

Universität zu Köln Mathematisches Institut Prof. Dr. F. Vallentin Dr. A. Gundert Dr. F. von Heymann

Convex Optimization

Winter Term 2018/19

— Exercise Sheet 1 —

Exercise 1.1. Let $X \subseteq \mathbb{R}^n$. Prove: For every $c \in \text{cone}(X)$ there are linearly independent vectors $x_1, \ldots, x_k \in X$ such that $c \in \text{cone}\{x_1, \ldots, x_k\}$.

Exercise 1.2. Let \mathcal{L}^{n+1} be the Lorentz cone

$$\mathcal{L}^{n+1} = \{ (x,t) \in \mathbb{R}^{n+1} : ||x|| \le t \}.$$

Show that $(\mathcal{L}^{n+1})^* = \mathcal{L}^{n+1}$.

Exercise 1.3. (Hand-in) Show: The set of non-negative polynomials of degree at most 2d

$$\{(a_0, a_1, \dots, a_{2d}) \in \mathbb{R}^{2d+1} : a_0 + a_1 x + \dots + a_{2d} x^{2d} \ge 0 \text{ for all } x \in \mathbb{R}\}$$

is a proper convex cone for any $d \ge 0$.

Exercise 1.4. (Hand-in) Recall that a complex square matrix $A \in \mathbb{C}^{n \times n}$ is *Hermitian* (or selfadjoint) if $A = A^*$, i.e., $A_{ij} = \overline{A}_{ji}$ for all entries of A. The Hermitian matrices form a real vector space (of dimension n^2), with the Frobenius inner product $\langle A, B \rangle = \sum_{ij} \overline{A}_{ij} B_{ij} = Tr(A^*B)$.

A Hermitian matrix $M \in \mathbb{C}^{n \times n}$ is positive semidefinite if $z^*Mz \ge 0$ for all $z \in \mathbb{C}^n$, or equivalently if all eigenvalues of M are non-negative.

Consider the set \mathcal{H}^n_+ of positive semidefinite complex $n \times n$ -matrices as a subset of the Hermitian matrices . Show:

- (a) \mathcal{H}^n_+ is a self-dual proper convex cone for any $n \ge 1$.
- (b) \mathcal{H}^2_+ is isometric to \mathcal{L}^{3+1} .

Hand-in: Until Wednesday October 17, 12:00 (noon).

Exercises 1.3 and 1.4 to be submitted to the "Convex optimization" mailbox in room 3.01 (Studie-rendenarbeitsraum) of the Mathematical Institute.