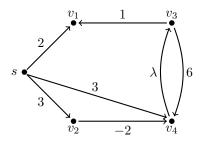


Einführung in die Mathematik des Operations Research

Sommersemester 2018

— Aufgabenblatt 1 —

Aufgabe 1.1 Sei D=(V,A) ein gerichteter Graph mit Kantenlängenfunktion $l\in\mathbb{R}^A$, wobei jeder Kreis in D eine nicht-negative Länge habe. Sei


$$P = (v_0, (v_0, v_1), v_1, \dots, (v_{m-1}, v_m), v_m)$$

ein kürzester Weg von v_0 nach v_m in D. Zeigen Sie, dass für alle Indizes i,j mit $0 \le i \le j \le m$ auch

$$P' = (v_i, (v_i, v_{i+1}), v_{i+1}, \dots, (v_{i-1}, v_i), v_i)$$

ein kürzester Weg von v_i nach v_i in D ist.

Aufgabe 1.2 Im folgenden Graphen ist die Längenfunktion auf der Kante (v_4, v_3) durch einen Parameter $\lambda \in \mathbb{R}$ gegeben. Wenden Sie den Algorithmus von Bellman-Ford in Abhängigkeit von λ an. Geben Sie, wenn möglich, einen kürzesten Weg vom Knoten s zu jedem anderen Knoten an.

Aufgabe 1.3 Die Firma Krummbohr & Hämmerli benötigt für einen fünfmonatigen Auftrag Zeitarbeitskräfte. Die Anzahl der einzustellenden Zeitarbeitskräfte entnehmen Sie der folgenden Tabelle:

Monat	Anzahl Zeitarbeitskräfte
1	12
2	6
3	8
4	9
5	10

Die Einarbeitung der Arbeitskräfte kostet 700 Euro pro Stelle, die Kündigungskosten pro Arbeitskraft liegen bei 1100 Euro. Außerdem kostet es Krummbohr & Hämmerli 1600 Euro pro Monat eine Arbeitskraft über dem benötigten Bedarf zu beschäftigen. Verwenden Sie den Algorithmus von Bellman-Ford um die Anzahl der Beschäftigten so anzupassen, dass die Firma minimale Personalkosten hat.

Aufgabe 1.4 (Präsenzaufgabe)

Sei D=(V,A) ein gerichteter Graph mit n Knoten und Kantenlängenfunktion $l\in\mathbb{R}^A$. Sei $s\in V$ der Startknoten. Betrachte die Funktionen $d_0,\ldots,d_n\in\mathbb{R}^V$, die der Algorithmus von Bellman-Ford berechnet. Zeigen Sie: Es gilt $d_n=d_{n-1}$ genau dann, wenn alle gerichteten Kreise, die von s aus erreichbar sind, nicht-negative Länge besitzen.

Abgabe: Bis Freitag, 27. April 2018, 8 Uhr.

Aufgaben 1.1, 1.2 und 1.3 im Schließfach im Studierendenarbeitsraum im MI (Raum 3.01) einwerfen. Bitte Namen, Matrikelnummer sowie **Übungsgruppennummer** auf die Abgabe schreiben.