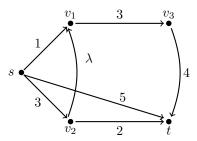


Einführung in die Mathematik des Operations Research

Sommersemester 2019

— Aufgabenblatt 2 —


Aufgabe 2.1 Gegeben sei ein Rucksack mit 3ℓ Fassungsvermögen. Finden Sie mit Hilfe des Algorithmus von Bellman-Ford eine nutzenmaximale Auswahl der folgenden Gegenstände, so dass sie in den Rucksack passt.

Gegenstand	Volumen	Nutzen
Schlafsack	2ℓ	4
Taschenmesser	$0,5\ell$	3
Kekse	$1,5\ell$	5
Thermoskanne	$1,5\ell$	6
Isomatte	2ℓ	3

Aufgabe 2.2

- a) Zeigen Sie für allgemeine gerichtete Graphen D=(V,A): Falls c ganzzahlig ist (das heißt $c:A\to\mathbb{Z}_{>0}$), dann gibt es einen ganzzahligen optimalen s-t-Fluss f mit $f\le c$.
- b) Es sei D=(V,A) ein gerichteter Graph und $s,t\in V$. Zeigen Sie: Die maximale Anzahl von kantendisjunkten Wegen von s nach t in D ist gleich der Kardinalität eines minimalen s-t-Schnittes $\delta^{\mathrm{out}}(U)$ in D, wobei $U\subseteq V$ mit $s\in U$ und $t\in V\setminus U$.

Aufgabe 2.3 (Präsenzaufgabe) Im folgenden Graphen ist die Kapazität der Kante (v_2, v_1) durch einen Parameter $\lambda \in \mathbb{R}_{\geq 0}$ gegeben. Wenden Sie den Algorithmus von Ford und Fulkerson in Abhängigkeit von λ an. Geben Sie jeweils einen maximalen s-t-Fluss an.

