

Einführung in die Mathematik des Operations Research

Sommersemester 2017

— Lösungsskizze Blatt 1 —

Aufgabe 1.1 (10 Punkte) Es sei G=(V,E) ein Graph. Beweisen Sie die Äquivalenz der folgenden Aussagen:

- a) G ist ein Baum.
- b) G ist minimal zusammenhängend, d.h. für jede Kante $e \in E$ ist der Graph $H = (V, E \setminus \{e\})$ nicht zusammenhängend.
- c) G ist maximal kreisfrei, d.h. für je zwei Knoten $v,w\in V$ mit $\{v,w\}\not\in E$ enthält der Graph $H=(V,E\cup\{\{v,w\}\})$ einen Kreis.

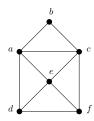
Lösung:

Zeige z.B. a) \Rightarrow b) \Rightarrow c) \Rightarrow a)

- a) \Rightarrow b) Da G ein Baum ist, gibt es für $v, w \in V$ einen eindeutigen v-w-Weg. Sei e eine Kante dieses Wegs. Dann gibt es keinen v-w-Weg in $(V, E \setminus \{e\})$.
- **b)** \Rightarrow **c)** Sei $e = \{v, w\} \notin E$. Da G zusammenhängend ist, gibt es einen w-v-Weg $P = (w, \dots, v)$. Zusammen mit e ergibt dies einen Kreis.
- c) \Rightarrow a) G ist nach Voraussetzung kreisfrei. Falls $\{v,w\} \in E$, dann gibt es einen v-w-Weg in G. Sonst enthält der Graph $H=(V,E\cup\{\{v,w\}\})$ einen Kreis $C=(w,\ldots,v,w)$. Dann ist $P=(w,\ldots,v)$ ein w-v-Weg, und G ist also zusammenhängend.

Aufgabe 1.2 (10 Punkte)

- a) Bestimmen Sie alle Bäume mit Knotenmenge $\{1, 2, 3, 4\}$.
- b) Bestimmen Sie die Anzahl der Spannbäume des nebenstehenden Graphen.
- c) Zeigen Sie, dass ein Graph mit n Knoten bis zu n^{n-2} Spannbäume haben kann.



Lösung:

b) Die Laplace-Matrix lautet

$$L = \begin{pmatrix} 4 & -1 & -1 & -1 & -1 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ -1 & -1 & 4 & 0 & -1 & -1 \\ -1 & 0 & 0 & 3 & -1 & -1 \\ -1 & 0 & -1 & -1 & 4 & -1 \\ 0 & 0 & -1 & -1 & -1 & 3 \end{pmatrix}$$

Streiche eine Zeile und Spalte, z.B. die zu a gehörigen. Dann ist $t(G) = \det(L[\{a\}])$ und $\det(L[\{a\}]) = 114$.

c) Jeder Baum mit n Knoten ist ein Spannbaum des vollständigen Graph auf n Knoten, also kann kein Graph mehr Spannbäume als der vollständige Graph G=(V,E) haben.

Nach Satz 1.8 ist $t(G) = \det(L[\{v\}])$ für ein $v \in V$. berechne also die Determinante von

$$\begin{pmatrix} n-1 & -1 & \cdots & -1 \\ -1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & -1 \\ -1 & \cdots & -1 & n-1 \end{pmatrix} \} n-1$$

Subtrahiere die letzte Zeile von allen Übrigen und erhalte

$$\begin{pmatrix} n & 0 & \cdots & 0 & -n \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & n & -n \\ -1 & \cdots & \cdots & -1 & n-1 \end{pmatrix}$$

Subtrahiere nun 1/n mal die oberen Zeilen von der letzten, und erhalte eine Matrix, aus der sich die Determinante n^{n-2} leicht ablesen lässt.

Aufgabe 1.3 (10 Punkte) Die Tabelle auf der folgenden Seite definiert einen Abstandsgraphen. Bestimmen Sie einen minimalen Spannbaum unter Verwendung des Algorithmus' von Kruskal.

Lösung:

Schritt 1: $H = (V, \emptyset)$ ist kein Baum, {Do, Es} hat kleinste Länge und schließt keinen Kreis.

Schritt 2: H ist noch immer kein Baum, $\{K\ddot{o}, Es\}$ hat die kleinste Länge unter den übrigen Kanten und schließt keinen Kreis.

Schritt 3: *H* ist noch immer kein Baum, {Kö, Do} hat zwar die kleinste Länge unter den übrigen Kanten, schließt aber einen Kreis. Die kürzeste Kante, die wir hinzufügen können ist {Ha, Br}.

Wird der Algorithmus auf diese Weise fortgesetzt, so erhält man den Baum

