1 will be the old vector b∗j + µ j, j−1b∗j−1. See Section 1.2 for more details.

We also recall from Chapter 1 that det(L) =
∏m

i=1 ‖b
∗
i ‖ (see (1.2)), and that if K is a pure

sublattice of Zn, then det(K) = det(K⊥) (see (1.7)).

Let us now consider a vector a ∈ Zn such that gcd(a1, . . . , an) = 1. We again define the
kernel lattice of a as the set kerZ(a) := {x ∈ Z : ax = 0}. As we have seen in Chapter 1, the
lattice kerZ(a) is a pure sublattice of Zn.

With all this in mind again, we now show that the lattice kerZ(a) has a basis of the follow-
ing form:

Q =


x x · · · x
x x · · · x
0 x · · · x
... 0 . . . x
0 · · · 0 x


, (4.6)

where each ‘x’ denotes some integer number that may be different from zero. This is a
corollary of a classical result on lattice bases (see, e.g., [19] Theorem 1 and corollaries), but
it is also not difficult to prove directly.

Lemma 4.1. The lattice kerZ(a) has a basis b1, . . . , bn−1 of the following form:

Zb1 + . . . + Zbk = kerZ(a) ∩ (Zk+1 × 0n−k−1)

for any 1 ≤ k ≤ n − 1.

Proof. Write ci = min
{
|yi| > 0 : y ∈ kerZ(a), y j = 0 for j > i

}
, where 2 ≤ i ≤ n. Note that

the set we minimize over is not empty, because at least vectors of the form

(−ai, 0, . . . , 0, a1, 0, . . . , 0)T,

where a1 appears in the ith position, are in kerZ(a) for any i ∈ {2, . . . , n}. Now choose

bi ∈
{
x ∈ kerZ(a) : xi+1 = ci+1, x j = 0 for j > i + 1

}
. (4.7)

To see that this is indeed a lattice-basis, let z ∈ kerZ(a) and let k be the highest index of a
non-zero coordinate of z. Let Q = [b1, . . . , bn−1], where bi satisfies (4.7).

We want to find λ ∈ Zn−1 such that z = Qλ. Observe that zk
ck

must be integer, because
otherwise there is a c′ ∈ Z such that 0 < |zk − c′ck| < ck, which contradicts the minimality of
ck. Therefore we may define λk−1 := zk

ck
.

Setting z = z − λk−1bk−1, this gives us a recursive construction for the integer coefficients
λ1, . . . , λn−1 to express z in terms of our basis. �

One can additionally observe that if gcd(a1, . . . , ai) = 1 for some 1 ≤ i ≤ n then the last
non-zero element of the basis vectors bi, . . . , bn−1 is equal to ±1. We will follow up on this
idea in Section 4.4.
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Let Lk be the sublattice given by the basis b1, . . . , bk as described in Lemma 4.1, for 1 ≤
k ≤ m. Then we have L1 ⊆ L2 ⊆ · · · ⊆ Ln−1 = kerZ(a) and det(Lk) =

∏k
i=1 ‖b

∗
i ‖. Also, because

of the specific structure of the basis, we can express Lk as

Lk =
{
x ∈ Zn : (a1, . . . , ak+1, 0, . . . , 0)x = 0, x j = 0, k + 2 ≤ j ≤ n

}
.

We can extend the above observations to conclude the following:

Lemma 4.2. Let L1, . . . , Ln−1 be given as above and let 1 ≤ k ≤ n−1. If gcd(a1, . . . , ak+1) = 1,
then

det(Lk) =

√√
k+1∑
i=1

a2
i , (4.8)

and thus we get in particular

‖b∗k‖
2 =

∑k+1
i=1 a2

i∑k
i=1 a2

i

. (4.9)

Proof. Observe that (a1, . . . , ak+1, 0, . . . , 0)T and the unit vectors e j, with k + 2 ≤ j ≤ n, are
an orthogonal basis of L⊥k . Using (1.2) and the fact that det(K) = det(K⊥) for pure sublattices
of Zn (see (1.7)), we get (4.8).

Equation (4.9) follows from (1.2) in combination with (4.8) for Lk and Lk−1. �

4.2 Probabilistic analysis
Here we present the main result of the chapter, namely a bound on the probability that the
LLL-algorithm will perform a basis vector interchange after basis vector bk is considered.
We assume that the elements ai of the vector a are drawn independently and uniformly at
random from an interval [l, . . . , u] := [l, u] ∩ Z, where 0 < l < u, and that the starting basis
of kerZ(a) is a basis of the structure given in Lemma 4.1. Recall from Section 4.1 that if, for
given reduction factor y ∈ ( 1

4 , 1),

‖b∗i+1‖
2 ≥ y‖b∗i ‖

2, for 1 ≤ i < n − 1 ,

then the LLL-algorithm will not interchange basis vectors bi and bi+1.
We will prove the following result:

Theorem 4.3. Let y ∈ ( 1
4 , 1) be fixed. Then, for k large enough, we get

Pr
(
‖b∗k+1‖

2

‖b∗k‖2
< y

)
≤ e−c(k+1) + 2−(k+1)/2 ,

where c > 0 depends on u, l, and y.

We can provide explicit bounds on c when k is large enough. To increase accessibility to the
proof, we build our result from several lemmas. We start by noticing that for any 1 ≤ k < n−1

Pr
(
‖b∗k+1‖

2 < y‖b∗k‖
2
)
≤ Pr

(
‖b∗k+1‖

2 < y‖b∗k‖
2 | gcd(a1, . . . , ak+1) = 1

)
+ Pr(gcd(a1, . . . , ak+1) > 1),

(4.10)

and hence we can bound the two terms separately. The last one can be bounded in the fol-
lowing way:
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Lemma 4.4. Let a1, . . . , an be chosen independently and uniformly at random from the set
[l, . . . , u] for some integers 0 < l < u, and let l and u be fixed. Then

Pr(gcd(a1, . . . , ak+1) > 1) ≤
(
1
2

)(k+1)/2

for any k ≥ log2(b u
2c+1)

log2( u−l+1
u−l+2 )+ 1

2
.

Proof. First observe that if u − l < 2 then the statement is true as consecutive integers have
no common divisor except 1. Thus we may assume u − l ≥ 2.

For any prime p let Al,u(p) = {x ∈ Z : l ≤ x ≤ u and p divides x} . As l and u are fixed
for the moment, we write Al,u(p) = A(p).

We observe that in fact A(p) =
{⌈

l
p

⌉
p,

(⌈
l
p

⌉
+ 1

)
p, . . . ,

⌊
u
p

⌋
p
}
, and thus |A(p)| =

⌊
u
p

⌋
−⌈

l
p

⌉
+ 1. Set s := u − l + 1, then for any prime p ≤ u we have

Pr(ai ∈ A(p)) =

⌊
u
p

⌋
−

⌈
l
p

⌉
+ 1

s
≤

u
p −

l
p + 1

s
=

1
p (u − l) + 1

s

=
1
s
+

1
p

(
u − l

s

)
≤

1
s
+

1
2

(
u − l

s

)
=

s + 1
2s

Next, let Y(p, (k + 1)) denote the event that a1, . . . , ak+1 are all divisible by p, i.e.,

Y(p, (k + 1)) =
⋂

1≤i≤(k+1)

{ai ∈ A(p)},

and as the ai are chosen independently

Pr(Y(p, (k + 1))) =
k+1∏
i=1

Pr(ai ∈ A(p)) ≤
(

s + 1
2s

)k+1

.

Let Pu be the set of prime numbers less than or equal to u. Then

Pr(gcd(a1, . . . , ak+1) > 1) = Pr

⋃
p∈Pu

Y(p, (k + 1))

 ≤∑
p∈Pu

Pr(Y(p, (k + 1)))

by the union-bound. Then by using the above estimates for Pr(Y(p, (k + 1))), and observing
that all primes larger than 2 are odd, we get

Pr(gcd(a1, . . . , ak+1) > 1) ≤ (
⌊u
2

⌋
+ 1)

(
s + 1
2s

)k+1

. (4.11)

Comparing the right-hand-side of (4.11) with
(

1
2

)(k+1)/2
and solving for (k+1) yields the bound

given in the Lemma. Note that this is where we need s ≥ 3. �
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Remark 4.5. More precisely, we have shown that

Pr(gcd(a1, . . . , ak+1) > 1) ≤
(
1
2

)(k+1)δ

for δ < log2( s
s+1 ) + 1 and k ≥ log2(b u

2c+1)
log2( s

s+1 )+(1−δ)
.

We only fixed δ = 1/2 so as not to have yet another variable in Lemma 4.4.

Next, for given reduction factor y, we want to derive a bound on the first term of Expres-
sion (4.10), i.e.:

Pr
(
‖b∗k+1‖

2

‖b∗k‖2
< y | gcd(a1, . . . , ak+1) = 1

)
.

Showing that the ratio between ‖b∗k+1‖
2 and ‖b∗k‖2 behaves the way we suspect is not

straightforward as the two quantities are not independent. To estimate the mean of this ra-
tio we use a result by Pittenger [72], which we state below in a form that is adapted to our
situation.

Theorem 4.6 ([72], adapted). Let X be a random variable on some positive domain. Choose
c > 0 such that X − c ≥ 0 and define µ = E[X] and σ2 = Var(X). Then

1
µ
≤ E

[
1
X

]
≤

µ3c − 3µ2c2 + 3µc3 − c4 + σ2µ2 − σ2µc + σ4

µ4c − 3µ3c2 + 3µ2c3 − µc4 + 2σ2µ2c − 3σ2µc2 + σ2c3 + σ4c
.

(4.12)

For convenience of notation we define Xk :=
∑k

i=1 a2
i . We first estimate the following

mean.

Lemma 4.7. Let a1, . . . , an be chosen independently and uniformly at random from the set
[l, . . . , u] for some integers 0 < l < u, let b1, . . . , bn−1 be given as in Lemma 4.1, and let
1 < k < n.

If gcd(a1, . . . , ak+1) = 1, there exists a function f (k) ∈ Θ( 1
k2 ) such that

1 +
1
k
≤ E

[
‖b∗k‖

2
]
≤ 1 +

1
k
+ f (k) , (4.13)

and we can give one such f (k) explicitly.

Proof. First note that we can use equation (4.9) which yields

‖b∗k‖
2 =

Xk+1

Xk
= 1 +

a2
k+1

Xk
.

Then, by the linearity of the mean and the independence of the ai, we get

E
[
‖b∗k‖

2
]
= 1 + E[a2

k+1]E
[

1
Xk

]
. (4.14)

We can compute

µ̂ := E[a2
i ] =

1
u − l

u∑
j=l

j2 and µ̂2 := E[a4
i ] =

1
u − l

u∑
j=l

j4
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for any i = 1, . . . , n. Notice that µ̂ and µ̂2 are independent of k. The last mean in (4.14),
E

[
1
Xk

]
, will be approximated by using Theorem 4.6, where we choose c = kl2.

Observe that E[Xk] = kµ̂, E[Xk − c] = E[Xk]− c, and Var(Xk − c) = Var(Xk), and it is easy
to check that Var(Xk) = kσ̂2, where σ̂2 := Var(a2

i ) = µ̂2 − µ̂
2.

If we input this in the inequalities of Theorem 4.6, we obtain:

1
kµ̂
≤ E

[
1
Xk

]
≤

1
kµ̂
+ Θ(

1
k2 ) .

The precise calculations are given in Section 4.5. By combining the previous expression with
µ̂ = E[a2

k+1] we obtain the desired bounds for E
[
‖b∗k‖2

]
(see Expression (4.14)):

1 +
1
k
≤ 1 + E[a2

k+1]E
[

1
Xk

]
≤ 1 +

1
k
+ Θ(

1
k2 ).

�

Note that by using Theorem 4.6, we can compute an explicit upper bound in (4.13). We
present this upper bound in Section 4.5.

Lemma 4.8. Let a1, . . . , an be chosen independently and uniformly at random from the set
[l, . . . , u] for some integers 0 < l < u. Then for any 1 ≤ k < n − 1 with gcd(a1, . . . , ak+1) = 1
we get ∣∣∣∣1 − E [

‖b∗k+1‖
2/‖b∗k‖

2
]∣∣∣∣ = O

(
1
k

)
.

Proof. Note that under the given condition on k we have

‖b∗k+1‖
2

‖b∗k‖2
=

Xk+2

Xk+1
·

Xk

Xk+1
=

(Xk+1 + a2
k+2)(Xk+1 − a2

k+1)

X2
k+1

=
X2

k+1 + Xk+1(a2
k+2 − a2

k+1) − a2
k+1a2

k+2

X2
k+1

= 1 +
a2

k+2

Xk+1
−

a2
k+1

Xk+1
−

a2
k+1a2

k+2

X2
k+1

= ‖b∗k+1‖
2 − a2

k+1

(
1

Xk+1
+

a2
k+2

X2
k+1

)
,

(4.15)

and thus

‖b∗k+1‖
2 − u2

(
1

Xk+1
+

a2
k+2

X2
k+1

)
≤
‖b∗k+1‖

2

‖b∗k‖2
≤ ‖b∗k+1‖

2 − l2
(

1
Xk+1

+
a2

k+2

X2
k+1

)
.

Observe that a2
k+2 and X2

k+1 are independent. Furthermore, we already derived bounds for
E[‖b∗k+1‖

2] and E[1/Xk+1] in Lemma 4.7 and its proof.
To bound E[1/X2

k+1] we use Theorem 4.6 in a similar fashion as for E[1/Xk+1]. Details of
this calculation are given in Section 4.5. The result is that

1
k2µ̂2 + k(µ̂2 − µ̂2)

≤ E

[
1

X2
k

]
≤

1
k2µ̂2 + Θ(1/k3).
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Fitting the parts back together, we get

E

[
‖b∗k+1‖

2

‖b∗k‖2

]
≥ 1 +

1
k + 1

− u2
(

1
(k + 1)µ̂

+
µ̂

(k + 1)2µ̂2 + (k + 1)(µ̂2 − µ̂2)

)
and

E

[
‖b∗k+1‖

2

‖b∗k‖2

]
≤ 1 +

1
k + 1

+ Θ(
1
k2) − l2

(
1

(k + 1)µ̂
+ Θ(

1
k2) +

µ̂

(k + 1)2µ̂2 + Θ(
1
k3)

)
.

Therefore, we conclude that

1 −
u2 − µ̂

(k + 1)µ̂
− Θ

(
1
k2

)
≤ E

[
‖b∗k+1‖

2

‖b∗k‖2

]
≤ 1 +

µ̂ − l2

(k + 1)µ̂
+ Θ

(
1
k2

)
. (4.16)

�

As with Lemma 4.7, we give explicit upper and lower bounds in Section 4.5.

Returning to Inequality (4.10), we will in fact only need the lower bound for E
[
‖b∗k+1‖

2

‖b∗k‖2

]
from (4.16), to see that for any given reduction factor y we can find a k(y) such that the mean
is larger than y for any k ≥ k(y). More precisely:

Corollary 4.9. Let a1, . . . , an be chosen independently and uniformly at random from the set
[l, . . . , u] for some integers 0 < l < u, and let y ∈ (1/4, 1) be fixed. Define µ̂ := E[a2

i ] and
σ̂2 := Var(a2

i ).
Suppose k ≤ n is given, and gcd(a1, . . . , ak+1) = 1. If k satisfies

1 −
u2 − µ̂

(k + 1)µ̂
−

u2µ̂

(k + 1)2µ̂2 + (k + 1)σ̂2 > y, (4.17)

then E
[
‖b∗k+1‖

2

‖b∗k‖2

]
> y.

Note that (4.17) can be solved explicitly for k + 1, giving us a lower bound on k. We omit
this calculation here as the solution is long and does not seem illuminating as to what size is
sufficient for k. We will give some examples for given l, u, and y in Section 4.4.

If we can now also control the probability of ‖b∗k+1‖/‖b
∗
k‖ deviating by more than a small

amount from its mean for given a, we have found a bound on the first term in the right-hand
side of Inequality (4.10). For this we apply the inequality of Azuma-Hoeffding (cf. [8, 48]):

Let Z1, . . . ,ZN be independent random variables, where Zi takes values in the space Λi,
and let f :

∏N
i=1Λi → R. Define the following Lipschitz condition for the numbers c1, . . . , cN:

(L) If the vectors z, z′ ∈
∏N

i=1Λi differ only in the jth coordinate, then | f (z) − f (z′)| ≤ c j, for
j = 1, . . . ,N.

Theorem 4.10 (see [49]). If f is measurable and satisfies (L), then, for any t ≥ 0, the random
variable X = f (Z1, . . . ,ZN) satisfies

Pr (X ≥ E[X] + t) ≤ e
−2t2∑N
i=1 c2

i and

Pr (X ≤ E[X] − t) ≤ e
−2t2∑N
i=1 c2

i . (4.18)
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Thus, we indeed have a bound on the probability that a random variable satisfying (L) will
deviate more than a little bit from its mean. Note that the bound gets stronger if we find small
ci and choose t large. As with Lemma 4.8, we will ultimately just need one of the bounds, in
this case (4.18). Applied to our situation, we obtain the following result.

Theorem 4.11. Let a1, . . . , an be chosen independently and uniformly at random from the set
[l, . . . , u] for some integers 0 < l < u, and let y ∈ (1/4, 1) be fixed.

Suppose k < n is given, and gcd(a1, . . . , ak+1) = 1. If k satisfies (4.17), then

Pr
(
‖b∗k+1‖

2

‖b∗k‖2
≤ y

)
≤ e−t2kĉ,

where ĉ > 0 depends on u and l, and t > 0 depends on u, l, and y.

Sketch. This proof contains the main ideas and we refer to Section 4.5 for all technical details.
Set N = k + 2, Λ = Λi = {l2, (l + 1)2 . . . , u2}, let Zi be uniformly distributed, and set

f (z) = 1 +
zN∑N−1

i=1 zi
−

zN−1∑N−1
i=1 zi

−
zN−1zN

(
∑N−1

i=1 zi)2

for any z ∈ ΛN . Recall from (4.15) that under the given conditions this represents ‖b
∗
k+1‖

2

‖b∗k‖2
.

For j ∈ {1, . . . ,N}, let z, z′ ∈ ΛN with zi = z′i for i , j and z j , z′j. For j = N it is not hard
to see that

| f (z) − f (z′)| ≤
(u2 − l2)(N − 2)

(N − 1)2l2

for N > 3. Similarly, using some standard calculus machinery, one can show that for j = N−1
we get

| f (z) − f (z′)| ≤
u2 − l2

(N − 1)l2 −
u2

(N − 1)2l2 +
u4

((N − 2)l2 + u2)2 ,

again assuming only that N > 3.
If j ≤ N −2, it is straightforward that | f (z)− f (z′)| ∈ O( 1

N ), but when trying to find a good
upper bound, we run into the trouble that this difference is not a monotone function in all
zi. Therefore, the maximum might not be obtained at the boundary, and the outcome differs
depending on the relative distance between l and u, as well as on their cardinality.

However, for “typical” values of l and u (i.e., where l and u are not both large but close
together), the above difference is monotone, and we can compute the maximum. See Sec-
tion 4.4 for examples.

We conclude that f satisfies (L) for constants ci with

N∑
i=1

c2
i ∈

(
(N − 2)O(

1
N

)2 + O(
1
N

)2 + O(
1
N

)2
)
= O(1/N),

which means that 1∑N
i=1 c2

i
∈ Ω(k + 1).

To finish the proof, let T (k) be the left hand side in (4.17). Note that T (k) ≤ T (k′) for
k < k′ and under the given conditions on k we can set t := T (k) − y > 0. As

Pr
(
‖b∗k+1‖

2

‖b∗k‖2
≤ y

)
= Pr

(
‖b∗k+1‖

2

‖b∗k‖2
≤ T (k) − t

)
≤ Pr

(
‖b∗k+1‖

2

‖b∗k‖2
≤ E

[
‖b∗k+1‖

2

‖b∗k‖2

]
− t

)
,
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we are done by using (4.18) from Theorem 4.10. Note that the last inequality holds by
Corollary 4.9. �

To summarize, we proved in Lemma 4.4 and in Theorem 4.11 that for fixed reduction
factor y ∈ (1/4, 1), and for fixed l, u the following holds:

Pr(gcd(a1, . . . , ak+1) > 1) ≤
(
1
2

)(k+1)/2

for any k ≥
log2

(⌊
u
2

⌋
+ 1

)
log2

(
u−l+1
u−l+2

)
+ 1

2

(4.19)

and,
Pr

(
‖b∗k+1‖

2 < y‖b∗k‖
2 | gcd(a1, . . . , ak+1) = 1

)
≤ e−t2(k+1)ĉ, (4.20)

where ĉ > 0 depends on u and l, and t > 0 depends on u, l, and y. Adding the right-hand sides
of Inequalities (4.19) and (4.20) yields the upper bound on Pr

(
‖b∗k+1‖

2/‖b∗k‖2 ≤ y
)

as stated in
Theorem 4.3.

4.3 Discussion

If we again look at a basis b1, . . . , bk that is obtained by applying the LLL reduction algorithm
to an input basis of the format described in Lemma 4.1 in Section 4.1, we showed that for not
too small k it will most likely have the following structure:(

X1 X2

0 X3

)
.

The dimension of the submatrices X1, X2 and X3 are (k + 1) × k, (k + 1) × (n − (k + 1)), and
(n − (k + 1)) × (n − (k + 1)) respectively. All the elements of X1 and X2 may be non-zero, and
X3 is upper triangular.

In our computations, however, we see even more structure in the reduced basis, as dis-
cussed in the introduction. More precisely, we observe a reduced basis of the following form:(

X1 X̄2

0 I

)
, (4.21)

that is, X3 = I. So, a remaining question to address is why this is the case. We pointed out in
Section 4.1 that if gcd(a1, . . . , ak+1) = 1, then it follows from the proof of Lemma 4.1 that the
last nonzero element in each of the columns bk+1, . . . , bn−1 must be ±1. Therefore we know
that the first column of X3 is (1, 0, . . . , 0)T. The second column of X3 is (x, 1, 0, . . . , 0)T, and
so on. Here, again, x just denotes that the element may be non-zero. So, by subtracting x
times vector bk+1 from vector bk+2 yields a unit column (0, 1, 0, . . . , 0)T as the second column
of X3. This procedure can now be repeated for the remaining basis vectors to produce X3 = I.
Notice that these operations are elementary column operations.

Observation 4.12. If we apply column operations as described above to the basis given in
Lemma 4.1, then every part of the analysis where we assumed the basis to be given as in
Lemma 4.1 also works for this new lattice basis.
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So, indeed, kerZ(a) has a basis of the structure given in (4.21), and we observe in our
computational experiments that such a basis is y-reduced if the input vector a satisfies the
assumptions given in the beginning of Section 4.2. Here we give qualitative arguments for
why this is the case.

Suppose that the elementary column operations performed to obtain X3 = I yield a basis
that is not size reduced. Then we can add any linear integer combination of the first k basis
vectors to any of the last n − (k + 1) vectors without destroying the identity matrix structure
of submatrix X3, since the first k vectors have zeros as the last n − (k + 1) elements. These
elementary column operations can be viewed as size reductions. If we consider the first k
basis vectors we empirically observe that the absolute values of the non-zero elements (i.e.,
elements in submatrix X1) are small, and that the vectors are almost orthogonal since they are
reduced. Since all ai-elements are positive, each basis vector has a mixture of positive, nega-
tive and zero elements. Apparently, once these size reductions are done, the basis is reduced,
i.e., no further swaps are needed. This is in line with the results presented in Subsection 4.2
that the expected length of the Gram-Schmidt vectors b∗k becomes arbitrarily close to one with
increasing values of k, see also reduction Condition (4.5).

4.4 Computations

4.4.1 Single-row instances

We now present some computational indications and start with the case of m = 1, that is,
the matrix A consists of one row. This is the case to which our analysis has been applied.
We consider two classes of input vectors a, namely ai drawn from intervals [l, . . . , u] =
[100, . . . , 1, 000] and [l, . . . , u] = [15, 000, . . . , 150, 000] and three different instance sizes:
n = 50, 100, 200. For each size and input interval we have generated ten instances. In
the two sets of columns we report on the average number of “dense” rows of a y-reduced
basis Q, and the minimum and maximum number of dense rows for the given instance size.
The number of “non-dense” rows is computed as follows. Starting from the last row of
the reduced basis Q, going in the order of decreasing row indices, we count the number of
subsequent rows that have just one element equal to one in it and all other elements equal
to zero. The rest of the rows are counted as “dense”. So, a row with just one ‘1’ and the
rest zeros is counted as dense if there is a row with higher index that contains 2 or more
non-zeros. A row with a single element ‘1’ and the rest zeros correspond to an x-variable just
being substituted by a λ-variable in the Reformulation (4.1).

In Table 4.2 we give an upper bound on Pr(gcd(a1, . . . , ak+1) > 1) for k greater than or
equal to the value given in the table. This probability is computed according to Lemma 4.4
for the intervals [l, . . . , u] = [100, . . . , 1, 000] and [l, . . . , u] = [15, 000, . . . , 150, 000]. That
is, for the interval [l, . . . , u] = [100, . . . , 1, 000], the probability that gcd(a1, . . . , ak+1) > 1 is
less than or equal to 0.0014 for k ≥ 19. Notice that this value of k is only depending on l and
u, and not on n.

In Table 4.2 we also give the value of k(y) for reduction factor y = 95/100 such that
E

[
‖b∗k+1‖

2/‖b∗k‖2
]
> y for all k ≥ k(y). The values given in the table are very close to the values

we observe empirically. The values of k for which the global probability of interchanging
basis vectors is small is not equally close to the outcome of our experiments. This is not so
surprising given the generality of the Azuma-Hoeffding inequality.
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Table 4.1: Results for input vectors a with ai drawn independently and uniformly at ran-
dom from the interval [l, . . . , u] = [100, . . . , 1, 000] and from the interval [l, . . . , u] =
[15, 000, . . . , 150, 000].

l = 100, u = 1, 000 l = 15, 000, u = 150, 000
average # min # max # average # min # max #

n dense rows dense rows dense rows dense rows dense rows dense rows
50 22.4 18 28 28.6 26 32

100 24.1 19 33 30.2 26 36
200 26.7 20 40 31.1 27 44

Table 4.2: Column two gives an upper bound on Pr(gcd(a1, . . . , ak+1) > 1) for k greater than or
equal to the value given in column 3, cf. Lemma 4.4. In the fourth column we give the value
of k(y) for reduction factor y = 95/100, such that E

[
‖b∗k+1‖

2/‖b∗k‖2
]
> y for all k ≥ k(y). The

last two columns give the smallest k for which the bounds of Lemma 4.4 and Theorem 4.11
guarantee Pr

(
‖b∗k+1‖

2/‖b∗k‖2 ≤ y
)
≤ ε for y = 95/100.

Interval Probability ≤ k ≥ k(y) k(ε = 0.05) k(ε = 0.01)
[100, . . . , 1, 000] 0.0014 19 36 4864 5788
[15, 000, . . . , 150, 000] 0.000008 34 36 4864 5788

The empirical indication we observe from Table 4.1 is that for larger instances, only
relatively few of the x-variables have a non-trivial translation into λ-variables. This is well in
line with the theoretical result reported in Table 4.2 that the expected value of ‖b∗k+1‖

2/‖b∗k‖2
is greater than the reduction factor for all k ≥ 36 for both of the considered intervals. Yet,
we observe that if we solve the instances using Reformulation (4.2) rather than the original
formulation (eq-IP), the number of branch-and-bound nodes needed in λ-space could be one
to two orders of magnitude smaller than in the original space. Thus, there is a computationally
important structure in the λ-space, but this structure is not arbitrarily “spread”, but contained
in a limited subset of the variables.

Suppose now that a row ax = b is part of a larger problem formulation, and that we expect
this row to be important in the formulation in the sense of obtaining a good branching direc-
tion or a useful cut. If we wish to obtain this information through the lattice reformulation,
then we need to be careful in indexing the x-variables appropriately.

4.4.2 Multi-row instances
We also present computational results for multi-row instances. Our analysis does not extend
to this case, but the computations indicate that a similar situation as for the single-row case
applies. In Table 4.3 we report on the number of dense rows for instances with m = 5 and
n = 50, 100, 200. For each size we generated ten instances. The elements ai j of the A-
matrix are generated from the interval [l, . . . , u] = [100, . . . , 1, 000]. As for the single-row
instances in Table 4.1 the results in Table 4.3 indicate that the number of dense rows is not
much affected by the increase in the number of variables.
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Table 4.3: Results for matrices A = [ai j] with m = 5, n = 50, 100, 200, and ai j drawn
independently and uniformly at random from the interval [l, . . . , u] = [100, . . . , 1, 000].

average # min # max #
m × n dense rows dense rows dense rows
5 × 50 48.7 46 50
5 × 100 53.8 46 66
5 × 200 52.5 49 65

We do, however, observe that for a given interval [l, . . . , u] and number of variables, the
number of dense rows becomes larger if the number m of rows of A increases. We have
therefore also considered instances of sizes 2 × 50, 3 × 50, and 4 × 50 in Table 4.4 in order
to compare to the results for instances of size 1 × 50 in Table 4.1 and of size 5 × 50 in Table
4.3. For each of the sizes in Table 4.4 we have generated five instances.

Table 4.4: Results for matrices A = [ai j] with n = 50 and m = 2, 3, 4, and ai j drawn
independently and uniformly at random from the interval [l, . . . , u] = [100, . . . , 1, 000].

average # min # max #
m × n dense rows dense rows dense rows
2 × 50 36.8 31 44
3 × 50 40.2 33 48
4 × 50 45.2 41 48

Finally, we also generated market split instances of various sizes since they are recognized
for their difficulty. These instances were proposed by Cornuéjols and Dawande [26] and are
generated as follows. For a given number m of rows, the number of variables n is equal to
10(m − 1). The elements ai j of the matrix A are generated from the interval [l, . . . , u] =
[0, . . . , 99]. To get instances comparable with the ones reported on in Table 4.3 in terms of
the number of variables, we let m = 6, 11, 21, which yields instances of sizes 6 × 50, 11 ×
100, 21 × 200. For each instance size we generated five instances. The results are given in
Table 4.5.

Table 4.5: Results for market split instances of sizes 6 × 50, 11 × 100, 21 × 200.

average # min # max #
m × n dense rows dense rows dense rows
6 × 50 46.6 44 49

11 × 100 68.6 65 78
21 × 200 200 200 200

Here we in particular observe that the instances of size 21×200 give different results than
expected. If we look at the output we notice that for the first 90-100 rows of the reduced basis
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Q the number of non-zeros is in the order of hundred per row. Then the number of non-zeros
drops quite sharply to the order of 10-20 for the remaining rows, but there are basically no
rows with just one nonzero. This seems related to the fact that the number of variables (200)
is much larger than the number of integers in the interval (100). It remains to be investigated
how difficult these instances are to solve both in the original space and in the reformulated
space.

4.4.3 Solving Instances

So far we have just been concerned with the structure of the reduced basis Q, without ad-
dressing the question of the influence of this structure on the running time when actually
solving the instances. To try to give an answer to this question we used instances with up to
50 variables, to make sure that on the one hand the effect of the sparse part occured, and on
the other hand the instances were still solvable with standard methods within an acceptable
time-limit.

For a fixed instance, we permuted the order of the coefficients a1, . . . , an, such that they
were in increasing, decreasing, or random order, and compared how quickly the reformulated
instance with reduced Q can be solved by CPLEX in the standard setting. There was no
consistent improvement for one order over the others, and also the number of dense rows did
not change much when given the same instance with re-ordered coefficients.

Another interesting observation is that if we reduce less strictly, i.e., with smaller reduc-
tion factor y, this has little to no influence on the running time, but we get slightly more dense
rows. A possible explanation for this behavior could be that, since the coefficients are cho-
sen uniformly at random, already a relatively small amount can act as representatives of the
instance.

One behavior that was consistent is that all instances were solved much faster when re-
formulated with a reduced Q, in comparison to the original formulation in n variables.
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4.5 Notes

Details on Lemma 4.7. Recall µ̂ := E[a2
i ], Xk :=

∑k
i=1 a2

i , and σ̂ := Var(a2
i ).

Then E[Xk] = kµ̂ and Var(Xk) = kσ̂. If we set X = Xk and c = kl2 and input all this into
(4.12), then simplifying for k results in

1
kµ̂
≤ E

[
1
Xk

]
≤

k2(µ̂3l2 − 3µ̂2l4 + 3µ̂l6 − l8) + k(σ̂2µ̂2 − σ̂2µ̂l2) + σ̂4

k3(µ̂4l2 − 3µ̂3l4 + 3µ̂2l6 − µ̂l8) + k2(2σ̂2µ̂2l2 − 3σ̂2µ̂l4 + σ̂2l6) + kσ̂4l2 .
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Details on Lemma 4.8. We want to set X = X2
k in (4.12), hence we need to know E[X2

k ] and
Var(X2

k ). To this end we state the following useful equation.

Proposition 4.13. Let xi ∈ R for i ∈ [1, . . . ,m]. Then m∑
i=1

xi

4

=

m∑
i=1

x4
i + 4

∑
i, j

x3
i x j + 6

∑
i< j

x2
i x2

j

+ 12
∑

j<k
j,k,i

x2
i x jxk + 24

∑
i< j<k<l

xix jxkxl .

Proof. This is an easy exercise in induction, where one first shows that m∑
i=1

xi

3

=

m∑
i=1

x3
i + 3

∑
i, j

x2
i x j + 6

∑
i< j<k

xix jxk .

�

Now compute

E[X2
k ] =

k∑
i=1

E[a4
i ] + 2

∑
i< j

E[ai]2 = kE[a4
i ] + k(k − 1)µ̂2 = k2µ̂2 + kσ̂2 ,

and for Var(X2
k ) we compute

E[X4
k ] = E[

k∑
i=1

(a2
i )4 + 4

∑
i, j

(a2
i )3a2

j + 6
∑
i< j

(a2
i )2(a2

j)
2

+ 12
∑

j<k
j,k,i

(a2
i )2a2

ja
2
k + 24

∑
i< j<k<l

a2
i a2

ja
2
ka2

l ]

= kE[a8
i ] + 4k(k − 1)E[a6

i ]µ̂ − 6
k(k − 1)

2
µ̂2

2

+ 12
k(k − 1)(k − 2)

2
µ̂2µ̂

2 + 24
k(k − 1)(k − 2)(k − 3)

24
µ̂4

= k4µ̂4 + k36µ̂2(µ̂2 − µ̂
2) + k2(4E[a6

i ]µ̂ + 3µ̂2
2 − 18µ̂2µ̂

2 + 11µ̂4)

+ k(E[a8
i ] − 4E[a6

i ]µ̂ − 3µ̂2
2 + 12µ̂2µ̂

2 − 6µ̂4) .

Therefore,

Var(X2
k ) = E[X4

k ] − E[X2
k ]2

= k4µ̂4 + k36µ̂2(µ̂2 − µ̂
2) + k2(4E[a6

i ]µ̂ + 3µ̂2
2 − 18µ̂2µ̂

2 + 11µ̂4)

+ k(E[a8
i ] − 4E[a6

i ]µ̂ − 3µ̂2
2 + 12µ̂2µ̂

2 − 6µ̂4)

− (k4µ̂4 + k32µ̂2(µ̂2 − µ̂
2) + k2(µ̂2 − µ̂

2)2)

= k34µ̂2(µ̂2 − µ̂
2) + k2(4E[a6

i ]µ̂ + 2µ̂2
2 − 16µ̂2µ̂

2 + 10µ̂4)

+ k(E[a8
i ] − 4E[a6

i ]µ̂ − 3µ̂2
2 + 12µ̂2µ̂

2 − 6µ̂4)

= k34σ̂2µ̂2 + k2(2σ̂4 − 8σ̂2µ̂2 − 4µ̂2µ̂
2 + 4E[a6

i ]µ̂)

+ k(E[a8
i ] − 4E[a6

i ]µ̂ − 3σ̂4 + 3σ̂2µ̂2 + 3µ̂2µ̂)

=: k3 p3 + k2 p2 + kp1 ,
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and finally, by using this expression in (4.12), we get 1
k2µ̂2+kσ̂2 ≤ E

[
1

X2
k

]
and

E

[
1

X2
k

]
≤

k6 p̂6 + k5 p̂5 + k4 p̂4 + k3 p̂3 + k2 p̂2 + kp̂1 + p̂0

k8q̂8 + k7q̂7 + k6q̂6 + k5q̂5 + k4q̂4 + k3q̂3 + k2q̂2
,

where

p̂6 = l4µ̂6 − 3l8µ̂4 + 3l12µ̂2 − l16,

p̂5 = 3l4µ̂4σ̂2 − 6l8µ̂2σ̂2 + 3l12σ̂2 + p3µ̂
4 − p3l4µ̂2,

p̂4 = 3l4µ̂2σ̂4 − 3l8σ̂4 + 2p3µ̂
2σ̂2 + p2µ̂

4 − p3l4σ̂2 − p2l4µ̂2 + p2
3,

p̂3 = l4σ̂6 + p3σ̂
4 + 2p2µ̂

2σ̂2 + p1µ̂
4 + p2l4σ̂2 − p1l4µ̂2 + 2p2 p3,

p̂2 = p2σ̂
4 + 2p1µ̂

2σ̂2 − p1l4σ̂2 + 2p1 p3 + p2
2,

p̂1 = p1σ̂
4 + 2p1 p2,

p̂0 = p2
1,

q̂8 = l4µ̂8 − 3l8µ̂6 + 3l12µ̂4 − l16µ̂2,

q̂7 = 4l4µ̂6σ̂2 − 9l8µ̂4σ̂2 + 6l12µ̂2σ̂2 − l16σ̂2 + 2p3l4µ̂4 − 3p3l8µ̂2 + p3l12,

q̂6 = 6l4µ̂4σ̂4 − 9l8µ̂2σ̂4 + 3l12σ̂4 + 4p3l4µ̂2σ̂2 + 2p2l4µ̂4 − 3p3l8σ̂2

− 3p2l8µ̂2 + p2l12 + p2
3l4

q̂5 = 4l4µ̂2σ̂6 − 3l8σ̂6 + 2p3l4σ̂4 + 4p2l4µ̂2σ̂2 + 2p1l4µ̂4 − 3p2l8σ̂2

− 3p1l8µ̂2 + p1l12 + 2p2 p3l4

q̂4 = l4σ̂8 + 2p2l4σ̂4 + 4p1l4µ̂2σ̂2 − 3p1l8σ̂2 + 2p1 p3l4 + p2
2l4,

q̂3 = 2p1l4σ̂4 + 2p1 p2l4,

q̂2 = p2
1l4.

Note that q̂8 = µ̂
2 p̂6. It might also be of interest that σ̂2 neither appears in the leading term of

the numerator nor of the denominator.

Proof of Theorem 4.11

We want to compute good constants for which ‖b∗k+1‖
2

‖b∗k‖2
satisfies the condition (L) under the

conditions of Theorem 4.11. As in the proof, we set

f (z) = 1 +
zN − zN−1∑N−1 zi

−
zNzN−1

(
∑N−1 zi)2

,

where z j ∈ {l2, . . . , u2}.
The goal is to get upper bounds on | f (z)− f (z′)|, with z j = z′j for all but one j ∈ {1, . . . ,N}.
We will distinguish between three cases: z and z′ differ in the last, the second-to-last, or

some other coordinate j < N − 1.
For better readability, set x1 := zN , x2 := zN−1, x3 :=

∑N−2
i, j zi, and x4 := z j (and define x′i

similarly). Thus, we are looking at the function

f (x) = 1 +
x1 − x2

x2 + x3 + x4
−

x1x2

(x2 + x3 + x4)2 .

Whenever we talk about this function, we mean the real-valued function on the domain
[l2, u2] × [l2, u2] × [(N − 3)l2, (N − 3)u2] × [l2, u2].
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Lemma 4.14. f (x) > 0 for 0 < l < u.

Proof. Observe that f (x) > 0 is equivalent to

(x2 + x3 + x4)2 + (x1 − x2)(x2 + x3 + x4) − x1x2 > 0

⇔ x2
2 + 2x2(x3 + x4) + (x3 + x4)2 + x1x2 − x2

2 + (x3 + x4)(x1 − x2) − x1x2 > 0

⇔ x2(x3 + x4) + (x3 + x4)2 + x1(x3 + x4) > 0 .
�

Lemma 4.15. Let f (x) be given as above, and 0 < l < u, then

(a) f is increasing in x1;

(b) f is decreasing in x2;

(c) • If x1 ≤ x2, then f is increasing in x4;
• If x1 > x2 and x3 > x2

x1+x2
x1−x2
− l2, then f is decreasing in x4;

• If x1 > x2 and x3 ≤ x2
x1+x2
x1−x2
− l2, then f has a (for fixed values x1, x2, x3) unique

maximum at x4 = x2
x1+x2
x1−x2
− x3.

Proof. We compute

fx1 =
1

x2 + x3 + x4
−

x2

(x2 + x3 + x4)2 =
x3

(x2 + x3 + x4)2 > 0 .

This proves part (a).
Also, we can directly compute

fx2 =
−(x2 + x3 + x4) − (x1 − x2)

(x2 + x3 + x4)2 −
x1(x2 + x3 + x4) − 2x1x2

(x2 + x3 + x4)3

=
−(x1 + x3 + x4)(x2 + x3 + x4) − x1x2 − x1(x3 + x4) + 2x1x2

(x2 + x3 + x4)3

=
−2x1(x3 + x4) − x2(x3 + x4) − (x3 + x4)2

(x2 + x3 + x4)3 < 0 .

This proves part (b).
For part (c), we first compute

fx4 = −
x1 − x2

(x2 + x3 + x4)2 +
2x1x2

(x2 + x3 + x4)3

=
−x1x2 − x1x3 − x1x4 + x2

2 + x2x3 + x2x4 + 2x1x2

(x2 + x3 + x4)3

=
x1x2 + x2

2 − (x3 + x4)(x1 − x2)
(x2 + x3 + x4)3 .

Thus, if x1 ≤ x2, then fx4 > 0. Assume now that x1 > x2. Then

fx4 = 0⇔ x2(x1 + x2) = (x3 + x4)(x1 − x2)

⇔ x4 =
x2(x1 + x2)

x1 − x2
− x3 ,

where the last equivalence holds because x1 , x2. We know that by definition we have x4 ≥ l2,
thus if x2

x1+x2
x1−x2
− x3 < l2, then fx4 is non-zero for all values of x4 in this part of the domain of

f . It is a straightforward computation to see that in fact this extremum is a maximum. �
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Case 1: x1 , x′1. We may assume x1 > x′1. Then by Lemma 4.14 and 4.15(a), we know that
| f (x) − f (x′)| = f (x) − f (x′) and the difference is maximized for x1 = u2 and x′1 = l2.

Observe that

f (x) − f (x′) =
x1 − x2 − (x′1 − x2)

x2 + x3 + x4
−

x2(x1 − x′1)
(x2 + x3 + x4)2 =

(x1 − x′1)(x3 + x4)
(x2 + x3 + x4)2 . (4.22)

Now set x5 := x3 + x4 (as these variables always appear paired), and consider g(x2, x5) :=
x5

(x2+x5)2 . Then we have gx2 =
−2x5

(x2+x5)3 < 0, and thus the difference (4.22) is maximal for x2 = l2.

Furthermore, we have gx5(l
2, x5) = (l2+x5)−2x5

(l2+x5)3 =
l2−x5

(l2+x5)3 , and this is negative if N > 3. Thus,
for N > 3, the difference (4.22) is maximal if x3 = (N − 3)l2 and x4 = l2.

We conclude that in Case 1 we have (for N > 3)

| f (x) − f (x′)| ≤
(u2 − l2)(N − 2)l2

((N − 1)l2)2 =
(N − 2)(u2 − l2)

(N − 1)2l2 =: c1 .

Case 2: x2 , x′2. We may assume x2 < x′2, then by Lemma 4.14 and 4.15(b), we know that

| f (x)− f (x′)| =
(x1 − x2)(x2 + x3 + x4) − x1x2

(x2 + x3 + x4)2 −
(x1 − x′2)(x′2 + x3 + x4) − x1x′2

(x′2 + x3 + x4)2

=
x1(x3 + x4) − x2(x2 + x3 + x4)

(x2 + x3 + x4)2 −
x1(x3 + x4) − x′2(x′2 + x3 + x4)

(x′2 + x3 + x4)2 ,

(4.23)

and (4.23) is maximal for x2 = l2 and x′2 = u2.
We again set x5 = x3 + x4 and consider the RHS of (4.23) as the function g(x1, x2, x′2, x5).

Then

gx1 = x5

(
1

(x2 + x5)2 −
1

(x′2 + x5)2

)
> 0,

and thus (4.23) is maximal for x1 = u2.
To determine x5, we are interested in

gx5 =
(x1 − x2)(x2 + x5) − 2(x1x5 − x2(x2 + x5))

(x2 + x5)3

−
(x1 − x′2)(x′2 + x5) − 2(x1x5 − x′2(x′2 + x5))

(x′2 + x5)3

=
x5(x2 − x1) + x2(x1 + x2)

(x2 + x5)3 −
x5(x′2 − x1) + x′2(x1 + x′2)

(x′2 + x5)3 .

As we have all the values except the one for x5, we only need to look at

h(x5) := gx5(u
2, l2, u2, x5) =

l2(u2 + l2) − x5(u2 − l2)
(l2 + x5)3 −

u2(2u2)
(u2 + x5)3 .

Claim 4.16. For x5 ≥ 2l2 we have h(x5) < 0.

Equivalently, we will show

h̃(x5) := (u2l2 + l4)(u2 + x5)3 − x5(u2 − l2)(u2 + x5)3 − 2u4(l2 + x5)3 < 0
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for x5 ≥ 2l2. To this end, observe that

h̃(2l2) =(u2l2 + l4)(u2 + 2l2)3 − 2(l2u2 − l4)(u2 + 2l2)3 − 2u4(3l2)3

=24l10 + 28u2l8 − 48u4l6 − 3u6l4 − u8l2 < 52u2l8 − 52u4l6 < 0 ,

and furthermore that

h̃′(x5) =(3(u2l2 + l4) − (u2 − l2)((u2 + x5) − 3x5(u2 − l2))(u2 + x5)2

− 6u4(l2 + x5)2

= − 4(u2 − l2)x3
5 − (15u4 − 12u2l2 − 3l4)x2

5 − (6u6 − 6u2l4)x5

+ 4u6l2 − 3u4l4 − u8 .

As all coefficients except the last one are negative, we know that if h̃′(y0) < 0 for some y0 > 0,
then h̃′(y) < 0 for all y ≥ y0. It is straightforward to check that indeed h̃′(2l2) < 0. Therefore,
h̃ is decreasing for x5 ≥ 2l2 and h̃(2l2) < 0, and Claim 4.16 is proven.

Thus, if N > 3 we have to set x5 = (N − 2)l2 to maximize (4.23).
In summary, for Case 2 we get (for N > 3)

| f (x) − f (x′)| ≤
(u2 − l2)
(N − 1)l2 −

u2

(N − 1)2l2 +
u4

((N − 2)l2 + u2)2 =: c2 .

Case 3.1: x4 , x′4 and x1 ≤ x2. We can assume x4 > x′4, then by Lemma 4.14 and 4.15(c),
we know that

| f (x) − f (x′)| =
x1 − x2

x2 + x3 + x4
−

x1x2

(x2 + x3 + x4)2

−
x1 − x2

x2 + x3 + x′4
+

x1x2

(x2 + x3 + x′4)2 ,
(4.24)

and this is maximal if x4 = u2 and x′4 = l2.
We again interpret (4.24) as the function g(x1, x2, x3, x4, x′4) and compute

gx1 =
1

x2 + x3 + x4
−

x2

(x2 + x3 + x4)2 −
1

x2 + x3 + x′4
+

x2

(x2 + x3 + x′4)2

=
x3 + x4

(x2 + x3 + x4)2 −
x3 + x′4

(x2 + x3 + x′4)2 .

As we already determined x4 and x′4, we restrict our attention to

gx1(x1, x2, x3, u2, l2) =
x3 + u2

(x2 + x3 + u2)2 −
x3 + l2

(x2 + x3 + l2)2 =: h(x2, x3) .

Claim 4.17. If N − 3 >
√

(u2−l2)2+4u4−u2−l2

2l2 , then h(x2, x3) < 0.

Equivalently, we show that

(x3 + u2)(x2 + x3 + l2)2 − (x3 + l2)(x2 + x3 + u2)2 < 0

⇔ x2
3 + x3(u2 + l2) + u2l2 − x2

2 > 0.
(4.25)
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Define k = N − 3. Because x2 ≤ u2 and x3 ≥ (N − 3)l2 = kl2, we will get (4.25), if we can
show that

k2l4 + kl2(u2 + l2) + u2(l2 − u2) > 0

⇔ (k +
u2 + l2

2l2 )2 >
4u2(u2 − l2) + (u2 + l2)2

4l4

⇔ k >

√
4u4 + (u2 − l2)2 − u2 − l2

2l2 .

Thus we have Claim 4.17. In particular, we conclude that for N large enough, (4.24) is
maximal for x1 = l2.

Next, we investigate

gx2 =
−(x2 + x3 + x4) − (x1 − x2)

(x2 + x3 + x4)2 −
x1(x2 + x3 + x4) − 2x1x2

(x2 + x3 + x4)3

−
−(x2 + x3 + x′4) − (x1 − x2)

(x2 + x3 + x′4)2 +
x1(x2 + x3 + x′4) − 2x1x2

(x2 + x3 + x′4)3

=
−(x3 + x4)(2x1 + x2 + x3 + x4)

(x2 + x3 + x4)3 −
−(x3 + x′4)(2x1 + x2 + x3 + x′4)

(x2 + x3 + x′4)3 .

Claim 4.18. If N >
√

4 + 2u2

l2 +
u4

l4 , then gx2(l
2, x2, x3, u2, l2) is positive.

We show this by showing that the function h(y) = (x3+y)(2x1+x2+x3+y)
(x2+x3+y)3 is decreasing for y ≥ l2

(and xi in the usual interval). For this we compute

h′(y) =
(2y + 2x1 + x2 + 2x3)(y + x2 + x3)

(x2 + x3 + y)4

−
3y2 + (6x1 + 3x2 + 6x3)y + 3x3(2x1 + x2 + x3)

(x2 + x3 + y)4 ,

which is negative if we can show that

y2 + (4x1 + 2x3)y − 2x1x2 − x2
2 + 4x1x3 + x2

3 > 0 . (4.26)

We already know that we will set x1 = l2. We also know that y ≥ l2, x2 ≤ u2, and
x3 ≤ (N − 3)l2. Thus (4.26) is satisfied in our case, if we have

l4 + 4l4 + 2(N − 3)l4 − 2u2l2 − u4 + 4(N − 3)l4 + (N − 3)2l4 > 0

⇔ N2 > 4 +
2u2l2 + u4

l4 ,

which is what we claimed.
Therefore, for N as in Claim 4.18, we maximize (4.24) if we set x2 = u2.
Now that we have all values except x3, let us consider

ĝ(x3) =
l2 − u2

2u2 + x3
−

u2l2

(2u2 + x3)2 −
l2 − u2

u2 + l2 + x3
+

u2l2

(u2 + l2 + x3)2 .
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It is a straightforward computation to see that ĝ′(x3) is equal to

−(u2 − l2)
[2(u2 − l2)x3

3 + 3(3u4 − l4)x2
3

(u2 + l2 + x3)3(2u2 + x3)3

+
(13u6 + 15u4l2 − 3u2l4 − l6)x3 + 2u4(3u4 + l4 + 8u2l2)

(u2 + l2 + x3)3(2u2 + x3)3

]
,

and as this is negative (for any x3 > 0 in fact), we set x3 = (N − 3)l2.
Therefore, in Case 3.1 we get (for N large enough)

| f (x) − f (x′)| ≤(u2 − l2)
(

1
u2 + (N − 2)l2 −

1
2u2 + (N − 3)l2

)
+ u2l2

(
1

(u2 + (N − 2)l2)2 −
1

(2u2 + (N − 3)l2)2

)
=: c3.1 .

Case 3.2: x4 , x′4, x1 > x2, and x3 > x2
x1+x2
x1−x2

− l2. Using Lemma 4.14 and 4.15(c), and
assuming x4 < x′4, we first note that we get (4.24) again and this is maximal if x4 = l2 and
x′4 = u2.

As before, we use these values and restrict our attention to

gx1(x1, x2, x3, l2, u2) = −h(x2, x3) .

Thus, by Claim 4.17, we maximize (4.24) by setting x1 = u2.
Using this now in a very similar fashion as in Claim 4.18 (with the difference of setting

x1 = u2, and using that x4 is now smaller than x′4), we conclude that for N >
√

8 − 4u2

l2 + 3u4

l4 ,
(4.24) is maximized for x2 = l2.

To get x3, we again put in all the other values and get that (4.24) is at most equal to

ĝ1(x3) =
u2 − l2

2l2 + x3
−

u2l2

(2l2 + x3)2 −
u2 − l2

u2 + l2 + x3
+

u2l2

(u2 + l2 + x3)2 .

It is another straightforward computation to see that ĝ′1(x3) is equal to

−(u2 − l2)
[2(u2 − l2)x3

3 + 3(u4 − 3l4)x2
3 + (u6 + 3u4l2 − 15u2l4 − 13l6)x3

(u2 + l2 + x3)3(2l2 + x3)3

−
2l4(u4 + 8u2l2 + 3l4)

(u2 + l2 + x3)3(2l2 + x3)3

]
.

(4.27)

The sign of this expression depends on the ratios between l, u, and N.

To go on from here, we will restrict ourselves to the values of l and u we used in the
computations. Similar computations are possible for different values, but we chose these
because they seem reasonable in their order of magnitude and ratio to get a relevant statement.

Therefore, from here on, we assume that

[l, . . . , u] =

[100, . . . , 1000] or
[15000, . . . , 150000] .

(4.28)
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Observation 4.19. If l, u are given as in (4.28), then N satisfies all inequalities we came
across in Cases 3.1 and 3.2, if N ≥ 173.

Observation 4.20. If l, u are given as in (4.28), and N ≥ 1, then (4.27) is negative.

Thus, we set x3 = (N − 3)l2. Then, for N large enough, we obtain

| f (x) − f (x′)| ≤(u2 − l2)
(

1
(N − 1)l2 −

1
u2 + (N − 2)l2

)
− u2l2

(
1

((N − 1)l2)2 −
1

(u2 + (N − 2)l2)2

)
=: c3.2 .

Observation 4.21. If l, u are given as in (4.28) and xi chosen as above, then x3 > x2
x1+x2
x1−x2
− l2

for N ≥ 1.

Claim 4.22. If u ≥ 3l, then c3.1 < c3.2.

Solving c3.2 − c3.1 > 0 for N, this reduces to showing that

l4(u2 − l2)(2u4 − 8u2l2 + 5l4)N2 + 2l2(2u8 − 14u6l2 + 33u4l4 − 31u2l6 + 10l8)N

+(4u8l2 + 38u6l4 − 68u4l6 + 53u2l8 − 15l10) > 0 .

Notice that the leading coefficient is positive if 2u4 − 8u2l2 + 5l4 > 0. Indeed, we observe that

2u4 − 8u2l2 + 5l4 > u4 − 8u2l2 + l4 = (u2 − 4l2)2 − 15l4 ≥ 0

for u ≥ 3l. One can easily check that this restriction on l, u will also imply that the other
coefficients are positive.

Case 3.3: x4 , x′4, x1 > x2, and x3 ≤ x2
x1+x2
x1−x2
− l2. Observe that

x2
x1 + x2

x1 − x2
− l2 < u2 2u2

u2 − l2 − l2,

and for l, u as in (4.28) this is smaller than 202l2. Therefore, certainly for N ≥ 205, this case
will not occur.
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C F

Discrete Isoperimetric Sets

The question we want to study here is inspired by a well-known problem from analysis:
Given a positive volume, which shape has minimal boundary-size? In a Euclidean space, the
answer is of course the ball.

There are many interesting questions one can derive from this for discrete settings. We
will mention some of them after we fix some notation, but in particular we refer to the paper of
Bezrukov [16] for a more thorough survey. In this chapter, we want to consider the following
question: Given the lattice Zn and a cardinality M, we want to find lattice point configurations
of this size such that the number of lattice points with distance 1 to the set is small. Here and
throughout this chapter, distance is measured in the L1 norm. Let us call sets of cardinality M
with the smallest number of such ‘neighbors’ optimal. Wang and Wang proved in [81] that
sets of points with coordinate sum less than or equal to some integer k are optimal. We will
additionally show that they are unique for their cardinalities.

We will also discuss the question of how to characterize optimal sets in general, and if by
adding the points of distance 1 to an optimal set we will always get an optimal set. For the
plane we prove the latter and give a non-trivial necessary condition for optimality.

But first let us fix some notation, where most of it is adopted from topology. Although it
might seem a little odd in the discrete context at first, we hope that it turns out to be helpful
for the intuition. Afterwards, we briefly discuss the history of the questions addressed in this
chapter and give precise formulations of the problems.

Consider the lattice Zn with the L1-distance d(x, y) =
∑

i |xi − yi|, where x = (x1, . . . , xn)
and y = (y1, . . . , yn). Given a finite set X ⊆ Zn, the (n-dimensional) neighborhood of X is

Nbhdn(X) := {y ∈ Zn\X : d(y, X) = 1} ,

and the the size of this neighborhood is n(X) := |Nbhdn(X)|. If there is no danger of confusion,
we will write Nbhdn(X) =: Nbhd(X). Note that here n(·) is a function and should not be
confused with the dimension.

Further, the boundary ∂X of X are the points of X that are next to some point of Nbhd(X),
and the interior int X of X are the points of X for which all neighbors are in X, i.e.,

∂X := {x ∈ X : d(x,Nbhd(X)) = 1} = Nbhd(Nbhd(X)) ∩ X,

int X := {x ∈ X : d(x,Nbhd(X)) > 1} = X\∂X.

We also define int j(X) as the set of points in X such that all neighbors in the directions
normal to the j-axis are in X, that is

int j(X) = {p ∈ X : p ± ei ∈ X for all i , j} .
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For any r ∈ N, the set Bn
r := {x ∈ Zn :

∑
i xi ≤ r} is called the ball (of radius r). Note

that the neighborhood Nbhd(Bn
r ) of a ball Bn

r contains exactly the points of Zn with coordinate
sum r + 1.

Figure 5.1: The ball B2
3 and its neighborhood (empty dots).

A finite set X ⊆ Zn is called optimal, if the size of its neighborhood n(X) is minimal
among all sets Y ⊆ Zn with |Y | = |X|.

5.1 Background and Formulation of the Problems
Isoperimetric problems of this kind have arisen in a number of different contexts, with several
definitions of neighborhood, and several different underlying finite and infinite lattices. One
approach to a solution is to provide an ordering of the lattice points such that the first j of
them form an optimal set of their cardinality for every j. For the Boolean lattice (chains
of length two) this is the celebrated theorem of Harper [46]. Katona [50], and Clements
and Lindström [21] solved this for chains of arbitrary length l. Bezrukov and Serra [17]
considered the problem for Cartesian powers of graphs.

Quite some time before that, Macaulay [62] presented an ordering of the non-negative
n-dimensional integer points Zn

+ having coordinate sum ≤ k, such that the first j of them have
a minimum number of neighbors with coordinate sum k + 1 among all sets of k-sum points.

As a similar (and equivalent) result, Wang and Wang [81] constructed sets in Zn
+ that

minimize the number of neighbors in Zn
+, and extended this to an ordering of the points of

Zn such that the first j of them minimize the number of neighbors in Zn. They called these
optimal sets standard spheres. To avoid confusion with the other notation borrowed from
topology, we will call them standard minimizers. Basically, a standard minimizer is a ball
plus possibly some points of the neighborhood of the ball (see Section 5.7 for a precise
definition of the order and the sets).

As it happens, the sequence of standard minimizers enjoys the property that it is closed
under the operation of adding the neighborhood. In particular, balls Bn

r are optimal sets in Zn

(conjectured for Zn
+ by Hack [45] and for Zn by Rivest [73]), which is the analogous result

to the classical isoperimetric problem in Euclidean space. In contrast with its Euclidean
counterpart, standard minimizers are not, in general, the only optimal sets in lattices.

In the case of the Boolean lattice, all optimal sets were characterized by Bezrukov [15],
while for general lattices the complete characterization is still an open problem.
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For a survey about different types of isoperimetric problems, as well as a thorough list of
references, see [16].

In this chapter we address the following questions.

Problem 5.1. Is it true that balls are the only optimal sets of their cardinality in the n-
dimensional lattice?

Problem 5.2. Let X ⊆ Zn be an optimal set. Is it true that X ∪ Nbhd(X) is also an optimal
set?

Problem 5.3. What are necessary and sufficient conditions for sets X ⊆ Zn to be optimal?

The first two problems were answered positively for the Boolean lattice (see [16] and
references therein for Problem 5.1, respectively [82] for Problem 5.2).

In Section 5.3 and 5.4 we show that Problem 5.1 has a positive answer also in Zn.
We conclude in Section 5.5 with some necessary conditions for optimality in Z2, from

which we can deduce that the answer to Problem 5.2 is yes in the two-dimensional case.

5.2 Basic Observations
We call a set X ⊆ Zn connected if there is no lattice hyperplane orthogonal to a standard basis
vector ei, such that there are elements of X on both sides of the hyperplane, but no points of
X on it.

Note that this is a very weak notion of connectedness, and one can easily come up with
examples that are connected in this sense, but which do not correspond to what we commonly
consider a connected set. We will, however, rarely use this, and a stronger definition would
require a lot more care in the following.

Proposition 5.4. A necessary condition for a finite set X ⊆ Zn to be optimal is that X is
connected.

Proof. Let X be a finite set and suppose we find a lattice hyperplane H orthogonal to ei, such
that there are no points of X in H, but there are points of X1 ⊆ X in direction ei and X2 ⊆ X in
direction −ei from H.

Find a pair of points x1 ∈ X1 and x2 ∈ X2 that minimizes the distance in direction ei

between X1 and X2. By construction, x1 − ei is not in X, and neither is x2 + ei. If we now shift
X1 such that x1 is at position x2 + ei, then this reduces the size of the neighborhood by at least
one.

�

This proposition implies that it is no restriction that from now on all sets X ⊆ Zn will be
considered to be finite and connected.

Given a set X ⊆ Zn, we want to consider slices of X with respect to some coordinate
direction. To this end we denote by

Lk,l(X) = {x ∈ X : xk = l}
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the lth k-level of X. Every k-level lies in an (n − 1)-dimensional hyperplane, and we denote
by Ln−1

k,l (X) ⊆ Zn−1 the (n − 1)-dimensional set that results from Lk,l(X) by omitting the kth

coordinate:

Ln−1
k,l (X) =

{
(x1, . . . , xk−1, xk+1, . . . , xn) ∈ Zn−1 : (x1, . . . , xn) ∈ Lk,l(X)

}
.

The 0th k-level is also called k-base.

In the other direction, given some set Y ⊆ Zn−1 then we define the lth k-extension of Y as
the set Yn

k,l ⊆ Z
n that is obtained by adding a (new) kth coordinate with value l:

Yn
k,l = {(x1, . . . , xn) ∈ Zn : xk = l, (x1, . . . , xk−1, xk+1, . . . , xn) ∈ Y} .

Lemma 5.5. The size of the neighborhood of some k-level, n(Lk,l(X)), equals the size of the
neighborhood of Ln−1

k,l (X) (in n − 1 dimensions) plus two times the size of Lk,l(X).

Proof. Every point x ∈ Lk,l(X) has exactly two neighbors y1, y2 with yi
k , l, namely yi

j = x j

for j , k and yi
k = l ± 1. �

Lemma 5.6. Let X ⊆ Zn and let Lk,l(X) be some level (in any coordinate-direction) with
nonempty interior I = int Ln−1

k,l (X). Then adding (any subset of) the k-extensions In
k,l−1 and

In
k,l+1 to X does not increase the size of the neighborhood n(X).

By adding we here mean taking the union of the point sets.

Proof. Every point in the mentioned k-extension is in the neighborhood of Lk,l(X), and so are
any neighbors with kth coordinate equal to l ± 1. Thus there is only one neighbor that is not
yet accounted for, and as the point itself reduced the size of the neighborhood by one, the
total count stays the same. �

Lemma 5.7. If X ⊆ Zn contains some level Lk,l(X) such that the following two statements
hold:

1. Ln−1
k, j+1(X) ⊆ int Ln−1

k, j (X) for all j ≥ l;

2. Ln−1
k, j−1(X) ⊆ int Ln−1

k, j (X) for all j ≤ l,

then the size of the neighborhood of X is n(X) = n(Lk,l(X)).

Proof. Use Lemma 5.5 and Lemma 5.6 (shifted). �

Lemma 5.8. The cardinality of any ball |Bn
r | is odd.

Proof. Since Bn
r is centrally symmetric, it consists of pairs of points, plus the origin. �

Lemma 5.9. Let X ⊆ Zn, then

n(X) ≥ |Lk,lmax(X)| + |Lk,lmin(X)| +
lmax∑

l=lmin

n(Ln−1
k,l (X)),

where
lmin := min{l ∈ Z : Lk,l(X) , ∅}, and
lmax := max{l ∈ Z : Lk,l(X) , ∅}.
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x1

x2

Figure 5.2: The highlighted level, L2,1(X), satisfies the conditions in Lemma 5.7.

Proof. Observe that we can write Nbhd(X) as a disjoint union of sets, distinguished by the
value of the kth coordinate:

Nbhd(X) = (Nbhd(X) ∩ Lk,lmin−1(Zn)) ∪ · · · ∪ (Nbhd(X) ∩ Lk,lmax+1(Zn)).

We also note that |Nbhd(X) ∩ Lk,lmin−1(Zn)| = |Lk,lmin(X)| by arguments similar to Lemma 5.5,
and for the same reason |Nbhd(X) ∩ Lk,lmax+1(Zn)| = |Lk,lmax(X)|. Finally, we have

|Nbhd(X) ∩ Lk,l(Zn)| ≥ n(Ln−1
k,l (X))

for all lmax ≤ l ≤ lmin, which gives us the desired inequality. �

5.3 Uniqueness for Balls in Dimension 2
For better readability we defer the proof that standard minimizers are optimal to Section 5.7.
While this proof is directly taken from the paper of Wang and Wang [81], we reproduce it
here as well, as the presentation and notation is slightly different.

Proposition 5.10. The optimal neighborhood size is increasing with the cardinality of the
point set: if X and Y are optimal sets in Z2 with |X| < |Y |, then n(X) ≤ n(Y).

As this holds for standard minimizers (of any dimension), it has to be true for all optimal
sets.

Proposition 5.11. Consider the ball B2
r , with |B2

r | = s. Then the neighborhood of any set
X ⊆ Z2 with |X| = s + 1 has size n(X) ≥ n(B2

r ) + 1.

Proof. This follows again directly from the results about standard minimizers. The standard
minimizer with s + 1 points is B2

r plus a point x ∈ Nbhd(B2
r ) in the positive orthant (see

Section 5.7). The grid point x has coordinate sum r + 1, and thus it has in each coordinate
direction one neighbor with coordinate sum r + 2.

Both these neighbors lie in Nbhd(B2
r ∪{x})\Nbhd(B2

r ). Thus, the neighborhood of B2
r ∪{x}

has at least size n(B2
r ) + 1.

As standard minimizers are optimal, any set of cardinality s+ 1 needs to have at least this
neighborhood size. �
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Remark 5.12. Given that standard minimizers are optimal sets in any finite dimension, we
can reconstruct Propositions 5.10 and 5.11 for general dimension, where in the latter state-
ment we get n(X) ≥ n(B2

r ) + n − 1.

Given a set X ⊆ Z2, assume w.l.o.g. that the origin (0, 0) is part of X, and consider the
following four diagonal tangents of X (defined by equalities):

t++ : +x1 + x2 = c++ ≥ 0
t+− : +x1 − x2 = c+− ≥ 0
t−+ : −x1 + x2 = c−+ ≥ 0
t−− : −x1 − x2 = c−− ≥ 0

where c±,± are chosen so that for each equality there is some point in X that satisfies it and
every point in X satisfies the inequalities obtained by replacing = with ≤. The diagonal hull
DH(X) of X is the set of all integer points in the region bounded by these tangents. Further,
X is called diagonal convex if X = DH(X).

Figure 5.3: A set with its diagonals (left) and the diagonal hull of the set (right, new points
highlighted).

If a set X ⊆ Z2 is diagonal convex, then each point on the boundary lies on at most two
of the diagonal tangents, and X resembles a rectangle. However, if two diagonal tangents
intersect in a non-integer point, then there is a (connected) portion of ∂X of cardinality 2
that is parallel to some coordinate direction. We will refer to such parts as axis-aligned
components (of ∂X). Depending on the axes they are aligned to, two such parts may be
orthogonal or parallel to each other.

Accordingly, for each of the diagonal tangents t we call ∂X ∩ t a diagonal (of ∂X).
Note that ∂X might have none, two, or four axis-aligned components. For example, the

diagonal hull of the set X in Figure 5.3 has two axis-aligned components, both of which are
parallel to the horizontal axis.

Proposition 5.13. Let X ⊆ Z2, then n(DH(X)) ≤ n(X).

Proof. DH(X) is obtained from X by repeatedly applying the operation from Lemma 5.6 until
there are no points in any direction that can be added. Note that here we use that the sets are
connected, and thus in any coordinate-direction X will have at least two neighbors, from the
first to the last level. �

Theorem 5.14. Balls B2
r are unique optimal sets of their cardinality.
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Proof. Assume that X ⊆ Z2 is a set with |X| = |B2
r | and n(X) = n(B2

r ) for some r ∈ N \ {0}.
Then X has to be diagonal convex. Otherwise |DH(X)| > |B2

r | and n(DH(X)) ≤ n(X) = n(B2
r ),

which contradicts Proposition 5.11.
There are four cases for the possible number and relative positions of the axis-aligned

components: ∂X can have four, two parallel (opposite), none, or two orthogonal axis-aligned
components of size 2 (see Figure 5.4).

Our main strategy will be to transfer parts of ∂X to some part of Nbhd(X) without increas-
ing the size of the neighborhood. For these new sets it is then easy to see that they cannot
simultaneously be optimal and have the cardinality of a ball.

Figure 5.4: The four basic shapes of diagonal convex sets in Z2 (axis-aligned components are
highlighted).

Case 1. ∂X has four axis-aligned components.
Consider two opposite diagonals. They both have the same length k, and are adjacent
to k+1 points of the neighborhood. Remove all points from one of these diagonals, and
add them along the other diagonal (from bottom to top, see Figure 5.5). This results in
a set X′ with n(X′) = n(X) that is not diagonal convex (as it contains an axis-aligned
component of size 3), which is a contradiction to the assumption that X is optimal and
has the cardinality of a ball.

Figure 5.5: Case 1: Arranging all points from a diagonal along the opposite diagonal gives the
same neighborhood-size and an axis-aligned component of size 3 (where the neighborhood
is indicated by the empty dots).

Case 2. ∂X has exactly two parallel axis-aligned components.
Consider the levels in the coordinate direction k in which the axis-aligned components
both constitute a level. Then every k-level has even cardinality, and thus |X| is even. By
Lemma 5.8, this is a contradiction to X having the cardinality of a ball.

Case 3. ∂X has no axis-aligned components.
Let k and l the lengths of the diagonals (each pair of opposite diagonals has the same
length).
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Figure 5.6: Case 2: Even parity.

Figure 5.7: Case 3: k = l (left), k = l + 1 (middle), and k > l + 1 (right).

Case 3.1 If k = l, then X is a ball.

Case 3.2 If k > l, then remove all points from one of the shorter diagonals and add them
along one of the (at least before) longer diagonals.
The resulting set X′ has n(X′) = n(X). Further, for k = l + 1 it is a diagonal convex
set with two parallel axis-aligned components of size 2, while for k > l + 1 , it is not
diagonal convex. In either case, we get a contradiction to the assumption that X is
optimal and has the cardinality of a ball (remember Proposition 5.11).

Figure 5.8: Case 3: changed point sets. Fat points are additional ones.

Case 4. ∂X has two orthogonal axis-aligned components.
Consider the diagonal that connects the two axis-aligned components, and say it has
length k. Then the opposite diagonal has length k + 1 and the two other diagonals both
have length l.

Case 4.1. If k = l, then this is exactly a ball minus one diagonal. These are optimal sets,
as one easily checks that this defines a standard minimizer (with the definition given in
the next section). But obviously these cannot have the cardinality of a ball.
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Figure 5.9: Case 4: left to right: k = l, k = l − 1, k > l, and k < l − 1.

Case 4.2. If k = l− 1, then this is exactly a ball plus one diagonal. Again, these are standard
minimizers, but cannot have the cardinality of a ball.

Case 4.3. If k > l, then we remove a diagonal of length l and add it again along the
diagonal of length k. In the resulting point set there is at least one point missing in
this new diagonal, and adding it does not increase the size of the neighborhood. By
Proposition 5.11 this contradicts our assumptions.

Case 4.4. If k < l − 1, then we remove the diagonal of length k and add it along a diagonal
of length l. Again, there is at least one point missing in the new diagonal and adding it
does not increase the size of the neighborhood.

�

Figure 5.10: Case 4: changed point sets. Fat points are additional ones.

5.4 Uniqueness for Balls in General Dimension
We are now going to use the proof of optimality for standard minimizers to show the unique-
ness of balls as optimal sets.

Theorem 5.15. Balls Bn
r are unique optimal sets of their cardinality.

Proof. The proof is by induction on the dimension n, the induction base n = 2 being Theo-
rem 5.14 from the last section.

A major tool in the proof of optimality for standard minimizers is the k-normalization
Nk(X) of a set X ⊆ Zn:
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• replace all (nonempty) k-levels of X by (n− 1)-dimensional standard minimizers of the
same cardinality, and then

• change the order of the levels, such that the largest one is the k-base and the remaining
ones are arranged around the k-base in decreasing order and alternating sign in the kth

component, that is, |Lk,i| ≥ |Lk,i+1| for i ≥ 0 and |Lk, j| ≥ |Lk, j−1| for j ≤ 0.

Roughly, to show that standard minimizers are optimal sets, take an arbitrary set and
repeatedly apply 1-normalization and n-normalization to it. This series of transformations
terminates with a standard minimizer after a finite number of steps, and this procedure does
not increase the size of the neighborhood (see Section 5.7 for details).

For the induction step consider some optimal set X ⊆ Zn with |X| = |Bn
r | for some r.

If we repeatedly apply 1-normalization and n-normalization to X, then X is transformed to
Bn

r , as this is the standard minimizer of this cardinality. Consider the set Y that occurs in
this transformation process exactly before the normalization step that yield a stable set. We
assume the last step is in direction 1 to reduce the number of variables in the following.

Then there is a one-to-one correspondence between the 1-levels of Y and the 1-levels of
Bn

r , such that all cardinalities match. Note that the levels of Bn
r are (n − 1)-dimensional balls.

Define
lmin := min{l ∈ Z : L1,l(Y) , ∅}, and
lmax := max{l ∈ Z : L1,l(Y) , ∅}.

Then as a lower bound for the size of the neighborhood of Y we have

n(Y) ≥ |L1,lmax(Y)| + |L1,lmin(Y)| +
lmax∑

l=lmin

n(Ln−1
1,l (Y))

by Lemma 5.9.
Now as every level L1,l(Y) has the cardinality of a ball Bn−1

rl
for some rl, it follows by

the induction hypothesis that they all really have to be these balls, as otherwise n(Ln−1
1,l (Y)) >

n(Bn−1
rl

) and thus n(X) ≥ n(Y) > n(Bn
r ), which would be a contradiction to the assumption that

X is optimal.
Finally consider the order of the 1-levels in Y . If they are not ordered in the same way

as for the corresponding ball Bn
r , then there exist two adjacent levels L1,i(Y) = Bn−1

ri
and

L1, j(Y) = Bn−1
r j

such that r j < ri − 1. But then

I = int
(
Ln−1

1,i (Y)
)
\Ln−1

1, j (Y) , ∅

and thus by Lemma 5.6 we can add points to Y without increasing the size of the neighbor-
hood n(Y). This is, once again, a contradiction to Proposition 5.11 since Y was assumed to
be optimal and of the same cardinality as some Bn

r .
Thus X = Y = Bn

r , which completes the proof. �

5.5 Necessary Conditions for Optimal Sets

Back to Dimension 2

In Proposition 5.4 we showed that connectedness is a necessary condition for a set X ⊆ Z2

to be optimal. As a first step towards further conditions we consider the shapes of X and
Y = X ∪ Nbhd(X) for diagonal convex sets, and the relation between n(X) and n(Y).

94



Chapter 5 Discrete Isoperimetric Sets

Figure 5.11: A diagonal convex set X, together with Nbhd(X) and Nbhd(X ∪ Nbhd(X)).

Proposition 5.16. If a set X ⊆ Z2 is diagonal convex, then Y = X∪Nbhd(X) is again diagonal
convex and n(Y) = n(X) + 4.

Proof. The lengths of the axis-aligned parts of Nbhd(Y) and Nbhd(X) are identical, while
the lengths of the diagonal parts of Nbhd(Y) are the lengths of the diagonal parts of Nbhd(X)
plus one. �

This proposition tells us that diagonal convex sets have a shape that is ‘stable’ under the
operation of adding the neighborhood, and that the size of the neighborhood behaves in a nice
way. But there is a far larger class of sets that behaves in essentially the same way:

Consider some set X ⊆ Z2, such that the neighborhood Nbhd(X) is a simple cycle. By
this we mean that for any two points in Nbhd(X) there are exactly two disjoint paths between
them.

A path between x and y in X is a sequence (v j)1≤ j≤k such that v1 = x, vk = y, vi ∈ X for
all i, and any two consecutive points in the path differ by at most one in each coordinate, i.e.,
v j − v j+1 =

∑
i≤n ciei with ci ∈ {−1, 0, 1}.

Note that if we regard the cycle Nbhd(X) as a (not necessarily convex) polygon, the
grid points in the interior of the polygon are all points of X. Observe that the inside and
outside angles at any v ∈ Nbhd(X) are at least 90 degrees, and at least 135 degrees if one of
the polygon edges adjacent to v is in a coordinate direction. An interior angle smaller than
this would give d(v, X) > 1, and an exterior angle would lead to a sub-cycle of length 3 in
Nbhd(X).

We will proceed through the cycle Nbhd(X) in the counter-clockwise direction and con-
sider the occurring direction changes with respect to the oriented coordinate directions (ei, σ)
with i ∈ {1, 2} and σ ∈ {+,−}:

• Choose as starting (and ending) point the topmost point of the tangent t++ : x1 + x2 =

c > 0.

• Choose as starting (and ending) direction (e1,−).

• Proceeding through the cycle, remember the current coordinate direction (ei, σ), as well
as the number of occurred direction changes. In every step xk to xk+1

1. keep the direction (ei, σ) if σ = sign(xk+1 − xk)i,

2. otherwise change the direction to (e j, σ
′) with j , i and σ′ = sign(xk+1 − xk) j,

where for every y ∈ R\0 we define sign(y) = + if y > 0 and sign(y) = − if y < 0.
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• as the starting point is reached with a direction different from (e1,−), the turn to this
direction (according to the turning rule above) counts an as occurring turn.

Every considered (and counted) direction change is a (left or right) turn by 90 degrees. As
we require the starting direction to be identical to the ending direction, we turn 360 degrees
in total. Thus we count an even number k ≥ 4 of direction changes (each of the oriented
directions at least once).

Also, by the above observations about the occurring angles, we notice that for every turn
there is a diagonal part of Nbhd(X) of size at least 2, that could be seen as being in either of
the two directions before and after the turn. We will call such a diagonal part of Nbhd(X) a
connecting diagonal.

We call a set X close-to-convex if Nbhd(X) is a cycle and if in the process described above
there are four changes in direction (i.e., every oriented coordinate direction appears exactly
once).

Figure 5.12: Proceeding through the neighborhood of a close-to-convex set. Direction
changes occur after the arrows.

Observation 5.17. If a set X ⊆ Z2 is close-to-convex, then Y = X ∪ Nbhd(X) is again close-
to-convex, and n(Y) = n(X) + 4. Moreover, Y has the same shape as X except for the four
connecting diagonals which each get longer by one. See Figure 5.13 for an example.

Note that each connecting diagonal is identical to the intersection of X ∪ Nbhd(X) with
one of its diagonal tangents.

Observation 5.18. The standard minimizers that are presented in [81] are optimal sets that
are close-to-convex, and for any standard minimizer S , S ∪ Nbhd(S ) is again a standard
minimizer (and thus optimal). This implies that for any optimal set X ⊆ Z2 the inequality
n(Y) ≥ n(X) + 4 holds for Y = X ∪ Nbhd(X).

Let us go back to general connected sets X ⊆ Z2. We denote the cycle C(X) ⊆ Nbhd(X)
for which X lies in the interior of the polygon defined by this cycle as the cycle that surrounds
X. Further we call the (finite) set cl(X) of grid points enclosed by C(X) the closure of X.

An ordered subset {x1, x2, . . . , xn} ⊆ Z
2 is a lattice path if the elements are distinct and

d(xi, xi+1) = 1 for all i. We note that every lattice path is a path, as defined in section 1, but
the converse is not true.
A hole in X is a subset H ⊆ cl(X)\X such that

1. H is connected, and
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Figure 5.13: A close-to-convex set and two layers of neighborhood.

2. for every h ∈ H, every lattice path from h to C(X) contains some element of X.

Proposition 5.19. If X ⊆ Z2 is connected, then for Y = X∪Nbhd(X) we have n(Y) ≤ n(X)+4.

Proof. For any close-to-convex set this is obviously true.
Now if X is not close-to-convex, then either its neighborhood Nbhd(X) does not form a

cycle or we will get more than four turns when proceeding through the cycle like described
above.

In the latter case, assume we have counted 2k + 4 turns. Then we have counted exactly
k + 4 left turns and k right turns. For every left turn the connecting diagonal gets longer by
(at most) one, while for each right turn the connecting diagonal gets shorter by (at least) one
(see Figure 5.14). All parts in between are just translated by 1 and are thus (at most) as long
as they were.

Figure 5.14: All possible right turns (up to symmetry).

Note that Nbhd(Y) need not be a cycle, and that the at most and at least statements from
above stem from the fact that points of Nbhd(Y) might be created by duplication of more than
one part of Nbhd(X), see Figures 5.15 and 5.16 for examples.

Now what is left is the situation when Nbhd(X) is not a cycle. Here, consider the cycle
C(X) ⊆ Nbhd(X) that surrounds X.

For the part of the neighborhood of Nbhd(Y) that lies outside of C(X) the same arguments
as above can be applied.

For the inside part observe that every component of Nbhd(Y) corresponds to a hole of
X∪Nbhd(X), see Figure 5.17, and thus the size of the neighborhood inside C(X) is decreasing.

�
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Figure 5.15: Nbhd(Y) does not form a cycle: creating a hole.

Figure 5.16: Nbhd(Y) does not form a cycle: Right turns with short connecting diagonal.

Proposition 5.20. If X ⊆ Z2 is not close-to-convex, then X cannot be optimal.

Proof. Assume that X is connected but not close-to-convex, and consider again the cycle
C(X) ⊆ Nbhd(X) that surrounds X.

If C(X) ( Nbhd(X), then the set Y containing all points inside this cycle C(X) has |Y | > |X|
and n(Y) < n(X). Thus X cannot be optimal.

If C(X) = Nbhd(X) then consider Z = X ∪ Nbhd(X). From the proof of Proposition 5.19
we know that if Nbhd(Z) is a cycle again, then the length of every right turn connecting
diagonal is shorter than the corresponding one in Nbhd(X). Thus, after finitely many steps
of adding the neighborhood we obtain a set that is not optimal (as its neighborhood is not a
cycle). But as Proposition 5.19 holds for every step of adding the neighborhood, X cannot be
optimal either. �

Next we show that optimality is not affected by addition of the neighborhood. More
precisely, we have:

Proposition 5.21. Consider any connected set X ⊆ Z2 and its union with its neighborhood
X′ = X ∪ Nbhd(X). Let Y and Y ′ be the standard minimizer of cardinality |Y | = |X| and
|Y ′| = |X′|, respectively. If n(X) = n(Y) + k for some k ≥ 0, then n(X′) ≤ n(Y ′) + k.

Proof. |Y ′| = |X′| = |X| + n(X) = |Y | + n(Y) + k ≥ |Y ∪ n(Y)|. Thus from Proposition 5.10, it
follows that

n(Y ′) ≥ n(Y ∪ n(Y)) = n(Y) + 4 = n(X) − k + 4 = n(X′) − k.

�

Now we can state the answer to Problem 5.2, i.e., we have shown that, at least in dimen-
sion 2, the set of optimal sets is closed under the operation of adding the neighborhood. We
record this solution in the following corollary.

Corollary 5.22. If a set X ⊆ Z2 is optimal, then n(X∪Nbhd(X)) = n(X)+4 and X∪Nbhd(X)
is also optimal.
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Figure 5.17: A connected set X visualizing some possible shapes. The lines indicate all paths
in Nbhd(X).

5.6 Outlook
One could try to find a good definition of ‘close-to-convex’ in higher dimensions. There
are, however, some problems associated with this. For example, we made excessive use of
the concepts of paths and directions, and even when looking in two coordinate-directions
separately at a time, the interaction between them has to be addressed.

Also, we would be interested in good sufficient conditions for a set to be optimal, starting
already in dimension 2, but of course also for the general case.

5.7 Notes

5.7.1 Definitions and Properties of standard minimizers
Here and in Section 5.7.2 we follow largely [81].

A standard minimizer in n dimensions is the set of points in the n-ball of some ra-
dius m ∈ N, together with those points of the n-sphere of radius m + 1 (which is the set
{x ∈ Zn :

∑
xi = m + 1}), whose projection normal to the first coordinate is a standard mini-

mizer in n− 1 dimensions. The name is chosen in anticipation of their property to be optimal
sets, i.e., to minimize the size of the neighborhood.

First we will discuss the results for Zn
+, then we will see how we can get the results for Zn.

We adapt all definitions we have made for Zn also for the restriction to the set Zn
+. To avoid

confusion, we will also write positive standard minimizer, if we mean a standard minimizer
in Zn

+.

A standard minimizer in Zn
+ can also be described as follows: The points y ∈ Zn

+ with∑n
i=1 yi ≤ q can be viewed as representations of P :=

∑
yiqi, i.e., as q-adic numbers. In this

light, a positive standard minimizer consists of:

(1) y ∈ Zn
+ with

∑
yi ≤ m (i.e., the ball Bn

m);

(2) y ∈ Zn
+ with

∑
yi = m + 1 and (y1, . . . , yn) � (r1, . . . , rn) for some r and some canonical

order (e.g., P � R in the (m + 1)-adic numbers).
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The set described in (1) is also called the core of the positive standard minimizer, the
set in (2) is called its outer shell. As an order, we will use the above mentioned for q-adic
numbers.

We will now gather some more or less obvious relations between these objects in Zn
+.

Evidently, for a positive standard minimizer X, the interior of X is contained in its core.
Conversely, a core point will not be in int(X), if some neighbor is not in X. But by the
description of the shell in (2), this means that y ∈ core(X) satisfies

y < int(X)⇔ y + en < X.

Note that we thus only have to look at the ‘upper’ neighbor, and also only at the last coordi-
nate.

These facts might also be expressed as follows: Let X be a positive standard minimizer
and x ∈ X. Then

x + en ∈ X ⇒ x ∈ intn(X)⇒ x ∈ int(X).

Similarly we observe that
x ∈ int1(X)⇒ x + e1 ∈ X,

from which it follows that int1(X) = int(X) for a positive standard minimizer X.

By definition we have int(X) ⊆ intn(X). The converse is not true, however we get the
following

Lemma 5.23. Let X be a positive standard minimizer. Then

| intn(X) \ int(X)| ≤ 1.

Proof. We know that

y ∈ intn(X) \ int(X)⇒ y + e j ∈ X for all 1 ≤ j ≤ n − 1 and y + en < X.

Assume there are y, y′ ∈ intn(X) \ int(X) with y , y′. Then there must be a smallest i ∈
{1, . . . , n − 1} with yi , y

′
i , and say yi < y

′
i . Then y + e j � y

′ + en for i < j ≤ n − 1, and
therefore y′ + en ∈ X by (2) of the definition of standard minimizers. �

Note that a point y as in the proof then defines the size of the standard minimizer in
question.

Observation 5.24. An n-level of a standard minimizer X ⊆ Zn
+ is itself a positive standard

minimizer in the first (n − 1) dimensions. Also note that the jth n-level fits into the interior of
the ( j − 1)st n-level, i.e.,

Ln−1
n, j (X) ⊆ int(Ln−1

n, j−1(X)).

This means that X is almost completely determined by its n-base, as each n-level is the interior
of the next lower one, with the possible exception of one point.

So far we have described positive standard minimizers. But actually we can use this
knowledge to identify a set as a (special) standard minimizer.
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Lemma 5.25. Suppose a set X ⊆ Zn
+ has a positive standard minimizer of dimension n− 1 as

n-base, and every n-level is the interior of the next lower level (as sets in n − 1 dimensions).
Then X is a positive standard minimizer.

Proof. By construction, the largest point among the ones with maximal coordinate sum must
lie in in the n-base. The rest follows by the preceding remarks. �

Observing that the n-levels ‘nest’ like this, we can state the following

Observation 5.26. The neighborhood in the same level as a given n-level (except the n-base)
is also part of the neighborhood in the next lower n-level of X.

This is one of the reasons for the neighborhood of a standard minimizer to be small.

This fact can be used to count the neighborhood by only looking at the n-base.

Lemma 5.27. Let X be a positive standard minimizer with n-base B. Then n(X) is |B| plus
the size of the (n − 1)-dimensional neighborhood of B.

More formally we have

|Nbhdn(X)| = |Ln,0(X)| + |Nbhdn−1(Ln−1
n,0 (X))|

for a standard minimizer X in Zn
+. 2

Another evident but important fact about standard minimizers is the following

Lemma 5.28. The sizes of int(X) and Nbhdn(X) increase monotone in the size of the mini-
mizers: If X and Y are positive standard minimizers and

|X| ≥ |Y |, then
| int(X)| ≥ | int(Y)| and |Nbhd(X)| ≥ |Nbhd(Y)|.

Proof. The last inequality follows by induction on the dimension, using that |Ln,0(X)| is a
monotone function of |X| for standard minimizers. �

For the standard minimizer in Zn, order the n-quadrants and then define the outer shell
with respect to this order in every n-quadrant (almost) as above. A more rigid description is
given below.

We define int j(X) as the set of points in X, such that all neighbors in the directions normal
to the j-axis are in X, i.e.,

int j(X) = {x ∈ X : x ± ei ∈ X for all i , j} ,

where ei is the ith unit vector.

Formally a standard minimizer in Zn is defined as follows:
We define our ordering, such that the points are arranged first by the coordinate magnitude

sum. Among points with the same sum, we associate a 2n digit number to each point and
order according to this number (in the usual numerical ordering), taking the largest first.

In the 2n digit number, the first n describe the orthant of the number, the last n digits are
the total value of the coordinates.
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The jth orthant digit is 1, if the (n− j+ 1)st coordinate of the point is strictly positive, and
0 otherwise.

A standard minimizer now is a set of points in Zn, which correspond to an initial segment
in this ordering.

To illustrate the ordering, we list the first thirteen points in two dimensions, the associated
four digit number listed beneath the points (see also Figure 5.18).

(0, 0)
0000

(0, 1)
1001

(1, 0)
0110

(−1, 0)
0010

(0,−1)
0001

(1, 1)
1111

(−1, 1)
1011

(0, 2)
1002

(2, 0)
0120

(1,−1)
0111

(−2, 0)
0020

(−1,−1)
0011

(0,−2)
0002

11

01

10

00

1

2

34

5

67

8

9

10

11

12

13

Figure 5.18: Illustration of the ordering. The numbers under the points indicate the position
in the order, the shading indicates their coordinate magnitude sum.

It is apparent that within each orthant, the set of points obtained correlates to a standard
minimizer in Zn

+.

It is not difficult to show that every above statement, starting with Observation 5.24, is
also true for Zn, where in Lemma 5.27 we get

|Nbhdn(X)| = 2|Ln,0(X)| + |Nbhdn−1(Ln−1
n,0 (X))|.

Lemma 5.29. Standard minimizers in Z2 are optimal.

Proof. We first consider standard minimizers in Z2
+. Remember that a positive standard min-

imizer (in 2 dimensions) consists of the integer points with coordinate sum ≤ j for some
j ∈ N, and some (maybe all) points with coordinate sum j + 1. The size of its neighborhood
is then j + 3.

Obviously any set X ⊆ Z2
+ of the same size has some point p = (a, b) ∈ X with a+b ≥ j+1.

As we saw before, it is no restriction to seek optimal sets only among connected sets, and
also we may assume that the sets have points on both axis.

For any such set it is easy to see that n(X) ≥ (a + 1) + (b + 1) ≥ j + 3, which proves
the lemma for Z2

+. For the more general case, we center any given X around the origin,
minimizing the maximal coordinate sum in the quadrants. Then the reasoning is analogous
to the previous. �
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j = 3

Figure 5.19: A standard minimizer in Z2
+ with 12 elements (left). Lower bound on the neigh-

borhood (right).

5.7.2 Optimality of Standard Minimizers
Because it makes the methods of the proof more transparent, we will first prove the following:

Theorem 5.30. Standard minimizers in Zn
+ are optimal.

Subsequently, we explain how to extend this result to Zn:

Theorem 5.31. Standard minimizers in Zn are optimal.

The proof of Theorem 5.31 is essentially the same as the proof of Theorem 5.30, with
some additions. Both will be inductions on the dimension n, where we have already seen the
case n = 2 in the previous section.

We observe that the proof of Theorem 5.30 can be obtained by the following steps:

1. Prove that the result holds in two dimensions.

2. Define ‘normalization’ in the kth direction.

3. Prove that such normalization cannot increase the neighborhood.

4. Prove that alternating normalization in the 1st and nth direction yields a stable set w.r.t.
these operations.

5. Prove that in such a stable set the interior of the jth n-level includes the ( j + 1)st.

Lemma 5.29 is the first step. Now recall the k-normalization Nk(X) of a set X ⊆ Zn
+:

• replace all (nonempty) k-levels of X by (n− 1)-dimensional positive standard minimiz-
ers of the same cardinality, and then

• change the order of the levels, such that the largest one is the k-base and the remaining
ones are arranged above the k-base in increasing order, i.e |Lk,i| ≥ |Lk,i+1| for i ≥ 0.

Also, we define a rank-function r : Nn → Nn \ {0} with

r(a) < r(b) :⇔ There is a standard minimizer X with a ∈ X and b < X.

Remember that for X ⊆ Kn we defined n(X) = |Nbhdn(X)|.

Lemma 5.32. Let X ⊆ Zn
+. Then n(Nk(X)) ≤ n(X).
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Proof. We will without loss of generality assume that in all sets considered, the k-levels
Lk, j(X) are monotonically decreasing in size with increasing j. This is no loss, because we
can map any other set X to a set X′ with this property, by reducing the k-components of all its
points as much as possible. It is easy to see that the neighborhood of X′ has at most the size
of the neighborhood of X.

By induction on n, standard minimizers have the minimum (n−1)-dimensional neighbor-
hood within each k-level, and therefore

n(Ln−1
k, j (X)) ≥ n(Ln−1

k, j (NkX)).

By nk, j(X) we denote the size of the set of neighborhood points of X with kth coordinate equal
to j, i.e., nk, j(X) := | {x ∈ Nbhdn(X) : xk = j} |.

Then obviously nk, j(X) is at least as big as the difference between the sizes of Lk, j−1(X)
and Lk, j(X), and also at least the size of (the (n − 1)-dimensional set) Nbhd(Ln−1

k, j (X)). More
formally:

nk, j(X) ≥ max
{
n(Ln−1

k, j (X)); |Lk, j−1(X)| − |Lk, j(X)|
}
.

On the other hand, for the k-normalization we have equality:

nk, j(Nk(X)) = max
{
n(Ln−1

k, j (NkX)); |Lk, j−1(NkX)| − |Lk, j(NkX)|
}
,

so that nk, j(X) ≥ nk, j(NkX) for every j, and therefore the proof is finished by summation on
j. �

Lemma 5.33.
∑

a∈Nk(X) r(a) ≤
∑

a∈X r(a), where we get equality only for Nk(X) = X.

Proof. This can be done by the definition of the standard minimizer and is left to the reader.
�

From Lemma 5.33 we can deduce that for any (finite) Y ⊆ Zn
+ there is an α ∈ N, such that

Z := (N1Nd)α(Y) satisfies Z = N1(Z) = Nd(Z).
Now Ln−1

n, j+1(Z) ⊆ Ln−1
n, j (Z), unless for some y ∈ Z we have

(i) y + en ∈ Z,

(ii) y + e j < Z for some j , n.

Since Z = N1(Z), and by the properties of standard minimizers in n− 1 dimensions, we know
that (i) implies that y+ ei ∈ Z for all 2 ≤ i ≤ n. Therefore we must have y+ e1 < Z. But since
Z = Nn(Z), this implies that y + e j < Z for all 1 ≤ j ≤ n − 1, which is a contradiction to the
above.

We conclude that the ( j + 1)st n-level of Z fits into the interior of the jth n-level of Z.

Lemma 5.34. If the n-levels of Z (which is defined as above) are standard minimizers and
the ( j + 1)st n-level of Z fits into the interior of the jth n-level, then |Ln,0(Z)| ≥ |Ln,0(Q)| for a
standard minimizer Q of size |Z|.

Proof. Suppose the n-base of Z is strictly smaller that the n-base of the standard minimizer Q.
Since the ( j+ 1)st n-level of Z is not larger than the interior of the jth, Z can be no larger than
the set obtained by choosing as ( j+ 1)st n-level the exact interior of the jth, which by Lemma
5.25 yields a standard minimizer Q′. Then Q′ would have to be strictly smaller than Q or Z
by the definition of the standard minimizer, but also |Q′| ≥ |Z| = |Q| by the construction of
Q′, so the lemma is proven. �
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By Lemma 5.32 we know that n(Y) ≥ n(Z) and it is obvious that n(Z) ≥ |Ln,0(Z)| +
n(Ln−1

n,0 (Z)). By the monotonicity in the size of the neighborhood of a standard minimizer, we
therefore get

n(Y) ≥ n(Z) ≥ |Ln,0(Z)| + n(Ln−1
n,0 (Z)) ≥ |Q| + n(Ln−1

n,0 (Q)) = n(Q),

where Q is a positive standard minimizer with |Q| = |Z|. This proves Theorem 5.30.
Remember the list of steps to prove Theorem 5.30. The first four steps are the same for

Theorem 5.31, and then we have:

5’. Prove that in such a stable set the interior of the jth n-level includes the ( j + 1)st, and
the interior of the of the (− j)th includes the −( j + 1)st.

6. Prove that one can rearrange such a set into a standard minimizer without increasing
the neighborhood.

The last step is necessary, as normalization does not always terminate with a standard min-
imizer, and in fact will only do so, if either the n-base or the 1st n-level is a (n,m)-ball for
some m.

We will show that the set after the normalization can be replaced by a potentially larger
set, which has this property, and such that the neighborhood is not increased.

Now define k-normalization as before, only now we ‘stack’ the standard minimizers with
alternating positive and negative sign in the kth coordinate.

Since standard minimizers nest in one another and since by induction we assume they are
optimal in (n − 1) dimensions, normalization will again not increase the neighborhood.

That alternating normalization yields a stable set, in which the level fit into the interior of
the adjacent level in the direction of the base, is also analogous to the non-negative setting.

Step 6. In the light of step 5’, a stable set will have as neighborhood size the sum of the
sizes of its n-base L0, its 1st n-level L1 (meaning the set of points with nth coordinate equal
to 1) and their (n − 1)-dimensional neighborhoods. Both these levels are (n − 1)-dimensional
standard minimizers.

By the monotonicity in the size of the standard minimizers we may assume that the ith

n-level (for i > 1) of the stable set has the same size as the interior of the (i− 1)st n-level; and
that the jth n-level (for j < 0) has the size of the interior of the ( j + 1)st n-level. Thus, the
stable set X obtained is a (n,m)-ball in all but two orthants.

If

L0 =

x ∈ X :
n−1∑
i=1

|xi| ≤ k, xn = 0

 and

L1 =


x ∈ X :

n−1∑
i=1

|xi| ≤ k − 1, xn = 1

 ∪ S

 ,
where S consists of some points with coordinate magnitude sum k without the nth coordinate
(which equals 1), then X defines a standard minimizer.

Also, if L0 and L1 both contain all points having first n − 1 coordinate magnitudes sum to
k, and L0 contains others as well, we again get a standard minimizer.
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However, it is also possible that L1 contains some but not all points with this sum = k and
L0 some but not all with this sum = k + 1; or both contain some but not all points with this
sum = k + 1. In either case it is necessary to prove that there is a standard minimizer at least
as large with no larger neighborhood.

We proceed by showing that there are four cases that need to be considered, and present
arguments to handle them.

Let X be a standard minimizer in n − 1 dimensions, and let Bn−1
k be its core. Then we

define k to be its core size.
Now for the cases:

Case 1 L0 has core size k and L1 has core size k − 1; The shell of L0 is only nonempty in the
first orthant and the shell of L1 is full (i.e., is equal to the shell of a ball) in all but the
last two orthants.

Case 2 L0 has core size k and L1 has core size k − 1; The shell of L0 is only nonempty in the
first two orthants and the shell of L1 is full in all but the last orthant.

Case 3 L0 has core size k and L1 has core size k; The shell of L0 is full in all but the last two
orthants and the shell of L1 is only nonempty in the first orthant.

Case 4 L0 has core size k and L1 has core size k; The shell of L0 is full in all but the last
orthant and the shell of L1 is only nonempty in the first two orthants.

First note that these cases are exhaustive, because

(a) L0 ⊇ L1 ⊇ intn(L0), where the first two sets are considered without the nth coordinate;
and

(b) it is not possible to have the next to last orthant non-full in L1 (resp. L0) and the second
orthant nonempty in L0 (resp. L1) if the core sizes differ (resp. are the same) among L0

and L1.

Both these statements follow from the fact that our set is stable under normalization in the
first direction. For (b) note that if a point in the second orthant with 2n-coordinate number

(0, 1, 1, . . . , 1, 0, α, β, γ, . . . , 0)

is in L0, then the point with 2n-number

(1, 0, 0, . . . , 0, 0, α, β − 1, γ, . . . , 1)

must be in L1; while if
(1, 1, . . . , 1, 0, α, β, γ, . . . , 1)

is in L1, then
(0, 0, . . . , 0, 0, α, β, γ, . . . , 1)

must be in L0.

Finally, we can transform the set in each case step by step into one that more closely
resembles a standard minimizer, without increasing the neighborhood, until we terminate
with a standard minimizer. This is done by transferring points between the orthants, until the
shell is nonempty in only one of L0 and L1. Some more details of this are given in [81].
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