

Universität zu Köln Mathematisches Institut Prof. Dr. F. Vallentin Dr. A. Gundert Dr. F. von Heymann

Convex Optimization

Winter Term 2018/19

— Exercise Sheet 3 —

Exercise 3.1. Consider the semidefinite optimization problem

maximize
$$X_{11} + X_{12}$$

subject to $2X_{11} + X_{22} = 1$,
 $\begin{pmatrix} X_{11} & X_{12} \\ X_{12} & X_{22} \end{pmatrix} \succeq 0$

- (a) Draw the set of feasible solutions.
- (b) Determine the optimal solutions.
- (c) Determine the dual program and its optimal solutions.

Exercise 3.2. Markowitz Portfolio Optimization (Nobel-prize in Economics 1990): We consider a portfolio problem with n assets or stocks a_1, \ldots, a_n , which can be held over a fixed

period of time, and a fixed budget B. Consider the relative price change p_i of each asset, i.e., its change in price over the period divided by its price at the beginning, as a random variable. Suppose we know each mean $c_i = \mathbb{E}[p_i]$ and

by its price at the beginning, as a random variable. Suppose we know each mean $c_i = \mathbb{E}[p_i]$ and the covariance $C \in S^n$ with $C_{ij} = \mathbb{E}[(p_i - c_i)(p_j - c_j)]$. A vector $x \in \mathbb{R}^n_+$ with $\sum_{i=1}^n x_i = B$ is called a portfolio, where we invest x_i in a_i , for every $i \in [n]$.

The goal is to find a portfolio that maximizes the expected return $c^{\mathsf{T}}x$ with control over the risk, which is associated with the variance $\operatorname{Var}(p^{\mathsf{T}}x) = x^{\mathsf{T}}Cx$.

- (a) Formulate this problem as a conic program, e.g., by maximizing $c^{\mathsf{T}}x \gamma \sqrt{\operatorname{Var}(p^{\mathsf{T}}x)}$, with a fixed risk-aversion parameter $\gamma \geq 0$, and using a cone of the form $\mathcal{L}^{k+1} \times \mathbb{R}^m_+$.
- (b) Determine the dual program.

Exercise 3.3. (Hand-in) Show:

- (a) $C\mathcal{P}_n = \operatorname{cone}\{xx^{\mathsf{T}} : x \in \mathbb{R}^n_+\}$ is a proper convex cone.
- (b) $(\mathcal{CP}_n)^* = \mathcal{COP}_n$, where $\mathcal{COP}_n = \{X \in S^n : x^T X x \ge 0 \text{ for all } x \in \mathbb{R}^n_+\}$ is the cone of copositive matrices.

Exercise 3.4. (Hand-in) Let G = (V, E) be a graph. The *independence number* $\alpha(G)$ of the graph is the maximal cardinality of a set $S \subseteq V$ such that $\{i, j\} \notin E$ for any $i, j \in S$. Show that $\alpha(G)$ equals the optimal value of the following conic program:

maximize
$$\langle J, A \rangle$$

subject to $A \in C\mathcal{P}_n$,
 $\langle I, A \rangle = 1$,
 $A_{ij} = 0$ if $\{i, j\} \in E$

Hand-in: Until Wednesday October 31, 12:00 (noon). Exercises 3.3 and 3.4 to be submitted to the "Convex optimization" mailbox in room 3.01 (Studie-rendenarbeitsraum) of the Mathematical Institute.