

Einführung in die Mathematik des Operations Research

Sommersemester 2019

— Aufgabenblatt 7 —

Aufgabe 7.1

- a) Gegeben seien die Funktionen $f: \mathbb{R} \to \mathbb{R}$ konvex und monoton wachsend und $g: \mathbb{R}^n \to \mathbb{R}$ konvex. Zeigen Sie, dass die Verknüpfung $f \circ g$ konvex ist.
- b) Sei $C \subseteq \mathbb{R}^n$ kompakt und konvex, $C \neq \emptyset$, und sei $h : \mathbb{R}^n \to \mathbb{R}$ definiert durch $h(x) = e^{\|x\|}$. Zeigen Sie, dass es dann ein $z \in \text{ext}(C)$ gibt, so dass $h(z) \geq h(x)$ für alle $x \in C$ gilt.

Aufgabe 7.2 Gegeben sei ein Polyeder

Zeigen Sie, dass P ein Polytop ist und bestimmen Sie eine Matrix A und einen Vektor b so, dass $P^{\circ} = \{x \in \mathbb{R}^3 : Ax \leq b\}$ gilt.

Aufgabe 7.3 (Präsenzaufgabe) Beweisen Sie Korollar 2.3 der Vorlesung:

Seien $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ gegeben. Dann gilt

$$\exists x \in \mathbb{R}^n : Ax < b \Leftrightarrow \nexists y > 0 : y^T A = 0, y^T b < 0.$$

Abgabe: Bis Freitag, 24. Mai 2019, 8 Uhr.