


## Einführung in die Mathematik des Operations Research

Sommersemester 2018

## — Aufgabenblatt 8 —

## Aufgabe 8.1

- a) Konstruieren Sie eine kompakte konvexe Menge  $C\subseteq\mathbb{R}^3$  und einen Punkt  $z\in C$  so, dass z ein Extrempunkt von C aber kein freiliegender Punkt von C ist. Dabei heißt z freiliegender Punkt von C, wenn es eine Stützhyperebene H von C gibt, so dass  $H\cap C=\{z\}$  gilt.
- b) Konstruieren Sie eine kompakte konvexe Menge  $C\subseteq\mathbb{R}^3$  so, dass ext C nicht abgeschlossen ist.

**Aufgabe 8.2** Es sei  $A \subseteq \mathbb{R}^n$  eine Menge. Zeigen Sie:  $x \in \text{conv}(A)$  ist genau dann ein Extrempunkt von conv(A), wenn  $x \in A$  und  $x \notin \text{conv}(A \setminus \{x\})$ .

**Aufgabe 8.3** Sei  $C \subseteq \mathbb{R}^n$  eine nichtleere, kompakte, konvexe Menge, und sei  $f: C \to \mathbb{R}$  eine konvexe Funktion. Zeigen Sie:

$$\max\{f(x): x \in C\} = \max\{f(x): x \in \text{ext } C\}.$$

**Aufgabe 8.4** (Präsenzaufgabe) Gegeben sei das Polyeder  $P = \{x \in \mathbb{R}^4 : Ax \leq b\}$  definiert durch

Bestimmen Sie alle Ecken von P.

Abgabe: Bis Freitag, 22. Juni 2018, 8 Uhr.