

Universität zu Köln Mathematisches Institut Prof. Dr. F. Vallentin Dr. A. Gundert Dr. F. von Heymann

Convex Optimization

Winter Term 2018/19

— Exercise Sheet 6 —

Exercise 6.1. Let $X \in \{\pm 1\}^{n \times n}$ be a symmetric matrix whose entries are 1 or -1. Show that X is positive semidefinite if and only if $X = xx^{\mathsf{T}}$ for some $x \in \{\pm 1\}^n$.

Exercise 6.2. Let G = (V, E) be a graph and $w \in \mathbb{R}^{E}_{+}$ a nonnegative weight function on the edges of *G*. Show:

$$\operatorname{sdp}(G, w) \le \sum_{\{i,j\} \in E} w_{ij}.$$

What does this imply for bipartite graphs?

Exercise 6.3. (Hand-in)

(a) Let G = (V, E) be a graph with |V| = n and non-negative weights $w \in \mathbb{R}^{|E|}_+$. Show:

$$mc(G, w) = \max \sum_{\{i,j\} \in E} w_{ij} \frac{\arccos(v_i^{\mathsf{T}} v_j)}{\pi}$$
$$v_1, \dots, v_n \in \mathbb{R}^n$$
$$\|v_i\| = 1 \text{ for all } i \in [n]$$

(b) Show: For unit-vectors v_1, \ldots, v_7 we have:

$$\sum_{1 \le i < j \le 7} \arccos(v_i^{\mathsf{T}} v_j) \le 12\pi.$$

Exercise 6.4. (Hand-in)

- (a) Use a computer to solve sdp(P, 1) for the Peterson graph P (see figure), then use your result to determine mc(P, 1). Here 1 denotes the constant weight function with $w_i = 1$, for $i \in V$.
- (b) Let $C_n = (V_n, E_n)$ be the cycle graph with *n* vertices, defined by

$$V_n = \{1, \dots, n\}$$
 and $E_n = \{\{1, 2\}, \{2, 3\}, \dots, \{n-1, n\}, \{n, 1\}\}.$

Compute
$$sdp(C_n, 1)$$
 for $n = 2k + 1$ and $k \in \{1, 2, 3, 4\}$.

Hand-in: Until Wednesday November 21, 12:00 (noon). Exercises 6.3 and 6.4 to be submitted to the "Convex optimization" mailbox in room 3.01 (Studie-rendenarbeitsraum) of the Mathematical Institute.

