

Einführung in die Mathematik des Operations Research

Sommersemester 2017

Lösungsskizze Blatt 8 —

Aufgabe 8.1 (10 Punkte) Sei $C \subseteq \mathbb{R}^n$ eine konvexe Menge mit $\dim(C) = n$. Zeigen Sie, dass für jedes $x \in C$ gilt:

$$x \in \text{int } C \iff \forall y \in C \ \exists z \in C \ \exists \alpha \in (0,1) : x = (1-\alpha)y + \alpha z.$$

Lösung: " \Rightarrow ": Sei $\varepsilon > 0$ so, dass $B(x,\varepsilon) \subseteq C$ ist, und sei $y \in C$ beliebig, wobei wir $y \neq x$ annehmen können. Wir betrachten die Gerade $\{y + \lambda(x - y) : \lambda \in \mathbb{R}\}$, die x und y verbindet, und suchen einen Punkt z auf dieser Geraden mit den folgenden zwei Eigenschaften: z liegt in $B(x,\varepsilon)$ (und damit in C) und x liegt auf der Geraden zwischen z und y, d.h. x kann als die gewünschte Konvexkombination von y und z geschrieben werden.

Für $z=y+\lambda(x-y)$ gilt $\|z-x\|=|1-\lambda|\cdot\|y-x\|$. Wir wollen also λ aus $(1-\frac{\delta}{\|y-x\|},1+\frac{\delta}{\|y-x\|})$ wählen. Zudem gilt $x=(1-\frac{1}{\lambda})y+\frac{1}{\lambda}z$. Es soll also auch $0<\frac{1}{\lambda}<1$, d.h. $\lambda>1$ gelten. Eine Wahl von λ aus $(1,1+\frac{\delta}{\|y-x\|})$ liefert demnach das gewünschte z.

" \Leftarrow ": Im \mathbb{R}^n gibt es n+1 affin unabhängige Punkte y_1,y_2,\ldots,y_{n+1} . Da affine (Un-)Abhängigkeit nicht durch Multiplizieren eines Skalars oder Addieren eines Vektors zu allen y_i geändert wird, können wir annehmen dass y_1,\ldots,y_{n+1} in C liegen. Weiterhin gibt es dann eine Auswahl von n Punkten der y_i , die zusammen mit x affin unabhängig sind (warum?). OBdA seien dies y_1,\ldots,y_n . Nun können wir auch C um -x verschieben, ohne die Gültigkeit der Aussage zu verändern, ausser dass nun x=0 ist.

Zu jedem der $\tilde{y}_i = y_i - x$ gibt es also ein $z_i \in C - x$ und ein $\alpha_i \in (0,1)$ mit $0 = (1 - \alpha_i)\tilde{y}_i + \alpha_i z_i$. Sei nun $\varepsilon = \min\{\|h_i\| : h_i \in \{\tilde{y}_i, z_i\}, i = 1, \dots, n\}$, und sei $y_i' = \lambda_i \tilde{y}_i$ mit $\lambda_i > 0$ derart, dass $\|y_i'\| = \varepsilon$ gilt; analog definiere z_i' .

Dann gibt es eine invertierbare lineare Abbildung $f: \mathbb{R}^n \to \mathbb{R}^n$ mit $f(\{y_1', \dots, y_n', z_1', \dots, z_n'\}) = \{e_1, \dots, e_n, -e_1, \dots, -e_n\}$, wobei e_i der i-te Einheitsvektor ist. Wir zeigen zunächst: 0 ist im Inneren von $P = \text{conv}\{e_1, \dots, e_n, -e_1, \dots, -e_n\}$.

Sei $\mu \leq 1/\sqrt{n}$ und $v \in B(0,\mu)$, also mit Cauchy-Schwarz $(\sum_{i=1}^n |v_i|)^2 \leq n \sum_{i=1}^n v_i^2 \leq 1$. Aus Symmetriegründen können wir annehmen, dass alle Koordinaten $v_i \geq 0$ sind. Dann ist $v_{n+1} := (1 - \sum_{i=1}^n v_i) \geq 0$ und

$$v = v_1 e_1 + \ldots + v_n e_n + v_{n+1} \cdot 0,$$

also ist $v \in P$ (weil zB $0 = 1/2e_1 + 1/2(-e_1)$ ist).

Nun ist $f^{-1}(B(0,\mu))$ ein Ellipsoid der Dimension n und Zentrum 0, worin wir wieder eine Kugel mit Radius μ' finden können (Stichwort Hauptachsen). Diese Kugel liegt auch in C-x.

Aufgabe 8.2 (10 Punkte) Es sei $C = \text{conv}\{x_1, x_2, x_3, x_4, x_5, x_6\} \subset \mathbb{R}^3$ mit

$$x_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, x_2 = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}, x_3 = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}, x_4 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}, x_5 = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}, x_6 = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix},$$

und sei

$$y = \frac{2}{7}x_1 + \frac{1}{28}x_2 + \frac{1}{4}x_3 + \frac{1}{14}x_4 + \frac{3}{14}x_5 + \frac{1}{7}x_6.$$

Verwenden Sie den Beweis des Satzes von Carathéodory, um y als Konvexkombination von affin unabhängigen x_i zu schreiben.

Lösung: Die Punkte x_1, \ldots, x_6 sind affin abhängig, wie beispielsweise durch $x_1 - x_2 + 2x_3 - 2x_4 + 3x_5 - 3x_6 = 0$ zertifiziert wird. Dann ist $\min\{\frac{\alpha_j}{\beta_i}: \beta_j > 0\} = \frac{\alpha_5}{\beta_5} = \frac{1}{14}$, und wir erhalten

$$y = \frac{3}{14}x_1 + \frac{3}{28}x_2 + \frac{3}{28}x_3 + \frac{3}{14}x_4 + \frac{5}{14}x_6$$

entsprechend der Formel aus dem Beweis.

Die Punkte x_1, x_2, x_3, x_4, x_6 sind affin abhängig, wie beispielsweise durch $-2x_1 + 2x_2 - x_3 + x_4 + 0x_6 = 0$ zertifiziert wird. Dann ist $\min\{\frac{\alpha_j}{\beta_j}: \beta_j > 0\} = \frac{\alpha_2}{\beta_2} = \frac{3}{56}$, und wir erhalten

$$y = \frac{9}{28}x_1 + \frac{9}{56}x_3 + \frac{9}{56}x_4 + \frac{5}{14}x_6.$$

Die Punkte x_1,x_3,x_4,x_6 sind affin abhängig, wie beispielsweise durch $x_1-x_3-x_4+x_6=0$ zertifiziert wird. Dann ist $\min\{\frac{\alpha_j}{\beta_j}:\beta_j>0\}=\frac{\alpha_1}{\beta_1}=\frac{9}{28}$, und wir erhalten

$$y = \frac{27}{56}x_3 + \frac{27}{56}x_4 + \frac{1}{28}x_6.$$

Die Punkte x_3, x_4, x_6 sind affin unabhängig, also sind wir fertig.

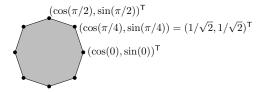
Aufgabe 8.3 (10 Punkte) Es sei

$$C = \operatorname{conv}\left\{ \begin{pmatrix} \cos\frac{\pi}{4}n\\ \sin\frac{\pi}{4}n \end{pmatrix} : n = 0, \dots, 7 \right\} \subseteq \mathbb{R}^2.$$

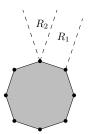
Bestimmen Sie für jedes $x \in \mathbb{R}^2$ die metrische Projektion von x auf C.

Hinweis: Sie dürfen Symmetrien von C verwenden.

Lösung: Betrachte zunächst die konvexe Hülle der Punkte:



Für Punkte $x \in C$ ist offenbar $\pi_C(x) = x$. Bis auf Symmetrien gibt es dann noch zwei Fälle:



Falls $x \in R_1$ ist, dann hat es die Form $r + \lambda v$, wobei r auf der Verbindungsstrecke K der Punkte $(0,1)^\mathsf{T}$ und $(1/\sqrt{2},1/\sqrt{2})^\mathsf{T}$ liegt, v orthogonal zu K ist, und $\lambda > 0$.

Dann ist $\pi_C(x) = r$. Betrachte hierzu die Hyperebene $H = \{y \in \mathbb{R}^2 : v^\mathsf{T} y = v^\mathsf{T} r\}$, dann gilt nach Satz von Pythagoras (zweimal angewandt für Punkte in $H^- \setminus H$) für jeden Punkt $z \in H^-$:

$$||x - r|| \le ||x - z||.$$

Falls $x \in R_2$, dann sei v' ein Vektor, der orthogonal zur Verbindungsstrecke zwischen $(0,1)^\mathsf{T}$ und $(-1/\sqrt{2},1/\sqrt{2})^\mathsf{T}$ ist, und so dass $\mu v'$ auf der Verbindungsstrecke ist, für ein $\mu>0$. Dann ist $x=(0,1)^\mathsf{T}+\lambda w$ für ein $\lambda>0$ und w derart, dass sein Winkel mit $(1,0)^\mathsf{T}$ zwischen dem Winkel von v mit $(1,0)^\mathsf{T}$ und dem Winkel von v' mit $(1,0)^\mathsf{T}$ liegt.

Wie eben sehen wir, dass $\pi_C(x) = (0,1)^\mathsf{T}$ ist.