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Kurzfassung

Die vorliegende Arbeit ist der Beginn einer Verallgemeinerung von Resultaten über spezi-
fische Überdeckungen, wie etwa Überdeckungen des euklidischen Raumes oder Überdeck-
ungen der Sphäre, zu einer Theorie auf kompakten metrischen Räumen. Insbesondere be-
trachtet man Überdeckungen eines kompakten metrischen Raumes (X, d) durch Kugeln mit
Radius r. Das Augenmerk liegt hierbei auf der minimalen Anzahl solcher Kugeln, welche
benötigt wird um X zu überdecken. Wir bezeichnen diese Anzahl mitN(X, r). Für endliche
Räume X entspricht dieses Problem einer Instanz des kombinatorischen set cover Prob-
lems, welches NP-vollständig ist. Wir beschreiben Approximationstechniken, basierend
auf der Momentenmethode von Lasserre für endliche Graphen und verallgemeinern diese
Techniken auf kompakte metrische Räume um untere und obere Schranken zu erhalten.
Die oberen Schranken in dieser Arbeit folgen aus der Anwendung eines Greedy-Algorithmus
auf den Raum X. Die Approximationsgüte des Algorithmus erhalten wir durch eine Verall-
gemeinerung der Analyse von Chvátals Algorithmus für gewichtete set cover Probleme.
Wir wenden den genannten Greedy-Algorithmus auf den sphärischen Fall X = S n an und
erhalten die beste, nicht asymptotische Schranke von Böröczky und Wintsche. Weiterhin
kann der Algorithmus genutzt werden, um Überdeckungen des euklidischen Raumes durch
beliebige messbare Objekte mit nicht leerem Inneren zu bestimmen. Die Approximations-
güte dieser Überdeckungen stellt eine leichte Verbesserung der Schranken von Naszódi dar.
Um untere Schranken zu erhalten entwickeln wir eine Folge von SchrankenN t(X, r), welche
nach endlich vielen (bezeichnet mit α ∈ N) Schritten konvergiert:

N1(X, r) ≤ . . . ≤ Nα(X, r) = N(X, r).

Der Nachteil dieser Folge ist, dass die SchrankenN t(X, r) mit wachsendem t immer schwieriger
zu berechnen sind, da sie die Zielfunktionswerte unendlichdimensionaler konischer Pro-
gramme sind, deren Anzahl an Bedingungen und Dimension der Kegel mit t wachsen.
Wir zeigen, dass diese Programme die Bedingung der starken Dualität erfüllen und leiten
ein endlichdimensionales semidefinites Programm ab, welches darauf abzielt N2(S 2, r) in
beliebiger Präzision zu approximieren. Unsere Ergebnisse basieren teilweise auf der Mo-
mentenmethode von de Laat und Vallentin für das Packungsproblem auf topologischen
Packungsgraphen. Jedoch müssen wir uns im Überdeckungsproblem um zwei Arten von
Bedingungen kümmern anstatt nur einer Art wie im Packungsproblem. Dies benötigt zusät-
zlichen Aufwand.
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Abstract

The present thesis is a commencement of a generalization of covering results in specific
settings, such as the Euclidean space or the sphere, to arbitrary compact metric spaces. In
particular we consider coverings of compact metric spaces (X, d) by balls of radius r. We
are interested in the minimum number of such balls needed to cover X, denoted byN(X, r).
For finite X this problem coincides with an instance of the combinatorial set cover prob-
lem, which is NP-complete. We illustrate approximation techniques based on the moment
method of Lasserre for finite graphs and generalize these techniques to compact metric
spaces X to obtain upper and lower bounds for N(X, r).
The upper bounds in this thesis follow from the application of a greedy algorithm on the
space X. Its approximation quality is obtained by a generalization of the analysis of Chvá-
tal’s algorithm for the weighted case of set cover. We apply this greedy algorithm to
the spherical case X = S n and retrieve the best non-asymptotic bound of Böröczky and
Wintsche. Additionally, the algorithm can be used to determine coverings of Euclidean
space with arbitrary measurable objects having non-empty interior. The quality of these
coverings slightly improves a bound of Naszódi.
For the lower bounds we develop a sequence of boundsN t(X, r) that converge after finitely
(say α ∈ N) many steps:

N1(X, r) ≤ . . . ≤ Nα(X, r) = N(X, r).

The drawback of this sequence is that the boundsN t(X, r) are increasingly difficult to com-
pute, since they are the objective values of infinite-dimensional conic programs whose
number of constraints and dimension of underlying cones grow accordingly to t. We show
that these programs satisfy strong duality and derive a finite dimensional semidefinite pro-
gram aiming to approximateN2(S 2, r) to arbitrary precision. Our results rely in part on the
moment methods developed by de Laat and Vallentin for the packing problem on topolog-
ical packing graphs. However, in the covering problem we have to deal with two types of
constraints instead of one type as in packing problems and consequently additional work is
required.
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Chapter One

Introduction

1.1 A brief history of geometric coverings

Sometimes nature gives us a stunning intuition about elegant structures and arrangements.
One famous example of such a structure, inspiring mathematicians working in extremal
geometry, is the honeycomb arrangement. This arrangement provides two optimal config-
urations at once.
If we consider the incircle of each honeycomb, or hexagon, then this yields the densest pos-
sible arrangement of non-intersecting circles in the plane, essentially a result of the Nor-
wegian mathematician Axel Thue [79] (see [31] for more details). The three-dimensional
sphere packing problem became famous as the "Kepler conjecture" stated by Johannes Ke-
pler in 1611. It was finally proved by Thomas C. Hales and Samuel P. Ferguson in 1996 in
one of the first proofs of a major result for which computational optimization was used.

Figure 1.1: Two- and three-dimensional optimal packings.

For the purpose of this thesis, the most interesting arrangement stemming from honey-
combs is provided by considering the circumcircles of each hexagon.

1



2 Introduction Chapter 1

Figure 1.2: Thinnest covering of Euclidean space

These circumcircles cover the whole plane in a thinnest possible way, which was "well
known" to Kershner before 1939 but he still quantified the statement and gave a proof in a
classical paper [51]. The quantified statement reads as follows:

Theorem 1.1.1. Let M denote a bounded set in the plane and let N(ε) be the minimum
number of circles of radius ε which covers M. Then

lim
ε→0

πε2N(ε) =
2π
√

3
9

λ(M̄),

where M̄ denotes the closure of M and λ the standard Lebesgues measure.

Here Kershner distinguished between M and its closure M̄ because this setting ensures
the existence of a finite N(ε) via the Heine-Borel theorem. The number N(ε) in Theorem
1.1.1 can be seen as a first definition of the central object studied in this thesis, the covering
number. We generalize the definition used by Kershner and define for a compact metric
space (X, d) and its corresponding closed balls B(y, r) = {x ∈ X : d(x, y) ≤ r} the covering
number by:

N(X, r) = inf
Y⊆X

|Y | : ⋃
y∈Y

B(y, r) = X

 .
Furthermore, if the space (X, d) is equipped with a translation-invariant Borel measure µ,
such as the Lebesgues measure in Euclidean space, the measure µ(B(y, r)) of a ball B(y, r) ⊆
X does not depend on the location y of the ball. The number

∆(X) B N(X, r) ·
µ(B(y, r))
µ(X)
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is called the covering density of X.
In the remainder of this thesis we will study approaches to approximate the covering num-
ber for a selection of different metric spaces. For the non-compact space Rn, we consider
a compact Euclidean ball B(p, s) ⊆ Rn and a covering Y of Euclidean balls B(y, r), i.e.,⋃
y∈Y B(y, r) = Rn. Let Y ′ ⊆ Y denote the balls satisfying B(y, r) ⊆ B(p, s). Then we say

that Y has a lower covering density of

inf
p∈Rn

lim inf
s→∞

∑
y∈Y ′ λ(B(y, r))
λ(B(p, s))

.

Furthermore, if for Y and its corresponding subset Y ′ the limit

inf
p∈Rn

lim
s→∞

∑
y∈Y ′ λ(B(y, r))
λ(B(p, s))

= lim inf
s→∞

∑
y∈Y ′ λ(B(y, r))
λ(B(p, s))

exists, we call this limit the covering density of Y .
It is due to Groemer [38] that the above limit does not depend on the location p of the
ball and moreover for a minimal covering Y we can replace B(p, s) by any compact subset
sM ⊆ Rn with positive measure. In such a case the minimal covering density of Rn

∆(Rn) B inf
Y⊆Rn, Y covering

lim
s→∞

∑
y∈Y ′ λ(B(y, r))
λ(sM)

is attained at Y and it is independent of M. Furthermore, since Y ′ forms a covering of
(s − r)M for large s, we have N((s − r)M, r) ≤ |Y ′| and consequently the limit reads

∆(Rn) = lim
s→∞

N(sM, r) · λ(B(y, r))
λ(sM)

,

which is again similar as in Kershner’s theorem for the plane.
The research on coverings continued by considering compact domains in higher dimen-
sional Euclidean spaces, but finding provably optimal arrangements turned out to be ex-
tremely difficult. In fact, even until now no arrangement is known to be optimal for
Euclidean space of any dimension other than 2. In the following, the next results were
achieved for a special class of covering arrangements, the arrangements formed by a lattice
L. These arrangements are formed by a corresponding set Y = L, which is spanned by
linearly independent vectors v1, . . . , vk:

L =

 k∑
i=1

aivi : ai ∈ Z

 .
The honeycomb arrangement is again a prime example, where the set L describing the
centers of each incircle and circumcircle is denoted by (see also Figure 1.2)

L =

{
a1

(
1
0

)
+ a2

( 1
2

1
2

√
3

)
: ai ∈ Z

}
.

By restricting to lattice coverings, i.e., lattices L ⊆ Rn with the property
⋃
y∈L B(y, r) = Rn,

Bambah [7] considered the lattice covering density

∆Λ(Rn) B min
L⊆Rn: L lattice covering

lim
s→∞

∑
y∈L: B(y,r)⊆sM λ(B(y, r))

λ(sM)
,
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for any compact subset M ⊆ R3 and computed ∆Λ(R3) = 1.464.... The fact that the min-
imum among all the lattices is attained is a consequence of the Mahler selection theorem
(see, e.g., [42]). Further optimality results for lattice arrangements in Euclidean space of
dimension 4 (conjectured by Bambah, proven by Delone and Rys̆kov [25]) and dimension
5 (see Rys̆kov and Baranovskiĭ [72]) were obtained later. The lattices providing uniquely
optimal configurations for dimensions n = 2, . . . , 5 are the A∗n lattices, whereas the opti-
mum for the case n = 6 is not attained at A∗6. In general the lattice covering problem is still
open for the cases n ≥ 6. We refer to [15] for further details.
Due to the fact that ∆(Rn) ≤ ∆Λ(Rn), Bambah computed a possibly sharp upper bound for
the covering density of R3, and every thin (lattice) covering provides an upper bound on the
minimal covering density of Rn accordingly. For the covering density of Rn general upper
bounds have been proposed, as can be seen in Table 1.1.

bound author method
n ln n + n ln ln n + 5n + o(n) Rogers [66] probabilistic(

1
2 + o(1)

)
n ln n Dumer [29] prob. & asymptotic

n ln n + n ln ln n + n + o(n) Fejes-Tóth [30] probabilistic
n ln n + n ln ln n + n + o(n) Rolfes and Vallentin [70] deterministic

Table 1.1: Upper bounds for the covering density ∆(Rn), additional terms in o(n) are not
stated due to simplicity

In 1959, Coxeter, Few and Rogers [16] improved the trivial volume bound:

N(X, r) ≥
µ(X)

µ(B(y, r))
(1.1)

and invented a bound based on simplices in the Euclidean space. Their bound holds in
every dimension of Euclidean space, and in particular for R3 it yields a lower bound on
the covering density of 1.431... , which is very close to Bambah’s upper bound of 1.464...
. Additionally, the bound in dimension 4 is also close to the upper bound given by the
optimal lattice arrangement, and asymptotically we can state for the covering density of
Rn:

lim
r→0

N(M, r)λ(B(y, r))
λ(M)

≥
n

e
√

e
,

whenever n is sufficiently large.
Another direction of research in this area is to examine the covering number for compact
metric spaces, which will be the central objective of this thesis. A good starting point to
gain intuition is to investigate the upper and lower bounds for N(S n, r) on the unit sphere
equipped with Euclidean standard metric. In the next section we give an overview of pre-
vious results. At first, we consider upper bounds, and later, previous lower bounds for
N(S n, r).



Section 1.2 Upper and lower bounds on the sphere 5

1.2 Upper and lower bounds on the sphere
The spherical covering problem on S n can be considered as covering the compact met-
ric space (S n, d), where the metric d(x, y) B arccos(x · y) is the spherical distance. We
equip this space with the unique rotational invariant probability measure ω and consider
the problem

N(S n, r) = inf
Y⊆S n

|Y | : ⋃
y∈Y

B(y, r) = S n

 .
Four years after his work on lower bounds, Rogers [67] gave a first upper bound onN(S n, r)
for dimensions n ≥ 8 of

N(S n, r)ω(B(y, r)) ≤ n ln n + n ln ln n + n ln
1
r

+ o(n).

Starting in 2000 with the work of Böröczky and Wintsche [11], the upper bounds were fur-
ther improved significantly. For large values of n Dumer [29] provided new upper bounds.
A more general approach by Naszódi [60] led to better bounds in lower dimensions. The
current best bound for the non-asymptotic case is due to Rolfes and Vallentin [70] and will
be content of Section 4.3.1. We give an overview of these improvements in Table 1.2 below.

bound author method restrictions
n ln n + n ln ln n + n ln 1

r + o(n) Rogers [67] probabilistic n ≥ 8
n ln n + n ln ln n + 2n + o(n) Böröczky and Wintsche [11] probabilistic none(

1
2 + o(1)

)
n ln n Dumer [29] probabilistic n→ ∞

n ln n + n ln ln n + 2n + o(n) Naszódi [60] deterministic none
n ln n + n ln ln n + n + o(n) Rolfes and Vallentin [70] deterministic none

Table 1.2: Upper bounds for the covering density N(S n, r)ω(B(y, r)), additional terms in
o(n) are not stated due to simplicity

The recent developments of Naszódi as well as of Rolfes and Vallentin rely on a greedy
algorithm that iteratively chooses the balls covering the maximum measure of yet uncov-
ered space. This greedy algorithm has been analyzed in the finite setting of the set cover
problem, which is a fundamental problem in combinatorial optimization and content of
Section 3.1.2.
The weighted set cover problem is defined as follows: Fix a number of elements 1, . . . ,m.
Given a collection S 1, . . . , S n ⊆ {1, . . . ,m} and given costs c1, . . . , cn, the task is to find a
set of indices I ⊆ {1, . . . , n} such that

⋃
i∈I S i = {1, . . . ,m} and

∑
i∈I ci is as small as possi-

ble. For determining upper bounds, Chvátal [13] showed that the greedy algorithm gives
a (ln m + 1)-approximation for the set cover problem; previously Johnson [47], Stein [78]
and Lovász [57] proved similar results for the case of uniform costs c1 = . . . = cn = 1.
On the one hand Naszódi [60] applied the results of Lovász [57] on set cover directly after
choosing a finite ε-net. On the other hand Rolfes and Vallentin [70] transferred Chvátal’s
argument from the finite set cover setting to the infinite setting of compact metric spaces
such as the sphere and got slightly better constants. This result is part of Chapter 4, the
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application to Naszódi’s theory is illustrated in Section 4.3.3.

As mentioned in the last section, a trivial lower bound for the spherical covering problem
is the volume bound, i.e.,

1
ω(B(y, r))

≤ N(S n, r).

In Example 6.3 of [11], Böröczky and Wintsche give an adjusted version of the Coxeter-
Few-Rogers bound [16] for Euclidean space based on spherical simplices, stating that for
sufficiently small radii r we can bound the covering number from below by

c · n
ω(B(y, r))

≤ N(S n, r),

where c > 0 is an absolute constant. These bounds are the best bounds known so far except
for the special case of the two-dimensional sphere S 2. In this particular case Fejes-Tóth
gave a lower bound in his classical book [31] based on spherical simplices. After a few
elementary calculations, it states

2 arccot
(√

3(1 − 2ωr)
)

arccot
(√

3(1 − 2ωr)
)
− π

6

≤ N(S 2, r).

On the other hand, Sloane published a number of "putatively optimal" coverings on his
webpage [76] (see also Table 5.1), computed along with Hardin and Smith. We illustrate
these upper and lower bounds for different angles ϕ = arccos r in the following plot:

Figure 1.3: Comparison upper vs. lower bounds for S 2
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For angles < 11.588... degrees, Hardin, Sloane and Smith don’t provide further configura-
tions, due to the limits of computational power. To extend, generalize, and improve these
bounds was the starting point for the present thesis.
The covering number occurs in several, sometimes unexpected fields. In the next section
we give a handful of examples – without any claim to be exhaustive.

1.3 Related problems and applications

Although it originated from the special case of covering the Euclidean space as illustrated
in Section 1.1, determining the covering number is a fundamental problem in metric ge-
ometry (see for example the classical book [68] of Rogers). After giving a brief overview
of other covering problems, this section is devoted to direct applications of the covering
number.
Besides the spherical and Euclidean cases, another well investigated problem is the cover-
ing number for the n-dimensional unit ball N(B(0, 1), r). In his already mentioned work
[67], Rogers also considered this problem and gave upper bounds forN(B(0, 1), r). Verger-
Gaugry improved these bounds for r > ln n

n and Dumer [29] provided asymptotic upper
bounds.
For a compact and convex body K ⊆ Rn, a similar covering number is part of active re-
search in the context of the famous Levi-Hadwiger problem:

Can a compact and convex body K ⊆ Rn be covered by at most 2n homothetic smaller
copies of itself?

For n = 2 Levi [56] gave a positive answer. It is conjectured that the n-dimensional
hypercube is the only convex body for which exactly 2n smaller copies are needed. In
recent papers, Artstein-Avidan and Raz [4] and Artstein-Avidan and Slomka [5] observed
the strong relation between geometric coverings and set cover. They used the results of
Lovász [57] to prove new results on geometric coverings, in particular to retrieve upper
bounds for the Levi-Hadwiger problem: If K is centrally symmetric, it can be covered by
at most 2n(n ln n + n ln ln n + 5n) smaller copies of itself.
A remarkable fact is that the considered problems have one commonality: We always fix
the size of the balls B(y, r) to cover a fixed metric space (X, d) and minimize the number
N of these balls needed to cover X. Another very active field of research asks for the fol-
lowing: If we fix a configuration of N points YN = {y1, . . . , yN } ⊆ X, what is the minimal
radius of the balls B(yi, r) needed to cover X, i.e.,

ρ(YN , X) = min
r∈R

r :
N⋃

i=1

B(yi, r) ⊇ X

 = max
x∈X

min
i∈[N]

d(yi, x)?

The number ρ(YN , X) is often referred to as covering radius or mesh norm. This is one of
the few situations in which there are results known that hold for arbitrary compact metric
spaces. In particular, Frostman (see [58], Theorem 8.17) showed for any compact metric
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space (X, d) equipped with a finite n-dimensional Haussdorf measure, that there exists a
positive constant C such that for every YN ⊆ X we obtain a lower bound of

ρ(YN , X) ≥
C

N
1
n

, if N ≥ 1.

However, the case drawing the most interest is when the points in YN are distributed ran-
domly on X. For X = S n equipped with the usual spherical distance and YN distributed
with respect to the surface measure, Reznikov and Saff [64] showed

lim
N→∞

E ρ(YN , S n)
(
N

lnN

) 1
n

=

2√πΓ
(

n+2
2

)
Γ
(

n+1
2

) 
1
n

.

This result can be compared to our results in Chapter 4, where we fix the radius ρ and
approximate the corresponding covering number N , instead of fixing the number N and
approximate ρ. In particular, if one hasN = N(X, r) for every radius r, then one can derive
the minimal covering radius minYN ρ(YN , X) over all configurations with fixed size N and
vice versa.

The covering problem has many applications in various fields: compressive sensing [34],
approximation theory and machine learning [17] — to name a few. Besides of these areas,
there are applications in probability theory and quantum computing on which we elaborate
in the next paragraphs.
In probability theory the logarithm of the covering number of metric spaces was defined by
Kolmogorov in the 1960s as metric entropy and has several applications in this field as can
be seen, e.g., in the book of M. Ledoux and M. Talagrand [55]. A very fruitful application
arises from the analysis of the regularity properties of Gaussian processes with the help of
the covering number. We follow [55] to elaborate on it.
We recall a couple of basic facts first. A Gaussian random variable G′ is a real valued
random variable in L2(Ω,A, P), where Ω is called the ground set, A ⊆ P(Ω) is a sigma-
algebra and P is a probability measure on Ω stemming from a normal distribution. We will
focus on centered Gaussian variables, where

E(G′) =

∫
Ω

G′(ω)dP(ω) = 0.

We define a Gaussian process G = (Gt)t∈T , indexed by a set T as a collection of random
variables Gt, t ∈ T , where every finite linear combination

∑
i αiGti , αi ∈ R, ti ∈ T is a

centered Gaussian variable. Such a Gaussian process induces a pseudometric dG(s, t) B
‖Gt −Gs‖2 on T . The relation between such Gaussian processes and the covering number
is on the one hand pointed out by the Sudakov minoration theorem:

Theorem 1.3.1 (Sudakov). Let G = (Gt)t∈T be a Gaussian process inducing a pseudometric
dG on T . Then there exists a constant K > 0 such that

r (lnN(T, r))
1
2 ≤ K sup{ E sup

t∈F
Gt : F is finite in T } for every r > 0.
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Since the results in this thesis apply to metric spaces in contrast to pseudometric spaces
(T, dG), we recall the fact that the corresponding quotient space T /∼, where s ∼ t if
dG(s, t) = 0, is a metric space equipped with metric d(π(s), π(t)) = dG(s, t) and π : T →
T /∼ denotes the canonical quotient map. Additionally, the covering numbers N(T, r) and
N(T /∼, r) coincide, implying that any lower bound for N(T /∼, r) provides a lower bound
applicable to Sudakov’s Theorem. On the other hand, there exists a theorem of Dudley to
bound a Gaussian process G from above:

Theorem 1.3.2. Let G = (Gt)t∈T be a centered Gaussian process inducing a pseudometric
dG on T . Then

E sup
t∈T

Gt ≤ 24
∫ ∞

0
(lnN(T, r))

1
2 dr.

It is worth noting that the results in the upcoming Chapter 4 on N(X, r) for a compact
metric space X will provide explicit upper bounds for E supt∈T Gt.

In quantum computing a major question is how one can approximate an arbitrary single
qubit gate to an accuracy ε with a fixed finite set of quantum gates. The gates in this model
are represented by unitary matrices U lying in the compact metric space (SU(2),D), where
SU(2) denotes the special unitary group of degree 2, a compact group consisting of all 2×2
unitary matrices with determinant 1. The trace distance D is defined by

D(U,V) B Tr
( √

(U − V)H(U − V)
)

the trace of the positive square root of the product of (U−V) and its adjoint matrix (U−V)H .
The following definition helps us to quantify the posed question:
For ε > 0 we define an ε-net of SU(2) as a subset W ⊆ SU(2) such that, for every matrix
U ∈ SU(2) there is a matrix V ∈ W such that D(V,U) < ε holds.
The covering numberN(SU(2), ε) thus provides the minimal amount of gates needed in an
ε-net. In particular, N(SU(2), ε) provides a lower bound on the size of the set Gl used in
the following Solovay-Kitaev theorem.

Theorem 1.3.3 (Solovay-Kitaev, [61]). Let G ⊆ SU(2) be a finite set of gates and

〈G〉 = {U ∈ SU(2) : ∃ m ∈ N,G1, . . . ,Gm ∈ G : U = G1 . . .Gm}

is dense in SU(2), i.e., for every U ∈ SU(2) and δ > 0 there exists a V ∈ 〈G〉: D(U,V) < δ.
Then, if we fix ε > 0,

Gl = {U ∈ SU(2) : ∃ k < l,G1, . . . ,Gk ∈ G : U = G1 · · · · ·Gk}

forms an ε-net of SU(2) with l = O
(
logc

(
1
ε

))
, where c is a small constant, approximately

equal to 2.

We observe that N(SU(2), ε) ≤ |Gl|. For more details on the Solovay-Kitaev theorem
we refer to the book [61] of Nielsen and Chuang.
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1.4 Outline of the thesis

In this thesis we approach the covering problem as follows: First, we construct coverings
of X to obtain upper bounds for the covering numberN(X, r), and second, we obtain lower
bounds using semidefinite programming techniques. To guide the reader towards these
results, the thesis contains five chapters, including the present introductory chapter. In
Chapter 2 the basic mathematical techniques are explained which are used later in the
following Chapters 3 to 5. In Chapter 3 we demonstrate both approaches to the covering
problem, the construction of coverings and the semidefinite programming techniques, by
considering the classical combinatorial problem set cover. The construction part is already
published in [70] and will be described in Chapter 4, whereas the lower bounds are studied
in Chapter 5.

1.4.1 Chapter 2: Techniques

For the topics treated in Chapters 4 and especially 5 we provide an introduction to convex
optimization on general topological vector spaces. In particular, we focus on the duality of
signed Radon measures and continuous functions acting on a compact metric space X stem-
ming from the Riesz representation theorem. Additionally, we provide some background
on semidefinite programming and study under which conditions a semidefinite optimiza-
tion program is computable in polynomial time.
In Section 2.2 we investigate quotient spaces on X with respect to the group of isometries
Iso(X) acting on X and give examples, pointing out the relation to the geometric problems
we want to tackle. We further examine the topological properties of certain metric spaces
X and their corresponding function spaces C(X) in order to apply the theorem of Arzelà-
Ascoli to Iso(X). This enables us to extend the results in the upcoming Chapter 4 to a wider
field of applications.
In the last section we introduce the technique of symmetry reduction of semidefinite pro-
grams and sketch how the theorems of Peter-Weyl and Bochner apply to the geometric set-
ting. Symmetry reduction plays a major role to finally achieve computable lower bounds
for specific covering numbers.

1.4.2 Chapter 3: The Lasserre hierarchy on set cover

In Chapter 3 we study the set cover problem to illustrate the methods used in the remainder
of this thesis in the setting of simple graphs. The chapter is based on lecture notes by
Rothvoß [71], elaborated in a Bachelor’s thesis of Acisu [1], that demonstrate the power of
Lasserre’s [54] semidefinite programming hierarchy.
We recall that the classical combinatorial problem set cover addresses the task of covering
a set of elements {1, . . . ,m} with certain fixed subsets S 1, . . . , S n at minimal cost. To be
more precise: One picks subsets S i, indexed by I ⊆ {1, . . . , n}, with

⋃
i∈I S i = {1, . . . ,m}
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and
∑

i∈I ci is minimal. We can also formulate set cover as a 0/1-integer problem:

SC = min
n∑

i=1

cixi : (1.2)∑
i: k∈S i

xi ≥ 1 for every k ∈ [m],

xi ∈ {0, 1} for every i ∈ [n].

The integer program asks whether S i should be included in our covering (xi = 1) or not
(xi = 0) such that every k ∈ [m] is contained in at least one included set S i with xi = 1
and such that the costs are minimal. The set cover problem was among the first problems
for which NP-completeness was shown in 1972 [49], making it one of Karp’s famous 21
problems. Dinur and Steurer [27] even showed that for every ε > 0 it is NP-hard to find an
approximation to the set cover problem within a factor of (1 − ε) ln m.
On the positive side we have already stated in Section 1.2 that a simple greedy algorithm
results in a solid upper bound. We will give a slight variation of Chvátal’s [13] proof for
the following theorem to point out the strong relation between linear optimization and the
greedy algorithm.

Theorem 1.4.1. Let c be the cost of a cover J returned by the greedy algorithm. Then

c ≤ H(M) · SC

with H(M) being the harmonic series H(M) =
∑M

j=1
1
j ≤ ln M + 1 and M = maxi∈{1,...,n} |S i|

being the size of the largest subset S i.

Note that together with the results of Dinur and Steurer, Theorem 1.4.1 shows that the
greedy algorithm is optimal if P , NP. In the remainder of Chapter 3 we focus on the
Lasserre hierarchy to compute lower bounds for set cover and illustrate how the corre-
sponding semidefinite relaxations have been used by Chlamtác, Friggstad and Georgiou
[12] to improve the upper bound given by Theorem 1.4.1. For this reason we mainly follow
Rothvoß’ lecture notes [71] to give a full proof for

Theorem 1.4.2. For a fixed ε with 0 < ε < 1, one can find an approximation for set cover
with cost at most ((1 − ε) ln m + o(1)) · SC in time nO(mε).

The relation of set cover to geometric covering problems is rather direct, as a possible
approach to achieve further bounds for N(S n, r) would be to sample the underlying geo-
metric structure and work with the corresponding set cover problem. However, the results
presented in this thesis do not apply the approaches for set cover directly, but instead try to
generalize the methods used by Chvátal and Lasserre to geometric covering problems. The
intention behind this approach is to discretize only at the very end to be able to exploit the
problem structure. Hence, it is the main aim of this thesis to find analogues of Theorems
1.4.1 and 1.4.2 in the infinite setting.

1.4.3 Chapter 4: Covering compact metric spaces greedily
We consider the problem of finding upper bounds for the covering number of a compact
metric space (X, d) equipped with a probability measure ω; a Borel measure normalized by
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ω(X) = 1. We will assume that this probability measure behaves homogeneously on balls
and is non-degenerate, i.e., it satisfies the following two conditions:

(a) ω(B(x, s)) = ω(B(y, s)) for all x, y ∈ X, and for all s ≥ 0,

(b) ω(B(x, ε)) > 0 for all x ∈ X, and for all ε > 0.

By (a) the measure of a ball only depends on the radius s and not on the center x, so we
simply denote ω(B(x, s)) by ωs. The main result of [70] is as follows.

Theorem 1.4.3. Let (X, d) be a compact metric space with probability measure ω. Then
for every ε with r/2 > ε > 0 the covering number satisfies

1
ωr
≤ N(X, r) ≤

1
ωr−ε

(
ln

(
ωr−ε

ωε

)
+ 1

)
.

Our proof is based on a greedy approach to covering. We iteratively choose balls which
cover the maximum measure of yet uncovered space and prove that its running time does
not exceed 1

ωr−ε

(
ln

(
ωr−ε
ωε

)
+ 1

)
. An illustration how the greedy algorithm runs on the sphere

S 2 is given in Figure 1.4:

Figure 1.4: Illustration of the greedy algorithm for N(S 2, 0.9)

We further apply Theorem 1.4.3 to three concrete geometric situations and retrieve
some of the best known asymptotic results, unifying many results on sphere coverings. In
this context, by adding some further analysis, Theorem 1.4.3 yields

Corollary 1.4.4. The covering densityN(S n, r)· ωr
ω(S n) of the n-dimensional sphere by spher-

ical balls is at most (
1 +

1
ν − 1

)
(n ln νn + 1) for all ν > 1.

In particular, for ν = ln n, the covering density is at most

n ln n + n ln ln n + n + o(n).
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Since our setup also includes the compact torus X = Rn/Zn with which we can tessellate
the non-compact Euclidean space Rn, we obtain coverings for Rn with the same density. As
an example we reprove a bound of Fejes-Tóth [30].

Corollary 1.4.5. The covering density of the n-dimensional Euclidean space by congruent
balls is at most (

1 +
1

ν − 1

)
(n ln νn + 1) for all ν > 1.

In particular, for ν = ln n, the covering density is at most

n ln n + n ln ln n + n + o(n).

Moreover, by adding some further analysis, we were also able to slightly improve a
bound of Naszódi [60]:

Corollary 1.4.6. Let K ⊆ Rn be a bounded measurable set. Then there is a covering of Rn

by translated copies of K of density at most

inf
{

ω(K)
ω(K−δ/2)

(
ln

(
ω

(
K−δ/2

)
ω(B(0, δ/2))

)
+ 1

)
: δ > 0,K−δ , ∅

}
,

where K−δ = {x ∈ K : B(x, δ) ⊆ K} is the δ-inner parallel body of K.

1.4.4 Chapter 5: A Lasserre-type hierarchy for covering problems

The focus of Chapter 5 is to design a method to determine lower bounds for N(X, r), that
keeps the geometric structure of the compact metric space X instead of working with a
sample of X and its corresponding set cover problem. We ultimately want to compute
concrete lower bounds for the spherical covering number N(S n, r).
Recently, de Laat and Vallentin [23] used the following approach to successfully tackle the
related sphere packing problem: They defined a topological packing graph on a Hausdorff
topological space as a graph for which each finite clique is contained in an open clique,
i.e., in an open subset of the vertex set where every two vertices are adjacent. For these
graphs they developed a generalization of the Lasserre hierarchy for the corresponding
independent set problem, another prominent combinatorial optimization problem for finite
graphs.
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Our approach is similar to theirs, but since a
covering, in contrast to a packing, does not
automatically satisfy the Hausdorff property,
we need further analysis and therefore can
only treat the case of metric spaces or dis-
tance graphs instead of topological packing
graphs. It is not known whether our approach
can be generalized to topological spaces. In
the following we aim to restate the cover-
ing number as a conic optimization problem
using Dirac measures, define a generalized
Lasserre hierarchy for this problem and give
an overview of our results. Like in Section
1.1 we equip X with a metric d and thus de-
fine the corresponding covering number by Figure 1.5: Spherical caps on S 2

N(X, r) = min

|Y | : Y ⊆ X,
⋃
y∈Y

B(y, r) = X

 . (1.3)

For X = S n the balls B(y, ϕ) = {x ∈ S n : x · y ≥ cosϕ} are often referred to as spherical
caps (see Figure 1.5).

In contrast to the integer program (5.3) it is not clear how to define a suitable objective
function on the space of functions V → R or RV whenever V is uncountable. A fact already
observed by de Laat and Vallentin (see [23]). Instead we consider measures µ to define a
program similar to (5.3). In particular we can reformulate N(X, r) as

N(X, r) = min

µ(X) : µ =
∑
y∈Y

δy, µ(B(γx, r)) ≥ 1 for all γ ∈ Γ

 , (1.4)

where Γ ⊆ Iso(X) denotes a transitive group action and δy is the Dirac measure defined by

δy(A) =

1 if y ∈ A,
0 otherwise.

In particular the finite sums of Dirac measures have the property that they lie in the cone
M(B(X))≥0 of nonnegative Radon measures acting on the Borel measures B(X).

Since the cone M(B(X))≥0 is structurally too difficult, we aim for a simpler cone that
inner-approximates M(B(X))≥0 and still contains an optimal solution µ =

∑
y∈Y δy for

(1.4). Over the course of Chapter 5 we show that for a fixed ε > 0 and t ∈ N the set
It B {Y ⊆ X : |Y | ≤ t, d(y, y′) ≥ ε for every y, y′ ∈ Y} forms a compact metric space
equipped with an extended Hausdorff metric. Moreover, we can apply a duality theory on
the coneM(It)≥0, which we define below.
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The set C(It) of continuous real-valued functions on It and the setM(It) of signed Radon
measures form a topological dual pairing, where the topology is defined by the supremum
norm on C(It). This is a consequence of the Riesz representation theorem (see Chapter 2
or [8]). In particular, these dual spaces contain the cones C(It)≥0 of nonnegative functions
in C(It) and its dual cone

M(It)≥0 B

{
µ ∈ M(It) :

∫
It

f dµ ≥ 0 for all f ∈ C(It)≥0

}
.

Similarly we can denote the space of symmetric kernels C(It × It) as the set of continuous
functions K : It × It → R, where K(J, J′) = K(J′, J) for every J, J′ ∈ It. We will define the
cone of positive semidefinite kernels C(It × It)�0 and denote its dual cone byM(It × It)�0
contained in the space of symmetric Radon measuresM(It × It), where µ(E, E′) = µ(E′, E)
holds for every pair of Borel sets E, E′. Let I=1 denote the set of J ⊆ It with |J| = 1, then
our continuous counterpart for the Lasserre relaxation, which relaxes N(X, r) is defined as
follows:

N t(X, r) = inf µ(I=1) (1.5)
µ ∈ M(I2t/Γ)≥0,

µ({∅}) = 1,
Ãtµ ∈ M(It × It)�0,

Ãid
t µ ∈ M(It−1 × It−1)�0,

where Ãt and Ãid
t are defined pointwise by their adjoint operators B̃t : C(It × It)→ C(I2t/Γ)

and B̃id
t : C(It−1 × It−1)→ C(I2t/Γ) defined by

B̃tK(π(S )) B
∫

Γ

∑
J,J′∈It : J∪J′=γS

K(J, J′)dλ(γ)

B̃id
t K(π(S )) B

∫
Γ

∑
x∈Br J,J′∈It−1: J∪J′∪{x}=γS

K(J, J′) −
∑

J,J′∈It−1: J∪J′=γS

K(J, J′)dλ(γ),

where λ is the normalized Haar measure on Γ, π : It → It/Γ the quotient map and Br =

B(e, r) is a ball centered at a fixed point e ∈ X. For t = 1 the summation over all x, J, J′

satisfying J ∪ J′ ∪ {x} = γS boils down to the question whether γS ∈ I=1 and contained
in Br or not. As we will show in Chapter 5, the programs above lead to the following
non-decreasing sequence of bounds:

N1(X, r) ≤ N2(X, r) ≤ . . . ≤ N t(X, r) ≤ N(X, r) (1.6)

for any value of t. Our two main results of Chapter 5 are that our continuous Lasserre
hierarchy satisfies strong duality in each step and that the hierarchy converges after at most
finitely many steps. First, the following theorem states the dual programming hierarchy
and proves strong duality in each step of the hierarchy.
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Theorem 1.4.7.

N t(X, r) = sup y
y ∈ R, K ∈ C(It × It)�0, K′ ∈ C(It−1 × It−1)�0

1I=1/Γ(Q) − y1{π(∅)}(Q)

− B̃tK(Q) − B̃id
t K′(Q) ≥ 0 for all Q ∈ I2t/Γ

After setting up a suitable hierarchy for the covering number, the second main result of
Chapter 5 concerns the question whether the hierarchy converges, i.e., whether there is a
finite step T for which NT (S n, ϕ) = N(S n, ϕ) holds. It turns out that the packing number

α B α(X, ε) B max
{
|Y | : Y ⊆ X, B(y, ε) ∩ B(y′, ε) = ∅ for every y, y′ ∈ Y

}
,

marks one such critical step in the hierarchy as we prove the following theorem.

Theorem 1.4.8. Suppose µ is feasible forNα(X, r). Then the objective value µ(I=1) bounds
the covering number N(X, r) from above.

Together with the inequalities (1.6) this result proves the convergence of the given hi-
erarchy after at most α steps. Combining the latter result with the fact that the first step
coincides with the volume bound we achieve

λ(Γ)
λ({γ ∈ Γ : γ{y} ∈ Br})

=
ω(X)

ω(B(x, r))
≤ N1(X, r) ≤ N2(X, r) ≤ . . . ≤ Nα(X, r) = N(X, r),

where the dual programs provide possibly sharp lower bounds in each step.
Numerical bounds are still under investigation. However, for the two-dimensional spher-
ical covering number N(S 2, r) we provide a finite dimensional semidefinite optimization
program that aims to bound the number N2(S 2, r) from below.



Chapter Two

Techniques

The present Chapter 2 contains background material for the upcoming chapters. Experts in
the field may skip this chapter or just read the parts that seem interesting to them.

2.1 Convex Optimization

The theory of convex optimization mainly started by Kantorovich’s fundamental work on
linear optimization in 1939 (see [48]). We quote Dantzig [19] to comment on the impor-
tance of his work:

"Kantorovich should be credited with being the first to recognize that certain important
broad classes of production problems had well-defined mathematical structures which,
he believed, were amenable to practical numerical evaluation and could be numerically
solved."

It is important to note that in his work "Problem C" is essentially the first formulation of
a linear program as we know it today (see [74]. Dantzig himself confirmed Kantorovich’s
believe that linear programs could be numerically solved by introducing the simplex algo-
rithm in the summer of 1947, which was published in [18]. In October of the same year
Dantzig and von Neumann met for the first time and von Neumann [81] was able to "imme-
diately translate basic theorems in game theory into their equivalent statements for systems
of linear inequalities"1.
In linear optimization one optimizes over the cone Rn

≥0 of nonnegative Euclidean vectors
but it was discovered over the years that the main results of Kantorovich’s theory hold in
a more general setting. In this chapter we give a short overview of the theory of conic
optimization, mainly following Barvinok’s book [8].

We begin by considering topological vector spaces E and F and call a non-degenerate
bilinear form 〈·, ·〉 : E × F → R a duality of E and F if the following two properties are
satisfied:

1[19]

17
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• for every f ∈ F the linear functional φ : E → R defined by φ = 〈·, f 〉 is continuous
and every continuous linear functional φ : E → R can be written as φ = 〈·, f 〉 for
some unique f ,

• for every e ∈ E the linear functional φ : F → R defined by φ = 〈e, ·〉 is continuous
and every continuous linear functional φ : F → R can be written as φ = 〈e, ·〉 for
some unique e.

The concept of having a duality of two topological vector spaces is a key ingredient in
convex optimization. In particular if one optimizes over a convex cone K , e.g., over the
cone of nonnegative vectors K = Rn

≥0 as in linear optimization, the dual cone is often of
great interest.

Definition 2.1.1 (Dual cone). Let 〈·, ·〉 : E × F → R be a duality and K ⊆ E be a cone.
The dual cone K∗ of K is

K∗ B { f ∈ F : 〈e, f 〉 ≥ 0 for every e ∈ K}.

We call a cone K self-dual if K∗ = K . Let us now consider two dualities 〈·, ·〉1 of
topological vector spaces E1 and F1 and 〈·, ·〉2 of topological vector spaces E2 and F2.
Additionally, we consider a linear operator A : E1 → E2 and its adjoint operator B : F2 →

F1, that is uniquely defined as the linear operator for which

〈A(x), y〉2 = 〈x, B(y)〉1

holds for every x ∈ E1 and y ∈ F2. For convex cones K1 ⊆ E1 and K2 ⊆ E2 and two fixed
elements c ∈ F1 and b ∈ E2 we can define a primal conic program by

p∗ = inf
x∈K1

{〈x, c〉1 : A(x) − b ∈ K2} (2.1)

and its dual conic program by

d∗ = sup
y∈K∗2

{
〈b, y〉2 : c − B(y) ∈ K∗1

}
. (2.2)

It is important to note that a wide class of problems can be described as conic programs
in the form (2.1) or (2.2). As we stated before, linear programming falls into this setup by
setting K1 = K2 = Rn

≥0 but also optimization over other convex cones is well-established.
Of particular interest in the remainder of this thesis are the two pairs of convex cones:

• The cone Sn
�0 of positive semidefinite matrices which is self-dual, meaning (Sn

�0)∗ =

Sn
�0.

• The cone of nonnegative Radon measuresM(X)≥0 on a compact metric space X and
its dual cone C(X)≥0 of nonnegative continuous functions on X.

The strength of the theory above lies in the strong relation between primal and dual pro-
grams, which makes the following theorem arguably one of the most important statements
in this whole thesis.
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Theorem 2.1.2 (Weak and strong duality). Suppose we are given a pair of primal and dual
conic programs. Let p∗ be the supremum of the primal and d∗ the infimum of the dual
program.

1. Weak duality: Suppose x is a feasible solution for the primal and y is feasible for the
dual conic program. Then,

〈x, c〉1 ≥ 〈b, y〉2.

In particular p∗ ≥ d∗.

2. Complementary Slackness: Suppose that the primal conic program attains its supre-
mum at x, that the dual conic program attains its infimum at y, and that p∗ = d∗.
Then

〈x, c − B(y)〉1 = 0.

3. Optimality Criterion: Suppose that x is a feasible solution of the primal conic pro-
gram, y is a feasible solution of the dual conic program and equality

〈x, c − B(y)〉1 = 0

holds. Then the supremum of the primal conic program is attained at x and the
infimum of the dual conic program is attained at y.

4. Strong duality: If the dual program is bounded from above and if c−B(y) ∈ int(K∗1 ),
y ∈ int(K∗2 ) and the dual program attains its supremum, then p∗ = d∗.
If the primal program is bounded from below and if x ∈ int(K1), A(x) − b ∈ int(K2)
and the primal program attains its infimum, then p∗ = d∗.

Condition 4 is known as Slater’s condition. Another sufficient condition for strong
duality will be helpful in proving Theorem 5.4.4. We further denote the difference p∗ − d∗

as the duality gap of the pair of primal and dual programs.
As a toy example to illustrate the power of the above Theorem 2.1.2, we consider the cones
K1 = Sn

�0, K2 = {0} and their dual cones K∗1 = Sn
�0, K∗2 = R with respect to the Frobenius

inner product 〈A, B〉 = Tr(AT B) and the standard multiplication on R. This allows us to
apply the corresponding conic programs to the question of finding the largest or smallest
eigenvalues of a symmetric matrix.

Example 2.1.3 (Eigenvalue optimization). The largest and smallest Eigenvalues of a sym-
metric matrix C ∈ Sn can be expressed with the following semidefinite programs:

λmax(C) = max
X∈Sn

�0

{〈C, X〉 : Tr(X) = 1} = min
y∈R
{y : yIn −C ∈ Sn

�0},

λmin(C) = min
X∈Sn

�0

{〈C, X〉 : Tr(X) = 1} = max
y∈R
{y : C − yIn ∈ S

n
�0}.

Here strong duality holds since Slater’s condition holds on the right hand sides.

An immediate observation of the formulation as an optimization problem is the fact that
due to weak duality, every feasible solution y ∈ R provides an upper bound for the maximal
Eigenvalue, respectively a lower bound for the minimal Eigenvalue. Due to Theorem 2.1.2



20 Techniques Chapter 2

this pattern holds in the general setup, i.e., we can use the solutions to the dual program
to determine lower bounds for the primal and vice versa, which will be a key technique
thoughout this thesis.
Furthermore, if one considers a program

p = inf
x∈K1

{〈c, x〉1 : x ∈ S }

with (possibly non-conic) constraints x ∈ S , then we call a program

p′ = inf
x∈K1

{
〈c, x〉1 : x ∈ S ′

}
with S ′ ⊇ S a relaxation of p and p′ ≤ p provides a lower bound on p. If the remaining
constraints on x ∈ S ′ are conic, i.e., S ′ = {x ∈ K1 : A′(x) − b′ ∈ K ′2} we call p′ a K ′2-
relaxation. Moreover, for K ′2 = Rm

≥0 we call p′ a linear relaxation and for K2 = Sm
�0, p′

forms a semidefinite relaxation.
Since the presentation of an optimization problem is not unique, it is important to formulate
them as conveniently as possible. A brief description often enhances the performance of
algorithms, on the theoretical side Minkowski sums or Minkowski differences often simplify
the presentation of proofs and theorems such as the upcoming Theorem 2.1.5:

Definition 2.1.4. Let V be a vector space, then we define the Minkowski sum of two sets
A, B ⊆ V by

A + B B {a + b : a ∈ A, b ∈ B}.

Similarly, we define the Minkowski difference by

A − B B {c ∈ V : c + B ⊆ A}.

We want to remark that balls B(x, r) ⊆ Rn, often form Minkowski sums:

B(x, r) = B(x, r − ε) + B(x, ε), B(x, r − ε) = B(x, r) − B(x, ε).

They are subject of an application of Theorem 1.4.3 in Section 4.3.2.

2.1.1 Semidefinite programming and its complexity
The focus of this section is on the computational properties of semidefinite programs, where
K1 = Sn

�0 and K2 = {0} ⊆ Rm are the corresponding cones. The primal program then reads

SDP = inf
X∈Sn

�0

{
〈C, X〉 : 〈A j, X〉 = b j for every j ∈ [m]

}
.

A common application of semidefinite programming, often abbreviated as SDP, is the ap-
proximation of 0/1-integer problems. Probably the most prominent such technique is the
Goemans-Williamson algorithm [37] to tackle the max cut problem on an undirected graph
G = (V, E) with edge weights we = wuv = wvu ≥ 0:

max

1
4

∑
u,v∈V

wuv(1 − xuxv) : x2
v = 1, v ∈ V

 .
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The algorithm delivers an approximate solution of at least 0.87856 . . . times the optimal
value.
Other applications include the theta number to approximate independent set, i.e., the max-
imum number of vertices in a graph G, such that no two vertices are connected, and the
graph coloring problem: Here we assign a color to every vertex in a graph such that no
two connected vertices have the same color, these assignments are called colorings. The
goal is to achieve a coloring that needs the fewest number of colors.
We dedicate Chapter 3 to semidefinite approximations of the set cover problem described
in Chapter 1.

In general, semidefinite programs are not efficiently solvable in theory and practice as can
be seen by, e.g., counterexamples of O’Donnell [62]. However, it is true, that under most
circumstances semidefinite programs are in fact solvable in arbitrary precision within poly-
nomial time – a result proven by Grötschel, Lovász and Schrijver [39] via the ellipsoid
method and later also by de Klerk and Vallentin [20] via the interior point method. Both of
them proved the following theorem.

Theorem 2.1.5 (Grötschel, Lovász, Schrijver [39]). Consider the semidefinite program

SDP = inf
X∈Sn

�0

{
〈C, X〉 : 〈A j, X〉 = b j for every j ∈ [m]

}
,

with rational input C, A1, . . . , Am, and b1, . . . , bm. Denote by

F =
{
X ∈ Sn

�0 : 〈A j, X〉 = b j for every j ∈ [m]
}

the set of feasible solutions. Suppose we know a rational point X0 ∈ F and positive rational
numbers r, R so that

B(X0, r) ⊆ F ⊆ B(X0,R),

where B(X0, r) is the ball of radius r, centered at X0, in the subspace

L =
{
X ∈ Sn : 〈A j, X〉 = 0 for every j ∈ [m]

}
.

For every rational number ε > 0 one can find in polynomial time a rational matrix X∗ ∈ F
such that

〈C, X∗〉 − SDP ≤ ε,

where the polynomial is in n, m, log2
R
r , log2

1
ε

and the bit size of the data X0, A1, . . . , Am,
and b1, . . . , bm.

For a fixed ε > 0 the problem of finding a rational matrix X∗ with the above properties or
asserting that there is no such matrix with B(X∗, ε) ⊆ F is known as the weak optimization
problem. Theorem 2.1.5 gives a sufficient criterion for polynomial computability of a wide
class of SDPs. However, sometimes we need to deal with problems, where the interior is
not full-dimensional or the set of feasible solutions F is not contained in a ball B(X0,R).
In those cases the weak optimization problem can be proven to be solvable in polynomial
time if the corresponding weak separation problem can be solved in polynomial time (see
Corollary 4.2.7 in [41]).
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Definition 2.1.6 (Weak separation problem [41]). Given a vector y ∈ Qn and a rational
number ε > 0, either

• assert that y ∈ F + B(0, ε), or

• find a vector c ∈ Qn with ‖c‖∞ = 1 such that cT x ≤ cTy + ε for every x with
B(x, ε) ⊆ F .

Here the sum F + B(0, ε) is again the Minkowski sum, which is for small values of
ε > 0 a convenient tool to describe that y is "almost in F ".
We demonstrate how to prove polynomial time solvability of a weak optimization problem
via the weak separation problem in the following example. Our proof is inspired by a proof
by Grötschel, Lovász and Schrijver [39] on the maximum weight of an independent set in
a perfect graph.
One might wonder whether a simpler choice of indices for the following matrix M would
simplify the example below. In fact this is true, but the notation below facilitates the rea-
soning leading to the fact that the Lasserre hierarchy described in Chapter 3 is computable
in polynomial time.

Example 2.1.7. We first require a rational matrix M ∈ S(m+2)·t·nt
to have the form

M =


Mt 0 . . . 0

0 M1
t

. . .
...

...
. . .

. . . 0
0 . . . 0 Mm+1

t


and consider the corresponding set

F =
{
M ∈ S(m+2)·t·nt

�0 : 〈A j,M〉 = b j for every j ∈ [T ]
}
,

where the constraints include setting the off-diagonal entries to 0. Suppose the columns
with indices b1, . . . , bk of M form a basis of the subspace spanned by all columns. Then
we consider the submatrix M′ ∈ Sk of M that consists only of the entries Mi j indexed by
i, j ∈ {b1, . . . , bk}. We observe that M is positive semidefinite if and only if M′ is positive
definite. Thus we can check whether M′ is contained in F in polynomial time since it
suffices to check whether the (m + 2) · t · nt determinants

det
(
M′l

)
= det

(
M′i j

)
i, j∈[l]

for l ∈ [k] are positive, this is known as Sylvester’s criterion. Since the entries of M′ are
rational we can compute the determinants in polynomial time (see [74]).
If M is not positive semidefinite then we have an index l being the smallest index such that
det

(
M′l

)
≤ 0 holds. For i ∈ [l] let ci = (−1)i · M̃′i,l, where M̃′i,l is the (i, l)-th minor of M′l and

set ci = 0 if l < i < k. After reindexing this yields 〈ccT , X〉 ≥ 0 for every X ∈ F since X � 0
but

〈ccT ,M〉 = det M′l · det M′l−1 ≤ 0

by definition. Thus the matrix ccT defines an almost separating hyperplane.
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2.1.2 The duality caused by the Riesz representation theorem
For the remainder of this section we will focus on a different cone, the cone of nonnegative
Radon measures and define a convenient duality. Let X be a compact topological Hausdorff
space. Then we say that a measure µ on its σ-algebra of Borel sets B(X) is

• inner regular if, for every Borel set B ∈ B(X), µ(B) = supK⊆B, K compact µ(K).

• locally finite if, for every compact Borel set B′ ∈ B(X), µ(B′) < ∞.

Definition 2.1.8 (Radon measure). A Borel measure µ on a compact metric space X is
called a Radon measure if it is inner regular and locally finite. The set of Radon measures
on X is denoted byM(X).

Sometimes in the literature these measures are referred to as inner Radon measures in
contrast to outer Radon measures but in the case of a compact topological space X these
measures coincide. For more details on Radon measures we refer to Appendix B.2 in the
book of Deitmar and Echterhoff [24] and to the book of Stein and Shakarchi [77]. In the
spaces considered in this thesis we usually don’t have to distinguish between Radon and
Borel measures, since all of them are Radon spaces.

Definition 2.1.9 (Radon space). [2] A separable metric space X is a Radon space if every
Borel probability measure is inner regular.

Moreover, if X is complete, it is a Radon space. To determine the duality, we again
follow [24] to elaborate on the Riesz representation theorem.

Theorem 2.1.10 (Riesz). Let X be a compact metric space and denote the set of continuous
real-valued functions on X by C(X). Let I : C(X)→ R≥0 be a nonnegative linear functional.
Then there exists a unique Radon measure µ : B(X)→ [0,∞] such that

I( f ) =

∫
X

f dµ.

Thus we have linearity (continuity) of I( f ) for every function f and Radon measure µ
and further I( f ) is uniquely defined by µ (via Riesz representation theorem) and f (since
I( f ) = I(g) implies f = g on the open sets in the weak topology of the duality, see [8]).
This implies that the map

〈·, ·〉 :M(X) × C(X)→ R, 〈µ, f 〉 B
∫

f dµ

forms a duality. We observe that considering the coneM(X)≥0 and its dual C(X)≥0 leads to
conic programs, where we can apply the theory above.
In the next chapters of this thesis it is going to be necessary to show that if a (maybe
not continuous) function g satisfies a certain condition, then there also exists a continuous
function f satisfying this condition. To prove statements like this, the following lemma of
Urysohn is a widely used tool.

Lemma 2.1.11 (Urysohn’s lemma). Let X be a compact Hausdorff space and A, B ⊆ X
be closed and disjoint. Then there exists a continuous function f : X → [0, 1] such that
f (a) = 0 for all a ∈ A and f (b) = 1 for all b ∈ B.
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Thus if we have an indicator function g = 1B on X, we can approximate it with a
continuous function f ∈ C(X). For non-indicator functions, Tietze formulated an even
stronger statement.

Theorem 2.1.12 (Tietze’s extension theorem). Let X be a locally compact Hausdorff space
and g : A → R is a continuous map from a closed subset A of X. Then there exists a
continuous function f : X → R with the property f (a) = g(a) for every a ∈ A. Moreover if
g is bounded, f can be chosen to be bounded as well.

These theorems will be very helpful, since if we have an optimization problem over
the cone of nonnegative continuous functions C(X)≥0, non-continuous functions satisfying
the constraints turn out to have a continuous and thus feasible counterpart with the same
objective value. In Chapter 5 we use this fact to show finite convergence of the hierarchy
N t(X, r), i.e., to prove the last equality in (1.4.4).

2.2 Groups and isometries
Until now, we have considered coverings of the central object of our thesis – a compact
metric space X. A major drawback arises from this setup, since compactness rules out a
couple of interesting setups such as coverings of the Euclidean space. In this section we
address this problem by providing some background in group theory and we will further
use this background in Section 2.3 to introduce techniques, that can be used to reduce the
complexity of computing approximations of N(X, r).
The principal example of this thesis is the spherical case N(S n, r). Every major result in
Chapters 4 and 5 was carried out on the sphere first and later generalized to the broader
setup of compact metric spaces. We can assign different groups to the sphere S n, e.g., the
orthogonal group O(n + 1)

O(n + 1) B {A ∈ R(n+1)×(n+1) : AT A = In+1}

or the corresponding stabilizer subgroup Stab(O(n + 1), e) with respect to a point e ∈ S n

Stab(O(n + 1), e) B {γ ∈ O(n + 1) : γe = e}.

Note that Stab(O(n + 1), e) and O(n) are isomorphic. The two groups have the interesting
property that they consist of isometries of the sphere with respect to the metric d : S n ×

S n → R, d(x, y) = arccos(x · y), that is for every τ ∈ O(n + 1) or τ ∈ Stab(O(n + 1), e) we
have:

d(τx, τy) = d(x, y) for every x, y ∈ S n.

If we consider the set of all isometries τ : X → X, satisfying d(τx, τy) = d(x, y) for every
x, y ∈ X, acting on a compact metric space X, this also forms a group, referred to as the
isometry group Iso(X) of X. The isometry group will play a major role in Chapters 4 and 5.

An important concept to extend knowledge about coverings on compact metric spaces to
non-compact metric spaces, such as the Euclidean space, is that we look at a compact sub-
set of Rn, cover this subset and then tesselate the whole Euclidean space. For this we need
to find a suitable subset of Rn, which can be done by considering the quotient space of Rn

with respect to a specific group.



Section 2.2 Groups and isometries 25

Definition 2.2.1 (Quotient space). Let X be a topological space and ∼ be an equivalence
relation. Then we define the quotient space X/∼ as the set of equivalence classes with
respect to ∼:

X/∼B {[x] : x ∈ X} B {{y ∈ X : y ∼ x} : x ∈ X} .

We denote the map π : X → X/∼, π(x) B [x] as the canonical projection. If the
equivalence class is defined through a group action of a group G acting on X, i.e., x ∼ y⇔
∃g ∈ G : x = gy, we further denote the quotient space by X/G. The quotient space can be
equipped with the following topology.

Definition 2.2.2 (Quotient topology). Let (X,T ) be a topological space with T the set of
open sets, and X/∼ its quotient space. Then we say that a set U ⊆ X/∼ of equivalence
classes is open in its quotient topology, if the union of its elements is open in X, i.e.,⋃

[u]∈U[u] ∈ T .

This topology lets (X,T ) inherit a bunch of useful properties such as compactness and
connectedness (see [46]). Observe that the integer numbers Z and also lattices introduced in
Section 1.1 form a group. Thus, instead of covering the full Euclidean space we can instead
cover the flat torus, a compact subset of Rn, defined by Tn B Rn/Zn or any automorphisms
of it.

Example 2.2.3 (Flat Torus). A covering of the torus T B 2S 1×S 1 = R2/ (Z (
2, 0

)
+ Z

(
0, 1

))
can be illustrated by:

Figure 2.1: Flat torus covered by eight balls: 5 green balls and one red, orange and yellow
ball respectively.

We can tessellate the whole two dimensional Euclidean space by concatenating copies
of such tori on the boundaries of each torus. The corresponding arrangement of balls
provides a covering of Euclidean two-space with density

8 ·
λ(B(x, 5/16))

λ(T)
= 8 ·

π · 52/162

2
=

25π
64
≈ 1.227 . . . .



26 Techniques Chapter 2

In the above example one point in our group corresponds to a whole torus. Thus the
group acting on Rn is discrete and the benefit of considering the quotient space consists of
the compactness of the corresponding quotient space.
The fact that a specific group action can sometimes extend covering results to non-compact
spaces is important, but moreover, if the underlying metric space is compact, the following
property is significant for the results in Chapter 5.

Definition 2.2.4. We say that a group Γ acts transitively on a space X if and only if for
every pair of elements x, y ∈ X we have an element γ ∈ Γ such that γx = y holds.

A transitive group acting on a metric space X has some remarkable properties. Among
others, the quotient space consists of a single equivalence class and we can often translate
between the group Γ and X. This translation property will become important in Section
5.2.3.
If the isometry group Iso(X) is transitive we call the corresponding space X homogeneous.
In general, a compact metric space is not homogeneous. One class of counterexamples
include the following situation: take a non-discrete metric space X with diameter < 1 and
add a point x0 with distance 1 to every other point x ∈ X \ {x0}. Then for y , τ−1x0 we have
1 = d(x0, y) = d(τx0, τy) < 1. Therefore, there is no transitive isometry in this case.
Nevertheless, a couple of important groups fall into this category such as the orthogonal
group on the sphere, the projective orthogonal group on the projective space or the Eu-
clidean group in Rn. If we further consider compact metric spaces, it is remarkable that
the corresponding isometry group can be equipped with a metric, and subsequently forms
a compact metric space as well. This fact will be exploited in Section 4.3.3 and we prove it
over the course of the following paragraphs as a consequence of the Arzelà-Ascoli Theorem
2.2.6. We recall the definition of equicontinuity first.

Definition 2.2.5 (Equicontinuity). Let X be a compact metric space and Y be a metric
space, then a set F ⊆ C(X,Y) is equicontinuous if for every x ∈ X and ε > 0 x has a
neighbourhood Ux such that

d( f (y), f (x)) < ε for all y ∈ Ux, f ∈ F.

The Arzelà-Ascoli Theorem is stated in different variations in the literature. We provide
an adjusted version to the one of Kelley (see Theorems 7.21, 7.22 and 7.23 in [50]), but
also the book of Folland [33] is a good source for further reading on this topic.

Theorem 2.2.6 (Arzelà-Ascoli). Let X be a compact metric space and Y be a metric space.
Then F ⊆ C(X,Y) is compact in the compact-open topology if and only if it is equicontinu-
ous, pointwise relatively compact and closed.

For compact metric spaces X and Y it is important to note that the compact open topol-
ogy and the topology of pointwise convergence coincide (see Theorems 7.11 and 7.15 in
Kelley [50]) and thus Iso(X) is metrizable with metric e(ϕ, τ) B supx∈X{d(ϕ(x), τ(x))} (see
Proposition A.13 in [44]). Therefore, Theorem 2.2.6 provides a sufficient criterion to prove
the following lemma that will be of use in Section 4.3.3. It is stated as Exercise 7.T.(a) in
[50].
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Lemma 2.2.7. Let Iso(X) be the isometry group on a compact metric space (X, d), then
(Iso(X), e) is compact.

Proof. First, we observe that the compact-open topology is metrizable with metric e. Let
τ ∈ Iso(X) be an arbitrary isometry. We show equicontinuity by the isometry property of τ,
that implies d(τ(x), τ(y)) = d(x, y) < δ B ε for any ε > 0.
For the pointwise relative compactness we consider the closure of Iso(X)z B {τ(z) : τ ∈
Iso(X)} ⊆ X. As a subset of the compact metric space X we know that it is totally bounded.
Furthermore, as a closed subset of a complete (due to its compactness) metric space it is
complete. Together we have that the closure of Iso(X)z is compact and thus Iso(X)z is
pointwise relatively compact by definition.
Next we show that (Iso(X), e) is complete. Suppose we have a Cauchy sequence τk ∈ Iso(X)
then we know from Theorems 7.11, 7.12 and 7.13 in [50] that this Cauchy sequence has
a limit τ in the set of continuous functions equipped with the compact open topology.
Proposition A.13 in [44] then shows that the compact open topology is induced by the
metric e and thus the limit τ is continuous with respect to e.
We now show that the continuous function τ is an isometry. For sufficiently large k ∈ N we
know that e(τk, τ) < ε for any fixed ε > 0. This leads to

d(τ(v), τ(u)) ≤ d(τ(v), τk(v)) + d(τk(v), τk(u)) + d(τk(u), τ(u))
≤ sup

x∈X
d(τ(x), τk(x)) + d(τk(v), τk(u)) + sup

x∈X
d(τk(x), τ(x))

< ε + d(v, u) + ε

on the one hand and to

d(v, u) = d(τk(v), τk(u))
≤ d(τk(v), τ(v)) + d(τ(v), τ(u)) + d(τ(u), τk(u))
≤ sup

x∈X
d(τk(x), τ(x)) + d(τ(v), τ(u)) + sup

x∈X
d(τ(x), τk(x))

< ε + d(τ(v), τ(u)) + ε

on the other hand. Since those inequalities hold for any fixed ε > 0, we have that d(v, u) =

d(τ(v), τ(u)) for any u, v ∈ X making τ an isometry.
This isometry is also invertible:

sup
x∈X

d(τ−1
k τ(x), x) = sup

x∈X
d(τ(x), τk(x))→ 0.

Thus τ−1
k → τ−1 implying that τ is bijective. Therefore (Iso(X), e) is a complete metric

space and thus closed. Finally we fulfill each condition to apply the Theorem of Arzelà-
Ascoli and finish the proof. �

The shown compactness plays a major role in extending the main result in Chapter 4
on coverings of Rn by Euclidean balls, to coverings of Rn by translates of finite unions of
Euclidean balls. Since all measurable bodies with non-empty interior can be approximated
quite well with unions of balls this allows us to generalize Theorem 4.1.1 in Euclidean
space.
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2.3 Symmetry reduction and harmonic analysis
The final section of this chapter is dedicated to the concept of symmetry reduction for
semidefinite programs. These techniques are well-established and have been successfully
applied to a variety of problems, see for example [6], [35] or [65]. Additionally, we will
apply them to approximate the covering number N(S 2, r) in Section 5.7. In the present
section we mainly follow Vallentin [80] to explain the necessary methods and techniques
for Section 5.7.
We introduce the technique of symmetry reduction on metric spaces (X, d, ω) equipped with
metric d and finite, regular Borel measure ω. In particular, we know from Section 2.1.2 that
ω is consequently a Radon measure. The group Γ over which we symmetrize is supposed
to be a compact, transitive subgroup of the isometry group Iso(X). Here for symmetric
kernels K ∈ C(X × X) the shifted kernels Kγ for γ ∈ Γ are defined by Kγ(x, y) = K(γx, γy).
For defining symmetrized kernels one needs the Haar measure of a group Γ:

Definition 2.3.1 (Haar measure). Let Γ be a locally compact group. Then a (left) Haar
measure λ is a left invariant regular Borel measure, that is positive on any non-empty, open
Borel set B ⊆ Γ. We call λ left invariant if and only if

λ(γB) = λ(B) for every Borel set B and every γ ∈ Γ.

The proof of the existence of such a Haar measure can be found for example in [24].
Let us denote by C(X ×X)Γ the set of Γ-invariant kernels consisting of kernels K satisfying
K = Kγ for every γ ∈ Γ. We further call such kernels positive semidefinite if for every finite
subset J ⊆ X, the matrix (K(i, j))i, j∈J is positive semidefinite. We denote the corresponding
cone by C(X × X)Γ

�0. A simple example of such an invariant kernel is the integral over the
shifted kernels with respect to a normalized Haar measure on Γ:∫

Γ

Kγdλ(γ) ∈ C(X × X)Γ
�0.

A benefit of this Γ-invariant kernel stems from Γ-invariant conic programs over the cone
C(X × X)�0, i.e., conic programs for which a feasible solution K ∈ C(X × X)�0 yields fea-
sible solutions Kγ ∈ C(X × X)�0 for every γ ∈ Γ. The above integral is then also a feasible
solution of the program and thus, if the objective values of K and Kγ coincide, we can
restrict the program to the cone C(X × X)Γ

�0.
In the next paragraphs we want to introduce some techniques to decompose cones of invari-
ant kernels into smaller cones. For this, we first define an orthonormal system e1, e2, . . . ∈
C(X) by ∫

X
ek(x)ek(x)dω(x) = 1, and

∫
X

ek(x)el(x)dω(x) = 0, whenever k , l.

Such a system is complete if every continuous function f ∈ C(X) can be approximated
arbitrarily well by finite linear combinations of ek in terms of convergence with respect to
the L2-norm :

‖ f ‖ B

√∫
X

f 2(x)dµ(x).
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An example of such a system is a basis in the subalgebra of polynomials on the sphere S n.
This algebra can be used to approximate the algebra of continuous, real-valued functions
on S n, which is due to the Stone-Weierstrass theorem.

Theorem 2.3.2 (Stone-Weierstrass [75]). Let X be a compact Hausdorff space. LetA be a
subalgebra of C(X), so that for any x, y ∈ X and α, β ∈ R, there exists f ∈ A with f (x) = α
and f (y) = β. ThenA is dense in C(X) with respect to ‖ · ‖∞.

The approximation of continuous functions on the sphere by polynomials will be ad-
dressed again in Section 5.7.2. Another, more general, way of constructing an orthonormal
system is given by the proof in [80] of the following Theorem of Peter and Weyl (see [63]
and [83]). Here we first need to define a couple of objects for a transitive group Γ ⊆ Iso(X):

• A subspace S ⊆ C(X) is called Γ-invariant if γS = S for every γ ∈ Γ.

• A nonzero subspace S is called Γ-irreducible if {0} and S are the only Γ-invariant
subspaces of S .

• For two Γ-invariant subspaces F, F′ ⊆ C(X) a linear map T : F → F′ is called a
Γ-map if T (γ f ) = γT ( f ).

• We say that two spaces S , S ′ ⊆ C(X) are Γ-equivalent if there is a bijective Γ-map
between them.

We can now state the theorem of Peter and Weyl.

Theorem 2.3.3 (Peter-Weyl). All Γ-irreducible subspaces of C(X) are of finite dimension.
The space C(X) decomposes orthogonally as

C(X) =

∞⊕
k=0

Hk,

and the space Hk decomposes orthogonally as

Hk =

mk⊕
i=0

Hk,i,

where Hk,i is irreducible, and Hk,i is equivalent to Hk′,i if and only if k = k′. The dimension
hk of Hk,i is finite, but the multiplicity mk can potentially be infinite.
In other words, C(X) has a complete orthonormal system ek,i,l, where k = 0, 1, . . ., the index
i ranges from 1 to mk, where mk is potentially infinite, l = 1, 2, . . . , hk, hk finite, so that

(1) the space Hk,i spanned by ek,i,1, . . . , ek,i,hk is irreducible,

(2) the spaces Hk,i and Hk′,i′ are equivalent if and only if k = k′,

(3) there are Γ-maps φk,i : Hk,1 → Hk,i mapping ek,1,l to ek,i,l.

Orthonormal systems satisfying properties (1) to (3) are perfectly suited as an input to
the following theorem of Bochner [10], a classical result in harmonic analysis.
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Theorem 2.3.4 (Bochner). Let ek,i,l be a complete orthonormal system for C(X) as in The-
orem 2.3.3. Every Γ-invariant, positive semidefinite kernel K ∈ C(X × X)Γ

�0 can be written
as

K(x, y) =

∞∑
k=0

mk∑
i, j=1

fk,i j

hk∑
l=1

ek,i,l(x)ek, j,l(y), (2.3)

or more economically as

K(x, y) =

∞∑
k=0

〈Fk,Z
(x,y)
k 〉, (2.4)

with (Fk)i j = fk,i j and
(
Z(x,y)

k

)
i j

=
∑hk

l=1 ek,i,l(x)ek, j,l(y). Here Fk is symmetric and positive
semidefinite. If Γ operates transitively on X, it has one orbit, the multiplicities mk < ∞ are
finite, and the series

∑∞
k=0〈Fk,Z

(x,y)
k 〉 converges absolutely-uniformly.

If the group Γ is not transitive, we turn to de Laat [22]. If Γ has finitely many orbits,
he proved the absolutely-uniform convergence of

∑∞
k=0〈Fk,Z

(x,y)
k 〉 in Theorem 3.4.4. For Γ

having infinitely many orbits, he constructed a sequence

C1 ⊆ C2 ⊆ . . . ⊆ C(X × X)Γ
�0,

whose union
⋃∞

d=1 Cd is dense in C(X×X)Γ
�0. We will elaborate on this sequence in Section

5.7.1.
We demonstrate the application of Bochner’s theorem in an exemplary manner by consid-
ering two different optimization problems. First, we consider a finite semidefinite program:

inf
K∈Sn

�0

{
〈C,K〉 : 〈A j,K〉 − b j = 0 for every j ∈ [m]

}
(2.5)

and later extend this technique to a conic program over the cone C(S n × S n)�0. For (2.5),
we consider the metric space ([n], d, ω), where the metric

d( j, k) B arccos
((

sin 2π j
n

cos 2π j
n

)
·

(
sin 2πk

n
cos 2πk

n

))
,

measures the standard distance of the numbers 1, . . . , n projected on a circle. For n = 11 we
can essentially picture a clock and d measures the shortest path on the boundary between
two times. In this example we let the group Γ ⊂ Iso([n]) be the cyclic group, consisting of
rotations of multiples of 2π

n on this circle. This group is transitive. We define the measure
ω by ω(A) = |A|.
Suppose that (2.5) is invariant under Γ, i.e., each feasible solution K yields feasible solu-
tions Kγ defined by Kγ(x, y) = K(γx, γy) for every γ ∈ Γ and the objective values of K
and Kγ coincide. This leads to the crucial observation that also the symmetrized solution
corresponding to K

(x, y) 7→
1
|Γ|

∑
γ∈Γ

K(γx, γy)

is a feasible solution to (2.5). Additionally, it has the same objective value and thus we can
restrict the program (2.5) to Γ-invariant matrices K. We recall the notation of the cone of
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such matrices as C([n] × [n])Γ
�0.

The Peter-Weyl theorem now tells us that there exists an orthonormal system ek,i,l ∈ C([n]) =

Rn such that the space C([n]) decomposes orthogonally as

C([n]) =

N⊕
k=0

mk⊕
i=0

Hk,i,

to its irreducible subspaces Hk,i spanned by ek,i,1, . . . , ek,i,hk . We can use this system as
an input for Bochner’s theorem and rewrite every Γ-invariant, positive semidefinite matrix
K ∈ C([n] × [n])Γ

�0 as

K(x, y) =

N∑
k=0

mk∑
i, j=1

fk,i j

hk∑
l=1

ek,i,l(x)ek, j,l(y), (2.6)

or more economically as

K(x, y) =

N∑
k=0

〈Fk,Z
(x,y)
k 〉, (2.7)

with (Fk)i j = fk,i j and
(
Z(x,y)

k

)
i j

=
∑hk

l=1 ek,i,l(x)ek, j,l(y). Here Fk is symmetric and positive
semidefinite.
One observes that the parameters N ≤ n,m1, . . . ,mN and every parameter to define the
matrices Zk depend on the group Γ. The benefit of this decomposition is the following
reformulation of the semidefinite program (2.5):

inf 〈C,K〉〈
A j,

N∑
k=0

〈Fk,Zk〉

〉
− b j = 0 for every j ∈ [m]

F1, . . . , FN ∈ S m1
�0, . . . , S

mN
�0 .

Computationally this often turns out to have two major advantages. First, for many prac-
tical solvers the block structure speeds up the numerical calculations and second, the sum
m1 + . . . + mN is in many applications much smaller than the dimension n of our original
problem reducing the size of the given instance significantly.

A second example of the power of block diagonalization introduces some necessary ob-
jects to illustrate the techniques used in Section 5.7. The conic program we consider is the
following

sup
{∫

S n×S n
Kdµ : C − B(K) = 0, K ∈ C(S n × S n)O(n+1)

�0

}
,

where µ ∈ M(S n×S n)sym. is a symmetric Radon measure, C ∈ R and B : C(S n×S n)→ R is
a linear operator. Before we apply Theorem 2.3.4 we consider some results of Schoenberg
[73], stating that the multiplicities satisfy mk = 1 and the one-dimensional kernels Zk are
determined by normalized Jacobi polynomials P(α,α)

k of degree k with parameters (α, α) and
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α = n−2
2 , i.e., Z(x,y)

k = P(α,α)
k (x · y). Consequently, Theorem 2.3.4 leads to a linear program

sup

 ∞∑
k=0

fk

∫
S n×S n

P(α,α)
k (x · y)dµ(x, y) : C −

∞∑
k=0

fkB
(
P(α,α)

k

)
= 0, fk ∈ R≥0

 . (2.8)

The convergence of the sum
∑∞

k=0 fkP(α,α)
k (x · y) is a consequence of the fact that the Jacobi

polynomials P(α,α)
1 , P(α,α)

2 , . . . form a complete orthogonal system of L2([−1, 1], (1 − t2)α).
The approach to approximate the covering number N(S 2, r) in Section 5.7.2 falls into a
similar setup. Here we consider in addition the stabilizer subgroup Stab(O(n + 1), e) with
respect to a fixed point e ∈ S n. Although this group is not transitive, Bachoc and Vallentin
[6] provided a similar characterization of C(S n × S n)Stab(O(n+1),e)

�0 using Gegenbauer polyno-
mials Cλ

k with parameter λ = n
2 −1. Gegenbauer polynomials can be defined inductively by

Cλ
0(t) B 1, Cλ

1(t) B 2λt and

Cλ
k (t) B 2(k + λ − 1)tCλ

k−1(t) − (k + 2λ − 2)Cλ
k−1 for k ≥ 2.

For more details on Jacobi and Gegenbauer polynomials we refer to the book of Andrews,
Askey and Roy [3].



Chapter Three

The Lasserre hierarchy on set cover

This chapter is based on the Bachelor’s thesis Approximating Set Cover using the Lasserre
hierarchy written by T. Acisu [1].

We recall the definition of set cover, denoted by SC, as seen in Section 1.4 and give a
few basic examples. Additionally, we consider the lower bound given by the linear relax-
ation of SC and use it to give a variant of the proof of Chvátal’s [13] Theorem 3.1.6. In
Chapter 4 we will extend this approach to compact metric spaces.
In Section 3.2 we first give some general properties of Lasserre’s [54] famous hierarchy
to approximate 0/1-integer programs and prove that it converges in finitely many steps, in
particular that if we have covering sets S 1, . . . , S n, the n-th step in Lasserre’s hierarchy and
SC coincide. This should give a good intuition for the content upcoming in Chapter 5.
Finally, we present a subexponential algorithm of Chlamtac, Friggstad and Georgiou [12]
in a version of Rothvoß [71] that improves Chvátal’s upper bound by using the Lasserre
relaxations.

3.1 Bounds based on linear relaxations

3.1.1 Preliminaries and basic examples
We recall the definition of the problem set cover, where we denote {1, . . . ,m} by [m].

Definition 3.1.1. Given a set [m] as well as a collection of subsets S 1, . . . , S n ⊆ [m] with⋃n
i=1 S i = [m] and assigned costs ci ∈ Q>0 for each subset S i. The goal is to find a set of

indices J∗ ⊆ [n], such that:⋃
i∈J∗

S i = [m] and
∑
i∈J∗

ci is minimal. (3.1)

The subcollection {S i : i ∈ J∗} is defined as a minimum set cover.

We simply call J a cover of [m] if
⋃

i∈J S i = [m]. Next, we give two basic examples.

Example 3.1.2. Suppose we have the ground set {1, . . . , 14} and 5 subsets S 1, . . . , S 5 de-
fined by Figure 3.1 with assigned costs c1 = . . . = c5 = 1.

33
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7654321

141312111098

S 1 S 2 S 3

S 4

S 5

Figure 3.1: One instance of set cover with sets S 1, . . . , S 5 and elements 1, . . . , 14

We observe that for each of the sets S 1, S 3 there is a point that is just covered by this
set. Thus we need to include the indices 1 and 3 in our cover J∗. The elements 3 and 10
can either be covered by adding S 2 and cost 1 or by adding any two sets out of {S 2, S 4, S 5}

with cost 2. Consequently we add S 2 and achieve an optimal cover J∗ = {1, 2, 3} of cost 3.

Example 3.1.3. We further present an example inspired by Haynes, Hedetniemi and Slater
[45] and presented in a related matter in [69] by Rolfes. Suppose, in a remote part of the
world like the Outback in Australia or Siberia, we want to locate radio stations in some
of the very rare villages in these regions and ensure that each village receives the radio
program despite the limited broadcasting range.
Since in this example radio stations are equally expensive, minimizing the total cost corre-
sponds to minimizing the number of stations. Let the broadcasting range be 50 kilometres,
then for every villlage vi, we consider the sets S i of villages within this broadcasting range.
The following graph connects two villages whenever they can broadcast to each other, but
omits loops:

v2

v3

v8

v7

v1

v4

v9

v5 v6

Figure 3.2: Two radio stations at villages v5, v6 broadcasting to 9 villages v1, ..., v9.

Here the two sets S 5 = {v1, v4, v5, v7, v9} and S 6 = {v2, v3, v6, v7, v8} cover the whole
ground set {v1, . . . , v9}.

In 1972, Karp [49] showed, that set cover is NP-complete. This means, if P , NP,
although the feasibility of a proposed solution can be verified in polynomial time, it is
widely believed that the problem can not be solved in polynomial time. In fact, it was shown
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by Dinur and Steurer [27], that there is no efficient way of solving any given instance of set
cover to within a factor of (1−ε) ln m. On the contrary, we do have methods to approximate
a solution to a certain degree in a reasonable amount of time. To point out the relation of
set cover to the field of combinatorial optimization and to be able to apply techniques from
this field, one needs to reformulate set cover as an integer linear program:

Definition 3.1.4 (Integer linear program for set cover).

SC B min

 n∑
i=1

cixi : x ∈ {0, 1}n,
∑

i: k∈S i

xi ≥ 1 for every k ∈ [m]

 . (3.2)

We denote by J∗ = {i ∈ [n] : x∗i = 1} the support of an optimal solution x∗. Since inte-
ger linear programs are in general NP-hard, a first natural approximating step is weakening
the integrality constraints on x to achieve a linear program. These programs can be solved
efficiently by using well-known methods such as interior point methods or the ellipsoid
method.

Definition 3.1.5 (Linear relaxation of SC).

SC ≥ min

 n∑
i=1

cixi : x ∈ [0, 1]n,
∑

i: k∈S i

xi ≥ 1 for every k ∈ [m]

 . (3.3)

3.1.2 Greedy Algorithm
Even though finding an exact solution for set cover is difficult, as already mentioned in
Section 1.4, there are logarithmic upper bounds known. A straightforward way to find such
a solution is a greedy algorithm: We consider an empty index set J and look for the subset
S i with the least cost per covered element ci

|S i |
and include it in the setJ . In the next step we

repeat these actions but this time we only consider the elements, which are not yet included
in the set

⋃
i∈J S i. Finally, this process results in a cover J satisfying

⋃
i∈J S i = [m].

Observe that instead of asking for ci
|S i |

being minimal, one could ask for |S i |

ci
being maximal,

then formally the algorithm states

Algorithm 1 Greedy Algorithm for set cover

1: J ← ∅
2: r ← 0
3: S r

i ← S i for all i ∈ [n]
4: while

⋃
i∈J S i , [m] do

5: r ← r + 1
6: Choose j ∈ [n] \ J with

|S r−1
j |

c j
≥
|S r−1

i |

ci
for all i ∈ [n]

7: J ← J ∪ { j}
8: S r

i ← S r−1
i \ S r−1

j for all i ∈ [n]
9: end while

Since we chose the cheapest sets in terms of costs per element in every step, intuitively
the returned cover should be rather cheap. In fact in 1979 Chvátal [13] analyzed this algo-
rithm and reached the following result.
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Theorem 3.1.6. Let M = maxi∈[n] |S i| being the size of the largest subset S i and c be the
cost of a cover J returned by the greedy algorithm. Then

c ≤ H(M) · SC

with H(M) being the harmonic series H(M) =
∑M

k=1
1
k ≤ ln M + 1.

The proof we provide here is slightly modified to point out the relation to the linear
relaxation (3.3) but the proof still keeps the structure of Chvátal’s [13] original proof.

Proof. First we observe that the algorithm returns a cover: In every iteration it covers
at least one element that is not already covered and thus after at most m iterations the
algorithm terminates with a cover J satisfying

⋃
i∈J S i = [m]. Thus it remains to show

that the cover J has, in the worst case, a cost of H(M) times the optimal cost.
For this we examine the linear program (3.3), omitting the neglectable xi ≤ 1 constraints

min
{
cT x : x ≥ 0, Ax ≥ 1

}
and its corresponding dual

max
{
1

Ty : y ≥ 0, ATy ≤ c
}
,

where Aki = 1 if k ∈ S i and 0 otherwise. The greedy algorithm will now provide a feasible
solution z

H(M) ∈ R
m for the dual program by setting zk as the average cost that is paid for

covering element k by the greedy heuristic: Suppose the element k is covered in the r-th

step of the greedy algorithm by picking the index j with
|S r−1

j |

c j
maximal. Observe that r and

k have a one-to-one relation since exactly after iteration r, the element k is removed from
the remaining sets, i.e., k < S r

i . Let wr
j = |S r

j|, then we define the average costs for k ∈ S r−1
j

being added to the cover in iteration r by picking the set S r−1
j as

zk =
c j

wr−1
j

=
cost of the covering set S j

number of elements in S j after r − 1 iterations
.

We check the feasibility of the dual program: The constraint z ≥ 0 is immediate since both
numerator and denominator are positive. We further show that z satisfies

(AT z)i ≤ H (M) · ci

implying feasibility of z
H(M) . The key identity here is S i ∩ S r−1

j = S r−1
i \ S r

i , since both
sets contain exactly the elements of the original set S i that get covered in iteration r by
picking S r−1

j . Suppose the algorithm has iterations r ranging from 1 to b, i.e., b is the
largest iteration such that there is an index k with wb−1

k > 0. Then,

(AT z)i =
∑
k∈S i

zk =

b∑
r=1

∑
k∈S i∩S r−1

j

zk =

b∑
r=1

∑
k∈S r−1

i \S
r
i

zk =

b∑
r=1

(wr−1
i − wr

i )
c j

wr−1
j

.
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Since in iteration r we have c j

wr−1
j

chosen minimal, we obtain

b∑
r=1

(wr−1
i − wr

i )
c j

wr−1
j

≤ ci

b∑
r=1

wr−1
i − wr

i

wr−1
i

.

Finally we bound with respect to the harmonic series as follows:

ci

b∑
r=1

(wr−1
i − wr

i )
1

wr−1
i

= ci

b∑
r=1

 1
wr−1

i

+ . . . +
1

wr−1
i


≤ ci

b∑
r=1

 1
wr−1

i

+
1

wr−1
i − 1

+ . . . +
1

wr
i + 1


= ci

b∑
r=1

 1
wr−1

i

+
1

wr−1
i − 1

+ . . . +
1

wr
i + 1

+ H
(
wr

i
)
− H

(
wr

i
)

= ci

b∑
r=1

(
H

(
wr−1

i

)
− H

(
wr

i
))

= ci · H
(
w0

i

)
= ci · H (|S i|) ≤ ci ·max

i∈[n]
H (|S i|) = ci · H(M).

Thus we have
(
AT z

)
i
≤ ci ·H(M) for every index i ∈ [n] implying the dual feasibility of

z
H(M) . If we compute the objective values of the vector z

H(M) and of an optimal solution x∗

of the primal program (3.3) we obtain by weak duality:

1
T z

H(M)
≤ cT x∗ ≤ SC.

On the other hand, since the greedy algorithm provides us with a cover J , the corre-
sponding index vector x′ ∈ {0, 1}n supported on J is feasible for the primal program and
we obtain for the objective value

cT x′ =
∑
j∈J

c j =
∑
j∈J

wr−1
j

c j

wr−1
j

=
∑
j∈J

∑
k∈S r−1

j

zk = 1
T z.

Combining these two (in-)equalities finally leads to

cT x′ = 1
T z ≤ H(M) · SC

and closes the proof. �

Hence we have shown that the greedy algorithm yields an approximation ratio of

cT x′

SC
≤ H(M) =

M∑
j=1

1
j

= ln(M) + γ + o
(

1
2M

)
≤ ln(M) + 1,

where γ is known as the Euler-Mascheroni constant. This implies that a logarithmic upper
bound for set cover can be computed in polynomial time. Furthermore, due to the result of
Dinur and Steurer [27], unless P = NP, it is very unlikely that one can efficiently achieve
a better approximation ratio. However, in subexponential time, it is possible to present a
better approximating algorithm that is based on the famous hierarchy of Lasserre [54].
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3.2 The Lasserre hierarchy
The Lasserre hierarchy was designed as a method to approximate general 0/1-integer prob-
lems, such as

IP = max
{
cT x : x ∈ {0, 1}n, Ax ≥ b

}
, (3.4)

where c ∈ Rn, A ∈ Rm×n and b ∈ Rm. We relax the integrality constraints and consider the
polyhedron

K =

x ∈ Rn :

 A
I
−I

 x ≥

 b
0
−1


 .

To simplify the notation we will denote A =

 A
I
−I

 and b =

 b
0
−1

 for the rest of this chapter.

The optimal value IP is attained at a vertex of the polytope P = conv{K ∩ {0, 1}n}, the
convex hull of K intersected with the vertices of the n-dimensional unit cube. What the
Lasserre hierarchy achieves, is to construct a hierarchy of convex bodies Lt(K) with respect
to K, that converges to P after at most n steps:

K = L0(K) ⊇ L1(K) ⊇ · · · ⊇ Ln(K) = P. (3.5)

This leads to the definition of the central concept of this chapter, the Lasserre hierarchy of
level t (as defined in [71]), where the involved vectors are indexed by It B {I ∈ P([n]) :
|I| ≤ t}.

Definition 3.2.1. Let K = {x ∈ Rn : Ax ≥ b} defined by A ∈ Rm×n and b ∈ Rm. The
Lasserre hierarchy of level t, Last(K) , is the set of vectors y ∈ RIt , that satisfy:

y∅ = 1, Mt(y) � 0, M`
t (y) � 0 for every ` ∈ [m],

where Mt(y) B (yI∪J)|I|,|J|≤t is called the moment matrix and the matrices

M`
t (y) B

 n∑
i=1

A`iyI∪J∪{i} − b`yI∪J


|I|,|J|≤t

are called localizing matrices.

In general, a standard approach to tackle integer programs like (5.3) is to use lift- and
project methods. We use Definition 3.2.1 to lift the solution space K ⊆ Rn of the original
program to a higher dimensional space Last(K) ⊆ RIt . Here we find an optimal solution
y ∈ Last(K) and project it back to a set Lt(K) satisfying P ⊆ Lt(K) ⊆ K. The sets Lt(K) are
as follows.

Definition 3.2.2. Let y ∈ Last(K) and define the function proj : RIt → R[n] by

proj(y) 7→ (y{1}, y{2}, y{3}, . . . , y{n}).

We denote its image on the original solution space x ∈ K by

Lasproj
t (K) B

{
(y{1}, . . . , y{n}) : y ∈ Last(K)

}
.
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Now, we have all definitions needed for (3.5), whereas a rigorous proof of (3.5) is due
to the following Theorems 3.2.3 and 3.2.4. Because optimizing over Last(K) can often be
executed in polynomial time in terms of the number and dimension of matrices Mt(y) and
M`

t (y) (see Section 2.1.1), one might wonder whether optimizing over Lasn(K) leads to an
efficient algorithm to solve the NP-complete problem set cover. Thus it is important to
note that the set of indices It = {I ∈ P([n]) : |I| ≤ t} has exponential size 2O(t) at step
Last(K) in the hierarchy and consequently optimizing over Lasn(K) requires exponential
time. However, for a variety of problems, such as independent set, graph coloring (see
[40]) or for finding error correcting codes (see [36]), even computing Las2(K) provides
significantly good bounds.
We begin to prove (3.5) by presenting a shortened version of a lemma in the survey of
Rothvoß (see Lemma 1, [71]).

Theorem 3.2.3. Let K = {x ∈ Rn : Ax ≥ b} and y ∈ Last(K) for t ≥ 0. Then Last(K) has
the following properties:

a) K ∩ {0, 1}n ⊆ Lasproj
t (K)

b) Lasproj
t (K) ⊆ K

c) Las0(K) ⊇ Las1(K) ⊇ . . . ⊇ Lasn(K)

Proof. [71] We prove properties a) - c) as follows:

a) Let x ∈ K ∩ {0, 1}n be a feasible integer solution. We prove that the vector y ∈ RIt

defined by

yI B

1 if I = ∅∏
i∈I xi otherwise

satisfies y ∈ Last(K) for every t ≥ 0. Thus we start checking the properties of
Definition 3.2.1: The first property y∅ = 1 is immediate from the definition above.
For the moment matrix Mt(y) we observe:

(Mt(y))I,J = yI∪J =
∏
i∈I∪J

xi =
∏
i∈I

xi ·
∏
j∈J

x j = yI · yJ =
(
yyT

)
I,J
,

where the third equality uses the fact that xi = x2
i for every xi ∈ {0, 1}. Thus Mt(y) is

actually a 2t × 2t submatrix of the positive semidefinite matrix yyT .
Finally we focus on the localizing matrices M`

t (y). Let us denote the `-th row in the
system Ax ≥ b by aT x ≥ β and conclude(

M`
t (y)

)
I,J

=

n∑
i=1

aiyI∪J∪{i} − βyI∪J =

n∑
i=1

aiy{i}yIyJ − βyIyJ

=

 n∑
i=1

aixi − β

 yIyJ = (aT x − β) ·
(
yyT

)
I,J

Since x is a feasible solution of Ax ≥ b, we have that aT x − β ≥ 0 and thus M`
t (y) =

(aT x − β) (yIyJ)|I|,|J|≤t is a scaled principal minor of the positive semidefinite matrix
yyT implying positive semidefiniteness. Thus we verified the three properties and
conclude y ∈ Last(K) which closes the proof of a).
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b) We check that y′ = (y{1}, . . . , y{n})T ∈ Lasproj
t satisfies every `-th constraint denoted

by aTy′ ≥ β. For this we consider the entry M`
t (y)∅,∅, which is nonnegative as a

principal 1 × 1 submatrix of M`
t (y) � 0, implying

0 ≤ M`
t (y)∅,∅ =

n∑
i=1

aiy∅∪{i} − βy∅ = aTy′ − β.

c) We observe that the moment matrix Mt(y) is a principal submatrix of Mt+1(y) and
that the same holds for M`

t (y) and M`
t+1(y) respectively. Thus for every solution

y ∈ Last+1(K) with Mt+1(y) � 0 and M`
t+1(y) � 0 we also have Mt(y) � 0 and

M`
t (y) � 0 implying y ∈ Last(K). The claim follows inductively.

�

3.2.1 Convergence of the Lasserre hierarchy
The final goal of this paragraph is to prove finite convergence, i.e., the last equality in (3.5):

Lasproj
n (K) = conv(K ∩ {0, 1}n).

Since Lasproj
n (K) is convex, property a) in Theorem 3.2.3 implies Lasproj

n (K) ⊇ conv(K ∩
{0, 1}n). It remains to show that Lasproj

n (K) ⊆ conv(K ∩ {0, 1}n).

Theorem 3.2.4. Given y ∈ Last(K) and a subset of indices S ⊆ [n] with |S | ≤ t. Then,

y ∈ conv
{
z ∈ Last−|S |(K) : zi ∈ {0, 1} for every i ∈ S

}
.

Finite convergence follows by applying Theorem 3.2.4 to S = [n]: Then for y ∈
Lasn(K) the theorem implies

y ∈ conv
{
z ∈ Las0(K) : zi ∈ {0, 1} for every i ∈ [n]

}
,

or Lasn(K) ⊆ conv
{
z ∈ Las0(K) : zi ∈ {0, 1} for every i ∈ [n]

}
. If we project these sets by

proj : RIn → R[n] and recall that Lasproj
0 (K) ⊆ K, we immediately obtain

Lasproj
n (K) ⊆ conv

{
z ∈ Lasproj

0 (K) : zi ∈ {0, 1} for every i ∈ [n]
}
⊆ conv (K ∩ {0, 1}n) .

Thus after at most n iterations the projected solution space of the Lasserre hierarchy has
indeed converged to the integral hull of (3.4). In order to prove Theorem 3.2.4 we first
prove Lemma 3.2.5, following the arguments in [71].

Lemma 3.2.5. Let t ≥ 1 and consider y ∈ Last(K) with the property 0 < y{i} < 1 for an
index i ∈ [n]. Then the vectors z(0) and z(1) defined by

z(0)
I B

yI − yI∪{i}

1 − y{i}
, z(1)

I B
yI∪{i}

y{i}

satisfy the properties z(0), z(1) ∈ Last−1(K), z(0)
{i} = 0, z(1)

{i} = 1 and

y = (1 − y{i}) · z(0) + y{i} · z(1).
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Proof. [71] Three properties hold immediately since z(0)
{i} =

y{i}−y{i}
1−y{i}

= 0, z(1)
{i} =

y{i}
y{i}

= 1 and

yI = yI∪{i} + yI − yI∪{i} = y{i} ·
yI∪{i}

y{i}
+ (1 − y{i}) ·

yI − yI∪{i}

1 − y{i}
= y{i} · z

(1)
I + (1 − y{i}) · z

(0)
I .

Thus it is left to show that z(0), z(1) ∈ Last−1(K). For this, we define the index sets I−,I+ ⊆

It−1 by
I− B {I : |I| < t, i < I} and I+ B {I ∪ {i} : |I| < t, i < I}.

These sets are disjoint with |I+| = |I−| and furthermore we have that the index set It−1
of Last−1(K) satisfies It−1 ⊆ I− ∪ I+, since I− includes all sets I with |I| ≤ t − 1 and
{i} < I, whereas I+ includes all sets I with |I| ≤ t − 1 and {i} ∈ I. We consider the principal
submatrices M−i and M+i of Mt(y) indexed by I− and I+. After rearranging the rows and
columns of Mt(y) we obtain

Mt(y) =


I− I+

I− M−i M+i ∗

I+ M+i M+i ∗

∗ ∗ ∗


= y{i}


1
y{i}

M+i
1
y{i}

M+i ∗
1
y{i}

M+i
1
y{i}

M+i ∗

∗ ∗ ∗

 + (1 − y{i})


1

1−y{i}
(M−i − M+i) 0 ∗

0 0 ∗

∗ ∗ ∗

 .
The entries of the first principal submatrix

M1 B

 1
y{i}

M+i
1
y{i}

M+i
1
y{i}

M+i
1
y{i}

M+i


are of the form 1

y{i}
· yI∪J∪{i} with I, J ∈ I− ∪ I+. Thus the matrix Mt−1(z(1)) with entries

z(1)
I∪J = 1

y{i}
· yI∪J∪{i} for I, J ∈ It−1 ⊆ I− ∪I+ is a principal submatrix of M1. Due to the fact

that M+i � 0, the cloned and scaled copy M1 is also positive semidefinite and thus every
principal submatrix, in particular Mt−1(z(1)), is positive semidefinite as well. The same idea
applies for

M2 B

( 1
1−y{i}

(M−i − M+i) 0
0 0

)
having entries

(M2)I,J =

 1
1−y{i}

· (yI∪J − yI∪J∪{i}) = z(0)
I∪J for I, J ∈ I−

0 = z(0)
I∪J otherwise.

We deduce similarly that Mt−1(z(0)) is a principal submatrix of M2 and show that M2 is
positive semidefinite:
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(
x
x′

)T

M2

(
x
x′

)
=

(
x
x′

)T (
(M−i − M+i) 0

0 0

) (
x
x′

)
= xT (M−i − M+i)x

=

(
x
−x

)T (
M−i M+i

M+i M+i

) (
x
−x

)
≥ 0,

where x denotes the first |I−| entries of
(

x
x′

)
. Therefore M2 � 0 and Mt−1(z(0)) � 0 is a valid

moment matrix.
Finally, for z(0) and z(1) ∈ Last−1(K) it remains to show that the corresponding localiz-
ing matrices M`

t−1(z(0)) and M`
t−1(z(1)) are positive semidefinite. The proof uses the same

arguments as above applied on every localizing matrix M`
t and its principal submatrices

M`
−i and M`

+i indexed by I− and I+ respectively:

M`
t (y) =


I− I+

I− M`
−i M`

+i ∗

I+ M`
+i M`

+i ∗

∗ ∗ ∗


= y{i}


1
y{i}

M`
+i

1
y{i}

M`
+i ∗

1
y{i}

M`
+i

1
y{i}

M`
+i ∗

∗ ∗ ∗

 + (1 − y{i})


1

1−y{i}
(M`
−i − M`

+i) 0 ∗

0 0 ∗

∗ ∗ ∗

 .
After having shown that Mt−1(z(0)), M`

t−1(z(0)), Mt−1(z(1)) and M`
t−1(z(1)) � 0, together with

z(0)
∅

= z(1)
∅

= 1 by definition, we conclude z(0), z(1) ∈ Last−1(K). �

For a fixed index i ∈ [n], Lemma 3.2.5 shows that y ∈ Last(K) is contained in conv{z ∈
Last−1(K) : z{i} ∈ {0, 1}}. Thus we can prove Theorem 3.2.4 by applying Lemma 3.2.5
iteratively for a fixed subset S ⊆ [n], where for simplicity of notation we denote S =

{1, . . . , s}. The iterations then read:

Last(K) ⊆ conv
{
Last−1(K) ∩

{
z ∈ RIt : z{1} ∈ {0, 1}

}}
⊆ conv

{
Last−2(K) ∩

{
z ∈ RIt : z{1}, z{2} ∈ {0, 1}

}}
⊆
...

⊆ conv
{
Last−|S |(K) ∩

{
z ∈ RIt : z{1}, . . . , z{s} ∈ {0, 1}

}}
.

3.2.2 Applying the Lasserre hierarchy to set cover
In Section 3.1.2 it was shown that a simple greedy heuristic already yields a fairly good ap-
proximation ratio of set cover, i.e., it finds a solution with objective value cT x ≤ SC·H(M),
where M denotes the size of the largest subset. This leads to the observation that the greedy
algorithm provides better approximations, the smaller the largest set is. In this section, we
will exploit this fact by utilizing the Lasserre hierarchy to a priori put "good sets" into the
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cover and let the greedy heuristic act only on the remaining small sets. The resulting al-
gorithm is due to Chlamtác, Friggstad and Georgiou [12] and achieves an approximation
ratio of (1− ε) ln(m) + o(1), where 0 < ε < 1. This ratio is better than the one of the greedy
heuristic but needs subexponential runtime instead of polynomial runtime. Hereafter, we
again follow the presentation in Rothvoß’ [71] lecture notes and assume all entries of c, A, b
to be rational.
We consider the linear relaxation of SC and instead of applying Lasserre’s hierarchy di-
rectly, we add a constraint cT x ≤ q with a predetermined (see below) constant q ≤ SC to
obtain

Kq B

x ∈ Rn :
∑

i:k∈S i

xi ≥ 1 for every k ∈ [m], cT x ≤ q, 0 ≤ xi ≤ 1 for every i ∈ [n]

 .
For every fixed 0 < ε < 1 such that mε ∈ N, the constant q is determined via binary search:
Without loss of generality we assume c ∈ Nn, if otherwise we rescale the constraint cT x ≤ q
with the product of the denominators of c. The goal is to find the smallest q for which there
is still a feasible solution y ∈ Lasmε (Kq), where m is the number of covering constraints.
We begin by setting q = 20 and check whether Lasmε (Kq) , ∅. If Lasmε (Kq) , ∅, we stop.
If not, we iterate the whole procedure with q = 2k and k = 1, 2, . . . . Once we have found
a q = 2k satisfying Lasmε (Kq) , ∅, we continue searching for a smaller q ∈ [2k−1, 2k], for
which this also holds, by performing a binary search. Thus we end up with the smallest
q ∈ N for which Lasmε (Kq) , ∅ holds.
With the help of the computed q and its corresponding relaxation Kq we can now approxi-
mate SC with the following algorithm.

Algorithm 2 Algorithm using the Lasserre hierarchy for set cover

Require: Ground set [m], subsets S 1, . . . , S n, costs c1, . . . , cn

Ensure: Cover J
1: Covered elements C ← ∅
2: J ← ∅
3: Find a q for which Lasmε (Kq) , ∅ (via binary search)
4: Compute y(0) ∈ Lasmε (Kq)
5: for r ∈ 1, . . . , mε do
6: Choose j ∈ [n] \ J with y(r−1)

{ j} > 0 and |S j \ C| ≥ |S i \ C| for every i ∈ [n]
7: J ← J ∪ { j}
8: C ← C ∪ S j

9: y(r)
I ←

y(r−1)
I∪{ j}

y(r−1)
{ j}

(see Lemma 3.2.5)

10: S i ← S i \ S j for every i ∈ [n] \ J
11: end for
12: Find cover J ′ for the remaining elements, using Algorithm 1
13: J ← J ∪J ′

To show that this algorithm requires subexponential time to find a (1 − ε) ln(m) + o(1)
approximation of set cover we present the proof of Rothvoß [71]. It is important to note
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that computing a feasible y ∈ Last(Kq) is computable in polynomial time in terms of the
dimension of the block diagonal matrix

Mt(y) 0 . . . 0

0 M1
t (y)

. . .
...

...
. . .

. . . 0
0 . . . 0 Mm+1

t (y)

 ∈ S
(m+2)·O(t·nt).

This fact boils down to finding a solution for the weak optimization problem, defined in
Chapter 2, on the bounded convex body Lasmε (Kq). The weak optimization problem can be
solved in nO(mε) time due to Example 2.1.7.

Theorem 3.2.6. For a fixed ε with 0 < ε < 1, Algorithm 2 provides an approximation for
set cover with cost at most ((1 − ε) ln(m) + o(1)) · SC in time nO(mε).

Proof.

1) Time:
Since computing a feasible y ∈ Lasmε (Kq) is possible in nO(mε) time and the binary
search needs O(log(SC)) iterations only depending on the optimal value SC ≤ n,
we need nO(mε) time to find q. The loop always runs in polynomial time, as does the
greedy algorithm. Thus the resulting time of the entire algorithm lies in nO(mε).

2) Quality of the approximation:
After computing q with the property Lasmε (Kq−1) = ∅ via binary search, we conclude
via Theorem 3.2.3

∅ = Lasmε (Kq−1) ⊇ Lasmε+1(Kq−1) ⊇ · · · ⊇ Lasn(Kq−1) = conv{Kq−1 ∩ {0, 1}n}

and thus conv{Kq−1 ∩ {0, 1}n} = ∅. This implies q − 1 < SC and further q ≤ SC due
to integrality of rescaled cT x and q.
We further observe that for every index j ∈ J = { j1, . . . , jmε }, where jr denotes the
index picked in iteration r, we have that

y(r)
{ j} =

y(r−1)
{ j}∪{ jr}

y(r−1)
{ jr}

=
y(r−2)
{ j, jr}∪{ jr−1}

y(r−2)
{ jr−1}

y(r−2)
{ jr−1}

y(r−2)
{ jr}∪{ jr−1}

=
y(r−2)
{ j}∪{ jr , jr−1}

y(r−2)
{ jr , jr−1}

and conclude inductively y(mε)
{ j} =

y(0)
J

y(0)
J

= 1. Together with the fact that inductively ap-

plying Lemma 3.2.5 shows that y(mε) ∈ Las0(Kq), i.e., y′ B proj(y(mε)) ∈ Lasproj
0 (Kq) =

Kq, we conclude that

cTy′ =
∑
j∈J

c j +
∑
j<J

c jy
′
j ≤ q ≤ SC.

To cover the remaining elements, X′ B [m] \ C, we apply the greedy Algorithm 1.
Since y′ ∈ Kq defines a fractional cover, we can find a proper cover by restricting to
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the sets S′ = {S i \ C : y′i > 0} pickable by Algorithm 2 in a hypothetical (mε + 1)-th
iteration. But for every set S j with j ∈ J we know from line 6 in Algorithm 2 that
|S j| ≥ |S i \C| for S i \C ∈ S

′. This implies that |S i| ≤ m1−ε since otherwise we would
already have covered

∑
j∈J |S j| ≥ mε · m1−ε = m elements.

Finally, we apply the greedy heuristic achieving a cover for the remaining sets of
costs at most (ln(m1−ε) + 1)

∑
j<J c jy

′
j and we end up with a cover of costs∑

j∈J

c j + (ln(m1−ε) + 1)
∑
j<J

c jy
′
j ≤ cTy′ + ln(m1−ε)SC ≤ ((1 − ε) ln(m) + 1)SC.

�

3.3 Exploiting symmetries in set cover
In this section we are interested in symmetric instances of set cover; that is, we assume
n = m, i ∈ S j ⇔ j ∈ S i and the existence of a group Γ with a transitive action on [n] such
that

{S 1, . . . , S n} = {γS 1 : γ ∈ Γ}.

In particular, transitivity implies |S i| = |S 1| for every i ∈ [n].
These instances are essentially the finite versions of the upcoming covering problems in
Chapter 5 and the techniques we illustrate here turn out to hold in the setting of compact
metric spaces as well. Symmetry reduction is not part of Rothvoß’ lecture notes [71].
However, if applicable, this technique is a powerful tool to reduce the number of constraints
in the Lasserre hierarchy significantly.
The integer linear program formulation for such symmetric problems reads

SSC = min


n∑

i=1

xi : x ∈ {0, 1}n,
∑

i∈γS 1

xi ≥ 1 for every γ ∈ Γ

 (3.6)

and the corresponding linear programming relaxation

SSCLP B min


n∑

i=1

xi : x ∈ [0, 1]n,
∑

i∈γS 1

xi ≥ 1 for every γ ∈ Γ

 (3.7)

of SSC gives a trivial bound: The vector x defined by xi = 1/|S 1| for all i ∈ [n] is feasible
and has objective value n/|S 1|, so SSCLP ≤ n

|S 1 |
. For the inequality SSCLP ≥ n

|S 1 |
we

observe that for feasible x, the vector x̄, defined by

x̄i =
1
|Γ|

∑
γ∈Γ

xγi, for i ∈ [n],

is also feasible and has the same objective value. Since the action of Γ on [n] is transitive,
we have x̄i = x̄ j for all i and j, and hence x̄i ≥ 1/|S 1| for all i, which implies SSCLP ≥ n

|S 1 |
.

This resembles the volume bound (1.1).
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We apply the Lasserre hierarchy by defining for the vectors y ∈ RIt the moment matrix
M(y) by (M(y))J,J′ B yJ∪J′ and its submatrix Mt(y) by restricting the cardinality of the sets
J, J′ to |J|, |J′| ≤ t. The localizing matrices Mγ

t (y) are defined by(
Mγ

t (y)
)

J,J′
B

∑
i∈γS 1

yJ∪J′∪{i} − yJ∪J′


|J|,|J′ |≤t

.

The Lasserre hierarchy over KΓ = {x ∈ [0, 1]n :
∑

i∈γS 1
xi ≥ 1 for every γ ∈ Γ} now equals

Last(KΓ) = min

 n∑
i=1

y{i} : y ∈ RI2t , y∅ = 1, Mt(y) � 0, Mγ
t (y) � 0 for γ ∈ Γ

 , (3.8)

where I2t = {I ⊆ [n] : |I| ≤ 2t}. As we have seen in the sections before it is notoriously
costly to compute higher steps in the hierarchy. A convenient tool to simplify such compu-
tations is to apply symmetry reduction, i.e., consider the symmetry inherent in the program
and restrict the program to solutions invariant under this symmetry.
For a feasible solution y ∈ RI2t we show that the vector ȳ ∈ RI2t defined by ȳJ B
1
|Γ|

∑
γ∈Γ yγJ , where γJ = {γ j : j ∈ J}, is also a feasible solution for (3.8) with the same

objective value
∑n

i=1 ȳ{i} =
∑n

i=1 y{i}. For this we observe that γ(A ∪ B) = γA ∪ γB for any
two finite sets A, B and

n∑
i=1

ȳ{i} =
1
|Γ|

∑
γ∈Γ

n∑
i=1

y{γi} =

n∑
i=1

y{i},

ȳ∅ = y∅ = 1,

Mt(ȳ)J,J′ = ȳJ∪J′ =
1
|Γ|

∑
γ∈Γ

yγJ∪γJ′ =
1
|Γ|

∑
γ∈Γ

Mt(y)γJ,γJ′ .

For the localizing matrices indexed by γ′ ∈ Γ, we have

Mγ′

t (ȳ)J,J′ =
1
|Γ|

∑
γ∈Γ

 ∑
i∈γ′S 1

yγJ∪γJ′∪{γi} − yγJ∪γJ′

 =
1
|Γ|

∑
γ∈Γ

Mγ◦γ′

t (y)γJ,γJ′ .

We further know that simultaneous row and column permutations do not change the eigen-
values of a matrix and thus the matrices Mt(ȳ) and Mγ′

t (ȳ) remain positive semidefinite.
Thus we can restrict the program (3.8) to the Γ-invariant vectors ȳ ∈ RI2t without changing
the optimal value and conclude

Last(KΓ) = min

 n∑
i=1

y{i} : y ∈ RI2t/Γ, y∅ = 1, Mt(y) � 0, Mγ
t (y) � 0 for γ ∈ Γ

 ,
where I2t/Γ denotes the quotient space defined by the equivalency relation I ∼ J whenever
there is a γ ∈ Γ such that I = γJ. For our final simplification we first observe that for
Γ-invariant vectors y, i.e., yJ = yγJ , we also have

Mγ
t (y)J,J′ =

∑
i∈γS 1

yJ∪J′∪{i} − yJ∪J′ =
∑
i∈S 1

yJ∪J′∪{γi} − yJ∪J′

=
∑
i∈S 1

yγ−1 J∪γ−1 J′∪{i} − yγ−1 J∪γ−1 J′ = Mid
t (y)γ−1 J,γ−1 J′ .



Section 3.3 Exploiting symmetries in set cover 47

Consequently for Γ-invariant vectors y we have that

Mid
t (y) � 0⇔ Mγ

t (y) � 0 for every γ ∈ Γ

leading to the following

Last(KΓ) = min

 n∑
i=1

y{i} : y ∈ RI2t/Γ, y∅ = 1, Mt(y) � 0, Mid
t (y) � 0

 . (3.9)

This reformulation of the Lasserre hierarchy is computationally faster due to the fact that we
have reduced the dimension of the matrices from (n+1)·O(t·nt) to 2·O(t·nt) and the number
of variables from |I2t | to |I2t/Γ|. In the remainder of this thesis we study geometric covering
problems of a structure similar to set cover. A possible way of tackling these problems
would be to sample the underlying geometric structure and work with the corresponding
set cover problem as was done by Naszódi [60] to obtain upper bounds. However, the
main idea in Chapter 5 is to work with an infinite analogue of the symmetrized version of
Lasserre’s hierarchy to keep the geometric properties and achieve lower bounds.
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Chapter Four

Upper bounds

This chapter is based on the publication Covering compact metric spaces greedily, by J. H.
Rolfes and F. Vallentin, Acta Math. Hungar., 155(1):130–140, 2018."

A general greedy approach to construct coverings of compact metric spaces by metric
balls is given and analyzed. The analysis is a continuous version of Chvátal’s analysis
of the greedy algorithm for the weighted set cover problem illustrated in Section 3.1.2. The
approach is demonstrated in an exemplary manner to construct efficient coverings of the n-
dimensional sphere and n-dimensional Euclidean space to give short and transparent proofs
of several best known bounds obtained from deterministic constructions in the literature on
sphere coverings.

4.1 Introduction

Let X be a compact metric space having metric d. Given a scalar r ∈ R≥0 we define the
closed ball of radius r around center x ∈ X by

B(x, r) = {y ∈ X : d(x, y) ≤ r}.

The covering number of the space X and a positive number r is

N(X, r) = min

|Y | : Y ⊆ X,
⋃
y∈Y

B(y, r) = X

 ,
i.e., it is the smallest number of balls with radius r one needs to cover X. Determining
the covering number is a fundamental problem in metric geometry (see for example the
classical book by Rogers [68]) with many applications: compressive sensing [34], approx-
imation theory and machine learning [17] — to name a few.
In this chapter we are concerned with compact metric spaces which carry a probability
measure ω; a Borel measure normalized by ω(X) = 1. We will assume that this proba-
bility measure is non degenerate and behaves homogeneously on balls, i.e., it satisfies the
following two conditions:
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(a) ω(B(x, s)) = ω(B(y, s)) for all x, y ∈ X, and for all s ≥ 0,

(b) ω(B(x, s)) < ω(B(x, t)) whenever B(x, s) is strictly contained in B(x, t).

By (a) the measure of a ball does only depend on the radius s and not on the center x, so
we simply denote ω(B(x, s)) by ωs throughout the paper.

Theorem 4.1.1. Let (X, d) be a compact metric space with probability measureω satisfying
conditions (a) and (b). Then for every ε with r/2 > ε > 0 the covering number satisfies

1
ωr
≤ N(X, r) ≤

1
ωr−ε

(
ln

(
ωr−ε

ωε

)
+ 1

)
.

The lower bound is obvious (using the σ-subadditivity of ω). We give a proof for the
upper bound in Section 4.2. Our proof is based on a greedy approach to covering. We
iteratively choose balls which cover the maximum measure of yet uncovered space.
We recall that this greedy algorithm has been analyzed in the finite setting of the set
cover problem which is a fundamental problem in combinatorial optimization. The set
cover problem is defined as follows. Given a collection S 1, . . . , S n of the ground set
{1, . . . ,m} and given costs c1, . . . , cn the task is find a set of indices I ⊆ {1, . . . , n} such
that

⋃
i∈I S i = {1, . . . ,m} and

∑
i∈I ci is as small as possible.

Computationally, the set cover problem is difficult; Dinur and Steurer [27] showed that for
every ε > 0 it is NP-hard to find an approximation to the set cover problem within a factor
of (1 − ε) ln m.
On the other hand, Chvátal [13] (previously, Johnson [47], Stein [78] and Lovász [57]
proved similar results for the case of uniform costs c1 = . . . = cn = 1) showed that the
greedy algorithm gives an (ln m+1)-approximation for the set cover problem. More specif-
ically, Chvátal showed that the natural linear programming relaxation of set cover

min
n∑

i=1

cixi :

x1, . . . , xn ≥ 0,∑
i: j∈S i

xi ≥ 1 for all j = 1, . . . ,m

is at most a factor of H(M) =
∑M

j=1
1
j ≤ ln M +1, with M = maxi |S i|, away from an optimal

solution of set cover. In Section 3.1.2 we provided his proof of this bound by exhibiting an
appropriate feasible solution of the dual of the linear programming relaxation. The greedy
algorithm was used to construct this feasible solution. We want to stress that although the
techniques in Chapter 3 are designed for a finite ground set, they turn out to work in a
similar way for compact metric spaces. For this it is important to note, that the analogue of
a set of one element in the ground set [m] is the (small) ball B(x, ε), since we need every
set in our cover to have positive volume.
In Section 4.2 we transfer Chvátal’s argument from the finite set cover setting to the setting
of compact metric spaces. Function g appearing there features the feasible solution of the
dual linear program. This will provide a proof of Theorem 4.1.1. In Section 4.3 we apply
Theorem 4.1.1 to three concrete geometric settings and we retrieve some of the best known
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asymptotic results, unifying many results on sphere coverings.
We think that the NP-hardness of getting (1 − ε) ln m-approximations for the set cover
problem is a natural barrier for getting better asymptotic results for geometric covering
problems. This might serve as an explanation why progress for example on the sphere
covering problem has been very slow since the initial work of Rogers [68].
We are not the first observing the strong relation between geometric covering problems and
set cover1. In recent papers, Artstein-Avidan and Raz [4], Artstein-Avidan and Slomka
[5] and especially Naszódi [60] used the results of Lovász [57] to unify old results and
prove new results on geometric coverings. However, they apply the results from set cover
directly after choosing a finite ε-net. Since we consider an infinite analogue of set cover
we do not need to use an ε-net and by this we sometimes get slightly better constants and
more importantly we think that the analysis becomes rather beautiful.

4.2 Proof of Theorem 4.1.1

We shall prove that the following greedy algorithm (Algorithm 3) will provide a covering
of X with at most

1
ωr−ε

(
ln

(
ωr−ε

ωε

)
+ 1

)
many balls of radius r.

Algorithm 3 Greedy algorithm

1: i← 0
2: S i

x = B(x, r − ε) for all x ∈ X
3: while

⋃i
j=1 B(y j, r) , X do

4: i← i + 1
5: Choose y ∈ X with ω(S i−1

y ) ≥ ω(S i−1
x ) for all x ∈ X

6: yi ← y
7: S i

x ← S i−1
x \ S i−1

y for all x ∈ X
8: end while

We split the proof into three lemmas where the following identity will become impor-
tant:

S i−1
x = B(x, r − ε) \

i−1⋃
j=1

B(y j, r − ε). (4.1)

The first lemma states that the step of the algorithm when we want to choose y ∈ X, with
ω(S i−1

y ) ≥ ω(S i−1
x ) for all x ∈ X, is indeed well-defined.

Lemma 4.2.1. In every iteration i the supremum sup{ω(S i−1
x ) : x ∈ X} is attained.

1In fact, we realized this only after we, in an attempt to understand geometric covering problems from an
optimization point of view, wrote down the main body of this paper.
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Proof. We shall show that the function fi : X → R, fi(x) = ω(S i−1
x ) is continuous for every

iteration i. This implies that fi attains its maximum since X is compact.
For x, y ∈ X we have

| fi(x) − fi(y)| = |ω(S i−1
x ) − ω(S i−1

y )|

= |ω(S i−1
x \ S i−1

y ) + ω(S i−1
x ∩ S i−1

y )

− (ω(S i−1
y \ S i−1

x ) + ω(S i−1
y ∩ S i−1

x ))|

= |ω(S i−1
x \ S i−1

y ) − ω(S i−1
y \ S i−1

x )|

≤ max{ω(S i−1
x \ S i−1

y ), ω(S i−1
y \ S i−1

x )}.

Without loss of generality, the maximum is attained at ω(S i−1
x \ S i−1

y ). Then by (4.1) we see

S i−1
x \ S i−1

y ⊆ B(x, r − ε) \ B(y, r − ε).

By the triangle inequality

B(x, r − ε) \ B(y, r − ε) ⊆ B(y, r − ε + d(x, y)) \ B(y, r − ε).

Now consider the indicator function 1B(y,r−ε+d(x,y))\B(y,r−ε). When y tends to x, then we have
a monotonously decreasing sequence of measurable functions tending to 0. By applying
the theorem of monotone convergence we obtain that the integral∫

1B(y,r−ε+d(x,y))\B(y,r−ε)(z) dω(z)

tends to 0 as well. Hence, fi(y) tends to fi(x). �

The second lemma states that the algorithm terminates after finitely many iterations.

Lemma 4.2.2. Algorithm 3 terminates after at most ω−1
ε iterations and returns a covering.

Proof. Consider the i-th iteration of the algorithm and suppose there exists x ∈ X with
x <

⋃i−1
j=1 B(y j, r). From the triangle inequality it follows that

B(x, ε) ∩ B(y j, r − ε) = ∅.

Choose y ∈ X with ω(S i−1
y ) ≥ ω(S i−1

x ) for every x ∈ X. Hence we have

ω(S i−1
y ) ≥ ω(S i−1

x ) ≥ ω(B(x, ε)) = ωε > 0

and thus

1 = ω(X) ≥
i∑

j=1

ω(S j−1
y j ) ≥ i · ωε,

where the first inequality follows because the sets S j−1
y j , with j = 1, . . . , i, are pairwise

disjoint. So after at most ω−1
ε iterations, the algorithm terminates with a covering. �

The third lemma gives the desired upper bound for the covering number.
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Lemma 4.2.3. Algorithm 3 terminates after at most

1
ωr−ε

(
ln

(
ωr−ε

ωε

)
+ 1

)
iterations. In particular, this number gives an upper bound for the covering number
N(X, r).

Proof. Let Y ⊆ X denote the covering produced by Algorithm 3 after |Y | iterations. We
shall prove

ln
(
ωr−ε

ωε

)
+ 1 ≥ |Y | · ωr−ε. (4.2)

For this we define the symmetric kernel K : X × X → R by

K(x, y) =

1, if y ∈ B(x, r − ε)
0, otherwise.

For every x ∈ X the following equality∫
K(x, y) dω(y) = ωr−ε

holds, where the integral exists due to Lebesgue’s dominated convergence theorem, as we
have a bounded function on a compact domain.

We will exhibit an integrable function g : X → R satisfying∫
K(x, y)g(x) dω(x) ≤ ln

(
ωr−ε

ωε

)
+ 1 (4.3)

for all y ∈ X and satisfying ∫
g(x) dω(x) = |Y |. (4.4)

Combining (4.3) and (4.4), we get

ln
(
ωr−ε

ωε

)
+ 1 ≥

∫ ∫
K(x, y)g(x) dω(x)dω(y)

=

∫
g(x)

∫
K(x, y) dω(y)dω(x)

=

∫
g(x)ωr−ε dω(x)

= |Y | · ωr−ε

and we have proven (4.2).

Now we only have to exhibit the function g.
For brevity, we denote ωi−1

y = ω(S i−1
y ). We define g as follows:

g(x) =

(ωi−1
yi )−1, if x ∈ S i−1

yi ,

0, otherwise,
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which is a valid definition since the sets S i−1
yi are pairwise disjoint. Also observe that g is

an integrable function on the compact set X. From this definition of g we immediately get
(4.4): ∫

g(x) dω(x) =

|Y |∑
i=1

ωi−1
yi (ωi−1

yi )−1 = |Y |.

To prove (4.3) we fix y ∈ X. We observe the equality

B(y, r − ε) ∩ S i−1
yi = S i−1

y \ S i
y,

which describes which part of B(y, r − ε) is cut away in iteration i. Then,∫
K(x, y)g(x) dω(x) =

|Y |∑
i=1

∫
K(x, y)1S i−1

yi
(x)(ωi−1

yi )−1 dω(x)

=

|Y |∑
i=1

∫
1S i−1

y \S i
y
(x)(ωi−1

yi )−1 dω(x)

=

|Y |∑
i=1

(ωi−1
y − ω

i
y)(ω

i−1
yi )−1.

For y ∈ X consider the last iteration b such that

ωr−ε = ω(B(y, r − ε)) = ω1
y ≥ . . . ≥ ω

b
y ≥ ω(B(y, ε)) = ωε (4.5)

holds (here we used r/2 > ε). Note that b < |Y |. Note also that ωi−1
y ≤ ωi−1

yi holds. We split
the sum above into two parts:

|Y |∑
i=1

(ωi−1
y − ω

i
y)(ω

i−1
yi )−1 =

b∑
i=1

(ωi−1
y − ω

i
y)(ω

i−1
yi )−1 +

|Y |∑
i=b+1

(ωi−1
y − ω

i
y)(ω

i−1
yi )−1

≤

b∑
i=1

(ωi−1
y − ω

i
y)(ω

i−1
y )−1 + (ωb

y − ω
b+1
y )(ωb

y)
−1

+

|Y |∑
i=b+2

(ωi−1
y − ω

i
y)ω

−1
ε

≤

 b∑
i=1

(ωi−1
y − ω

i
y)(ω

i−1
y )−1 +

ωb
y − ωε

ωb
y


+

ωε − ωb+1
y

ωε
+
ωb+1
y − ω|Y |y

ωε

 .
The first sum is a lower Riemann sum of the function x 7→ 1

x in the interval [ωε, ωr−ε] and
thus we have ln

(
ωr−ε
ωε

)
as an upper bound. The second sum is clearly bounded above by 1.

Hence, (4.3) holds. �
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4.3 Applications of Theorem 4.1.1

4.3.1 Covering the n-dimensional sphere
As a first application of Theorem 4.1.1 we consider the problem of covering the n-dimensional
sphere

X = S n = {x ∈ Rn+1 : x · x = 1},

equipped with spherical distance

d(x, y) = arccos x · y ∈ [0, π]

and with the rotationally invariant probability measure ω, by spherical caps / metric balls
B(x, r). Clearly, properties (a) and (b) are satisfied in this setting. Again we set ωr =

ω(B(x, r)).
We are especially interested in the covering number N(S n, r) when 0 < r < π/2 or equiva-
lently in the covering density defined by ωr ·N(S n, r). Theorem 4.1.1 says that the covering
density is at most

ωr

ωr−ε

(
ln

(
ωr−ε

ωε

)
+ 1

)
. (4.6)

This upper bounds holds for every ε with 0 < ε < r. By choosing ε depending on the
dimension n and on the spherical distance r we can find an upper bound for the covering
density which only depends on n.
For this we recall a useful estimate of fractions of the form ωtr/ωr due to Börözky Jr. and
Wintsche [11]:

ωtr

ωr
≤ tn whenever r < tr <

π

2
. (4.7)

We set ε = r/(µn+1) with parameter µ > 1 which we are going to adjust later. Furthermore,
we set

t =
r

r − ε
= 1 +

1
µn

and
t′ =

r − ε
ε

= µn.

By using (4.6) and (4.7) we have the following upper bound for the covering density

ωr

ωr−ε

(
ln

(
ωr−ε

ωε

)
+ 1

)
≤

(
1 +

1
µn

)n

(n ln µn + 1)

≤ e1/µ(n ln µn + 1)

≤

(
1 +

1
µ − 1

)
(n ln µn + 1)

Thus we have proven:

Corollary 4.3.1. The covering density of the n-dimensional sphere by spherical balls is at
most (

1 +
1

µ − 1

)
(n ln µn + 1) for all µ > 1.
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In particular, for µ = ln n, the covering density is at most

n ln n + n ln ln n + n + o(n).

In the asymptotic case the best known bound is (1/2 + o(1))n ln n due to Dumer [29]
which comes from a randomized construction. Our corollary slightly improves the previ-
ously best known non-asymptotic bound n ln n + n ln ln n + 2n + o(n) by Börözky Jr. and
Wintsche [11] also coming from a randomized construction.

4.3.2 Covering n-dimensional Euclidean space
As a second application we consider coverings of n-dimensional Euclidean space Rn by
congruent balls. We get a covering of Rn by applying Theorem 4.1.1 to the torus Tn =

Rn/Zn which is a compact metric space satisfying properties (a) and (b). Then we period-
ically extend the obtained covering of Tn to a covering of the entire Rn having the same
covering density.
We repeat the choices and calculations as in the previous section (which are slightly sim-
pler here because clearly ωtr/ωr = tn holds where here ω denotes the Lebesgues measure)
and get:

Corollary 4.3.2. The covering density of the n-dimensional Euclidean space by congruent
balls is at most (

1 +
1

µ − 1

)
(n ln µn + 1) for all µ > 1.

In particular, for µ = ln n, the covering density is at most

n ln n + n ln ln n + n + o(n).

We remark that this bound coincides with the currently best known bound by Féjes
Toth [30] coming from a deterministic construction. The best known bound coming from
a randomized construction is (1/2 + o(1))n ln n due to Dumer [29]

4.3.3 More general coverings
At last we want to demonstrate that the greedy approach to geometric covering problems
is quite flexible. It is not restricted to finding coverings of compact metric spaces by balls.
With small modifications it can for example be applied to prove the following theorem due
to Naszódi [60, Theorem 1.3]:

Theorem 4.3.3. Let K ⊆ Rn be a bounded measurable set. Then there is a covering of Rn

by translated copies of K of density at most

inf
{
ω(K)
ω(K−δ)

(
ln

(
ω

(
K−δ/2

)
ω(B(0, δ/2))

)
+ 1

)
: δ > 0

}
,

where K−δ = {x ∈ K : B(x, δ) ⊆ K} is the δ-inner parallel body of K.
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Here, we only sketch the proof, though filling in the details can be done with the theory
illustrated in Chapter 2. As in Section 4.3.2 we can work on the torus Tn. We approximate
the body K and its inner parallel bodies by a finite union of balls. For this we choose points
y1, . . . , yN such that

K−δ ⊆
N⋃

i=1

B(yi, δ/2) ⊆ K−δ/2

and
N⋃

i=1

B(yi, δ) ⊆ K

holds. We want to cover Tn greedily using these unions. Whereas in the greedy algorithm
we use the centers of the metric balls to indicate which balls we picked, we use the transla-
tion vectors translating the union of balls here.
We make this statement precise in the general setting of a compact metric space (X, d).
Consider the group of continuous isometries of (X, d), these are all continuous bijective
maps τ : X → X which preserve the distance between every two points x, y ∈ X. We as-
sume that the group acts transitively on X and that ω(τA) = ω(A) holds for all continuous
isometries τ and all measurable sets A. Then by the theorem of Arzelà-Ascoli (see for
example [33, Chapter 4.6]) the group of continuous isometries is relatively compact in the
compact space of continuous maps mapping X to itself equipped with the supremum norm.
We need this compactness for Lemma 4.2.1. So we can transfer the analysis of the greedy
algorithm given in Section 4.2 to this setting.

In the end going back from the torus Tn to Rn we get a covering of Rn with translated
copies of K with density at most

inf
{

ω(K)
ω(K−δ/2)

(
ln

(
ω

(
K−δ/2

)
ω(B(0, δ/2))

)
+ 1

)
: δ > 0

}
,

improving the result of Naszódi slightly.
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Chapter Five

Lower bounds

This chapter is based on the publication An SDP hierarchy for the covering problem, by D.
de Laat, C. Riener, J. H. Rolfes and F. Vallentin, in preparation.

We provide lower bounds for the covering numberN(X, r) on compact metric spaces (X, d).
This problem can be seen as an infinite instance of set cover, where the subsets S i ⊆ X are
determined by the metric d and the scalar r ∈ R≥0. We give a sequence of lower bounds
for this problem inspired by Lasserre’s hierarchy of semidefinite programs for set cover.
Additionally, we develop a duality theory for these programs and prove that they converge
to N(X, r) after finitely many steps. For the particular case that X is the two-dimensional
unit sphere S 2, we derive a finite-dimensional semidefinite program that provides lower
bounds for N(S 2, r).

5.1 Introduction
We recall the definition of the covering problem as stated in Chapter 1: Let X be a compact
metric space having metric d. Given a scalar r ∈ R≥0 we define the closed ball of radius r
around center x ∈ X by

B(x, r) = {y ∈ X : d(x, y) ≤ r}.

The covering number of the space X and a positive number r is the smallest number of such
balls with radius r one needs to cover X, i.e.,

N(X, r) = min

|Y | : Y ⊆ X,
⋃
y∈Y

B(y, r) = X

 . (5.1)

Determining the covering number is a fundamental problem in metric geometry (see for
example the classical book by Rogers [68]). Among others, applications arise in the field
of compressive sensing [34], approximation theory and machine learning [17] or, as illus-
trated in Chapter 1, in probability theory [55] and theoretical quantum computing [61].
So far, there exist upper bounds for the covering number of several specific metric spaces.
For a survey on this, we refer to Naszódi [59]. We recall the following recent result pre-
sented in Chapter 4. It provides upper bounds for the covering number for a wide class of

59
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compact metric spaces. Suppose X is equipped with a probability measure ω satisfying the
following two conditions:

(a) ω(B(x, s)) = ω(B(y, s)) for all x, y ∈ X, and for all s ≥ 0,

(b) ω(B(x, ε)) > 0 for all x ∈ X, and for all ε > 0.

By (a) the measure of a ball does only depend on the radius s and not on the center x, so
we simply denote ω(B(x, s)) by ωs and obtain for every ε with r/2 > ε > 0 the following
bounds on the covering number:

1
ωr
≤ N(X, r) ≤

1
ωr−ε

(
ln

(
ωr−ε

ωε

)
+ 1

)
. (5.2)

The trivial lower bound above is known as the volume bound. For coverings of the (non-
compact) Euclidean space we further have the celebrated Coxeter-Few-Rogers bound [16]
of which Böröczky and Wintsche gave an adjusted version for the case of X = S n, i.e., the
unit sphere equipped with the spherical distance d(x, y) B arccos(x · y). Their bound states
that for sufficiently small radii r we can bound the covering number by

c · n
ωr
≤ N(S n, r)

from below, where c is an absolute constant. This is the best lower bound known so far for
the spherical case except for Fejes-Tóth’s [31] bound for the case n = 2, which is relying
on similar techniques.
The main contribution of the present chapter is the construction of a unified framework in
order to compute lower bounds for a wide class of covering numbers. More concretely, we
define a hierarchyN t(X, r) of increasingly strong relaxations of the covering problem on X,
where each instance is a conic minimization problem. The approach used to design these
relaxations is strongly inspired by the moment method of Lasserre [54] for finite 0/1-integer
programs and his seminal paper [53] on general polynomial optimization problems. We
suppose that X is homogeneous with respect to its isometry group Γ, i.e., Γ acts transitively
on X and the covering constraints are indexed by γ ∈ Γ instead of x ∈ X. We then show
that N t(X, r) yields an increasing, converging sequence of lower bounds

1
ωr

= N1(X, r) ≤ N2(X, r) ≤ . . . ≤ Nα(X, r) = N(X, r),

where α ∈ N is a natural number determined by the specific instance of the problem.
Additionally, we exploit the symmetry that arises from Γ acting on X to achieve sym-
metrized reformulations ofN t(X, r) and use this symmetry to determine a finite-dimensional
semidefinite program, which is a good candidate to approximate N2(S 2, r) upto arbitrary
precision.

5.2 A semidefinite programming hierarchy

5.2.1 The covering number as an optimization problem
In the following paragraphs we aim to restate the covering number as an optimization prob-
lem using Dirac measures. The intuition to do this arises from graph theory, in particular
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from a variant of the set cover problem called hitting set: For a set V we define for each
element u ∈ V corresponding sets S u ⊆ V and consider the following integer optimization
problem

SC B min

∑
v∈V

xv :
∑
v∈S u

xv ≥ 1 for every u ∈ V, x ∈ {0, 1}V
 . (5.3)

As was described in Chapter 3, Lasserre [54] introduced an approximation technique for
such 0/1-integer programs, where he lifted the vectors x ∈ RV to vectors y ∈ RV2t , with
V2t B {U ⊆ V : |U | ≤ 2t}. On the lifted space one can now solve an approximate problem
for every t, which provides increasingly better lower bounds for SC with growing t. This
technique has been successfully applied to packing problems [23] and energy minimization
problems [21].
The main goal of this chapter is to define a similar sequence N t(X, r) of convex optimiza-
tion problems, that also provides good lower bounds for N(X, r) by lifting coverings to a
higher dimensional space. In the next paragraphs we define this space for uncountable sets
V .
Although one could interpret y ∈ RV2t as functions from V2t to R whenever V is uncount-
able, it is not clear how to define a suitable objective function in this case. Instead we
consider measures µ defined on the sigma-algebra B(X) of Borel sets of X to define a
similar program to (5.3) and deal with the objective function. We handle the uncountable
number of constraints by assuming a transitive group structure, i.e., we depict N(X, r) as

N(X, r) = inf

µ(X) : µ =
∑
y∈Y

δy, µ(B(γx, r)) ≥ 1 for all γ ∈ Γ

 ,
where δy : B(X)→ R is the Dirac measure defined by

δy(A) =

1 if y ∈ A
0 otherwise.

We further recall that the finite sums of Dirac measures lie in the cone M(B(X))≥0 of
nonnegative Radon measures on B(X) – similar to the vectors y ∈ RV2n defined on the
power set V2n = P([n]) of [n] in the n-th step of Lasserre’s hierarchy. In the next section
we define the infinite-dimensional counterparts of the sets V2t.

5.2.2 Approximating the cone of Radon measures

For an inner approximation of the coneM(B(X))≥0 we restrict the ground setB(X) to the set
of subsets Xt B {Y ⊆ X : |Y | ≤ t} of cardinality at most t. In fact, after proving some useful
topological properties for Xt, we will restrict B(X) even further to a set It ⊆ Xt ⊆ B(X). But
first, we equip the non-empty sets in Xt with the Hausdorff distance

dH(Y,Z) B max
{

sup
y∈Y

inf
z∈Z

d(y, z), sup
z∈Z

inf
y∈Y

d(y, z)
}
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and extend this distance to a metric

d′H(Y,Z) B


dH(Y,Z) if Y,Z , ∅

0 if Y = Z = ∅

supx,y∈X d(x, y) otherwise,

which also takes care of ∅ ∈ Xt. This implies that Xt is Hausdorff. To show compactness of
Xt we consider the continuous map

q :
t⊕

i=1

X → (Xt, dH), defined by q(x1, . . . , xt) = {x1, . . . xt}

equipped with the product metric. Thus we have that Xt = Im(q) ∪ {∅} is compact.
Due to the Hausdorff property of X we know that for every optimal solution Y∗ ⊆ X of
(5.1) and y, y′ ∈ Y∗ we have that d(y, y′) ≥ ε > 0. If we choose

ε = min{d(y, y′) : y, y′ ∈ Y∗, y , y′},

we can restrict Xt even further to the space

It B {Y ⊆ X : |Y | ≤ t, d(x, y) ≥ ε for all x, y ∈ Y},

and still have ensured that at least one optimal Y∗ ∈ Xt is contained in It. The concrete
value of this ε is a priori not known. However, for every ε > 0, as a subset of Xt, It inherits
the Hausdorff property, whereas compactness is shown in the following Lemma 5.2.1, a
specified version of a lemma in [23]. Since [23] considers topological spaces instead of
metric spaces, our proof is slightly simpler by being able to exploit the additional structure
given by the metric. In both proofs, the set

(U1, . . . ,Uk)t B {Y ∈ Xt : Y ⊆ U1 ∪ . . . ∪ Uk, Y ∩ Ui , ∅ for 1 ≤ i ≤ k} (5.4)

plays a significant role.

Lemma 5.2.1. [23] The set It is compact for every t ∈ N with respect to the topology
induced by the metric d′H .

Proof. As a subset of the compact space Xt, It is totally bounded and complete if and only if
it is closed. We show that It is closed by considering {x1, . . . xk} ∈ Xt\It for pairwise disjoint
xi. Then without loss of generality d(x1, x2) < ε holds, implying that there is an open
neighbourhood Bε such that x1, x2 ∈ Bε, e.g., Bε = B(x1, ε). The Hausdorff property implies
that there are disjoint open neighbourhoods U1,U2 for which x1 ∈ U1 ⊆ Bε, x2 ∈ U2 ⊆ Bε
holds. Thus (U1,U2, X, . . . , X)t < It is an open neighbourhood of {x1, . . . , xk} implying that
Xt \ It is open. �

In the remainder of this chapter we will focus on the compact metric space (It, d′H) and
its corresponding cone M(It)≥0 to approximate the covering number. We further denote
Br ⊆ X as a fixed r-ball in X and assume that the group Γ is a transitive isometry group of
X. Examples of such covering problems are the space (S n, d) with spherical distance d and
isometry group Γ = O(n) or the flat torus equipped with the group of translations.
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5.2.3 Continuous Lasserre-hierarchy
We first introduce some notations and basic facts in order to define our covering hierarchy.
The set C(It) of continuous real-valued functions on It and the setM(It) of signed Radon
measures form a topological dual pairing, where the topology is defined by the supremum
norm on C(It). This is a consequence of the Riesz representation theorem (see, e.g., [82]).
In particular, these dual spaces contain the cones C(It)≥0 of nonnegative functions in C(It)
and its dual cone

M(It)≥0 B

{
µ ∈ M(It) :

∫
It

f dµ ≥ 0 for all f ∈ C(It)≥0

}
.

Similarly, we denote the space of symmetric kernels C(It × It)sym as the set of continuous
functions K : It × It → R, where K(J, J′) = K(J′, J) for any J, J′ ∈ It. Such a kernel is
referred to as positive semidefinite if the matrices (K(Jk, Jl))k,l are positive semidefinite for
any finite choice of sets J1, . . . Jm ∈ It. The cone of all these semidefinite kernels is denoted
by C(It × It)�0, its dual cone is denoted by M(It × It)�0 and is contained in the space of
symmetric Radon measuresM(It × It)sym., where µ(E, E′) = µ(E′, E) holds for every pair
of Borel sets E, E′. The continuous hierarchy which relaxes N(X, r) is defined as follows:

Definition 5.2.2. For t ∈ N and I=t = {J ∈ It : |J| = t} we define

N t(X, r) B inf µ(I=1) (5.5)
µ ∈ M(I2t)≥0,

µ ({∅}) = 1,
Atµ ∈ M(It × It)�0,

Aγ
t µ ∈ M(It−1 × It−1)�0 for all γ ∈ Γ,

where the operators At :M(I2t) →M(It × It)sym and Aγ
t :M(I2t) →M(It−1 × It−1)sym are

defined pointwise by their adjoint operators Bt : C(It × It)sym → C(I2t) and Bγt : C(It−1 ×

It−1)sym → C(I2t), i.e., by the unique operators that satisfy 〈Atµ,K〉 = 〈µ, BtK〉 respectively
〈Aγ

t µ,K〉 = 〈µ, Bγt K〉. We define those operators by

BtK(S ) B
∑

J,J′∈It : J∪J′=S

K(J, J′) and (5.6)

Bγt K(S ) B
∑

x∈γBr J,J′∈It−1: J∪J′∪{x}=S

K(J, J′) −
∑

J,J′∈It−1: J∪J′=S

K(J, J′). (5.7)

Remark 5.2.3. We observe that ‖BtK‖∞ ≤ 22t‖K‖∞ and

‖Bγt K‖∞ ≤ 2t22(t−1)‖K‖∞ + 22(t−1)‖K‖∞

are bounded and hence continuous. Thus we have proven the existence of At and Aγ
t .

Increasing t strengthens the bound by imposing more constraints to the feasible region,
to be precise: if µt+1 ∈ M(I2t+2) is feasible for N t+1(X, r) then µt B µt+1

∣∣∣
I2t

is feasible for
N t(X, r) with the same objective value. Additionally, the measure µ∗ B

∑
Z∈I2t : Z⊆Y δZ is
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feasible for every step in our hierarchy whenever the set Y is a finite covering of X. Thus
we have:

µ∗ ({∅}) =
∑

Z∈I2t : Z⊆Y

δZ ({∅}) = δ∅ ({∅}) = 1,

and additionally, for every K ∈ C(It × It)�0:

〈Atµ
∗,K〉 = 〈µ∗, BtK〉

=
∑

Z∈I2t :Z⊆Y

∑
J,J′∈It , Z=J∪J′

K(J, J′)

=
∑

J,J′∈It : J,J′⊆Y

K(J, J′) ≥ 0,

〈Aγ
t µ
∗,K〉 = 〈µ∗, Bγt K〉

=
∑

Z∈I2t : Z⊆Y

∑
x∈γBr , J,J′∈It−1, Z=J∪J′∪{x}

K(J, J′)

−
∑

J,J′∈It−1: J,J′⊆Y

K(J, J′)

=
∑

x∈Y∩γBr

∑
J,J′∈It−1: J,J′⊆Y

K(J, J′) −
∑

J,J′∈It−1: J,J′⊆Y

K(J, J′) ≥ 0,

where the last inequality is implied by the fact that Y ∩ γBr , ∅ since Y is a covering.
The objective value is µ∗(I=1) = |Y | and thus yields the covering number if Y is a minimal
covering. Hence we have shown the following theorem:

Theorem 5.2.4. With the notation defined in Definition 5.2.2 we have the following non-
decreasing sequence of bounds

N1(X, r) ≤ N2(X, r) ≤ . . . ≤ N t(X, r) ≤ N(X, r)

for any value of t.

We compare this sequence to the bounds from Theorem 4.1.1. Suppose we have a
probability measure ω satisfying properties (a) and (b), then in the case t = 1 we observe
that the measure

µ′(A) B


1 if A = {∅},
ω(

⋃
a∈A a)
ωr

if A ⊆ I=1,

0 otherwise.

is a feasible measure for N1(X, r). Its objective value is 1
ωr

and thus implies

N1(X, r) ≤
1
ωr
. (5.8)

Furthermore, we shall prove Theorem 5.4.3, which states that in fact even equality holds.
Thus we retrieve the volume bound

1
ωr

= N1(X, r) ≤ N(X, r)

in the first step of our hierarchy.
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5.3 Symmetry Reduction

In this section we will reduce the hierarchy (5.5) defined on the space of signed Radon
measures M(I2t) first, to a hierarchy acting on the space of Γ-invariant signed Radon
measures and second, to Radon measures µ ∈ M(I2t/Γ) acting on the quotient space
I2t/Γ. Ultimately, this will reduce the potentially infinite number of covering constraints
Aγ

t µ ∈ M(It−1 × It−1)�0 to a single constraint Aid
t µ ∈ M(It−1 × It−1)�0.

We call a measure µ : B(It) → R, Γ-invariant if and only if µ(γS ) = µ(S ) for every
S ∈ B(It) and γ ∈ Γ acting pointwise on the elements in S , i.e., γ{s1, . . . , st} = {γs1, . . . , γst}

for S = {s1, . . . , st}. We denote these Γ-invariant, signed Radon measures by M(It)Γ. In
this space we can define the cone

M(It)Γ
≥0 BM(It)≥0 ∩M(It)Γ.

To apply symmetry reduction for a reformulation ofN t(X, r), we need the following lemma.

Lemma 5.3.1. Suppose µ ∈ M(I2t)Γ
≥0. Then we have

Aid
t µ ∈ M(It−1 × It−1)�0 ⇐⇒ Aγ

t µ ∈ M(It−1 × It−1)�0 for every γ ∈ Γ.

Proof. The "⇐" implication is immediate by considering γ = id.
For the "⇒" implication we consider for an arbitrary kernel K ∈ C(It−1 × It−1)�0 the shifted
kernel Kγ ∈ C(It−1 × It−1)�0 defined by Kγ(J, J′) = K(γJ, γJ′) and observe the following:

〈Aγ
t µ,K〉 = 〈µ, Bγt K〉 =

∫
S∈I2t

Bγt K(S )dµ(S )

=

∫
S∈I2t

∑
x∈γBr J,J′∈It−1: J∪J′∪{x}=S

K(J, J′) −
∑

J,J′∈It−1: J∪J′=S

K(J, J′)dµ(S )

=

∫
S∈I2t

∑
γx∈γBr γJ,γJ′∈It−1:

γJ∪γJ′∪γ{x}=S

K(γJ, γJ′) −
∑

γJ,γJ′∈It−1: γJ∪γJ′=S

K(γJ, γJ′)dµ(S )

=

∫
S∈I2t

∑
x∈Br J,J′∈It−1: J∪J′∪{x}=γ−1S

Kγ(J, J′) −
∑

J,J′∈It−1: J∪J′=γ−1S

Kγ(J, J′)dµ(S )

=

∫
S∈I2t

Bid
t Kγ(γ−1S )dµ(S )

µ∈M(I2t)Γ
≥0

= 〈µ, Bid
t Kγ〉 = 〈Aid

t µ,K
γ〉.

Thus we have that 〈Aγ
t µ,K〉 ≥ 0 for every K ∈ C(It−1 × It−1)�0 whenever 〈Aid

t µ,K〉 ≥ 0 for
every K ∈ C(It−1 × It−1)�0, implying the claim. �

Since Γ is a compact topological group, there exists a normalized Haar measure λ on
this group (see, e.g., [24] for a proof). The corresponding Haar integral turns out to be
a convenient counterpart to the averaging operator in the finite case, i.e., it helps us to
reformulate the program (5.5) as follows:
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Theorem 5.3.2. Let t ∈ N and I=t = {J ∈ It : |J| = t}, then

N t(X, r) = inf µ(I=1) (5.9)

µ ∈ M(I2t)Γ
≥0,

µ ({∅}) = 1,
Atµ ∈ M(It × It)�0,

Aid
t µ ∈ M(It−1 × It−1)�0.

Proof. First, we show that for every feasible measure µ, the measure µ̄ ∈ M(I2t)Γ
≥0 defined

by

µ̄(A) B
∫

Γ

µ(γA)dλ(γ)

is feasible for N t(X, r) with the same objective value. Trivially, we have that

µ̄(I=1) = µ(I=1), µ̄ ({∅}) = µ ({∅}) = 1.

For the remaining constraints, two identities that follow immediately from the definition of
Bt and Bγt , are very useful: For a symmetric kernel K we consider again the shifted kernel
Kγ, i.e., Kγ(J, J′) = K(γJ, γJ′), and observe that

BtK(γS ) = BtKγ(S ) and Bγ
′

t K(γS ) = Bγ
−1γ′

t Kγ(S ),

where the latter identity follows from

Bγ
′

t K(γS ) =
∑

x∈γ′Br J,J′∈It−1: J∪J′∪{x}=γS

K(J, J′) −
∑

J,J′∈It−1: J∪J′=γS

K(J, J′)

=
∑

γx∈γ′Br γJ,γJ′∈It−1: γJ∪γJ′∪γ{x}=γS

K(γJ, γJ′) −
∑

γJ,γJ′∈It−1: γJ∪γJ′=γS

K(γJ, γJ′)

=
∑

x∈γ−1γ′Br J,J′∈It−1: J∪J′∪{x}=S

Kγ(J, J′) −
∑

J,J′∈It−1: J∪J′=S

Kγ(J, J′)

= Bγ
−1γ′

t Kγ(S ).

Together with the property Kγ � 0⇐⇒ K � 0 this leads to

〈Atµ̄,K〉 = 〈µ̄, BtK〉 =

∫
Γ

∫
S∈I2t

BtK(S )dµ(γS )dλ(γ)

=

∫
Γ

∫
S∈I2t

BtK(γ−1S )dµ(S )dλ(γ)

Bt K(γS )=Bt Kγ(S )
=

∫
Γ

∫
S∈I2t

BtKγ−1
(S )dµ(S )dλ(γ)

=

∫
Γ

〈µ, BtKγ−1
〉dλ(γ) =

∫
Γ

〈Atµ,Kγ−1
〉dλ(γ) ≥ 0,
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and

〈Aγ′

t µ̄,K〉 = 〈µ̄, Bγ
′

t K〉 =

∫
Γ

∫
S∈I2t

Bγ
′

t K(S )dµ(γS )dλ(γ)

=

∫
Γ

∫
S∈I2t

Bγ
′

t K(γ−1S )dµ(S )dλ(γ)

Bγ
′

t K(γS )=Bγ
−1γ′

t Kγ(S )
=

∫
Γ

∫
S∈I2t

Bγγ
′

t Kγ−1
(S )dµ(S )dλ(γ)

=

∫
Γ

〈µ, Bγγ
′

t Kγ−1
〉dλ(γ) =

∫
Γ

〈Aγγ′

t µ,Kγ−1
〉dλ(γ) ≥ 0.

Thus we can restrict our program N t(X, r) to the coneM(I2t)Γ
≥0 and we can apply Lemma

5.3.1 to obtain

N t(X, r) = inf µ(I=1) (5.10)

µ ∈ M(I2t)Γ
≥0,

µ ({∅}) = 1,
Atµ ∈ M(It × It)�0,

Aid
t µ ∈ M(It−1 × It−1)�0.

�

However, we would like to work with dual cones C(V)≥0 and M(V)≥0 on a compact
Hausdorff space V to incorporate these cones into a duality theory. In the upcoming para-
graphs of this chapter we will address the constraint that the measure has to be Γ-invariant
by restricting the cone M (I2t)≥0 to the cone M (I2t/Γ)≥0 over the quotient space I2t/Γ,
which is a compact Hausdorff space as well. Eventually, we will derive the following
formulation:

Theorem 5.3.3.

N t(X, r) = inf µ(I=1) (5.11)
µ ∈ M(I2t/Γ)≥0,

µ ({∅}) = 1,
Ãtµ ∈ M(It × It)�0,

Ãid
t µ ∈ M(It−1 × It−1)�0,

where Ãt and Ãid
t are defined pointwise by their adjoint operators B̃t : C(It × It)→ C(I2t/Γ)

and B̃id
t : C(It−1 × It−1)→ C(I2t/Γ) defined by

B̃tK(π(S )) B
∫

Γ

∑
J,J′∈It : J∪J′=γS

K(J, J′)dλ(γ)

B̃id
t K(π(S )) B

∫
Γ

∑
x∈Br J,J′∈It−1: J∪J′∪{x}=γS

K(J, J′) −
∑

J,J′∈It−1: J∪J′=γS

K(J, J′)dλ(γ),

where λ is the normalized Haar measure on Γ and π : It → It/Γ the quotient map.
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We first observe that

‖B̃tK‖∞ ≤
∫

Γ

‖BtK‖∞dλ(γ) ≤ 22t‖K‖∞

and
‖B̃id

t K‖∞ ≤
∫

Γ

‖Bid
t K‖∞dλ(γ) ≤ 2t22(t−1)‖K‖∞ + 22(t−1)‖K‖∞

holds. Thus the operators B̃t and B̃id
t are bounded and hence continuous, implying the

existence of Ãt and Ãid
t .

To prove reformulation (5.11) we need some technical facts, that are likely to be well-
known to experts in the field. However, we were not able to find proper references apart
from an article by Cimprič, Kuhlmann, and Scheiderer [14]. They do not exactly prove
the lemmas below but the proofs we give here are just the adjusted versions of proofs they
provide in Section 6 in their paper. For a continuous map f : X → Y and a Borel measure
µ on X we denote the push forward measure µ( f −1(Z)) on Y by f∗(µ).

Lemma 5.3.4. Let σ : Γ × It → It be the group action defined by σ(γ, S ) = γS . A Borel
measure µ on It is Γ-invariant if and only if

µ = σ∗(λ ⊗ µ),

where λ is the normalized Haar measure on Γ.

Proof. For γ′ ∈ Γ and S ⊆ It we have

µ(γ′S) = σ∗(λ ⊗ µ)(γ′S) = λ ⊗ µ(σ−1(γ′S))
= λ ⊗ µ

(
(γ, S ) ∈ Γ × It : γS ∈ γ′S

)
Fubini

=

∫
Γ

µ(S ∈ It : S ∈ γ−1γ′S)dλ(γ)

Haar
=

∫
Γ

µ(S ∈ It : S ∈ S)dλ(γ) =

∫
Γ

µ(S)dλ(γ) = µ(S).

Conversely, if µ is Γ-invariant, then for every Borel set S ⊆ It we have

σ∗(λ ⊗ µ)(S) = λ ⊗ µ(σ−1(S)) =

∫
γ∈Γ

µ(γ−1S)dλ =

∫
γ∈Γ

µ(S)dλ = µ(S)

by the Fubini formula. �

Lemma 5.3.5. Let ν be any Borel measure on It/Γ and π : It → It/Γ be the quotient map.

a) There exists a unique Γ-invariant measure µ ∈ M(It) with π∗(µ) = ν. We will denote
it by π∗(ν) B µ.

b) Explicitly, if f : It → R is a measurable function, then∫
It

f (S )dµ(S ) =

∫
It/Γ

h̄ f (Q)dν(Q),
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where the function h̄ f : It/Γ→ R ∪ {∞} is defined by

h̄ f (π(S )) B
∫

Γ

f (γS )dλ(γ) (S ∈ It).

Proof. We prove the statements in two parts.

a) Existence: We consider again the normalized Haar measure λ on Γ. Let S ⊆ It be
arbitrary Borel set, S ∈ It a fixed point configuration and the orbit map oS : Γ→ It defined
by oS (γ) B γS . We further define the function

hS(S ) B (oS ∗λ)(S) = λ{γ ∈ Γ : γS ∈ S}.

As a function of γ onto the Haar measure λ of the γ-cut of the measure spaces (Γ,B(Γ), λ)
and (It,B(It), µ′), where µ′ is any σ-finite Borel measure on It, the function hS is measur-
able (see Lemma 23.2 in [9]). Furthermore, for every S ∈ It it is Γ-invariant, due to the
invariance of the Haar measure λ:

hS(γ0S ) = λ ({γ ∈ Γ : γγ0S ∈ S}) = λ
(
{γγ−1

0 ∈ Γ : γS ∈ S}
)

= λ ({γ ∈ γ0Γ : γS ∈ S}) = λ ({γ ∈ Γ : γS ∈ S}) = hS(S ).

We observe that the fibres of π : It → It/Γ are the Γ-orbits:

π−1(π(T )) = {S ∈ It : π(S ) = π(T )} = {S ∈ It : ∃γ ∈ Γ : S = γT }

and thus hS induces a measurable function h̄S : It/Γ → [0, 1] by h̄S(π(S )) = hS(S ) for
every S ∈ It. Now we consider again our Borel measure ν on It/Γ and define

µ(S) B
∫

It/Γ

h̄S(Q)dν(Q)

for every Borel set S ⊆ It. Then µ is a Radon measure on It, since (It, d′H) is a compact
metric space, therefore separable and complete, and thus a Radon space.
For Γ-invariance we consider S =

⋃
n∈N Sn as a countable union of pairwise disjoint Borel

sets in It. Thus we have hS(S ) =
∑

n∈N hSn (S ) defined pointwise on every S ∈ It and
therefore µ(S) =

∑
n∈N µ(Sn). Additionally, we proved above that hγS = hS for every γ ∈ Γ

implying the Γ-invariance of µ and furthermore we have π∗(µ) = ν because

π∗(µ)(Q′) = µ(π−1(Q′)) =

∫
It/Γ

h̄π−1(Q′)(Q)dν(Q)

Fix P∈π−1(Q)
=

∫
It/Γ

hπ−1(Q′)(P)dν(Q)

=

∫
It/Γ

λ({γ ∈ Γ : γP ∈ π−1(Q′)})dν(Q)

=

∫
It/Γ

λ(Γ)1Q∈Q′dν(Q) = ν(Q′).
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Uniqueness and b): Let f : It → R≥0 be measurable. The function h f : It → R ∪ {∞},
h f (S ) B

∫
Γ

f (γS )dλ(γ) is again measurable and Γ-invariant, so it induces a measurable
function h̄ f : It → R ∪ {∞} by h̄ f (π(S )) B

∫
Γ

f (γS )dλ(γ). Given any Γ-invariant measure
µ̃ on It with π∗(µ̃) = ν, we have∫

It

f (S )dµ̃(S ) Lemma 5.3.4 & Fubini
=

∫
It

∫
Γ

f (γS )dλ(γ)dµ̃(S )

=

∫
It

h̄ f (π(S ))dµ̃(S )

=

∫
It/Γ

h̄ f (Q)dπ∗(µ̃)(Q)

=

∫
It/Γ

h̄ f (Q)dν(Q).

This establishes on the one hand the uniqueness of µ by considering f = 1S and on the
other hand part b) of our claim. �

We have now the necessary ingredients to finally prove Theorem 5.3.3. The proof relies
on the fact that for every feasible measure µ for formulation (5.9) the measure ν = π∗(µ)
is feasible for (5.11) with the same objective value and vice versa with ν being feasible for
(5.11) and consequently µ = π∗(ν) being feasible for (5.9).

Proof of Theorem 5.3.3. Let µ ∈ M(I2t)≥0 be feasible for (5.9), then we define ν ∈ M(I2t/Γ)≥0
by ν = π∗(µ). We show that ν is feasible for the program (5.11). For this we have
ν ({∅}) = µ(π−1{∅}) = µ ({∅}) and for an arbitrary kernel K ∈ C(It × It)�0:

〈Ãtν,K〉 = 〈ν, B̃tK〉 =

∫
I2t/Γ

B̃tK(Q)dν(Q)

Lemma 5.3.4
=

∫
I2t

BtK(S )dµ(S )

= 〈µ, BtK〉 = 〈Atµ,K〉 ≥ 0

and similarly

〈Ãid
t ν,K〉 = 〈ν, B̃id

t K〉 =

∫
I2t/Γ

B̃id
t K(Q)dν(Q)

Lemma 5.3.4
=

∫
I2t

Bid
t K(S )dµ(S )

= 〈µ, Bid
t K〉 = 〈Aid

t µ,K〉 ≥ 0.

We observe further that

ν(I=1/Γ) = µ(π−1(I=1/Γ)) = µ ({S ∈ It : π(S ) ∈ I=1/Γ}) = µ (I=1) ,

and thus the objective values coincide.
For the opposite inclusion we consider ν ∈ M(I2t/Γ)≥0 feasible for (5.11) and define µ ∈
M(I2t)≥0 by

µ B π∗(ν).
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In particular this implies that ν = π∗(µ) and thus the above arguments still hold in the same
way. �

5.4 The dual hierarchy
In the preceding sections we achieved a simplified reformulation (5.11) of the covering
number by exploiting symmetry inherent to the problem. In the upcoming section we
develop a duality theory for these symmetric covering numbers and prove strong duality.

5.4.1 Definition of the hierarchy and volume bound
The following lemmas ensure that the functions 1I=1 and 1{∅} are continuous in It, which is
essential for our approach to a duality theory, since we work with the dual spaces of con-
tinuous functions C(It) and signed Radon measuresM(It). We recall the set (U1, . . . ,Uk)t

(see (5.4)) as environments of a point configuration Y ∈ Xt. The first lemma has also been
proven in [23] in the context of topological spaces but to omit the additional notation and
definitions we reprove it in the context of metric spaces.

Lemma 5.4.1. [23] The map It → N, S 7→ |S | is continuous for every t ∈ N. In particular,
I=t is both open and closed.

Proof. Let {PN} be a sequence in It converging to an arbitrary subset {y1, . . . , yk} ∈ It,
defined by pairwise different elements yi. By the Hausdorff property of X there exist pair-
wise disjoint open neighbourhoods Ui ⊆ B(yi, δ) for any sufficiently small δ > 0, where
yi ∈ Ui. The set (U1, . . . ,Uk)t is open and contains {y1, . . . , yk}. Hence, we eventually have
PN ∈ (U1, . . . ,Uk)t. Then |PN | ≥ k since the Ui are pairwise disjoint and |PN | ≤ k since for
every {x, x′} ⊆ PN ∩Ui we have ε ≤ d(x, x′) ≤ 2δ leading to a contradiction for sufficiently
small δ > 0. �

Corollary 5.4.2. The function 1{∅} : It → N is continuous.

Proof. By Lemma 5.4.1 we know that the sets I=s are both open and closed. We consider
the preimage of the function, considering the open sets {0}, {1}, i.e.,

1
−1
{∅}

({0}) =

t⋃
s=1

I=s,

which is open as a union of open sets, and

1
−1
{∅}

({1}) = {∅} =

t⋂
s=1

(It \ I=s),

which is open as a finite intersection of open sets. �

We finally show the continuity of 1I=1/Γ and 1I=0/Γ = 1{π(∅)}. A function f : It/Γ→ N is
continuous if and only if f ◦ π : It → N is continuous (see, e.g., [46]). We apply this to the
identity 1I=t/Γ(π(S )) = 1I=t (S ) and obtain the continuity of 1I=t/Γ, a slightly more general
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result.
With the help of these technicalities we can apply the theory of general conic programming
(see, e.g., Chapter IV, Section 6 in [8]) to state the dual program to (5.11) as

N t(X, r)∗ B sup y
y ∈ R, K ∈ C(It × It)�0, K′ ∈ C(It−1 × It−1)�0

1I=1/Γ(Q) − y1{π(∅)}(Q)

− B̃tK(Q) − B̃id
t K′(Q) ≥ 0 for all Q ∈ I2t/Γ

and furthermore, by distinguishing the cases Q = π(∅) and Q , π(∅), we obtain

N t(X, r)∗ = sup y
y ∈ R, K ∈ C(It × It)�0, K′ ∈ C(It−1 × It−1)�0

− y − B̃tK(π(∅)) − B̃id
t K′(π(∅)) ≥ 0

1I=1/Γ(Q) − B̃tK(Q) − B̃id
t K′(Q) ≥ 0 for all Q ∈ I2t/Γ \ {π(∅)}.

Thus, without loss of generality, we can set y = −BtK(π(∅)) − Bid
t K′(π(∅)) and obtain

N t(X, r)∗ = sup − B̃tK(π(∅)) − B̃id
t K′(π(∅)) (5.12)

K ∈ C(It × It)�0, K′ ∈ C(It−1 × It−1)�0,

1I=1/Γ(Q) − B̃tK(Q) − B̃id
t K′(Q) ≥ 0 for all Q ∈ I2t/Γ \ {π(∅)}.

This last formulation is especially useful to prove thatN1(X, r) is at least the volume bound
1
ωr

.

Theorem 5.4.3. Let X be equipped with a probability measure ω satisfying properties (a)
and (b) in Section 5.1, then

N1(X, r) =
1
ωr
.

Proof. From (5.8) we obtain N1(X, r) ≤ 1
ωr

. For the reverse inequality we consider t = 1.
Then we have B̃1K(π(∅)) = K(∅, ∅), B̃id

1 K′(π(∅)) = −K′(∅, ∅) and

B̃id
1 K′ (π({y})) =

∫
Γ

∑
x∈Br : {x}=γ{y}

K′(∅, ∅)dλ(γ)

= K′(∅, ∅)
∫

Γ

1γ{y}∈Br dλ(γ)

= K′(∅, ∅)λ ({γ ∈ Γ : γ{y} ∈ Br}) .

This leads to the program

sup − K(∅, ∅) + K′(∅, ∅)
K ∈ C(I1 × I1)�0, K′ ∈ C(I0 × I0)�0,

1 − B̃1K (π({y})) − λ ({γ ∈ Γ : γ{y} ∈ Br}) K′(∅, ∅) ≥ 0 for every y ∈ X
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We observe that K = 0, K′(∅, ∅) = 1
λ({γ∈Γ: γ{y}∈Br})

is a feasible solution for this program with

objective value 1
λ({γ∈Γ: γ{y}∈Br})

=
λ(Γ)

λ({γ∈Γ: γ{y}∈Br})
. Since the metric space is equipped with a

probability measure ω satisfying properties (a) and (b) from Section 5.1, we have that

λ(Γ)
λ ({γ ∈ Γ : γ{y} ∈ Br})

=
ω(X)

ω(B(x, r))
≤ N1(X, r)

holds due to the transitivity of Γ. �

5.4.2 Strong duality

We follow an approach by Barvinok (see Chapter IV, Section 7 in [8]) to prove strong
duality. For this we need to reformulate the primal program N t(X, r) in the form

inf{〈x, c〉 : Ax = b, x ∈ K}.

Therefore we define the spaces E = M(I2t/Γ) ⊕ M(It × It)sym ⊕ M(It−1 × It−1)sym and
F = C(I2t/Γ) ⊕ C(It × It)sym ⊕ C(It−1 × It−1)sym with duality

〈e1 + e2 + e3, f1 + f2 + f3〉 B
∫

I2t/Γ

f1de1 +

∫
It×It

f2de2 +

∫
It−1×It−1

f3de3.

Then, by choosing c = (1I=1 , 0, 0) ∈ F and Â : E →M(It× It)sym⊕M(It−1× It−1)sym defined
by

Â(µ, ν, νid) =

(
Ãtµ − ν

Ãid
t µ − ν

id

)
,

we have

N t(ϕ) = inf 〈(µ, ν, νid), c〉 (5.13)

(µ, ν, νid) ∈ M(I2t/Γ)≥0 ×M(It × It)�0 ×M(It−1 × It−1)�0,

Â(µ, ν, νid) = 0,
µ ({∅}) = 1.

We apply now Theorem 7.2 of Barvinok’s book [8], that can be stated for our situation as
follows.

Theorem 5.4.4. Suppose that the cone

K̂ =

{(
Â(µ, ν, νid), µ ({∅}) , µ(I=1)

)
:

(µ, ν, νid) ∈ M(I2t/Γ)≥0 ×M(It × It)�0 ×M(It−1 × It−1)�0

}
is closed in M(It × It)sym × M(It−1 × It−1)sym × R × R and that there is a primal feasible
measure (µ, ν, νid). Then N t(ϕ) = N t(ϕ)∗.
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We already know that N t(X, r) has a feasible solution µ∗ =
∑

Z∈I2t : Z⊆Y δZ for any finite
covering Y ⊆ X as was shown in Subsection 5.2.3. Thus it remains to show that K̂ is
closed. We observe that K̂ is the Minkowski difference of

K1 =
{(

Ãtµ, Ãid
t µ, µ ({∅}) , µ(I=1)

)
: µ ∈ M(I2t/Γ)≥0

}
and

K2 =
{(
ν, νid, 0, 0

)
: ν ∈ M(It × It)�0, ν

id ∈ M(It−1 × It−1)�0

}
.

By a theorem of Klee [52] and Dieudonné [26] the Minkowski difference K1 − K2 of
two cones is closed if the three conditions

(i) K1 ∩ K2 = {0},

(ii) K1 and K2 are closed,

(iii) K1 is locally compact

are satisfied. Before we start proving this, we provide a small lemma that is needed for
the proofs of condition (i) and the proof that K1 is closed and locally compact. In general,
we follow closely a proof strategy established by de Laat and Vallentin (see Lemmas 6.7.1,
6.7.3 and 6.7.5 in [23]) and incorporate the symmetrization with respect to Γ.

Lemma 5.4.5. The operator B̃t : C(It × It)→ C(I2t/Γ) defined as above by

B̃tK(π(S )) B
∫

Γ

∑
J,J′∈It : J∪J′=γS

K(J, J′)dλ(γ)

is surjective.

Proof. We fix a function g ∈ C(I2t/Γ) and observe that u : It × It → X2t, u(J, J′) 7→ J ∪ J′

is continuous (see Prop. 2.14 in Handel [43]). Hence

h : u−1(I2t)→ R, h(J, J′) =
g(π(J ∪ J′))
B̃tJ(J ∪ J′)

,

where J is the symmetric kernel evaluating to 1 everywhere, is continuous due to the
continuity of g ◦ π. As a preimage of a closed set I2t with respect to a continuous function
u we have that u−1(I2t) is closed in the compact Hausdorff space It × It. For normal spaces,
including compact Hausdorff spaces, Tietze’s extension theorem provides the existence of
a function H ∈ C(It × It) such that H(J, J′) = h(J, J′) for every J, J′ ∈ u−1(I2t). Finally, we
observe for each Q ∈ I2t/Γ denoted by π(S ) = Q

B̃tH(π(S )) =

∫
Γ

∑
J,J′∈It : J∪J′=γS

H(J, J′)dλ(γ) =

∫
Γ

∑
J,J′∈It : J∪J′=γS

h(J, J′)dλ(γ)

=

∫
Γ

∑
J,J′∈It : J∪J′=γS

g(π(J ∪ J′))
B̃tJ(π(J ∪ J′))

dλ(γ)

=

∫
Γ

g(π(S ))
B̃tJ(π(S ))

|{J, J′ ∈ It : J ∪ J′ = γS }|dλ(γ) = g(π(S )).

�
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We now want to verify conditions (i) – (iii) starting with condition (i). Here the proof
is basically a slight modification of the one of Lemma 6.7.3 in de Laat [22].

Theorem 5.4.6. K1 ∩ K2 = {0}

Proof. We will show that µ ∈ M(I2t/Γ)≥0 with µ ({∅}) = 0 is the zero measure if Ãtµ ∈
M(It × It)�0. For this we consider the kernel K ∈ C(It × It)sym defined by

K(J, J′) B

1 if J = J′ = ∅,

0 otherwise.

Then we observe Ãtµ ({(∅, ∅)}) = 〈Ãtµ,K〉 = 〈µ, B̃tK〉 = µ ({∅}) = 0. Furthermore we define
a sequence of functions fn ∈ C(It), where n ∈ Z by

fn(S ) B

|n| if S = ∅,
1
n otherwise.

Since fn ⊗ fn ∈ C(It × It)�0 and Ãtµ ∈ M(It × It)�0 we have that 〈Ãtµ, fn ⊗ fn〉 ≥ 0. On the
other hand 〈Ãtµ, fn ⊗ fn〉 equates to

n2Ãtµ ({(∅, ∅)}) +
1
n2 Ãtµ(It \ {∅} × It \ {∅}) + 2sign(n)Ãtµ ({∅} × It \ {∅}) .

The first term evaluates to zero. Thus we consider the remaining inequality

1
n2 Ãtµ(It \ {∅} × It \ {∅}) + 2sign(n)Ãtµ ({∅} × It \ {∅}) ≥ 0,

let n tend to plus or minus infinity and conclude that Ãtµ ({∅} × It \ {∅}) = 0. Next we show
that µ(It/Γ) = 0 with the help of the kernel L defined by

L(J, J′) B


1 if J = J′ = ∅,
1
2 if J = ∅ or J′ = ∅,

0 otherwise

because then we have

µ(It/Γ) =

∫
It/Γ

∫
Γ

1dλ(γ)dµ(π(S )) =

∫
It/Γ

∫
Γ

1It (γS )dλ(γ)dµ(π(S ))

=

∫
It/Γ

∫
Γ

1{∅}(γS ) + 2 ·
1
2
1It\{∅}(γS )dλ(γ)dµ(π(S ))

=

∫
It/Γ

∫
Γ

∑
J,J′∈It : J∪J′=γS

L(J, J′)dλ(γ)dµ(π(S ))

= 〈µ, B̃tL〉 = 〈Ãtµ, L〉 = Ãtµ ({(∅, ∅)}) + Ãtµ ({∅} × It \ {∅}) = 0.

Finally we show µ(I2t/Γ) = 0. If V is a sufficiently small open set in It, then the union of
two distinct elements J, J′ ∈ V can have at most t elements because of the fixed minimal
distance ε > 0. Thus J ∪ J′ < I2t \ It implying

B̃t(1V ⊗ 1V )(π(S )) =

∫
Γ

∑
J,J′∈It :J∪J′=γS

1V (J)1V (J′)dλ(γ) = 0
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whenever S ∈ I2t \ It. Let J and J′ be arbitrary elements in It, and let U and U′ be small
open neighborhoods around J and J′. For s = ±1 we have

0 ≤ 〈Ãtµ, (1U + s1U′ ) ⊗ (1U + s1U′ )〉
= Ãtµ(U × U) + Ãtµ(U′ × U′) + 2sÃtµ(U × U′),

where the inequality follows because Urysohn’s Lemma says that 1U + s1U′ can be approx-
imated arbitrarily well by continuous functions. Since B̃tK is bounded and µ|It/Γ = 0, we
have

Ãtµ(U × U) = Ãtµ(U′ × U′) = 0

for U and U′ small enough. This shows 2sÃtµ(U × U′) ≥ 0, and since s = ±1 we have
Ãtµ(U × U′) = 0. Since J and J′ are arbitrary this shows Ãtµ = 0, and since Ãt is injective
due to Lemma 5.4.5, we have µ = 0. �

For conditions (ii) and (iii) we first observe that K2 =M(It × It)�0 ×M(It−1 × It−1)�0 ×

{0} × {0} is closed as a direct product of four closed convex cones. For the remaining
conditions on K1 we need a bit of further background: A convex base KB of a cone K
is defined as a convex subset of the cone such that every non-zero x ∈ K is uniquely
determined as a positive multiple of an element in KB. Additionally, we state a theorem of
Klee and Dieudonné [52]:

Lemma 5.4.7. [52] A non-empty pointed cone in a locally convex vector space is closed
and locally compact if and only if it admits a compact convex base.

Finally we prove the remaining conditions on K1.

Theorem 5.4.8. K1 is closed and locally compact.

Proof. First we show that

KB = {µ ∈ M(I2t/Γ)≥0 : 〈1I2t/Γ, µ〉 = 1}

is compact. Consider the mapM(I2t/Γ)≥0 → R, µ 7→ 〈1I2t/Γ, µ〉 = ‖µ‖, that is continuous.
Thus we have that its preimage of {1} is a closed subset of {µ ∈ M(I2t/Γ) : ‖µ‖ ≤ 1},
which itself is compact by the Banach-Alaoglu Theorem applied on the Banach space
(C(I2t/Γ), ‖ · ‖∞) equipped with the supremum norm.
Consequently as a closed subset of a compact space,KB is compact as well. Due to Lemma
5.4.5 Ãt is injective and thus the map µ 7→ (Ãtµ, Ãid

t µ, µ ({∅}) , µ(S =1)) is injective. The im-
age of KB under this map is now both compact, due to the continuity of the operator and a
convex base due to linearity and injectivity of the operator. Finally we can apply Lemma
5.4.7 and finish the proof. �

5.5 Finite convergence of the hierarchy
For the next paragraph we observe that if we fix ε > 0, this determines a packing problem
on the compact metric space X, i.e.,

α(X, ε) B max{|Y | : Y ⊆ X, B(x, ε) ∩ B(y, ε) = ∅ for all x, y ∈ Y such that x , y}.
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This finite packing number gives a maximum on the cardinality of sets S ∈ I = {S ⊆ X :
d(s1, s2) > ε}. For the remainder of the chapter we will simply denote the packing number
α(X, ε) by α.
Additionally, the following way to sketch the inclusion-exclusion principle for finite sets is
a crucial tool. Given two finite sets A and C then∑

B:A⊆B⊆C

(−1)|B| = (−1)|A|
∑

B⊆C\A

(−1)|B|

= (−1)|A|
|C\A|∑
i=0

(
|C \ A|

i

)
1|C\A|−i(−1)i

= (−1)|A|(1 − 1)|C\A| =

(−1)|A| if A = C
0 otherwise.

Another crucial definition for the next steps is the one of characteristic measures χR. We
define such a measure for a fixed R ∈ I/Γ with fixed representative Rπ componentwise by

χR : I/Γ→ R, χR(Q) B
∑
P⊆Rπ

δπ(P)(Q),

where

δπ(P)(Q) =

1 if Q = π(P)
0 otherwise.

Furthermore, these measures define for a fixed f ∈ C(I/Γ) a function, R 7→ χR( f ), where

χR( f ) B
∑
P⊆Rπ

δπ(P)( f ) =
∑
P⊆Rπ

f (π(P)).

With these ingredients it is possible to describe every feasible solution for Nα(X, r), the
α-th step of (5.11), as an "infinite" convex combination of vectors χR:

Lemma 5.5.1. Suppose µ ∈ M(I2t)≥0 is feasible for Nα(X, r). Then there exists a unique
probability measure

σ ∈ P(I/Γ) = {λ ∈ M(I/Γ)≥0 : ‖λ‖ = 1}

such that µ =
∫
χRdσ(R).

Proof. Similar to de Laat and Vallentin [23] we split the proof in four parts.
Existence: We denote an arbitrary but fixed representative of a set Q ∈ I/Γ by Qπ, i.e.,
π(Qπ) = Q. Let us consider∑

R⊆Qπ

(−1)|Qπ\R|χπ(R) =
∑

R⊆Qπ

(−1)|Qπ\R|
∑
P⊆R

δπ(P)

=
∑

P⊆Qπ

δπ(P)

∑
R:P⊆R⊆Qπ

(−1)|Qπ\R| = δπ(Qπ) = δQ,
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where the second last equality holds due to the inclusion-exclusion principle. Consequently
by using the theory of weak vector integrals (see, e.g., [32]) we obtain

µ =

∫
δQdµ(Q) =

∫ ∑
R⊆Qπ

(−1)|Qπ\R|χπ(R)dµ(Q).

For a function f ∈ C(I/Γ) we define the linear map

l : C(I/Γ)→ R, f 7→
∫ ∑

R⊆Qπ

(−1)|Qπ\R| f (π(R))dµ(Q)

and observe that since µ is nonnegative, its image Im(l) ⊆ R can be bounded by∣∣∣∣∣∣∣
∫ ∑

R⊆Qπ

(−1)|Qπ\R| f (π(R))dµ(Q)

∣∣∣∣∣∣∣ ≤
∫ ∣∣∣∣∣∣∣ ∑R⊆Qπ

(−1)|Qπ\R|‖ f ‖∞

∣∣∣∣∣∣∣ dµ(Q)

≤

∫
2|Qπ |‖ f ‖∞dµ(Q)

≤

∫
2α‖ f ‖∞dµ(Q)

≤ 2α‖ f ‖∞‖µ‖.

Thus we have that l is bounded and thus defines a signed Radon measure σ on I/Γ by
applying the Riesz-Representation Theorem on l and χR( f ) ∈ C(I/Γ):∫

χR( f )dσ(R) Riesz
= l(χR( f )) =

∫ ∑
R⊆Qπ

(−1)|Qπ\R|χπ(R)( f )dµ(Q) = 〈 f , µ〉

for each f ∈ C(I/Γ), so µ =
∫
χRdσ(R).

Uniqueness: Ifσ′ ∈ M(I2t/Γ) is another measure such that µ =
∫
χRdσ′(R), then

∫
χRd(σ−

σ′)(R) = 0. If we evaluate this at a Borel set L ⊆ I=t/Γ with t = α we obtain

0 =

∫
I2t/Γ

χR(L)d(σ − σ′)(R) =

∫
I2t/Γ

δR(L)d(σ − σ′)(R) = (σ − σ′)(L).

Therefore we conclude σ
∣∣∣
I=t/Γ

= σ′
∣∣∣
I=t/Γ

. Furthermore if we repeat the argumentation for
t = α − 1, . . . , 1, 0, we obtain σ = σ′ implying uniqueness of σ.

Positivity: Let g ∈ C(I/Γ)≥0 be arbitrary and define f ∈ C(I) by

f (S ) =
∑
P⊆S

(−1)|S \P|
√
g(π(P))

and conclude∑
S⊆R

f (S ) =
∑
S⊆R

∑
P⊆S

(−1)|S \P|
√
g(π(P)) =

∑
P⊆R

(−1)|P|
√
g(π(P))

∑
S :P⊆S⊆R

(−1)|S |

=
∑
P=R

(−1)|P|
√
g(π(P))(−1)|P| =

√
g(π(R)).
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We have

0 ≤ 〈 f ⊗ f , Ãαµ〉 = 〈B̃α( f ⊗ f ), µ〉 =

∫
χR(B̃α( f ⊗ f ))dσ(R)

=

∫ ∑
P⊆Rπ

δπ(P)(B̃α( f ⊗ f ))dσ(R) =

∫ ∑
P⊆Rπ

B̃α( f ⊗ f )(π(P))dσ(R)

=

∫ ∑
P⊆Rπ

∫
Γ

∑
J∪J′=γP

f (J) f (J′)dλ(γ)dσ(R)

=

∫ ∫
Γ

∑
J∪J′⊆γRπ

f (J) f (J′)dλ(γ)dσ(R)

=

∫ ∫
Γ

 ∑
P⊆γRπ

f (P)

2

dλ(γ)dσ(R)

=

∫ ∫
Γ

g(π(γRπ))dλ(γ)dσ(R) =

∫ ∫
Γ

g(R)dλ(γ)dσ(R) =

∫
g(R)dσ(R)

implying that 〈g, σ〉 ≥ 0 for every g ∈ C(I/Γ)≥0. Thus σ is a positive measure.

Normalization: Due to the feasibility of µ for Nα(X, r) we have

‖σ‖ =

∫
dσ(S ) =

∫
χS (π({∅})) dσ(S ) = µ (π({∅})) = 1

implying that σ is a probability measure. �

We will now argue that the support of every feasible measure µ for the last step of our
hierarchy Nα(X, r) is contained in the subsets of X that define a covering of X. For this
we will show that for every non-covering set, we can find a positive semidefinite kernel
K ∈ C(Iα × Iα)�0 such that 〈Ãid

α µ,K〉 < 0 and thus the covering constraint is not satisfied.

Lemma 5.5.2. For a non-empty ball Br ⊆ X let k : Iα → R,

k(J) B

(−1)|J| if J ⊆ Br

0 otherwise,

then there exists a continuous function g : Iα → R such that k(J) = g(J) ν-almost surely
for every ν ∈ M(Iα).

Proof. First we observe that

k(J) =

(
1

2
∣∣∣(|J|) − 12

∣∣∣(|J|+1)

)
1J⊆Br

=

 |J|∑
t=0, t even

1I=t −

|J|∑
t=0, t odd

1I=t

1J⊆Br .

Due to the continuity of 1I=t , given by Lemma 5.4.1, it suffices to show that there is a
continuous function g such that g(J) = 1J⊆Br ν-almost surely.
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We further consider {J ∈ Iα : J * Br} and show that it is an open set in Iα. Because J * Br,
implying J , ∅, there is an element y0 ∈ J \ Br. Due to the Hausdorff property of X the
minimal distance we have d(y0, c) > δ for every c ∈ Br. Thus we can consider the ball
B(J, δ) defined by the Hausdorff metric and show that for nonempty Br dH(Br, B(J, δ)) ≥
infc∈Br d(c, B(J, δ)) > 0 holds. This implies that

A B {J ∈ Iα : J * Br} is open and B B {J ∈ Iα : J ⊆ Br} is closed.

As a metric space (Iα, d′H) is a normal space and thus we can apply Urysohn’s Lemma,
which gives us that for any compact subset of A, say A′ and B there exists a continuous
function g with g(a) = 0 for every a ∈ A′ and g(b) = 1 for every b ∈ B. In the case
of our metric space (Iα, d′H) one g that satisfies the constraints can be shown to be g(J) =

d′H (J,A′)
d′H (J,A′)+d′H (J,B) . This g is bounded by 0 and 1. For an arbitrary Radon measure ν ∈ M(Iα)
and every compact A′ ⊆ A we consider∫

Iα
|1J⊆Br − g|dν =

∫
A\A′
|1J⊆Br − g|dν ≤ ν(A \ A′).

Thus ∫
Iα
|1J⊆Br − g|dν ≤ inf

A′⊆A, A′ compact
ν(A \ A′) ≤ ν(A) − sup

A′⊆A, A′ compact
ν(A′) = 0,

where the last step is due to the inner regularity of every Radon measure ν. �

Theorem 5.5.3. Suppose µ is feasible for Nα(X, r). Then the objective value µ(I=1) upper
bounds the covering number N(X, r).

Proof. We consider a feasible measure µ for the program Nα(X, r) and its representation
µ =

∫
χRdσ(R), which exists due to Lemma 5.5.1. We observe that µ satisfies the covering

constraint, i.e., for every K ∈ C(Iα × Iα)�0 we have:

0 ≤ 〈Ãid
α µ,K〉 = 〈µ, B̃id

α K〉 =

∫
χR(B̃id

α K)dσ(R) =

∫ ∑
P⊆Rπ

B̃id
α (π(P))dσ(R)

=

∫ ∑
P⊆Rπ

∫
Γ

∑
x∈Br , J,J′∈Iα: J∪J′∪{x}=γP

K(J, J′) −
∑

J,J′∈Iα: J∪J′=γP

K(J, J′)dλ(γ)dσ(R)

=

∫ ∫
Γ

∑
x∈Br , J,J′∈Iα: J∪J′∪{x}⊆γRπ

K(J, J′) −
∑

J,J′∈Iα: J∪J′⊆γRπ

K(J, J′)dλ(γ)dσ(R)

=

∫ ∫
Γ

∑
x∈γRπ∩Br , J,J′⊆γRπ

K(J, J′) −
∑

J,J′⊆γRπ

K(J, J′)dλ(γ)dσ(R)

=

∫ ∫
Γ

|γRπ ∩ Br |
∑

J,J′⊆γRπ

K(J, J′) −
∑

J,J′⊆γRπ

K(J, J′)dλ(γ)dσ(R).

In particular this holds for the continuous kernel g ⊗ g ∈ C(Iα × Iα)�0 defined in Lemma
5.5.2, which equals the following kernel µ-almost surely:
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For a ball Br ⊆ X we define k : Iα → R, k(J) B

(−1)|J| if J ⊆ Br

0 otherwise
and furthermore

∑
J,J′∈Iα:J,J′⊆γRπ

k ⊗ k(J, J′) =
∑

J,J′∈Iα:J,J′⊆γRπ∩Br

(−1)|J|(−1)|J
′ |

=

 ∑
J∈Iα:J⊆γRπ∩Br

(−1)|J|
2

= 1γRπ∩Br=∅,

where the last step is due to the inclusion-exclusion principle mentioned above. Applying
this to the covering constraint yields

0 ≤
∫ ∫

Γ

|γRπ ∩ Br |
∑

J,J′⊆γRπ

g ⊗ g(J, J′) −
∑

J,J′⊆γRπ

g ⊗ g(J, J′)dλ(γ)dσ(R)

=

∫ ∫
Γ

|γRπ ∩ Br |
∑

J,J′⊆γRπ

k ⊗ k(J, J′) −
∑

J,J′⊆γRπ

k ⊗ k(J, J′)dλ(γ)dσ(R)

=

∫ ∫
Γ

(|γRπ ∩ Br | − 1)1γRπ∩Br=∅dλ(γ)dσ(R)

=

∫
−λ(γ ∈ Γ : γRπ ∩ Br = ∅)dσ(R)

If we assume that Rπ is not a covering, we have that λ(γ ∈ Γ : γRπ ∩ Br = ∅) is strictly
positive, since Γ is transitive, a contradiction. Thus we have shown that any feasible mea-
sure for Nα(X, r) is only supported on coverings of X. We finish the proof by looking at
the objective function of Nα(X, r)

µ(I=1/Γ) =

∫
χR(I=1/Γ)dσ(R) =

∫
|Rπ|dσ(R) ≥

∫
N(X, r)dσ(R) = N(X, r).

The reverse implication follows by definition of N t(X, r). �

5.6 Symmetry-reduced dual hierarchy
We have now completed a number of theoretic results on the covering numberN(X, r). The
main obstacle for computations of such a geometric problem is the size of the sample that
is needed to discretize the problem

N t(X, r) = sup − B̃tK(π(∅)) − B̃id
t K′(π(∅)) (5.14)

K ∈ C(It × It)�0, K′ ∈ C(It−1 × It−1)�0,

1I=1/Γ(Q) − B̃tK(Q) − B̃id
t K′(Q) ≥ 0 for all Q ∈ I2t/Γ \ {π(∅)}. (5.15)

appropriately. Although we already used symmetries with respect to Γ to reduce the number
of constraints in the dual program (5.12) above, we still need to sample the kernels K and
K′ and the constraints Q ∈ I2t/Γ \ {π(∅)}, which is very expensive in terms of computation
time.
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In the related problems of energy minimization (see [21]) and packing of superballs (see
[28]) a fruitful approach to reduce the number of necessary sample points is to exploit
symmetries inherent in the problem.
Therefore, in the remainder of this section, we reduce the degrees of freedom of the kernels
K and K′ by exploiting symmetries to achieve a reformulation of (5.14) that is computable
for certain choices of X. For this we consider Br = B(e, r), i.e., we denote the center of Br

by e. The stabilizer subgroup H ⊆ Γ with respect to the point e is defined by

H B {γ ∈ Γ : γe = e for every x ∈ X}.

As a subset of isometries the group H in particular satisfies γB(e, r) = B(e, r) for all γ ∈ H.
Additionally, we say that a kernel K ∈ C(It × It)�0 is Γ- respectively H-invariant if and only
if the shifted kernel Kγ defined by Kγ(J, J′) = K(γJ, γJ′) and K coincide, i.e.,

K ∈ C(It × It)Γ
�0 ⇐⇒ K(J, J′) = K(γJ, γJ′) for every J, J′ ∈ It and γ ∈ Γ

and
K ∈ C(It × It)H

�0 ⇐⇒ K(J, J′) = K(γJ, γJ′) for every J, J′ ∈ It and γ ∈ H

respectively. We prove in the following that we can restrict (5.14) to kernels

K ∈ C(It × It)Γ
�0 and K′ ∈ C(It−1 × It−1)H

�0

by proving that for a feasible solution (K,K′) the vector
(∫

Γ
Kγdλ(γ),

∫
H(K′)γdλ(γ)

)
also

yields a feasible solution with the same objective value.
First, we show that for every π(P) ∈ I2t/Γ \ {π(∅)}

1I=1/Γ(π(P)) − B̃t

(∫
Γ

Kγdλ(γ)
)

(π(P)) − B̃id
t

(∫
H

(K′)γdλ(γ)
)

(π(P)) ≥ 0,

where h denotes the normalized Haar measure of the subgroup H. For this we observe that

B̃t

(∫
Γ

Kγdλ(γ)
)

(π(P)) =

∫
Γ

B̃tKγ(π(P))dλ(γ)

and

B̃id
t

(∫
H

(K′)γdλ(γ)
)

(π(P)) =

∫
H

B̃id
t (K′)γ(π(P))dh(γ),

i.e., the Haar integrals and the operators B̃t and B̃id
t are interchangeable. Then we consider

B̃tKγ(π(P)) =

∫
Γ

∑
J,J′∈It : J∪J′=γ′P

Kγ(J, J′)dλ(γ′)

=

∫
Γ

∑
J,J′∈It : J∪J′=γ′P

K(γJ, γJ′)dλ(γ′)

=

∫
Γ

∑
γ−1 J,γ−1 J′∈It : γ−1(J∪J′)=γ′P

K(J, J′)dλ(γ′)

=

∫
Γ

∑
J,J′∈It : J∪J′=γγ′P

K(J, J′)dλ(γ′)

= B̃tK(π(P))
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and conclude together with the fact that λ is normalized that

B̃t

(∫
Γ

Kγdλ(γ)
)

(π(P)) = B̃tK(π(P)). (5.16)

The same arguments applied on B̃id
t (K′)γ(π(P)) read as follows

B̃id
t (K′)γ(π(P)) =

∫
Γ

∑
x∈Br , J,J′∈It−1:

J∪J′∪{x}=γ′P

K′(γJ, γJ′) −
∑

J,J′∈It−1:
J∪J′=γ′P

K′(γJ, γJ′)dλ(γ′)

=

∫
Γ

∑
γ−1 x∈Br , γ

−1 J,γ−1 J′∈It−1:
γ−1(J∪J′∪{x})=γ′P

K′(J, J′) −
∑

γ−1 J,γ−1 J′∈It−1:
γ−1(J∪J′)=γ′P

K′(J, J′)dλ(γ′)

=

∫
Γ

∑
x∈γBr , J,J′∈It−1:

J∪J′∪{x}=γγ′P

K′(J, J′) −
∑

J,J′∈It−1:
J∪J′=γγ′P

K′(J, J′)dλ(γ′)

=

∫
Γ

∑
x∈Br , J,J′∈It−1:

J∪J′∪{x}=γγ′P

K′(J, J′) −
∑

J,J′∈It−1:
J∪J′=γγ′P

K′(J, J′)dλ(γ′)

= B̃id
t K′(π(P)),

where γBr = Br holds due to the fact that γ ∈ H is an isometry, and show

B̃id
t

(∫
H

(K′)γdλ(γ)
)

(π(P)) = B̃id
t K′(π(P)). (5.17)

Thus we have shown that the constraints (5.15) also hold for(∫
Γ

Kγdλ(γ),
∫

H
(K′)γdλ(γ)

)
.

Since we can verify equations (5.16) and (5.17) also for P = ∅ with the above arguments,
we have that the kernels

∫
Γ

Kγdλ(γ) and
∫

H(K′)γdλ(γ) have the same objective value as K
and K′. This implies another reformulation of (5.14):

N t(X, r) = sup − B̃tK(π(∅)) − B̃id
t K′(π(∅)) (5.18)

K ∈ C(It × It)Γ
�0, K′ ∈ C(It−1 × It−1)H

�0,

1I=1/Γ(Q) − B̃tK(Q) − B̃id
t K′(Q) ≥ 0 for all Q ∈ I2t/Γ \ {π(∅)}.

5.7 Applications to S 2

In this section we aim for computing bounds for a specific covering number, namely the
spherical covering numberN(S 2, d). Here S 2 = {x ∈ R3 : x · x = 1} denotes the unit sphere
equipped with the spherical distance d(x, y) B arccos(x · y) and the unique O(3)-invariant
measure ω. As a previous lower bound we have the Coxeter-Few-Rogers bound, on which
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Fejes-Tóth elaborated for S 2 in [31].
We fix Br = B(e, r) at the "north pole" e = (0, 0, 1)T of S 2 and apply hierarchy (5.18) to
obtain the program

N t(S 2, r) = sup − B̃tK(π(∅)) − B̃id
t K′(π(∅)) (5.19)

K ∈ C(It × It)Γ
�0, K′ ∈ C(It−1 × It−1)H

�0,

1I=1/Γ(Q) − B̃tK(Q) − B̃id
t K′(Q) ≥ 0 for all Q ∈ I2t/Γ \ {π(∅)}.

Here Γ = O(3) is the orthogonal group and H = Stab(O(3), e) is the stabilizer group of O(3)
with respect to e. In the upcoming sections we formulate a finite-dimensional semidefinite
program that gives lower bounds forN2(S 2, r), i.e., the step t = 2, upto arbitrary precision.
The main challenge to develop such program is to deal with the infinite-dimensional kernels
K ∈ C(I2 × I2)O(3)

�0 and K′ ∈ C(I1 × I1)Stab(O(3),e)
�0 . For this purpose we will apply the famous

theorem of Bochner [10] to deal with K and use methods developed in an article of Bachoc
and Vallentin [6] to deal with K′. For the general framework illustrated in the next sections
we follow the lecture notes by Vallentin [80]. Further details on Bochner’s theorem on
compact, metrizable topological spaces X equipped with a continuous action of a compact
group Γ can be found in Chapter 3 of [22].

5.7.1 Characterization of K via Bochner’s theorem
We begin this section by illustrating the theorem of Bochner for a compact metric space X
before we apply it to the specific case X = S 2. It appears convenient to have a theory, that
is potentially applicable to other metric spaces as well.
The main ingredient for being able to apply Bochner’s theorem is to compute a specific
complete orthonormal system for C(I2). Let G ⊆ Aut(It) be a subgroup of the automor-
phism group of It and µ ∈ M(I2)G be a G-invariant Radon measure on the compact metric
space (It, d′H). A family of functions e1, e2, . . . ∈ C(I2) is an orthonormal system if∫

I2

ek(x)ek(x)dµ(x) = 1, and
∫

I2

ek(x)el(x)dµ(x) = 0, whenever k , l.

It is complete if every continuous function f ∈ C(I2) can be approximated arbitrarily well
by finite linear combinations of ek in terms of convergence with respect to the norm

‖ f ‖ B

√∫
I2

f 2(x)dµ(x).

We aim for a complete orthonormal system that satisfies the properties given by the follow-
ing theorem of Peter and Weyl (see [63] and [83]) but first, we need to recall a couple of
definitions from Section 2.3:

• A subspace S ⊆ C(X) is called G-invariant if gS = S for every g ∈ G.

• A nonzero subspace S is called G-irreducible if {0} and S are the only G-invariant
subspaces of S .
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• For two G-invariant subspaces F, F′ ⊆ C(X) a linear map T : F → F′ is called a
G-map if T (g f ) = γT ( f ).

We further say that two spaces S and S ′ are G-equivalent, if there is a bijective G-map
between them. Finally, we recall the theorem of Peter and Weyl.

Theorem 5.7.1 (Peter-Weyl). The space C(It) has a complete orthonormal system ek,i,l,
where k = 0, 1, . . ., i = 1, 2, . . . ,mk, mk potentially infinite, l = 1, 2, . . . , hk, hk finite, so that

(1) the space Hk,i spanned by ek,i,1, . . . , ek,i,hk is G-irreducible,

(2) the spaces Hk,i and Hk′,i′ are G-equivalent if and only if k = k′,

(3) there are G-maps φk,i : Hk,1 → Hk,i mapping ek,1,l to ek,i,l.

The proof of this theorem is constructive in the sense that one constructs an orthonormal
system satisfying (1) – (3), thus we can apply Bochner’s Theorem [10].

Theorem 5.7.2 (Bochner). Let ek,i,l be a complete orthonormal system for C(It) as in The-
orem 5.7.1. Every G-invariant, positive semidefinite kernel K ∈ C(It × It)G

�0 can be written
as

K(J, J′) =

∞∑
k=0

mk∑
i, j=1

fk,i j

hk∑
l=1

ek,i,l(J)ek, j,l(J′), (5.20)

or more economically as

K(J, J′) =

∞∑
k=0

〈Fk,Z
(J,J′)
k 〉, (5.21)

with (Fk)i j = fk,i j and
(
Z(J,J′)

k

)
i j

=
∑hk

l=1 ek,i,l(J)ek, j,l(J′). Here, Fk is symmetric and positive

semidefinite. If G is transitive, the series
∑∞

k=0〈Fk,Z
(J,J′)
k 〉 converges absolutely-uniformly.

De Laat [22] generalized this theory slightly and proved the convergence of the series∑∞
k=0〈Fk,Z

(J,J′)
k 〉 for G having finitely many orbits. His characterization of the kernels Z(J,J′)

k
uses representation theory, in particular unitary representations of G, which are continu-
ous group homomorphisms ρ : G → U(H) valued on the group of unitary operators on a
nonzero Hilbert spaceH , given that U(H) is endowed with the strong operator topology.
He concluded that for a complete set Ĝ of non-equivalent, irreducible unitary representa-
tions of G, we have a block Zρ for every representation ρ ∈ Ĝ called a zonal matrix. The
obstacle that the zonal matrices Zρ ∈ S mρ

�0 are possibly infinite-dimensional can be dealt
with by considering Rρ,d × Rρ,d submatrices, where Rρ,1 ⊆ Rρ,2 ⊆ . . . [mρ] are finite subsets
such that

⋃∞
d=0 Rρ,d = [mρ] and for every d the set Rρ,d is empty for all but finitely many ρ.

From now on, we will focus on the specific space X = S 2. By computing concrete zonal
submatrices in Section 7.6.3 of [22], one achieves an inner approximation of the cone
C(I2 × I2)O(3)

�0 that was used to approach the energy minimization problem. Here, the se-
quence

C1 ⊆ C2 ⊆ . . . ⊆ C(I2 × I2)O(3)
�0



86 Lower bounds Chapter 5

defined by

Cd =

 ∑
ρ∈Ô(3)

〈Fρ,Zρ,d(., .)〉 : Fρ ∈ S Rρ,d
�0 for ρ ∈ Ô(3)


approximates the cone C(I2× I2)O(3)

�0 and it can be shown that
⋃∞

d=1 Cd is uniformly dense in
C(I2× I2)O(3)

�0 . Ultimately, this led to the first computation of the second step of the Lasserre
hierarchy for an infinite-dimensional problem.
On the other hand, the problem formulation of energy minimization does only rely on one
kernel K ∈ C(I2× I2)O(3)

�0 . Although de Laat’s theory would also apply on C(I1× I1)Stab(O(3),e)
�0

we use the paper of [6] to find an inner approximation scheme for K′, since they provide
concrete approximating functions for K′.

5.7.2 Explicit description of K′ via Bachoc-Vallentin’s theorem
The approximation scheme for K′ relies on a result of Bachoc and Vallentin [6] on the cone
C(S n × S n)Stab(O(n+1),e)

�0 .
Suppose that the space C(I1) is equipped with a Stab(O(3), e)-invariant Radon measure
µ ∈ M(I1)Stab(O(3),e) scaled to µ ({∅}) = 1 (which exists if (5.9) is non-empty). Then, we
first observe that C(I1) can be split into two parts

C(I1) = C(I=0) ⊥ C(I=1) � R ⊥ C(S 2).

Next, one constructs a complete orthonormal system for C(I=0) ⊥ C(I=1). For C(I=0) we
set

e0,−1,1(J) =

1 if J = ∅

0 if J ∈ I=1

and construct ek,i,l for C(S 2) by following Bachoc and Vallentin (see Theorem 6.8 in [6]).
Then we identify ek,i,l ({x}) = ek,i,l(x) for x ∈ S 2 and extend the orthonormal system with
ek,i,l(∅) = 0 to keep orthogonality with e0,−1,1.
By applying Bochner’s Theorem, we achieve an approximate formulation for the kernel
K′ ∈ C(I1 × I1)Stab(O(3),e)

�0 by defining

K′d(J, J′) B
d∑

i, j=−1

f0,i jY0,i j(J, J′) +

d∑
k=1

d−k∑
i, j=0

fk,i jYk,i j(J, J′), (5.22)

where

Y0(J, J′) B


e0,−1,1(J)

...
e0,d,1(J)



e0,−1,1(J′)

...
e0,d,1(J′)


T

,

with the exact values of e0,i,1 that can be found in [3] Chapter 9.8, see also the proof of
Theorem 3.2 in [6]. For u = u ({x}, {y}) = x · e, v = v ({x}, {y}) = y · e and w = w ({x}, {y}) =

x · y, we define the corresponding matrices Yk(J, J′) with k = 1, . . . , d explicitly by

Yk,i j(J, J′) =

uiv jQ2
k(u, v, w) if J, J′ ∈ I=1,

0 otherwise.
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The Q2
k are defined via the Gegenbauer polynomials C0

k of degree k:

Q2
k(u, v, w) =

(
(1 − u2)(1 − v2)

) k
2 C0

k

 w − uv√
(1 − u2)(1 − v2)

 /C0
k (1).

Gegenbauer or ultraspherical polynomials Cλ
k occur as orthogonal polynomials in a variety

of situations and are well established objects. For more details we refer to [3].
The sequence of kernels K′d defines a sequence of cones

C′d =

〈F0,Y0(., .)〉 +
d∑

k=1

〈Fk,Yk(., .)〉 : F0 ∈ S d+2
�0 , Fk ∈ S d−k+1

�0 for k ∈ {1, . . . , d}


having the property

C′1 ⊆ C′2 ⊆ . . . ⊆ C(I1 × I1)Stab(O(3),e)
�0 .

Finally, we conclude that
⋃∞

d=0 C′d is dense in C(I1 × I1)Stab(O(3),e)
�0 by the Stone-Weierstrass

theorem. The semidefinite program that provides a lower bound for N2(S 2, r) can finally
be stated as

N2(S 2, r) ≥ sup − B̃2K(π(∅)) − B̃id
2 K′(π(∅)) (5.23)

K ∈ Cd, K′ ∈ C′d,

1I=1/Γ(Q) − B̃2K(Q) − B̃id
2 K′(Q) ≥ 0 for all Q ∈ I2t/Γ \ {π(∅)}.

and provides increasingly better bounds for growing values of d. The drawback of this
method is that increasing d also increases the dimension of the underlying matrices and
hence the computation time. Thus it remains to determine an appropriate value for d,
which is a challenging task for future research.
Also, one observes that if one simply takes a finite sample of constraints Q ∈ I2t/Γ \ {π(∅)},
this does not necessarily yield a feasible solution for the original problem. However, since
the functions 1I=1/Γ,, B̃tK and B̃id

t K′ are continuous and bounded, a feasible solution (K,K′)
to our sampled problem is almost feasible, i.e., there is a small constant c > 0 such that

1I=1/Γ(Q) − B̃2K(Q) − B̃id
2 K′(Q) ≥ −c for all Q ∈ I2t/Γ \ {π(∅)}.

In related problems such as packing (see, e.g., [28]), it is often possible that one can de-
termine additional kernels K+ ∈ C(I2 × I2)O(3)

�0 or (K′)+ ∈ C(I1 × I1)Stab(O(3),e)
�0 such that

(K + K+,K′ + (K′)+) is a feasible solution for the original problemN2(S 2, r). Such kernels
are still to be found for the covering number – another task for possible future research on
this very interesting topic.
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Appendix

In this appendix we cite the actual values for the covering radius r (Column 2) correspond-
ing to a fixed number of caps (Column 1) on Neil Sloane’s webpage [76]. Additionally,
Column 3 shows the lower bounds given by L. Fejes-Tóth [31] for the covering number
N(S 2, r) with covering radius r.

number of caps covering radius r Fejes-Tóth Bound
4 70.5287794 3, 999999997
5 63.4349488 4.697992631
6 54.7356103 6, 000000003
7 51.0265527 6, 780802809
8 48.1395291 7, 521978584
9 45.8788878 8, 205126707
10 42.3078266 9.519950643
11 41.4271960 9.898287382
12 37.3773681 12.00000002
13 37.0685427 12.18933749
14 34.9379270 13.63625733
15 34.0399001 14.32949147
16 32.8988128 15.29393600
17 32.0929328 16.03817023
18 31.0131718 17.12803589
19 30.3686748 17.83484936
20 29.6230958 18.71091588
21 28.8244768 19.72591251
22 27.8100588 21.14365366
23 27.4818687 21.63634148
24 26.8126364 22.69774615

Table 5.1: Values from [76] and [31]
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number of caps covering radius r Fejes-Tóth Bound
25 26.3287855 23.51614618
26 25.8449223 24.38102783
27 25.2509549 25.51152965
28 24.6589489 26.72065715
29 24.3683986 27.34661483
30 23.8787580 28.45369863
31 23.6119921 29.08607870
32 22.6904804 31.44496901
33 22.5905116 31.71838131
34 22.3314637 32.44404754
35 22.0725569 33.19501458
36 21.6994390 34.32493267
37 21.3100299 35.56808878
38 21.0698584 36.36943712
39 20.8511244 37.12349474
40 20.4721353 38.48771501
41 20.3177152 39.06559337
42 20.0480917 40.10680322
43 19.8428333 40.92808274
44 19.6375705 41.77527880
45 19.4207407 42.69956370
46 19.1586113 43.85913546
47 18.9924594 44.61913513
48 18.6892566 46.05864541
49 18.5926796 46.53202118
50 18.3000226 48.01255497
51 18.1990011 48.54027920
52 18.0544758 49.31072403
53 17.8845734 50.24045050
54 17.6791447 51.40058493
55 17.5222392 52.31431798
56 17.3501139 53.34534073
57 17.1758476 54.42093237
58 17.0199610 55.41121754
59 16.9034031 56.16963721
60 16.7719330 57.04413921

Table 5.2: Values from [76] and [31]
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number of caps covering radius r Fejes-Tóth Bound
61 16.6391845 57.94826496
62 16.4906596 58.98583938
63 16.3679364 59.86456754
64 16.1940190 61.14424743
65 16.1114061 61.76668239
66 15.9550615 62.97121529
67 15.8581808 63.73556439
68 15.7236959 64.82010860
69 15.5950401 65.88401852
70 15.4951288 66.72857619
71 15.3918904 67.61859506
72 15.1445321 69.82562079
73 15.1164437 70.08310996
74 15.0311866 70.87353121
75 14.9454277 71.68229221
76 14.8539208 72.56075697
77 14.7449905 73.62788608
78 14.6550577 74.52690100
79 14.5627673 75.46685649
80 14.4503042 76.63670271
81 14.3767803 77.41638875
82 14.2863117 78.39233514
83 14.2239571 79.07586582
84 14.1157901 80.28315034
85 14.0452618 81.08540675
86 13.9626271 82.04088444
87 13.8849703 82.95439891
88 13.7904978 84.08660049
89 13.7120948 85.04404307
90 13.6208737 86.17889502
91 13.5633748 86.90601601
92 13.4878634 87.87508267
93 13.4258226 88.68354322
94 13.3486301 89.70522923
95 13.2858097 90.54987052

Table 5.3: Values from [76] and [31]
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number of caps covering radius r Fejes-Tóth Bound
96 13.2112886 91.56749885
97 13.1421390 92.52730359
98 13.0644481 93.62389667
99 12.9972791 94.58786934

100 12.9360973 95.47901769
101 12.8693268 96.46611057
102 12.8065480 97.40831141
103 12.7396985 98.42695978
104 12.6710007 99.49061599
105 12.6206479 100.2812910
106 12.5580705 101.2772116
107 12.4984676 102.2397371
108 12.4268411 103.4148046
109 12.3823879 104.1543586
110 12.3000527 105.5453845
111 12.2463574 106.4677036
112 12.1906904 107.4367870
113 12.1475147 108.1976069
114 12.0965651 109.1059149
115 12.0509312 109.9292569
116 11.9886435 111.0682838
117 11.9433897 111.9070210
118 11.8858175 112.9879469
119 11.8437244 113.7882467
120 11.7866486 114.8871328
121 11.7339186 115.9166330
122 11.6770714 117.0421779
123 11.6364348 117.8568923
124 11.5887833 118.8231863
125 11.5384928 119.8560078
126 11.4894028 120.8772839
127 11.4535231 121.6320522
128 11.4068506 122.6245375
129 11.3563380 123.7125009
130 11.3165625 124.5794765

Table 5.4: Values from [76] and [31]
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