

Universität zu Köln Mathematisches Institut Prof. Dr. F. Vallentin Dr. A. Gundert Dr. F. von Heymann

Convex Optimization

Winter Term 2018/19

— Exercise Sheet 4 —

Exercise 4.1. Let $K \subseteq \mathbb{R}^n$ be a proper convex cone, and let $A \in \mathbb{R}^{m \times n}$ and $c \in \mathbb{R}^n$. Show: Exactly one of the following two alternatives holds:

- (i) There is an $x \in K$ such that Ax = 0 and $c^{\mathsf{T}}x > 0$.
- (ii) The system $A^{\mathsf{T}}y c \in K^*$ is weakly feasible.

Exercise 4.2. Consider the following semidefinite program, which involves inequalities:

$$p^* = \sup\{\langle C, X \rangle : \langle A_j, X \rangle \le b_j \text{ for } j = 1, \dots, m, X \succeq 0\}.$$

- (a) Bring this program in standard primal form and write its dual conic program.
- (b) Read the proof of Theorem 4.4 and discuss why the following is true: Suppose $p^* < \infty$ and there is a matrix $X \in S_{++}^n$ with $\langle A_j, X \rangle \leq b_j$ for j = 1, ..., m. Then the dual program attains the infimum and the duality gap is zero.

Exercise 4.3. (Hand-in) Let $K \subseteq \mathbb{R}^n$ be a proper convex cone, and let $A \in \mathbb{R}^{m \times n}$ and $c \in \mathbb{R}^n$. Show: Exactly one of the following two alternatives holds:

- (i) There is an $x \in K \setminus \{0\}$ such that Ax = 0 and $c^{\mathsf{T}}x \ge 0$.
- (ii) There is a $y \in \mathbb{R}^m$ such that $A^{\mathsf{T}}y c \in \operatorname{int} K^*$.

Exercise 4.4. (Hand-in) What is the exact value of the minimal maximal eigenvalue of the following matrix $X \in S^5$

/ 1	X_{12}	1	X_{14}	X_{15}	
X_{12}	1	1	X_{24}	X_{25}	
1	1	1	X_{34}	1	?
X_{14}	X_{24}	X_{34}	1	1	
X_{15}	X_{25}	1	1	1 /	

Hint: You can use a numerical SDP solver to "guess" the solution.

Hand-in: Until Wednesday November 7, 12:00 (noon).

Exercises 4.3 and 4.4 to be submitted to the "Convex optimization" mailbox in room 3.01 (Studie-rendenarbeitsraum) of the Mathematical Institute.

Online SDP Solver

NEOS solvers (search for: neos sdp csdp)

Example for an input in *sparse SDPA* format:

Input:	Explanation:			
2 2 2 2 10.0 20.0	m = 2 (number of conditions) The cone is $S_{+}^{k_1} \times S_{+}^{k_2}$ (two psd-cones) $k_1 = 2$ and $k_2 = 2$ $b = (10, 20)^{T}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$			
1 1 1 1 1.0 1 1 2 2 1.0	$A_1 = \left[\begin{array}{c} 1 \\ 1 \\ \end{array} \right]$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$A_2 = \begin{bmatrix} 1 \\ 5 & 2 \\ 2 & 6 \end{bmatrix}$			

(The empty lines in the input are for readability only)