

Universität zu Köln Mathematisches Institut Prof. Dr. F. Vallentin Dr. A. Gundert Dr. F. von Heymann

Convex Optimization

Winter Term 2018/19

— Exercise Sheet 8 —

Exercise 8.1. Determine the Shannon capacity of all graphs having four vertices.

Exercise 8.2. Show that $\vartheta(C_5) \leq \sqrt{5}$, using the formulation of Exercise 8.4 for the theta number. *Hint:* Consider the following vectors in \mathbb{R}^3 : c = (0, 0, 1), $u_k = (s \cos(2k\pi/5), s \sin(2k\pi/5), t)$ for k = 1, 2, 3, 4, 5, where the scalars $s, t \in \mathbb{R}$ are chosen in such a way that u_1, \ldots, u_5 form an orthonormal representation of C_5 . Recall $\cos(2\pi/5) = \frac{\sqrt{5}-1}{4}$.

This is the original proof of Lovász, known as the umbrella construction.

Exercise 8.3. (Hand-in) Let G = (V, E) be a graph.

- (a) Show: $\vartheta(G) = \min\{\lambda_{\max}(Z) : Z \in \mathcal{S}^V, Z = J + T, T_{i,j} = 0 \text{ if } \{i, j\} \notin E\}.$
- (b) Assume that G is *regular*, i.e. e is an eigenvector of the adjacency matrix A_G of G. Show:

$$\vartheta(G) \le |V| \frac{-\lambda_{\min}}{\lambda_{\max} - \lambda_{\min}}$$

where λ_{\min} is the smallest and λ_{\max} is the largest eigenvalue of A_G .

Exercise 8.4. (Hand-in) Let G = (V = [n], E) be a graph. Consider the graph parameter

$$\vartheta_1(G) = \min_{c,u_i} \max_{i \in V} \frac{1}{(c^\top u_i)^2},$$

where the minimum is taken over all unit vectors c and all orthonormal representations u_1, \dots, u_n of G (i.e., u_1, \dots, u_n are unit vectors satisfying $u_i^{\top} u_j = 0$ for all pairs $\{i, j\} \in \overline{E}$). Show: $\vartheta(G) = \vartheta_1(G)$.

Hint: Use the dual formulation of $\vartheta(G)$. For the inequality $\vartheta(G) \leq \vartheta_1(G)$, consider the vectors $v_i = c - \frac{u_i}{c^+ u_i}$ for $i \in [n]$. For the inequality $\vartheta_1(G) \leq \vartheta(G)$, show that there exists a nonzero vector c which is orthogonal to suitable vectors x_1, \ldots, x_n , and consider the vectors $u_i = \frac{c+x_i}{\sqrt{t}}$.

Hand-in: Until Wednesday December 5, 12:00 (noon).

Exercises 8.3 and 8.4 to be submitted to the "Convex optimization" mailbox in room 3.01 (Studie-rendenarbeitsraum) of the Mathematical Institute.