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Chapter 1

Introduction

Quantum algorithms are able to solve certain problems essentially faster than current state-
of-the-art classical algorithms, the main example being Shor’s factoring algorithm [1]. In
order to use the theoretical computational power of a quantum computer, mathematical
frameworks are required that guarantee a high level of fault-tolerance. Additionally, they
have to ensure the ability to universal quantum computation meaning that any operation that
we can theoretically perform with a quantum computer is realizable within this framework.

The stabilizer framework seems promising to achieve this goal [2]- however, it can be seen
as a closed subtheory of quantum theory which is not universal and its computational power
is restricted due to the Gottesman-Knill theorem [3]. In fact, we can efficiently simulate the
outcomes of a circuit based on stabilizer operations with a classical computer.

Fortunately, we can promote the stabilizer framework to universality by a process called
magic state distillation, originally proposed by Bravyi and Kitaev [4]. Loosely speaking, we
effectuate a non-stabilizer operation by injecting a magic state into our circuit enabling us
to do any operation which we can theoretically realize with a quantum computer, up to high
precision.

One crucial feature of magic states is that they lie outside the stabilizer polytope lying at
the core of the stabilizer framework. This thesis will be devoted to take a closer look at this
polytope for qubit systems from a geometric point of view. We will characterize the integral
points of its polar dual polytope linearly embedded in the real Euclidean space and we will
prove that certain of these points will give rise to facets of the stabilizer polytope.

Besides, we will build a connection between (non-)contextuality and the integral points
of the polar dual polytope. Contextuality is a feature that divides classical from quantum
mechanics and such a connection has been shown to be a necessary resource for quantum
computation with magic states [5][6]. As one of the main results we will characterize state
independent contextuality as a violation of a facet inequality of the polar dual stabilizer
polytope.

The first chapter includes a short introduction to the basic properties of polytopes which will
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be frequently used in the second chapter. Moreover, we will explain all concepts of quantum
information theory required for this work.

The second chapter deals with the stabilizer polytope and contextuality. In the first part we
will introduce a family of lattice polytopes and analyze some of their characteristics. Particu-
larly, we will characterize all integral points in the corresponding family of dual polytopes and
show that some of these integral points give rise to facets. Embedded in the real Euclidean
space, the stabilizer polytope can be classified as a member of this family.

In the second part of the chapter we will establish the connection between the stabi-
lizer polytope and (non)-contextuality. We will use the results of the first part to deduce a
geometric characterization of contextuality related to projections of the stabilizer polytope.
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Chapter 2

Preliminaries

2.1 On polytopes

This section gives a shorthand introduction to the basic structural properties of polytopes,
which will be frequently applied in the subsequent parts of this work. The ideas are based on
the first two chapters of [7]. Detailed proofs can be found there as well.

Basic properties

Let V be a vector space over the real numbers R and V ∗ its dual space, i.e., the set of linear
functionals ` : V → R. A polytope P is defined as the convex hull of finitely many points in
V meaning that there are N ∈ N and v1, ..., vN ∈ V such that

P = conv{v1, ..., vN}.

Such a description is referred to as a V-description of P . For ` ∈ V ∗, β ∈ R the sets
{x ∈ V | `(x) ≤ β} and {x ∈ V | `(x) ≥ β} are called (closed) half-space. As a consequence of
the theorem of Minkowski-Weyl, polytopes are bounded polyhedra, hence, we can write them
as the intersection of half-space:

P = {x ∈ V | `i(x) ≤ βi, i = 1, ...,m}

for linear functionals `1, ..., `m ∈ V ∗. Such a description is called an H-description of P .
The dimension of a polytope is the dimension of its affine hull i.e., dimP = dim(aff(P )).

We call a polytope P ⊂ V full-dimensional if dimP = dimV . Note that P is full-dimensional
iff there is a point x lying in the interior of P (which we will denote by int(P )).

Particularly, we are interested in the structure of the boundary of a polytope. If P is a
polytope, then F ⊆ P is called a face of P if there is an affine subspaceH = {x ∈ V | `(x) = β}
such that F = {x ∈ P | `(x) = β} and P ⊂ {x ∈ V | `(x) ≤ β}. If we set ` ≡ 0 and β = 1,
respectively β = −1, we see that P , respectively ∅ are faces of P . All other faces F 6= P, ∅
are called proper faces.
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The dimension of a face is the dimension of its affine hull, i.e., dimF = dim(aff(F )).
Zero-dimensional faces are called vertices, 1-dimensional faces edges and faces of dimension
dim(P )− 1 facets. The set of vertices of a polytope P will be denoted by V(P ). We will state
some basic properties of faces.

Proposition 2.1.1. Let P ⊂ V be a polytope and let F be a face of P .

(i) F is a polytope and V(F ) = F ∩ V(P ).

(ii) The intersection of faces of P is a face of P .

(iii) The faces of F are exactly the faces of P that are contained in F .

(iv) F = P ∩ aff(F ).

If we are given an H-description of a polytope, we are often interested in an "irreducible"
description, i.e., we do not want to list inequalities that hold for P but are already implied by
other inequalities holding for P . An H-description P = {x ∈ V | `i(x) ≤ βi, i = 1, ...,m} of a
polytope P is non-redundant if the sets {x ∈ P | `i(x) = βi} are facets of P for all i = 1, ...,m.
This is equivalent to {x ∈ V | `i(x) ≤ βi, i ∈ I ( {1, ...,m}} 6= P for all proper subsets I
of {1, ...,m}. This means that we cannot remove inequalities form the H-description without
changing the set P . If P is full-dimensional, a non-redundant H-description is unique up to
multiples α`(x) ≥ αβ with α > 0. Every proper face of P can be seen as the intersection
of facets, thus, for every proper face F of P there exists a set I ⊂ {1, ...,m} such that
F = {x ∈ P | `i(x) ≤ βi for all i ∈ I}.

If a polytope P is given by its H-description, there are several equivalent characterizations
of its vertices (or 0-faces):

Proposition 2.1.2. Let P = {x ∈ V | `i(x) ≤ βi, i = 1, ...,m} ⊂ V be a polytope and v ∈ P .
Then the following properties of v are equivalent:

(i) v is a vertex of P .

(ii) If v = λv1 + (1− λ)v2 for 0 ≤ λ ≤ 1 and v1, v2 ∈ P , then v = v1 = v2. Since this is the
(general) definition of an extreme point, v is an extreme point of P .

(iii) dim
(
span{`i | `i(v) = βi, i ∈ {1, ...,m}}

)
= dimV ∗ = dimV .

(iv) There exists ` ∈ V ∗ such that `(v) > `(x) for all x ∈ P \ {v}.

A proof can be found in [8, Section 2.2]. There is also a useful characterization for faces
of dimension 1, i.e., the edges. For two points v1, v2 ∈ V we define the line segment between
v1 and v2 as

[v1, v2] := {λv1 + (1− λ)v2 | 0 ≤ λ ≤ 1}.

Proposition 2.1.3. Let P ⊂ V be a polytope and v1, v2 ∈ V(P ). The line segment [v1, v2] is
an edge of P if and only if there is an ` ∈ V ∗ such that `(v1) = `(v2) and `(v) < `(v1) for all
v ∈ V(P ) \ {v1, v2}.
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The polar dual polytope

Let M ⊂ V . The polar set of M is given by

M◦ = {` ∈ V ∗ | `(x) ≥ −1 for all x ∈M}.

Note that this definition varies from the usual definition of the polar set in the literature
because one usually demands `(x) ≥ 1. This coincides with the set −M◦ in our context. Yet,
for the purpose of this thesis it is more convenient to demand `(x) ≥ −1. The set M◦ is
convex independently of the shape of M , as the intersection of (infinitely) many half-space.
Moreover, if M ⊂M ′, then clearly (M ′)◦ ⊂M◦. For example, if B(0, r) = {x ∈ V | ‖x‖ ≤ r}
is the ball of radius r > 0 then B(0, r)◦ = B(0, 1/r) is the ball of radius 1/r.

If P is a polytope, then P ◦ is a polytope as well under certain circumstances. Additionally,
there is a strong relation between the facets of P and the vertices of P ◦ (in general, there is
a strong relation between their face lattices, for further details see [7]).

Lemma 2.1.4. Let P = conv{v1, ..., vN} be a full-dimensional polytope with 0 ∈ int(P ).
Then P ◦ is a full-dimensional polytope with 0 ∈ V ∗ in the interior of P ◦ and

P ◦ = {` ∈ V ∗ | `(vi) ≥ −1 for all i = 1, ..., N},

where the sets { ` ∈ P ◦ | `(vi) = −1 } are facets of P ◦ for all i = 1, ..., N . Moreover, it holds
(P ◦)◦ = P .

The lemma has the following consequence: If P is full-dimensional with 0 ∈ int(P ) and
dual polytope P ◦ with vertex set V(P ◦) = {`1, ..., `m}, then a non-redundant H-description
of P is given by P = {x ∈ V | `i(x) ≥ −1, i = 1, ...,m}.

Lattice polytopes

We set V = Rd and fix the lattice Zd ⊂ Rd. A polytope P is called a lattice polytope (or
integral) if V(P ) ⊂ Zd. Lattice polytopes are especially interesting in optimization since
determining the maximum of linear function over all lattice points in a polytope (which is
known as integer programming and is NP-complete in general) boils down to maximizing the
linear function over the whole polytope (which can be solved in polynomial time and is known
as linear programming).

Every linear functional ` ∈ (Rd)∗ can be written as `(x) = aTx for some a ∈ Rd, so we can
identify (Rd)∗ with Rd. Let P be a full-dimensional lattice polytope with 0 ∈ int(P ). Then P
is reflexive if P ◦ is also a lattice polytope, i.e., V(P ◦) ⊂ Zd. The most common example is the
hypercube Cd = conv{v | v ∈ {−1, 1}d} with its dual polytope (Cd)◦ = conv{±ei, i = 1, ..., d}
where e1, ..., ed is the standard basis of Rd. In Section 3.1 we will see another family of reflexive
polytopes (where some of them are even self-dual, i.e., P = P ◦) as projections of the stabilizer
polytope.
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2.2 Quantum information theory

The foundational objects in quantum information theory are complex matrices. We will briefly
introduce the ones which will appear in this thesis. A matrix A ∈ Cd×d is called Hermitian
if A = A†, where the entry A†ij is the complex conjugate of the entry Aji, i.e., A†ij = Aji for
all i, j ∈ {1, ...d}. We call a matrix A Hermitian positive semidefinite (shortly psd) if A is
Hermitian and x†Ax ≥ 0 for all x ∈ Cd. A state ρ is a Hermitian positive semidefinite matrix
that additionally satisfies Tr (ρ) = 1. A matrix U is unitary if UU † = I, where I denotes the
identity matrix. Note that if U is unitary and ρ a state then UρU † remains a state.

Oftentimes, the matrices act on the tensor space (C2)⊗n ∼= C2n (where ⊗ is the standard
symbol for tensor products). Vectors in C2n will be denoted in the bra-ket notation, i.e., we
will write |ψ〉 ∈ C2n and 〈ψ| for the conjugate transpose.

If A ∈ C2×2 and if not defined specifically in another manner, then Ai ∈ C2n×2n for
i ∈ {1, ..., n} represents the matrix

Ai = I ⊗ · · · I︸ ︷︷ ︸
(i−1)−times

⊗A⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
(n−i)−times

, (2.1)

i.e., the matrix Ai sits at the i−th tensor. If |ψ〉 = |ψ1〉 ⊗ · · · ⊗ |ψn〉 ∈ C2n , then

Ai |ψ〉 = Ai |ψ1〉 ⊗ · · · ⊗ |ψn〉 = |ψ1〉 ⊗ · · · ⊗ |ψi−1〉 ⊗A |ψi〉 ⊗ |ψi+1〉 ⊗ · · · ⊗ |ψn〉 ,

so Ai acts on the i-th qubit of |ψ〉 and leaves the remaining qubits invariant.

The n−qubit Pauli group and stabilizer codes

In this section we introduce the basic objects of the stabilizer formalism. This closed subtheory
of quantum computation has proved to be extremely useful to design a mathematical basis
for fault tolerant quantum computation as it allows a high degree of quantum error correction
[2].

The section is based on the ideas and notion of chapter 10 of the textbook [9]. Let

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)

be the Pauli X, Y and Z matrices. If we consider the vector space of 2 × 2 Hermitian
matrices as a 4-dimensional real valued vector space, X,Y, Z together with the identity matrix

I =
(

1 0
0 1

)
form an orthogonal basis for this space with respect to the trace inner product.

The set of n-fold tensors of Pauli matrices is defined as

Pn =
{

n⊗
i=1

Wi |Wi ∈ {I,X, Y, Z}
}
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and is a basis for the real valued 4n-dimensional vector space of 2n × 2n Hermitian matrices.
Using the notation of (2.1) we can write this as{

n∏
i=1

A
(i)
i |A

(i)
i ∈ C2n×2n

, A(i) ∈ {I,X, Y, Z}
}
,

e.g., we will write X1Y3 ∈ P3 for X ⊗ I ⊗ Y . In slight abuse of notation, we use the symbol
I for the identity matrix of arbitrary dimension if it does not cause any ambiguities. Some
important properties of elements in Pn are listed below:

(i) They are all unitary and Hermitian, thus g2 = I for all g ∈ Pn.

(ii) The eigenvalues are +1 and −1 and the projectors onto the eigenspaces are (I + g)/2
for the +1 eigenspace, respectively (I − g)/2 for the −1 eigenspace. This can be easily
seen since for a vector |ψ〉 ∈ (C2)⊗n

g

(
I + g

2 |ψ〉
)

= g + g2

2 |ψ〉 = I + g

2 |ψ〉

and we can argue analogously for the projector onto the −1 eigenspace.

(iii) Two matrices in Pn either commute or anticommute, that is gg′ = g′g or gg′ = −g′g for
any g, g′ ∈ Pn.

X Y Z

X I iZ iY
Y −iZ I iX
Z −iY −iX I

Figure 2.1: Multiplication table for the Pauli matrices where we multiply row times column.

Adding a global phase ±1,±i to the operators in Pn we define the union

Pn = Pn ∪ −Pn ∪ iPn ∪ −iPn,

which is closed under multiplication and forms a multiplicative group, the Pauli group with
center Z(Pn) = {±I⊗n,±iI⊗n}. The set Pn ∪ −Pn will be denoted by ±Pn and sometimes
we will refer to elements in Pn as Pauli observables.

We define the function χ : Pn → {±1,±i} where χ(g) is the global phase of g ∈ Pn, i.e.,
if g ∈ ωPn for ω ∈ {±1,±i}, then χ(g) = ω. The function satisfies χ(ωg) = ω · χ(g) for ω ∈
{±1,±i} but it is worth to mention that χ is not multiplicative, e.g., χ(X1X2) = χ(Y1Y2) = 1
but χ((X1X2)(Y1Y2)) = χ(−Z1Z2) = −1.

We are especially interested in commuting subgroups of Pn. A crucial observation is that
(Pn/Z(Pn), ·) ∼= (Fn2 ,+) where F2 ∼= Z2 is the unique field with characteristic 2. We will also
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refer to F2n
2 as the phase space. Certain properties of F2n

2 are discussed in more detail in the
subsection about isotropic subspaces of F2n

2 .
The quotient group Pn/Z(Pn) is generated by the cosets [X1], ..., [Xn], [Z1], ..., [Zn]. Now,

the isomorphism is realized by mapping [Xi] to ui and [Zi] to vi, where

ui(j) =

1, if i = j,

0, otherwise,
vi(j) =

1, if i = n+ i

0, otherwise.

For the case n = 1 the isomorphism is realized via the identification

X 7→ (0, 1), Y 7→ (1, 1), Z 7→ (1, 0).

We define r : Pn → F2n
2 as the binary representation of elements g ∈ Pn, where for g ∈ Pn

the image r(g) is the image of the coset [g] under the isomorphism to F2n
2 . Note that r

is a surjective homomorphism. Since r(g) = r(−g) = r(ig) = r(−ig) for all g ∈ Pn, the
homomorphism has the following property

|r−1(h) ∩ ωPn| = 1 (2.2)

for all h ∈ F2n
2 and ω ∈ {±1,±i}. For a Pauli matrix Ai ∈ Pn with A ∈ {X,Y, Z} acting

on the i − th qubit we will use small letters if we want to refer to its representation in the
phase space, i.e., we set r(Ai) := ai. If we have a matrix A ∈ Pn acting on k qubits, i.e.,
A := A

(1)
i1
A

(2)
i2
· · ·A(k)

ik
∈ Pn with A(j) ∈ {X,Y, Z} for j = 1, ...., k and i1 < i2 < · · · < ik, we

will set r(A) := ai1 · · · aik , for instance r(X1Y3) = x1y3.
Additionally, we equip F2n

2 with a symplectic inner product, that is for h1 = (u1, v1), h2 =
(u2, v2) ∈ F2n

2 we define

h1 · h2 = uT1 v2 + uT2 v1 = hT1

(
0 I

I 0

)
h2,

where I denotes the n × n identity matrix. As we will see in the sequel commutativity in
Pn is equivalent to orthogonality in F2n

2 . For g1, g2 ∈ Pn we want to construct a function
f : F2n

2 × F2n
2 → C such that f keeps track of the global phase of g1g2, i.e., we want that

χ(g1g2) = f(r(g1), r(g2)). Our idea is similar to [10] where all actions on stabilizer groups are
described by binary linear and quadratic operations. The specific choice of f is constructed
as follows:
For h1 = (u1, v1), h2 = (u2, v2) ∈ F2n

2 we define

f : F2n
2 × F2n

2 → C, f(h1, h2) = (−i)(uT
1 v2) · i(uT

2 v1). (2.3)

We will state some properties of f :

Proposition 2.2.1. (i) The evaluation f(r(g1), r(g2)) for g1, g2 ∈ Pn coincides with the
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global phase of the product g1g2 ∈ ±Pn, that is, if χ(g1) = χ(g2) = 1, then χ(g1g2) =
f(r(g1), r(g2)).

(ii) f is bilinear, that is f(h1, h2 + h3) = f(h1, h2)f(h1, h3) as well as f(h1 + h2, h3) =
f(h1, h3)f(h2, h3) for all h1, h2, h3 ∈ F2n

2 .

(iii) f is symmetric for orthogonal elements and antisymmetric for non-orthogonal ones,
more precisely f(h1, h2) = f(h2, h1) ∈ {1,−1} if h1·h2 = 0 and f(h1, h2) = −f(h2, h1) ∈
{i,−i} if h1 · h2 = 1.

Since every element in Pn can be written as ωg where ω ∈ {1,−1, i,−i}, g ∈ Pn and
χ(ωg) = ω, property (i) can be extended to Pauli matrices with arbitrary phase as follows:
Let ω1g1, ω2g2 ∈ Pn where ω1, ω2 ∈ {1,−1, i,−i} and g1, g2 ∈ Pn, then

χ(ω1g1 · ω2g2) = ω1 · ω2 · f(r(g1), r(g2)) (2.4)
= χ(ω1g1) · χ(ω1g1) · f(r(g1), r(g2)).

Proof. (i) We can easily verify that the statement is true for n = 1. Recall that r(I) =
(0, 0), r(X1) = x1 = (1, 0), r(Z1) = z1 = (0, 1) and r(Y1) = y1 = (1, 1). To check the
case n = 1 it suffices to evaluate f for these points and then do a parity check with the
global phases of Table 2.1 in the preliminaries.
Now, let n ≥ 1 and g1 =

⊗n
k=1W

(1)
k , g2 =

⊗n
k=1W

(2)
k ∈ Pn where W (1)

k ,W
(2)
k ∈

{I,X, Y, Z} for k = 1, ..., n. By construction, χ(gi) = 1 for i = 1, 2. Moreover, let
r(gi) = (ui, vi) ∈ F2n

2 the representation of gi in the phase space with (ui(k), vi(k)) =
r(W (i)

k ) for i = 1, 2. Then

χ(g1g2) = χ

(
n⊗
k=1

WiUi

)
=

n∏
k=1

χ(WiUi) =
n∏
k=1

(
(−i)u1(k)v2(k) · iu2(k)v1(k)

)
=

n∏
k=1

(−i)u1(k)v2(k)
n∏
k=1

iu2(k)v1(k)

= (−i)(uT
1 v2) · i(uT

2 v1)

= f(r(g1), r(g2)),

which shows the desired property for any n.

(ii) Let hi = (ui, vi) ∈ F2n
2 for i = 1, 2, 3. We can directly verify

f(h1, h2 + h3) = (−i)uT
1 (v2+v3) · i(u2+u3)T v1 =

(
(−i)uT

1 v2 · iuT
2 v1
)
·
(
(−i)uT

1 v3 · iuT
3 v1
)

= f(h1, h2)f(h1, h3)

and f(h1 + h2, h3) = f(h1, h3)f(h2, h3) follows analogously.
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(iii) Let h1 = (u1, v1), h2 = (u2, v2) ∈ F2n
2 . The crucial step is to rewrite f(h1, h2) as

f(h1, h2) = (−1)(uT
1 v2) · i(uT

1 v2+uT
2 v1).

Observing that h1 ·h2 = uT1 v2 +uT2 v1 (mod 2) we have f(h1, h2) ∈ {1,−1} if h1 ·h2 = 0
and f(h1, h2) ∈ {i,−i} if h1 · h2 = 1. To show symmetry, respectively antisymmetry, it
suffices to note that uT1 v2 (mod 2) = uT2 v1 (mod 2) if h1 · h2 = 0 and uT1 v2 (mod 2) 6=
uT2 v1 (mod 2) if h1 · h2 = 1, Hence, we have

f(h1, h2) = (−1)(uT
1 v2)i(u

T
1 v2+uT

2 v1) = (−1)(uT
2 v1)i(u

T
1 v2+uT

2 v1) = f(h2, h1)

for h1 · h2 = 0 and the case f(h1, h2) = −f(h2, h1) for h1 · h2 = 1 follows in the same
fashion.

Due to the last proposition we have the following property:

Proposition 2.2.2. It holds g1g2 = g2g1 for g1, g2 ∈ Pn if and only if r(g1) · r(g2) = 0.

Proof. As the global phase does not affect commutativity it suffices to show the statement
for g1, g2 ∈ Pn. Since two Pauli matrices either commute or anticommute, g1g2 = g2g1 is
equivalent to χ(g1g2) = χ(g2g1). Due to (iii) of the last proposition f(r(g1), r(g2)) = χ(g1g2) =
χ(g2g1) = f(r(g2), r(g1)) implies r(g1) · r(g2) = 0. Analogously, χ(g1g2) = −χ(g2g1) implies
r(g1) · r(g2) = 1 and the statement follows.

Definition 2.2.3. Let S ⊂ Pn be an abelian subgroup of Pn and define VS := {|ψ〉 | g |ψ〉 =
|ψ〉 for all g ∈ S} as the subspace, which is invariant under operations from S. The set VS is
called a stabilizer code fixed by the stabilizer S.

Note that if g, g′ ∈ S anticommute and ψ ∈ S then

|ψ〉 = gg′ |ψ〉 = −g′g |ψ〉 = − |ψ〉

forces VS = {0}. Moreover, if an element g ∈ S has global phase ±i, then S 3 g2 = −I, then
VS = {0}, as well. Thus, we may restrict our attention to abelian subgroups S ⊂ ±Pn \{−I}.
So, when talking about abelian subgroups S ⊂ ±Pn we always assume −I /∈ S.

The binary representation r(S) of an abelian subgroup S forms a self-orthogonal additive
subgroup of the vector space F2n

2 which itself is a classical code over F2. This motivates the
alternative term additive code for a stabilizer code [11].

It will be helpful to characterize the dimension of the code space VS . Let S = 〈g1, . . . gk〉 ⊂
Pn be the subgroup generated by the elements g1, . . . gk. We are interested in minimal gener-
ating sets for subgroups. Observing that g ∈ 〈g1, . . . gk〉 then r(g) ∈ span{r(g1), ..., r(gk)} we
can reduce this question to find a basis of r(S).
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Theorem 2.2.4. Let S = 〈g1, . . . , gn−k〉 ⊂ ±Pn be an abelian subgroup such that −I /∈ S and
r(g1), . . . , r(gn−k) are linearly independent. Then VS is a 2k-dimensional vector subspace.

In this case we say that S defines an [n, k] stabilizer code. We set

PS :=
n−k∏
i=1

(I + gi)
2 = 1

2n−k
∑
g∈S

g = 1
2|S|

∑
g∈S

g, (2.5)

which is projector onto the common +1 eigenspace of the elements in S, thus it is the projector
onto the code space VS . We will prove that dimVS = 2k in Section 3.3.

Example 2.2.5 Let S = 〈X1X2, Z1Z2〉 = {X1X2, Z1Z2, −Y1Y2, I} ⊂ ±P2. The corre-
sponding vectors r(X1X2) = x1x2 = (1, 1, 0, 0) and r(Z1Z2) = z1z2 = (0, 0, 1, 1) are linearly
independent. We have

PS = 1
22 (1 · I + 1 ·X1X2 + 1 · Y1Y2 + (−1) · Z1Z2) .

Since dimVS = 1, it stabilizes a single state, that is |ψ〉 = 1√
2(|00〉 + |11〉), hence we have

PS = |ψ〉 〈ψ|.

The stabilizer polytope

If an abelian subgroup S ⊂ ±Pn\{−I} contains 2n elements (which is equivalent to dim(r(S)) =
n), the matrices in S stabilize a single state |ψ〉 due to Theorem 2.2.4. Thus, PS is a rank
one projector and we can write PS = 1

2n

∑
g∈S g = |ψ〉 〈ψ|. The state |ψ〉 is referred to as a

stabilizer state and the polytope

SPn := conv{|ψ〉 〈ψ| | |ψ〉 stabilizer state }

is called the stabilizer polytope. Stabilizer states are one of the main objects used in the
stabilizer formalism. The advantage of circuits based on this framework is that they allow a
high degree of fault tolerance (for details see [2] and [9, Chapter 10]). However, these circuits
do not have the full computational power that quantum circuits provide in general. We say
that the do not allow universal quantum comutation (UQC).

Theorem 2.2.6 (Gottesman-Knill theorem, [3], 1998). Quantum circuits consisting of prepar-
ing stabilizer states, Clifford unitaries (this is the group of unitary matrices that normalizes
the Pauli group Pn, i.e., C is Clifford if CgC† ∈ Pn for all g ∈ Pn), and measurements of
Pauli observables can be efficiently simulated on a classical computer.

The assumptions of the theorem can be extended to the preparation of a state ρ that is a
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convex combination of stabilizer states, i.e.

ρ =
∑

|ψ〉 stabilizer state
λψ |ψ〉 〈ψ| ∈ SPn.

In this case we can simulate the circuit by sampling from the probability distribution on the
stabilizer states induced by λψ and then estimating the circuit’s outcome by the Gottesman-
Knill theorem [12].

Nevertheless, there is a way to promote the stabilizer formalism to universal quantum
computation while profiting from its advantages with respect to fault tolerance. This proce-
dure is called magic state distillation and was originally introduced by Bravyi and Kitaev [4].
In the process we distill a magic state from a distillation scheme that takes auxiliary states
form a noisy source as an input. The magic state is then injected into the actual circuit and
enables to realize a non Clifford gate. Such a gate suffices to promote the circuit to UQC.
Essentially is that the states used as auxiliary states lie outside the stabilizer polytope SPn
and have a sufficiently high robustness with respect to SPn (for further information regarding
robustness measures see [13][12]). The remaining part of this thesis is devoted to get a better
understanding of SPn.

Character theory for finite abelian groups

In order to analyze the stabilizer polytope we will frequently use the concept of characters
(on finite abelian groups), which will be briefly introduced here (the ideas are based on [14,
Chapter 2]).

Let (G,+) be a finite abelian group. A character is a multiplicative homomorphism
η : G → {ω ∈ C |ω = eix, x ∈ R}, i.e., η(g + g′) = η(g)η(g′) for all g, g′ ∈ G. The
set of characters itself forms a group, called the dual group Ĝ of G, where the operation is
defined by (η · η′) ∈ Ĝ for η, η̂ ∈ Ĝ and (η · η′)(g) := η(g)η′(g) for all g ∈ G. Moreover, it
holds G ∼= Ĝ and the set of all characters forms an orthogonal basis of CG, more precisely
span{η ∈ CG | η is a character of G} = CG and

η∗η′ =

|G|, if η = η′

0, η 6= η′.

By the fundamental theorem for finite abelian groups, that is G ∼= Z/Zn1 × . . . ,×Z/Znr for
some n1, ..., nr ∈ N, we can assign a canonical character to each g ∈ G. Every g = (g1, ..., gr) ∈
G defines a unique character ηg ∈ Ĝ where ηg(x) = ηg(x1, . . . xr) =

∏r
j=1 e

2πigjxj/nj .
If G is a group of characteristic 2, i.e., G = Z2× . . .×Z2, then ηg ∈ {−1, 1}G for all g ∈ G

and ηg(xy) = ηg(x)ηg(y) ∈ {−1, 1}.
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Isotropic subspaces of F2n
2

Essential will be orthogonality relations in the symplectic vector space F2n
2 . Recall that the

underlying symplectic inner product is

· : F2n
2 × F2n

2 → F2

(h1, h2) 7→ h1 · h2 := hT1

(
0 I

I 0

)
h2 (mod 2),

where hT1 denotes the usual transpose. For a set H ⊂ F2n
2 we define its orthogonal complement

H⊥ = {h′ ∈ F2n
2 |h′ · h = 0 for all h ∈ H}. Note that if H = span{h1, . . . hk} then H⊥ =

{h′ ∈ F2n
2 |h′ · hi = 0, i = 1, . . . k} is the kernel of a homogeneous system of linear equalities

and therewith a subspace. Moreover, if dimH = k, then dimH⊥ = 2n− k. A subspace H is
called isotropic if H ⊂ H⊥.

If we want to count the vertices of the stabilizer polytope, we can do this by counting two
quantities:

(1) The number of isotropic subspaces in F2n
2 of dimension n.

(2) The number of abelian subgroups S ⊂ ±Pn \ {−I} such that r(S) = H for a fixed
isotropic subspace H.

Here, we will count the first quantity, the second is related to characters on the isotropic
subspaces, as we will see in the subsequent chapters.

As H is a subspace of H⊥ (or additively a subgroup) we can define the quotient vector
space H⊥/H. We will shortly discuss some basic properties of the quotient. Therefore, we
will use the notion of a coset, that is for h′ ∈ F2n

2 and a subspace H ⊂ F2n
2 we define the coset

h′ +H := {h′ + h |h ∈ H}.
If h1, ..., hk, hk+1, ..., h2n−k is a basis for H⊥, where span{h1, ..., hk} = H and

span{hk+1, ..., h2n−k} = H ′ (if H = H⊥, we set H ′ = {0}) then H⊥ can be partitioned into
cosets, that is H⊥ = ∪̇h∈H′(h + H). Thus, H⊥/H = span{hk+1 + H, ..., h2n−k + H} and
H⊥/H has dimension 2n− 2k. The symplectic inner product on H/H⊥ is naturally inherited
from F2n

2 , that is (h+H) · (h′+H) := h ·h′ for h, h′ ∈ F2n
2 . This is indeed well-defined because

it is independent from the representative of h+H which we can see as follows: for h1, h2 ∈ H
it holds (h + h1) · (h′ + h2) = h · h′ since all other inner products cancel if we expand the
expression.

As mentioned, to count the number of stabilizer states, we have to count isotropic sub-
spaces.

Proposition 2.2.7. [15] For 0 ≤ m ≤ n the number of m-dimensional isotropic subspaces of
the symplectic vector space F2n

2 is

m−1∏
i=0

22n−i − 2i

2m − 2i−1
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and H = H⊥ is equivalent to H being an n-dimensional isotropic subspace.

Proof. Fix an arbitrary element h1 ∈ F2n
2 , h1 6= 0. The set {h1}⊥ = {h ∈ F2n

2 |h1 · h = 0} is a
(2n− 1)-dimensional vector space, so we can choose h2 from {h1}⊥ with the restriction that
h2 /∈ span{h1} = {h1, 0} which leaves 22n−1−2 choices. If we extent the argument to the i−th
step, we have to choose hi+1 from the set H⊥i \ span{h1, . . . , hi} where H⊥i = {h1, ..., hi}⊥ is
a (2n − i)-dimensional vector space, thus |H⊥i \ span{h1, . . . , hi}| = 22n−i − 2i. In total, we
have

m−1∏
i=0

(22n−i − 2i)

choices. However, we over-counted because we did not take into account that several bases can
span the same space. Therefore, we have to divide by the number of possible bases which can
be calculated in the same manner: Let H be an m-dimensional subspace. For the basis’ first
element h1 there are 2m − 1 possibilities (h1 6= 0). For the i−th element there are 2m − 2i−1

choices, hence we have
∏m−1
i=0 (2m − 2i) choices. Division yields

m−1∏
i=0

22n−i − 2i

2m − 2i .

The fact that H = H⊥ iff H is an n-dimensional isotropic subspace follows immediately from
the above construction.

Apart form self-orthogonal subspaces we are also interested in sets of mutually non-
orthogonal elements, that is h1, . . . , h` ∈ F2n

2 such that hi ·hj = 1 for all i 6= j, i, j ∈ {1, ..., `}.

Proposition 2.2.8. Suppose that h1, ..., h` ∈ F2n
2 are linearly independent and that for any

i ∈ {1, ..., `} there is j ∈ {1, ..., `} such that hi · hj = 1. Then there is a basis h′1, ...., h′` of
span{h1, ..., h`} such that h′i · h′j = 1 for all i 6= j, i, j ∈ {1, ..., `}.

As the proof is of algorithmic nature we introduce the idea with an example. Let
x1, x2, z1, z2 ∈ F4

2. Clearly, they are a system of linear independent vectors (they just repre-
sent the 4 standard basis vectors in F4

2) and they satisfy the assumption of the proposition.
Now, x1 is non-orthogonal to z1 (since X1 and Z1 anticommute) but orthogonal to x2, z2 and
by replacing x2, z2 by z1 + x2 = z1x2 and z1 + z2 = z1z2 we get a system x1, z1, z1x2, z1z2

that spans the same space and where every element is non-orthogonal to x1 (except for x1

itself). The element z1 is non-orthogonal to x1 and orthogonal to z1x2, z1z2, replacing them
by x1 + z1x2 = y1x2 and x1 + z1z2 = y1z2 gives a new basis x1, z1, y1x2, y1z2. In the same
fashion we can continue with the third element of the new basis but here we are already done
since all four elements are mutually non-orthogonal. The proof simply generalizes this idea.

Proof. We set I1 = {hi |h1 · hi = 0, i ∈ {2, ..., `}, }. Due to the assumptions it holds |I1| < `,
so assume that h2 /∈ I1. Replacing hi ∈ I1 by h′i = h2 +hi and setting h′i = hi for all i /∈ I1 we
get a linearly independent set h′1, ...., h′` ∈ span{h1, ..., h`} that are all non-orthogonal to h′1.
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In the same way we define I2 = {h′i |h′2 ·h′i = 0, i ∈ {3, ..., `}} and by replacing all elements
h′i ∈ I2 by h′′i = h1 + h′i and setting h′′i = h′i for all h′i /∈ I2 we get a linearly independent set
h′′1, ...., h

′′
` ∈ span{h1, ..., h`} that are all non-orthogonal to h′′1 and h′′2.

Continuing in the same fashion and defining I3, ..., I` as I1, I2 before we will eventually
end up with some k ≤ ` such that Ik = Ik+1 = · · · I` = ∅ and a system of linearly mutually
non-orthogonal elements h(k)

1 , ...., h
(k)
` .

Lemma 2.2.9. Let H be an isotropic subspace of dimension k and let m = 2(n − k) =
dim(H⊥/H). Then, there exist h1, ..., hm ∈ H⊥ with hi · hj = 1 for all i 6= j and

H⊥/H = span{h1 +H, ..., hm +H}.

Additionally, the maximal length of a chain mutually non-orthogonal in elements in H⊥ is
m+ 1.

Proof. Since dim(H⊥/H) = 2(n − k), there are linearly independent h1, ..., hm ∈ H⊥ such
that H⊥/H = span{h1 +H, ..., hm+H}. Note that for every h ∈ H⊥ \H there is h′ ∈ H⊥ \H
such that h · h′ = 1, otherwise H⊥ ⊂ (span{H ∪{h}})⊥ but dimH⊥ = 2n− k > 2n− k− 1 =
dim(span{H ∪ {h}})⊥), a contradiction. Hence for every i = 1, ..., ` there exists j ∈ {1, ..., `}
such that hi · hj = 1. Using that hi +H · hj +H = hi · hj for all i, j ∈ {1, ...,m} we can apply
Proposition 2.2.8 and get a basis h′1 +H, ..., h′m +H for H⊥/H where h′i · h′j = 1 for all i 6= j.

It remains to show that the maximal length of a chain of non-orthogonal elements is m+1.
Therefore, we show that if h1, ..., hk are mutually non-orthogonal then h1, ..., hk are linearly
independent or k = m + 1 is odd and hi =

∑
j∈{1,...,k}\{i} hj for all i = 1, ..., k. Assume that

h1 ∈ span{h2, ..., hk}, that is h1 =
∑
i∈I hi where I ⊂ {2, . . . , k}. We distinguish two cases:

1. |I| odd:
Let j ∈ I. Then hj · h1 =

∑
i∈I hj · hi = |I| − 1 (mod 2) = 0. Hence, any linear

combination of an odd number of elements in h1, ..., hk is orthogonal to the components
of the linear combination.

2. |I| even:
If |I| < k − 1, there is j ∈ {2, ..., k} \ I and hj · h1 = (

∑
i∈I hj · hi) (mod 2) = |I|

(mod 2) = 0.

If |I| = k−1 then k is odd and for all i = 2, ..., k, it holds h1·hi = (
∑k−1
j=2 hj ·hi) (mod 2) =

(|I| − 1) (mod 2) = 1. Since h1 =
∑k

2=1 hi, rearranging yields hi =
∑
j∈{1,...,k}\{i} hj for

all i = 1, ..., k.

Observing that the maximal number of linearly independent elements in H⊥/H is m we can
deduce that there are at most m+ 1 mutually non-orthogonal elements in H⊥.

An immediate consequence is that the maximal length of mutually non-orthogonal ele-
ments in F2n

2 is 2n+ 1 which we get if we apply the lemma to the isotropic subspace H = {0}
(which has dimension 0 and H⊥ = F2n

2 ).
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Another substructure, which will appear oftentimes, are sets that are closed under addition
of orthogonal elements (CAO for short). A subsetK ⊂ F2n

2 is CAO if h1, h2 ∈ K and h1·h2 = 0
then h1 + h2 ∈ K. These sets have the following property:

Proposition 2.2.10. Let K ⊂ F2n
2 be CAO and H ⊂ K with dimH = k where k is the

maximal dimension of isotropic subspaces contained in K.

(i) If H ′ ⊂ F2n
2 is an isotropic subspace with dimH = s ≤ k, then H ∩ (H ′)⊥ ⊂ K is an

isotropic subspace with dim(H ∩ (H ′)⊥) = k − (s− dim(H ∩H ′)).

(ii) If H1 ⊂ F2n
2 is an isotropic subspace, then there is an isotropic subspace H2 ⊂ K

with dimH2 = k such that H1 ⊆ H2. In other words, all inclusion maximal isotropic
subspaces in K have the same dimension.

Proof. (i) We set H̃ = H∩H ′ and dim H̃ = r. Moreover, letH = span{H̃, h1, ..., hp}, where
p+ r = k and H ′ = span{H̃, h′1, ..., h′q} with dimH ′ = r+ q = s ≤ k and h′1, ..., h′q /∈ H.
Since H has maximal dimension among all isotropic subspaces contained in K, it must
hold h′1, ..., h′q /∈ H⊥ (otherwise span{h′i, H} would be an isotropic subspace of dimension
k + 1 in K since K is CAO). We start with considering h′1 and assume without loss of
generality that h′1 · h1 = 1. If h′1 · hi = 1 for 2 ≤ i ≤ p, we argue as in the proof of
the last lemma and replace hi by h1 + hi to get h′1 · (h1 + hi) = 0, so we may assume
that H1 := {h′1}⊥ ∩H = span{H̃, h2, ..., hp} is a (k − 1)-dimensional isotropic subspace
contained in K.

We continue in the same fashion for h′2, ..., h′q by inductively defining Hi = {h′i}⊥ ∩
Hi−1 = {h′1, ..., h′i}⊥∩H for i = 2, ..., q. This yields a descending chain with H1 ⊃ H2 ⊃
· · · ⊃ Hq = (H ′)⊥ ∩H such that dimHi ≥ dimHi−1 − 1 and

dim((H ′)⊥ ∩H) = dim(Hq) ≥ k − q = k − (s− r) = k − (s− dim(H ∩H ′)).

For the inequality dim((H ′)⊥ ∩ H) ≤ k − (s − dim(H ∩ H ′)) we assume the contrary,
that is dimHq > k − q. We consider the isotropic subspace span{Hq, h

′
1, ...., h

′
q} ⊂

K (it is indeed contained in K since K is CAO) and claim that it has dimension
dimHq + q. Therefore, we observe that h′1, ..., h′q are linearly independent and that
Hq ∩ span{h′1, ..., h′q} = {0} due to the assumptions on h′1, ..., h

′
q and the definition of

Hq. Hence, by the dimension formula for subspaces, that is dim(span{Hq, h
′
1, ..., h

′
q}) =

dimHq + dim(span{h′1, ..., h′q}) + dim(Hq ∩ span{h′1, ..., h′q}) > (k − q) + q = k which
contradicts the maximality of the dimension of H.

(ii) If H1 is an isotropic subspace with dimH1 = s, the proof of (i) implies that H2 :=
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span{H1, H ∩ (H1)⊥} contains H1 and is contained in K and we have

dimH2 = dimH1 + dim(H ∩ (H1)⊥)− dim( H1 ∩ (H ∩ (H1)⊥)︸ ︷︷ ︸
=(H1∩(H1)⊥)∩H=H∩H1

)

= s+ (k − (s− dim(H1 ∩H)))− dim(H1 ∩H)
= k.
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Chapter 3

The Stabilizer Polytope and
Contextuality

3.1 The polytope Qf
k

In this section we will introduce a family of integral polytopes defined as the convex hull of
functions t∗ : (F2n

2 )∗ → {0, 1,−1} where (F2n
2 )∗ := F2n

2 \ {0}. These polytopes can be seen
as an integral polytope living in the real Euclidean space R(F2n

2 )∗ . The exact framework will
turn out to be extremely fruitful to analyze the stabilizer polytope SPn. Under the right
assumptions we get a polytope that is just the linear embedding of SPn into R(F2n

2 )∗ . We will
give a short motivating example why we use this framework.

Instead of considering the actual stabilizer PS defined in equation (2.5) we can also char-
acterize the stabilizer state by the coefficients if we expand it in the Pauli basis Pn.

For instance, let S be as in Example 2.2.5. We encode the projector PS by a functional
t : F4

2 → {0, 1,−1} where t(r(g)) = Tr (gPS) for all g ∈ P2, that is t(r(I)) = t(x1x2) =
t(z1z2) = 1, t(y1y2) = t(x1x2 + z1z2) = −1 and t(h) = 0 for all h /∈ r(S).

We generalize this as follows:
Let f : F2n

2 ×F2n
2 → C be a function such that f(h, h) = f(0, h) = f(h, 0) = 1 and f(h1, h2) ∈

{1,−1} if h1 ·h2 = 0. Moreover, let t : F2n
2 → {0, 1−1} such that the following two conditions

are satisfied:

(A1) t(h1) · t(h2) = 0 if h1 · h2 = 1.

(A2) t(h1 + h2) = f(h1, h2) · t(h1) · t(h2) if h1 · h2 = 0 and t(h1), t(h2) 6= 0.

As f(h1, h2) ∈ {1,−1} for orthogonal elements h1, h2 the second condition is equivalent to

f(h1, h2)t(h1 + h2) = t(h1)t(h2).

Conditions (A1) and (A2) imply that the support of t, defined as

supp{t} = {h ∈ F2n
2 | t(h) 6= 0},
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is an isotropic subspace. Since h · h = 0 for all h ∈ F2n
2 , it holds

t(0) = t(h+ h) = f(h, h) · t(h) t(h) = t(h) · t(h) = 1.

This is indeed what we want since TrPS = Tr (PS · I) = 1 shall correspond to this value. If
we want to fix the cardinality |supp{t}|, we impose a third condition for 1 ≤ k ≤ n

(A3) |t| :=
∑
h∈H |t(h)| = 2k.

The third condition fixes the dimension of the isotropic subspace supp{t} to k. If a : F2n
2 → R

is any function and M ⊂ F2n
2 , we will write a|M : M → C for the restriction of a to M .

Definition 3.1.1. (1) We define the set

Afk = {t : F2n
2 → {0, 1,−1} | t satisfies (A1), (A2), (A3)}. (3.1)

(2) If K is an arbitrary subset of F2n
2 , we set

Afk(K) = {t|K : K → {0, 1,−1} | t ∈
n⋃
i=1
Afi ,

∑
h∈K
|t(h)| = 2k}.

We will also write t ∈ Afk(K) and for K∗ := K \ {0} and t ∈ Afk(K) we will write t∗

instead of t|K∗ .

We want to examine how two functionals t, t′ ∈ Afk(K) for K ⊂ F2n
2 are related to each

other.

Proposition 3.1.2. Let K ⊂ F2n
2 be CAO, 1 ≤ k ≤ n, t ∈ Afk(K) and H = supp{t} ⊂ K.

(i) It holds

{t′ | t′ ∈ Afk(K), supp{t′} = H}
={ηt | η|H : H → {1,−1} is a character on the additve group H}.

Hence, |{t′ | t′ ∈ Afk(K), supp{t′} = H}| = |H|.

(ii) If H ′ ⊂ K is an arbitrary isotropic subspace, then there is a t′ ∈ ∪kl=1A
f
l (K) with

supp{t′} = H ∩H ′ and t|H′ = t′|H′.

(iii) For every k-dimensional isotropic subspace H it holds∑
t∈Af

k
(K), supp{t}=H

t∗ = 0.

We note that K being CAO ensures that the set H = supp{t} is an isotropic subspace for
all t ∈ Afk(K), 1 ≤ k ≤ n.
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Proof. (i) Let t′ ∈ Afk(K) and supp{t′} = H = supp{t}. Obviously, we can find η :
F2n

2 → {0, 1,−1} with η|H : F2n
2 → {1,−1} such that ηt = t′. We have to show that

η(h1 + h2) = η(h1)g(h2) for all h1, h2 ∈ H. By definition, we have

η(h1 + h2) · t(h1 + h2) = t′(h1 + h2)

which, by Condition (A2) becomes

η(h1 + h2) · f(h1, h2) · t(h1) · t(h2) = f(h1, h2) · t′(h1) · t′(h2)
= f(h1, h2) · η(h1) · t(h1) · η(h2) · t(h2)

and dividing by f(h1, h2)t(h1)t(h2) gives η(h1 + h2) = η(h1) · η(h2).

Conversely, let η : F2n
2 → {0, 1,−1} such that η|H defines a character on the additive

group H. We want to show that ηt ∈ Afk(K) and supp{ηg} = H. The Condition (A1)
follows directly since supp{ηg} = supp{g} ∩ supp{t} = H is an isotropic subspace. It
remains to check that Condition (A2) is satisfied by ηg. Let h1, h2 be orthogonal to
each other such that h1, h2 ∈ supp{ηg} = H. Then

(ηg)(h1 + h2) = η(h1 + h2) · t(h1 + h2) = f(h1, h2) · η(h1) · t(h1) · g(h2) · t(h2)
= f(h1, h2) · (ηg)(h1) · (ηg)(h2),

shows that the condition holds. We used that η is a homomorphism on supp{t} in
the second equation. Now, |{t′ | t′ ∈ Afk(K), supp{t′} = H}| = |H| since the number
of characters on the additive group H (which is the cardinality of the dual group Ĥ)
coincides with the number of elements in H (due to H ∼= Ĥ).

(ii) Let H ′ be an arbitrary isotropic subspace. Define t′ : F2n
2 → {0, 1,−1} by

t′(h) =

t(h), if h ∈ H ∩H ′

0, otherwise.

Then, conditions (A1) and (A2) hold trivially for t′ as supp{t′} ⊂ supp{t}.

(iii) We will show that
∑
t∈Af

k
(K), supp{t}=H t(h) = 0 for all h ∈ K. Let H ′ ⊂ H be a (k− 1)-

dimensional isotropic subspace in H which does not contain h. We divide H into cosets
H = H ′∪(h+H ′). Now, all elements t ∈ Afk(K), supp{t} = H are uniquely determined
by t|H′ = t′|H′ for some t′ ∈ Afk−1(K), supp{t′} = H ′ and a fixed value t(h) ∈ {−1, 1}.
The assignments for elements in the coset h + h′ ∈ h + H ′ for h′ ∈ H ′ are determined
by t(h+ h′) = f(h, h′)t(h)t(h′) = f(h, h′)t(h)t′(h).
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Hence, we are able to partition the set {t ∈ Afk(K) | supp{t} = H} into disjoint sets

{t | t(h) = 1, t|H′ = t′, t′ ∈ Afk−1(K), supp{t′} = H ′},
{t | t(h) = −1, t|H′ = t′, t′ ∈ Afk−1(K), supp{t′} = H ′}

of the same cardinality yielding
∑
t∈Af

k
(K), supp{t}=H t(h) = 0. Since h ∈ K was chosen

arbitrarily in the support of the functions, we have
∑
t∈Af

k
, supp{t}=H t

∗ = 0.

If we interpret t, t′ ∈ Afk(K) as vectors in RK , we can define their inner product as

tT t′ :=
∑
h∈K

t(h) · t′(h).

A direct consequence of the proposition is the following:

Corollary 3.1.3. Let K ⊂ F2n
2 be CAO and t, t′ ∈ Afk(K) with H = supp{t} ∩ supp{t′}.

Then tT t′ ∈ {0, |H|}.

Proof. Since K is CAO, H is an isotropic subspace we can apply (i) and (ii) of the last
proposition to deduce that there is a character η|H : H → {−1, 1} such that η|Ht|H = t′|H .

tT t′ :=
∑
h∈K

t(h)t′(h) =
∑
h∈H

t(h)t′(h) (3.2)

=
∑
h∈H

η(h)t′(h)t′(h)

=
∑
h∈H

η(h) =

|H|, if t|H = t′|H

0, otherwise.

Thus, t and t′ are either orthogonal to each other or they are equal on the intersection of their
support.

Based on the set Afk(K) we will now define one of the main objects of this thesis. These
are polytopes related to the functions t ∈ Afk(K).

Definition 3.1.4. For K ⊂ F2n
2 we define the polytope

Qfk(K) = conv{t∗ | t ∈ Afk(K)}

and for K = (F2n
2 )∗

Qfk := Qfk(F2n
2 ) = conv{t∗ | t ∈ Afk}.
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Example 3.1.5 We consider the case k = 1 and arbitrary K ⊂ F2n
2 . Due to the fact |t| = 2

for all t ∈ Af1 there is exactly one h ∈ (F2n
2 )∗ such that |t(h)| = 1 and t(h′) = 0 for all other

h′ ∈ (F2n
2 )∗ \ {h}. Hence, the functions t∗ for t ∈ Af1 coincide with the standard basis vectors

of R(F2n
2 )∗ with negative or positive sign ±ei ∈ R(F2n

2 )∗ . Therefore, independently of f , the
polytope Qf1 is the cross polytope, so

Qf1 = {x : (F2n
2 )∗ → R |

∑
h∈(F2n

2 )∗
|x(h)| ≤ 1} (3.3)

and for every K ⊂ F2n
2 we have

Qf1(K) = {x : K∗ → R |
∑
h∈K∗

|x(h)| ≤ 1}.

So far, we have left the function f quite variable. Yet, for our purposes we want that
it behaves "nicely" in a certain sense. For the case k = 1 the last example showed that
actual choice of f does not matter (as long as f(h, h) = f(h, 0) = f(0, h) = 1). Let
H = span{h1, h2} = {h1, h2, h3, 0} be an isotropic subspace. We will derive two neces-
sary conditions for the existence of t ∈ Af2 with supp{t} = H. Obviously, we require
f(h1, h2) = f(h2, h1). Moreover, we need that f(h1, h2) = f(h1, h1 + h2) = f(h1, h3). For
suppose not, assume that f(h1, h2) = −f(h1, h1 + h2). Then

t(h1) · t(h2) = f(h1, h2) · t(h1 + h2) = −f(h1, h1 + h2) · t(h1 + h2) · t(h1) · t(h1)
= −t(h1 + h2 + h1) · t(h1)
= −t(h1) · t(h2)

forces that t(h1)t(h2) = 0, so h1 /∈ supp{t} or h2 /∈ supp{t}, a contradiction. Thus, we have
the following two necessary conditions if we want to find t ∈ Af2 with supp{t} = H for every
isotropic subspace H of dimension 2:

1. The function f is symmetric for orthogonal elements, meaning f(h1, h2) = f(h2, h1) if
h1 · h2 = 0.

2. The function f is constant on H∗ = H \ {0}, that is, if h1 · h2 = 0 and h1 + h2 = h3,
then f(h1, h2) = f(h1, h3) = f(h2, h3).

From now on we will impose a stronger condition on f , that is for every isotropic subspace
H of arbitrary dimension k ≤ n there exists f ∈ Afk such that supp{t} = H. For instance,
this is satisfied for f ≡ 1. Evidently, this also requires that the two above assumptions hold.

The following proposition will establish useful inclusion relations among polytopes Qfs1(K)
and Qfs2(K) for different 1 ≤ s1, s2 ≤ n and CAO sets K ⊂ F2n

2 .

Proposition 3.1.6. Let 1 ≤ s1 ≤ s2 ≤ k and K ⊂ F2n
2 be CAO such that the maximal

dimension of isotropic subspaces in K is k then Qfs1(K) ⊂ Qfs2(K)
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Proof. It suffices to show the statement for s1 = s2 − 1. Let t ∈ Afs1(K) with supp{t} = H

and dimH = s1. Due to Proposition 2.2.10 (ii) all isotropic subspaces are contained in
an isotropic subspace of dimension k, thus there exists h′ ∈ H⊥ \ H ∩ K such that H ′ =
span{h′, H} = H∪̇(h′ +H) ⊂ K is an isotropic subspace. We construct t1, t2 ∈ Afs2(K) such
that t = 1/2t1 + 1/2t2 by setting

t1(h) =



t(h), if h ∈ H,
1, if h = h′

f(h′, h′′)t(h′′), if h = h′ + h′′, for h′′ ∈ H
0, otherwise,

t2(h) =



t(h), if h ∈ H,
−1, if h = h′

−f(h′, h′′)t(h′′), if h = h′ + h′′, for h′′ ∈ H
0, otherwise.

Then t1, t2 ∈ Afs2(K), supp{t1} = supp{t2} = H ′ and t∗ = 1/2t∗1 + 1/2t∗2 which implies that
V(Qfs1(K)) ⊂ Qfs2(K) and consequently Qfs1(K) ⊂ Qfs2(K).

An immediate consequence of the proposition is that Qfk(K) is full-dimensional for every
k and every CAO set K ⊂ F2n

2 , K 6= ∅, {0} since Qf1(K) ⊂ Qfk(K) for all k ≥ 1 and Qf1(K)
coincides with the full-dimensional cross polytope (Example 3.1.5). Moreover, this inclusion
relation will serve useful if we want to describe the dual polytope (Qfk)◦ since the vertices of
all Qfk for k ≤ s will define valid inequalities for (Qfs )◦.

We finish the chapter by stating a remarkable property of the polytope Qfk . That is, we
will show that Qfk(H) is a simplex if H is an isotropic subspace of dimension k. Consider the
projection of Qfk onto H∗, i.e., Qfk(H). Using Proposition 3.1.2 (ii) and 3.1.6 we can rewrite
this as

Qfk(H) := conv{t|H∗ | t ∈ A
f
k , supp{t} = H} = conv{t∗ | t ∈ Afk(H)} ⊂ RH

∗
.

Since |{t ∈ Afk}| = |H|, the polytope Qfk(H) has |H| vertices and it is full-dimensional in a
space of dimension |H|−1, consequently a simplex. By Corollary 3.1.3, all functions t ∈ Afk(H)
are orthogonal to each other, so (t∗1)T t∗2 = (t1)T t2 − t1(0)t2(0) = −1 for all t1, t2 ∈ Afk(H),
t1 6= t2. We obtain the following facet description:

Qfk(H) = {` : H∗ → R | `T t∗ ≥ −1 for t ∈ Afk(H), supp{t} = H},

which implies that Qfk(H) is self-dual. Since the functionals t∗ define the facet normals, we
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have

Qfk(H∗) = conv{t∗ | t ∈ Afk(H), supp{t} = H} = (Qfk(H∗))◦ ⊂ RH
∗
.

Lemma 3.1.7. If H ⊂ F2n
2 is a k-dimensional isotropic subspace, then Qfk(H) is a self-dual

reflexive simplex.

Qf
n as the embedding of the stabilizer polytope in the real Euclidean space

The goal of this subsection is to build the bridge between the stabilizer polytope SPn and
Qfn. We will see that Qfn is the linear embedding of the stabilizer polytope SPn in the space
R(F2n

2 )∗ . Let Hn be the space of 2n × 2n Hermitian matrices. Recall that if we consider Hn
as a 4n-dimensional vector space over R the set of Pauli matrices Pn forms an orthogonal
basis and Tr (g2) = Tr (I) = 2n for all g ∈ Pn. Hence, we can expand an arbitrary Hermitian
matrix A ∈ C2n×2n as

A = 1
2n

∑
g∈Pn

Tr (Ag)g

with coefficients Tr (Ag) ∈ R. We associate the function tA : F2n
2 → R with A where tA(r(g)) =

Tr (Ag) for all g ∈ Pn (which completely determines tA since r(Pn) = F2n
2 ). If ρ is a state,

the function tρ is also known as the polarization vector or characteristic function of ρ with
respect to Pn (see [15] where it is defined for the more general set of Weyl operators).

We have the following identity for A,B ∈ Hn:

Tr (AB) = Tr

( 1
2n

∑
g∈Pn

Tr (Ag)g
)
·
( 1

2n
∑
g∈Pn

Tr (Bg)g
) = 1

4n
∑
g∈Pn

Tr (Ag) · Tr (Bg) · Tr (g2)

= 1
2n t

T
AtB.

We will now show that the functions associated to stabilizer states are exactly the elements
in the set Afn if f is chosen as in (2.3). Let

φ : Hn → {x |x : F2n
2 → R} (3.4)

A 7→ tA

and φ∗ defined as the canonical projection of φ onto (F2n
2 )∗, i.e., φ∗(A) = t∗A. Note that φ and

φ∗ are linear since they coincide component wise the standard trace function.

Lemma 3.1.8. Let H ⊂ F2n
2 be an isotropic subspace with dim(H) = k ≤ n and let f be
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defined as in (2.3). There is a bijection

{S ⊂ ±Pn \ {−I} |S abelian subgroup, r(S) = H} ←→ {t ∈ Afk | supp{t} = H}
←→ {t | t ∈ Afk(H)}.

Furthermore, Qfn is the image of the stabilizer polytope SPn under φ∗, i.e., φ∗(SPn) = Qfn.

For the proof we recall that the projector onto the common +1 eigenspace of an abelian
subgroup S ⊂ ±Pn \ {−I} is defined as PS = 1/2k

∑
g∈S g.

Proof. The second part of the bijection is clear and follows from the definitions of Afk and
Afk(H). Let S ⊂ ±Pn \ {−I} be an abelian subgroup with r(S) = H and projector PS . We
will show that tPS

∈ Afk . Therefore, note that for g ∈ Pn

tPS
(r(g)) = Tr (PS · g) =


1, if g ∈ S
−1, if − g ∈ S
0, otherwise.

(3.5)

Hence, tPS
(r(g)) = χ(g) ∈ {1,−1} for all g ∈ S and t(h) = 0 for all h /∈ r(S). So, we obviously

have supp{t} = r(S) = H, which is an isotropic subspace, and
∑
h∈F2n

2
|t(h)| = 2k, thus (A1)

and (A3) hold for tPS
. For (A2) let h1, h2 ∈ supp{tPS

} with r(gi) = hi for g1, g2 ∈ S, i = 1, 2.
The identity (2.4) yields

f(h1, h2) · tPS
(h1) · tPS

(h2) =
(
χ(g1) · χ(g2) · χ(g1g2)︸ ︷︷ ︸

=f(h1,h2)

)
· χ(g1) · χ(g2)

= χ(g1g2)
= tPS

(r(g1g2))
= tPS

(r(g1) + r(g2))
= tPS

(h1 + h2),

which shows the desired property and tPS
∈ Akf (respectively, (tPS

)|H ∈ A
f
k(H)).

Conversely, assume that t ∈ Afk . We construct the associated abelian subgroup S as
follows: We define

S = {g ∈ ±Pn | r(g) ∈ supp{t}, χ(g) = t(r(g))}. (3.6)

Clearly, all elements in S commute because supp{t} is an isotropic subspace. We have to
check that S is closed under multiplication. This is satisfied if it holds χ(g1g2) = t(r(g1g2))
for all g1, g2 ∈ S. Due to identity (2.4) and Condition (A2) for t we obtain

χ(g1g2) = χ(g1) · χ(g2) · f(r(g1), r(g2)) = t(r(g1)) · t(r(g2)) · f(r(g1), r(g2)) = t(r(g1g2)),
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which proves that S is closed under multiplication and therewith an abelian subgroup.
To prove that ψ(SPn) = Qfn it suffices to note that if PS is a rank one projector (i.e.,

a projector onto a stabilizer state) then φ(PS) = tPS
∈ Afn. Using the above constructed

bijection it follows that φ(V(SPn)) = Afn, so φ∗(V(SPn)) = V(Qfn) and due to the linearity of
φ∗, eventually φ(SPn) = Qfn.

The lemma shows that we can basically consider SPn and Qfn as the same objects - just
embedded in another space. We have the following corollary:

Corollary 3.1.9. Let S, S′ ⊂ ±Pn \ {−I} be abelian subgroups with r(S) = r(S′) = H. Then
there is a character η : H → {1,−1} such that

PS′ = 1
|S|

∑
g∈S

η(r(g)) · g.

Proof. Let φ(PS) = tPS
and φ(PS′) = tPS′ ∈ A

f
n. Due to Proposition 3.1.2 (i) there is a

character η : F2n
2 → {1,−1} such that ηH is a character on H and ηtPS

= tPS′ . Thus, we have

PS′ = 1
|S′|

∑
g∈Pn

Tr (PS′g) · g =
∑

g∈r−1(H)∩Pn

tPS′ (r(g)) · g

= 1
|S′|

∑
g∈r−1(H)∩Pn

(
η(r(g)) · tPS

(r(g))
)
· g

= 1
|S|

∑
g∈S

η(r(g)) · g

Finally, we have all the tools to determine the dimension of the common +1 eigenspace of
elements in an abelian subgroup S ⊂ ±Pn \ {−I}. This will also provide the missing part for
the proof of Theorem 2.2.4 in Section 2.2.

Lemma 3.1.10. Let S = 〈g1, ..., gn−k〉 ⊂ ±Pn \ {−I} be an abelian subgroup such that
r(g1), ..., r(gn−k) ∈ F2n

2 are linearly independent and let VS = {|ψ〉 | g |ψ〉 = |ψ〉 for all g ∈ S}
the subspace invariant under actions form S. Then dim(VS) = 2k.

Proof. Let H = span{h1, ..., hn−k} be an isotropic subspace of dimension n − k and let S ⊂
±Pn \ {−I} be an abelian subgroup with r(S) = H and projector PS = 1/2n−k

∑
g∈S g

onto the code space VS . We fix g1, ..., gn−k ∈ S with r(gi) = hi. Each character η : H →
{1,−1} is uniquely determined by its image on the set of generators, i.e., by η(hi) ∈ {1,−1},
i = 1, ..., n − k. Hence, we can encode each character as ηa, where a ∈ {−1, 1}n−k and
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ηa(hi) = ai. Due to Corollary 3.1.9 each projector can be written as

PS,a =
n−k∏
i=1

(
I + ai · g

2

)
= 1

2n−k
∑
g∈S

ηa(r(g))g. (3.7)

The projectors are orthogonal to each other since for a 6= a′ we have

PS,a · PS,a′ =
n−k∏
i=1

((I + ai · g)(I + a′i · g)
4

)
= 1

22(n−k)

n−k∏
i=1

(
I + ai · g + a′i · g + aia

′
iI
)︸ ︷︷ ︸

=0, if ai 6=a′i

= 0.

We will show that all projectors PS,a have the same dimension as PS . Therefore, let Hj =
span{hi | i ∈ {1, ..., n− k} \ {j}}. Then dim(Hj) < n for all k ≥ 0 and there is h ∈ H⊥j such
that hj · h = 1, implying that there exists g ∈ Pn with r(g) = h such that ggig† = gi for i 6= j

and ggig
† = −gi. If we pick such a g for all j with aj = −1 and define their product as U

(which is a unitary), we get UgjU † = gj if aj = 1 and UgjU † = −gj if aj = −1. Consequently,

UPSU
† = PS,a,

so the rank of the projector PS,a equals the rank of PS . Now, dim(PS,a) = 2k because we have
the identity

∑
a∈{1,−1}n−k

PS,a = 1
2n−k

∑
a∈{1,−1}n−k

∑
g∈S

ηa(r(g))g

= 1
2n−k

∑
a∈{1,−1}n−k

∑
g∈S

ηa(r(g)) · g

= 1
2n−k

∑
g∈S

( ∑
a∈{1,−1}n−k

1 · ηa(r(g))

︸ ︷︷ ︸
=

2n−k, if r(g) = r(I) = 0,
0, otherwise

)
· g

= I.

Since the projectors are orthogonal to each other and their rank has to sum up to the rank
of I, which is 2n, every projector has rank 2k and thus the codespace VS , where PS projects
to, has dimension 2k.

Edges of Qf
n

Using some properties of our symplectic vector space F2n
2 we are also able to characterize the

edges of Qfn which also determines the edges of SPn as we have seen in the last subsection.
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The results we derive here are separate form the rest of the thesis and will have no further
implications.

Along the proofs we will explain why this cannot be easily generalized to arbitrary k ≤ n.
Moreover, we will not consider a projection on some CAO set K ⊂ F2n

2 , however, a careful
adaption to this case might be possible. For two sets S1, S2 we define the symmetric difference
S1 M S2 as

S1 M S2 = (S1 \ S2) ∪ (S2 \ S1).

Proposition 3.1.11. Let H,H1, H2 ⊂ F2n
2 be n-dimensional isotropic subspaces with |H| =

|H1| = |H2|. Then

|(H1 M H2) ∩H| ≤ |H1 \H2| = |H2 \H1|

and equality holds if and only if H ∈ {H1, H2} or H1 = H2.

Proof. The statement is trivially true if we have equality for H ∈ {H1, H2} or H1 = H2. So
we assume that non of these cases is true. Let

dim(H ∩H1 ∩H2) = p

dim(H ∩H1) = p+ q

dim(H ∩H2) = p+ r

dim(H1 ∩H2) = p+ s.

As the dimension of all three subspaces is n we get the following restrictions for p, q, r, s:

p+ q + r ≤ n, due to dimH = n, (3.8)
p+ q + s ≤ n, due to dimH1 = n, (3.9)
p+ r + s ≤ n, due to dimH2 = n. (3.10)

The set (H1 M H2) ∩H can be rewritten as

(H1 M H2) ∩H =
(
(H1 ∩H) \ (H1 ∩H2 ∩H)

)
∪
(
(H2 ∩H) \ (H1 ∩H2 ∩H)

)
,

implying

|(H1 M H2) ∩H| = (2q+p − 2p) + (2r+p − 2p). (3.11)

We consider three cases:

1. s = 0 :
Then H ∩H1 ∩H2 = H1 ∩H2. Moreover, p+ q < n and p+ r < n since H /∈ {H1, H2}
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and we can compute

(2q+p − 2p) + (2r+p − 2p) ≤ 2n−1 + 2n−1 − 2p+1 ≤ 2n − 2p+1

< 2n − 2p,

where the last expression equals |H1 \H2| = |H1 \ (H1 ∩H2)| = |H1 \ (H1 ∩H2 ∩H)|.

2. s > 1:
Using inequalities (3.9) and (3.10) we get

(2q+p − 2p) + (2r+p − 2p) ≤ 2n−s + 2n−s − 2p+1 = 2n−s+1 − 2p+1

= 2p+1(2n−s−p − 1)
< 2s+p(2n−s−p − 1)
= 2n − 2p+s

= |H1 \H2|.

3. s = 1 :
We claim that p + q + s < n or p + r + s < n. Therefore, assume the contrary, i.e.,
p + q = p + r = n − s = n − 1. Then p + q = p + r = n − 1 and p + q + r ≤ n

(inequality (3.8)) imply q = r ≤ 1. If q = r = 0, then p + s = n which is equivalent
to H1 = H2. So, let q = r = 1 and p = n − 2. Note that we have dim(H ∩ H1) =
dim(H ∩ H2) = dim(H ∩ H3) = n − 1 and dim(H ∩ H1 ∩ H2) = p = n − 2. We set
H ′ = H ∩H1 ∩H2 = span{u1, ..., up} and fix three elements

h1 ∈ (H ∩H1) \H2, h2 ∈ (H ∩H2) \H1, h12 ∈ (H1 ∩H2) \H.

Due to their choice it has to hold H = span{H ′, h1, h2}, H1 = span{H ′, h1, h12} and
H2 = span{H ′, h2, h12}, thus h1 · h2 = h1 · h12 = h2 · h12 = 0. However, since the
dimension of H1, H2 and H is n we have H = H⊥ and Hi = H⊥i , Hi = H⊥ for i = 1, 2
(see the proof of Proposition 2.2.7 for an explanation), but h1 /∈ H2 = H⊥2 which
contradicts h1 · h2 = h1 · h12 = 0 and h1 · ui = 0 for i = 1, ..., p.

Hence, we may assume that p+ q + s < n and we get the following inequality:

(2q+p − 2p) + (2r+p − 2p) < 2n−s + 2n−s − 2p+1 = 2p+1(2n−s−p − 1)
= 2s+p(2n−s−p − 1)
= 2n − 2s+p

= |H1 \H2|.

To conclude, we have |(H1 M H2) ∩H| < |H1 \H2| if H /∈ {H1, H2} or H1 = H2.

Remark 3.1.12 Note that we only required the property that the subspaces are isotropic
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and have dimension n in the third case. Yet, this property cannot be translated to (general)
subspaces of smaller dimension or which are not isotropic.

The lemma enables us to determine the edges of Qfn:

Lemma 3.1.13. Let t∗1, t∗2 ∈ V(Qfn) be vertices and t1, t2 ∈ Afk the associated functionals.
The line segment [t∗1, t∗2] is an edge of Qfn if and only if supp{t1} 6= supp{t2}.

Proof. Let Hi = supp{ti} for i = 1, 2 and suppose that H1 6= H2. We define the functional
tH1MH2 : F2n

2 → {0, 1,−1} by

tH1MH2(h) =


t1(h), if h ∈ H1 \H2

t2(h), if h ∈ H2 \H1

0, otherwise.

Then

tT1 (tH1MH2) =
∑

h∈H1\H2

t(h) · t(h) = |H1 \H2| = |H2 \H1| = tT2 (tH1MH2).

Thus, the inner product of tH1MH2 with points on the line [t1, t2] is constant (and equivalently
the inner product of t∗H1MH2

with points on the line [t∗1, t∗2]). In order to show that the line
defines an edge we have to prove that (t∗)T (t∗H1MH2

) < |H1 \H2| for every t∗ ∈ V(Qfk)\{t1, t2}
with t ∈ Afk . Let H = supp{t}. We obtain the following inequality:

tT (tH1MH2) =
∑

h∈(H1MH2)∩H
t(h) · tH1MH2(h)

=
∑

h∈(H1\H2)∩H
t(h) · t1(h) +

∑
h∈(H2\H1)∩H

t(h) · t2(h)

≤
∑

h∈(H1\H2)∩H
1 +

∑
h∈(H2\H1)∩H

1

= |(H1 M H2) ∩H|
≤ |H1 \H2|,

where we applied Proposition 3.1.11 in the last step. Now, the first inequality is strict if
H ∈ {H1, H2} but t /∈ {t1, t2} and the second is strict if supp{t} /∈ {H1, H2}, implying that
it is always strict whenever t ∈ Afn \ {t1, t2}, so [t∗1, t∗2] is an edge of Qfn.

Conversely, assume that H1 = H2. We partition H1 = H(6=)∪̇H(=) where

H(6=) := {h ∈ H1 | t1(h) = −t2(h)}, H(=) := H1 \H(6=) = {h ∈ H1 | t1(h) = t2(h)}.

Observe that it holds |H( 6=)| = |H(=)| since tT1 t2 = 0 (due to Corollary 3.1.3). The inner
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product of points on the line [t1, t2] with a functional a : F2n
2 → R has to be constant, that is

0 = aT (t1 − t2) =
∑

h∈H(=)

a(h) · (t1(h)− t2(h)) +
∑

h∈H(6=)

a(h) · (t1(h)− t2(h))

= 2
∑

h∈H(6=)

a(h) · t1(h)

= −2
∑

h∈H(6=)

a(h) · t2(h),

which forces that aT t1 = aT t2 =
∑
h∈H(=) a(h) · t(h). In order to show that [t∗1, t∗2] is not an

edge we have to show the existence of t ∈ Afn such that aT t ≥ aT t1. Due to the conditions (A1)
and (A2) holding for t1 and t2 we can deduce that H(=) is an isotropic subspace contained
in H with dim(H(=)) = dim(H) − 1 = n − 1 and dim(H(=))⊥ = 2n − (n − 1) = n +
1. Hence, the dimension of the quotient (H(=))⊥/H(=) is 2, implying that (H(=))⊥/(H(=))
contains a non-trivial element h + H(=) 6= H(=). This guarantees the existence of t ∈ Afn
such that supp{t} = span{H,h} and t|H(=) = (t1)|H(=) where t /∈ {t1, t2}. Since aT t =∑
h∈H(=) a(h)t(h) =

∑
h∈H(=) a(h)t1(h) = aT t1, the line segment between t∗1 and t∗2 cannot

form an edge of Qfk .

3.2 Characterizing integral points in (Qf
k)◦

This whole section will be devoted to determine the integral points in the polar dual of
Qfk(K) for K ⊂ F2n

2 being CAO. The property CAO will be once again crucial. Recall that
if Q = conv{v1, ..., vN} ⊂ Rd is a polytope, then Q◦ = {x ∈ Rd | vTi x ≥ −1, i = 1, ..., N}.
Determining integral points means that we want to characterize functionals t◦ : K → Z with
t◦(0) = 1 that satisfy

(t◦)T t = t◦(0)t(0) +
∑

h∈(F2n
2 )∗

t◦(h)t(h) = 1 + (t◦,∗)T (t∗) ≥ 0 (3.12)

for all t ∈ Afk(K). The definition of Qfk(K) ensures that for every t◦ satisfying (3.12) it holds
t◦,∗ := t|K∗ ∈ (Qfk)◦. Instead of considering elements in the dual polytope we will focus on
functionals of the form x : K → R with 0 ∈ K and x(0) = 1. The condition (x|(F2n

2 )∗)T t∗ ≥ −1
translates to xT t ≥ 0 for t ∈ Afk(K). Proposition 3.1.6 (Qfs1(K) ⊂ Qfs2(K) for s1 ≥ s2 ≥ k

and K being CAO such that the largest isotropic subspace in K has dimension k) yields the
implication that if the above equation (3.12) holds for all t ∈ Akf (K) it holds likewise for all
t ∈ Afi (K) for i = 1, ..., k..

Therefore, we can restrict to functions t◦ : F2n
2 → {0, 1,−1} since (t◦)T t ≥ 0 for all

t ∈ Af1(K) is equivalent to 1 ± t◦(h) ≥ 0 for all h ∈ (F2n
2 )∗ implying −1 ≤ t◦(h) ≤ 1. As we

will see, the set supp{t◦} for t◦,∗ ∈ (Qfk(K))◦ has a particular interesting structure for certain
functions f , including f defined as in (2.3), which allows us to deduce statements about the
stabilizer polytope.
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Definition 3.2.1. We define

Bf := Bf (F2n
2 ) = {t◦ : F2n

2 → {0, 1,−1} | t◦ satisfies (A2)}

and for K ⊂ F2n
2

Bf (K) := {t◦|K : K∗ → {0, 1,−1} | t◦ ∈ Bf}.

As before, we will also write t◦ ∈ Bf (K) and t◦,∗ for t◦|K∗ .

Theorem 3.2.2. Let k ≥ 2, K ⊂ F2n
2 such that K is CAO and let t◦ : K → {0, 1,−1} with

t◦(0) = 1. Then t◦,∗ ∈ (Qfk(K))◦ if and only if t◦ ∈ Bf (K).

An immediate consequence is that Qfk(K) ⊂ (Qfk(K))◦ if K ⊂ F2n
2 is CAO. because of

∪ni=1A
f
i (K) ⊂ Bf .

If K is CAO, then t◦ ∈ Bf (K) is equivalent to t◦ being an integral point in (Qfk(K))◦. In
contrast to Afk we choose Bf independent of the 1-norm of the functions, i.e., of k. Condition
(A2) forces that supp{t◦} is CAO because it implies that |t◦(h + h′)| = |t◦(h)||t◦(h′)| for
h · h′ = 0 with h, h′ ∈ supp{t◦}.

Proof. Let t◦ ∈ Bf (K) and t ∈ Afk(K). Since supp{t◦} is CAO, the intersection H :=
supp{t} ∩ supp{t◦} is an isotropic subspace. Hence, we can apply Proposition 3.1.2 (i), (ii)
and obtain a character η|H : H → {1,−1} such that t|Hη|H = t◦|H . Thus,

(t◦)T t =
∑
h∈H

t◦(h)t(h) = (t◦|H)T t|H =
∑
h∈H

η(h) =

|H|, if t◦|H = t|H ,

0, otherwise.

By equation (3.12), it follows t◦,∗ ∈ (Qfk(K∗))◦.
Conversely, assume that t◦ /∈ Bf (K), i.e., there are h1, h2 ∈ K with h1 · h2 = 0,

t◦(h1), t◦(h2) 6= 0 and t◦(h1 + h2) 6= f(h1, h2) · t◦(h1) · t◦(h2). Note that h1, h2 6= 0, oth-
erwise (A2) is satisfied due to the restrictions on f (that is, f(0, 0) = f(h, 0) = f(0, h) = 1).
Let t ∈ Af2(K) with t(hi) = −t◦(hi) for i = 1, 2 and t(h1 + h2) = f(h1, h2)t(h1)t(h2) 6=
f(h1, h2)t◦(h1)t◦(h2). Since t◦ is integral, we have

(t◦)T t = t◦(0)t(0) + t◦(h1)t(h1) + t◦(h2)t(h2) + t◦(h1 + h2)t(h1 + h2)︸ ︷︷ ︸
≤0

≤ 1− 1− 1 = −1

and consequently (t◦,∗)T t∗ ≤ −2, so t◦,∗ /∈ (Qfk(K∗))◦.

The above theorem does not hold for k = 1. In this case Qf1(K) is the cross polytope for
all K ⊂ F2n

2 , K 6= ∅, {0} and ((Qf1)(K))◦ = [−1, 1]K∗ is the hypercube and all functionals
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t∗ : K → {0, 1,−1} lie in the dual polytope. However, it implies that the set of integral points
is stable for all k ≥ 2. This follows because constraint (A2) just affects isotropic subspaces
of dimension 2. Since we have the inclusion (Qfs (K))◦ ⊂ (Qfk(K))◦ for all 1 ≤ k ≤ s ≤ n and
K ⊂ F2n

2 being CAO, the polytope Qfk(K) cannot be reflexive (i.e., (Qfk)◦ is not integral) for
all 2 ≤ k < n.

We impose two extra conditions on the function f because they are also valid for the
choice of f defined in (2.3), allowing us to deduce interesting properties of the stabilizer
polytope. Recall that we always assume that for every k-dimensional isotropic subspace H
there is t ∈ Afk such that supp{t} = H. Moreover, we have seen that this forces f to
be symmetric for orthogonal elements, i.e., f(h1, h2) = f(h2, h1) for all h1, h2 ∈ F2n

2 with
h1 · h2 = 0, and f to be constant on sets h1, h2, h3 where h1 · h2 = 0 and h1 + h2 = h3, i.e.,
f(h1, h2) = f(h1, h3) = f(h2, h3). From now on we will additionally assume that f satisfies
the following two conditions:

3. f is antisymmetric for non-orthogonal elements, i.e., f(h1, h2) = −f(h2, h1) if h1·h2 = 1.

4. f is bilinear, i.e., f(h1 +h, h2) = f(h1, h2)f(h, h2) and f(h1, h+h2) = f(h1, h)f(h1, h2)
for all h1, h2, h ∈ F2n

2 .

Due to Proposition 2.2.1 they both hold for f of (2.3).
Our goal is to characterize the set supp{t◦} for t◦ : F2n

2 → {0, 1,−1} with t◦,∗ ∈ (Qfk)◦

(which is equivalent to t◦ ∈ Bf ) by applying the characterization given in Theorem 3.2.2. We
will associate an undirected graph with G = (V,E) with the phase space F2n

2 where V = F2n
2

and

E = {{h1, h2} ∈ F2n
2 × F2n

2 |h1 · h2 = 0}.

The graph will be referred to as the orthogonality graph (or commutativity graph, as orthogo-
nality in the phase space reflects commutativity in the Pauli group). For a subset W ⊆ F2n

2
the graph induced by W is defined as G(W ) = (W,E′) with E′ = {{u, v} ∈ E |u, v ∈ W}.
Note that not all subgraphs of a graph are induced by a subset W ⊂ V .

We are especially interested in the graph G(supp{a}) for a : F2n
2 → R. For instance,

let t ∈ Afk with supp{t} = H. Then G(H) is a clique (i.e., a graph where all vertices are
connected by edges) with 2k vertices. The structure of G(supp{t◦,∗}) becomes more evolved
for t◦ ∈ Bf . There will be particularly one main "forbidden" substructure. We introduce it as
follows:

Definition 3.2.3. Let

� = {hij ∈ F2n
2 | i, j ∈ {1, 2, 3}} ∪ {0}

such that � satisfies the following relations for all i, j ∈ {1, 2, 3} (where the index arithmetic
is done modulo 3):
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h22

h13

h23

h33

h11

h21

h31

h12

h32

Figure 3.1: Each row and each column represents an isotropic subspace of dimension 2. Note
that the diagram does not contain all edges of the orthogonality graph.

(1) hij · hi+1,j , hij · hi,j+1 = 0

(2) hij · hi+1,j+1 = 1

(3) hij + hi+1,j = hi+1,j , hij + hi,j+1 = hi,j+2.

For an illustration see Figure 3.1. Observe that the set � is CAO due to its definition and
that f is constant on each row, respectively column, i.e.,

f(hij , hi,j+1) = f(hij , hi,j+2) = f(hi,j+1, hi,j+2)

for all j ∈ {1, 2, 3} and each row indexed by i ∈ {1, 2, 3} and analogously for each column.
For deducing conditions on t◦ ∈ Bf arising from � we will require a technical lemma:

Lemma 3.2.4. Let k ≥ 2, K be CAO and a : K → R with � ⊂ supp{a}. Set aij = a(hij) for
hij ∈ � and assume that |aij | = |aji| and aij 6= 0 for all i, j ∈ {1, 2, 3}. Furthermore, assume
that the following relations hold:

a32 = f(h22, h12) · a22 · a12, (3.13)
a23 = f(h22, h21) · a22 · a21, (3.14)
a11 = f(h11, h21)︸ ︷︷ ︸

=f(h21,h31)

·a21 · a31 = f(h11, h12)︸ ︷︷ ︸
=f(h12,h13)

·a12 · a13. (3.15)

Then

f(h31, h32) · a31 · a32 = −f(h13, h23) · a13 · a23. (3.16)

34



The lemma is formulated more general as necessary because it will become important in
this form in the subsection about integral vertices of Qfk .

Proof. We simply expand the the LHS and RHS of (3.16) and compare the occurring factors.
Using the bilinearity of f we compute for the LHS

f(h31, h32) · a31 · a32

=f(h11 + h21︸ ︷︷ ︸
=h31

, h12 + h22︸ ︷︷ ︸
h32

) · f(h11, h21) · a11
a21︸ ︷︷ ︸

=a31, due to (3.15)

· f(h22, h12) · a22 · a12︸ ︷︷ ︸
=a32, due to (3.13)

=f(h11, h12) · f(h11, h22) · f(h21, h12) · f(h21, h22) · f(h11, h21) · f(h22, h12) ·
(
a11 · a22 ·

a12
a21

)
and for the RHS

f(h13, h23) · a13 · a23

=f(h11 + h12︸ ︷︷ ︸
=h13

, h21 + h22︸ ︷︷ ︸
h23

) · f(h11, h12)a11
a12︸ ︷︷ ︸

=a13, due to (3.15)

· f(h22, h21) · a22 · a21︸ ︷︷ ︸
=a32, due to(3.14)

=f(h11, h21) · f(h11, h22) · f(h12, h21) · f(h12, h22) · f(h11, h12) · f(h22, h21) ·
(
a11 · a22 ·

a21
a12︸︷︷︸

= a12
a21

)

=f(h11, h12) · f(h11, h22) · (−f(h21, h12)) · f(h21, h22) · f(h11, h21) · f(h22, h12)

·
(
a11 · a22 ·

a12
a21

)
=− f(h31, h32) · a31 · a32,

where we used that f(h12, h21) = −f(h21, h12) since h12 · h21 = 1.

The lemma enables us to characterize the mentioned "forbidden" substructures in the
graph G((supp{t◦})) with t◦ ∈ Bf .

Lemma 3.2.5. Let k ≥ 2, K ⊂ F2n
2 be CAO and t◦ : K → {0, 1,−1}. Furthermore, suppose

that the graph G((supp{t◦}∗)) contains an induced 4−cycle, i.e., there are h11, h21, h12, h22 ∈
supp{t◦} ∩� for � ⊂ F2n

2 defined as in Definition 3.2.3. Then t◦ /∈ (Qfk(K))◦

Crucial for the proof is to notice that the assumptions (3.13), (3.14) and (3.15) of Lemma
3.2.4 have the same form as Condition (A2) if t◦ : K → {0, 1,−1} and h11, h12, h21, h22 ∈
supp{t◦}.

Proof. We will prove the statement by contradiction. Suppose that there is t◦ ∈ Bf (K) and
� ⊂ F2n

2 with h11, h21, h12, h22 ∈ supp{t◦} ∩ �. Then, due to the construction of �, the
subgraph G({h11, h21, h12, h22}) is a cycle of four vertices (see Figure 3.2). Applying Theorem
3.2.2, Condition (A2) has to hold for t◦ and the set supp{t◦} has to be CAO which implies
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h22

h11

h21

h12

Figure 3.2: The initial setting for the constructed contradiction in Lemma 3.2.5.

� ⊂ supp{t◦}, so h33 ∈ supp{t◦}. Expanding t(h33) by the bottom row and the most right
column of Figure 3.1 we obtain

f(h31, h32) · t◦(h31) · t◦(h32) = t◦(h33) = f(h13, h23) · t◦(h13) · t◦(h23)

but since all assumptions of Lemma 3.2.4 are satisfied (3.16) holds, thus

f(h31, h32) · t◦(h31) · t◦(h32) = −f(h13, h23) · t◦(h13) · t◦(h23),

forcing t◦(h33) = 0 which is a contradiction to h33 ∈ supp{t◦}.

We will meet the diagram � of Figure 3.1 again in the subsequent sections. Such a square
often arises in quantum physics and it can be used to describe a phenomenon that divides
classical from quantum mechanics, namely contextuality. We will investigate this connection
in further detail in Section 3.3.

Every induced 4−cycle free subgraph G(supp{t◦}) for t◦ ∈ Bf induces much "isotropic"
related structure to the set supp{t◦}.

Corollary 3.2.6. Let k ≥ 2, K ⊂ F2n
2 be CAO, t◦ ∈ Bf (K) and let h ∈ supp{t◦}. Then at

least one of the two statements hold:

1. The set supp{t◦} ∩ {h}⊥ is an isotropic subspace.

2. supp{t◦} ⊂ {h}⊥

Proof. Let t◦ : K → {0, 1,−1} and h ∈ supp{t◦}. We first note that H := supp{t◦}∩{h}⊥ not
being an isotropic subspace means thatH * H⊥ or it is isotropic but not closed (consequently,
not CAO). If the latter is the case, then supp{t◦} is not CAO because {h}⊥ is closed under
addition (hence CAO) as it is a subspace. Then t◦ violates constraint (A2) and t◦ /∈ Bf (K)
due to Theorem 3.2.2.

For the remaining cases we assume that there are a1, a2 ∈ H (thus, a1 · h = a2 · h = 0)
such that a1, a2 are not orthogonal to each other, i.e., a1 · a2 = 1, and b ∈ supp{t◦} \ {h}⊥,
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b

h

h+ a2

a1

a2

Figure 3.3: The graph G({a2, h, a1, h+ a2, b}) for case 2. in the proof of Corollary 3.2.6.

i.e., h · b = 1. This is equivalent to H being not isotropic and supp{t◦} * {h}⊥. If we are able
construct an induced 4−cycle in G(supp{t◦}), Lemma 3.2.5 implies that t◦ /∈ Bf (K) and we
have proved the statement by contraposition.

So, now assume that H is CAO (otherwise we are done due to the first observation). We
have to distinguish three cases with respect to the orthogonality relations of a1 and a2 to b:

1. a1 · b = a2 · b = 0. Then, we have a 4−cycle in G(supp{t◦}) with vertices {h, a1, a2, b}.

2. b is orthogonal to exactly one of the elements a1, a2, without loss of generality
a1 · b = 0, a2 · b = 1. In this case the points h, a1, h + a2, b form a 4−cycle (see Figure
3.2).

3. a1 · b = a2 · b = 1. Here, {h, a1 + h, a2 + h, b} form a 4−cycle.

Hence, we showed that the negation of the two statements always forces that t◦ /∈ Bf (K)
which finishes the proof by contraposition.

We are now ready to completely characterize the sets supp{t◦} for t◦ : K → {0, 1,−1}
and t◦,∗ ∈ (Qfk(K))◦. Therefore, we define the following subset of the power set of F2n

2 :

Definition 3.2.7. Let

K :=
{
K ⊂ F2n

2 |K = H∪̇(h1 +H)∪̇ . . . ∪̇(h` +H), H isotropic subspace, (3.17)

h1, ..., h` ∈ H⊥, hi · hj = 1 for all 1 ≤ i, j ≤ n, i 6= j
}
.
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H

h1 +H

h2 +H

h` +H

·

·
·

Figure 3.4: The structure of the orthogonality graph for G(K) with K ∈ K. Each set
H ∪ (hi +H) is clique and each set h′1, ..., h′` with h′i ∈ hi +H an independent set.

As we will see in the next theorem the sets in K coincide with the accessible sets supp{t◦} ⊂
F2n

2 for t◦ ∈ Bf . The underlying orthogonality graph for K ∈ K is given in Figure 3.4. Note
that K does not coincide with the set of CAO subsets of F2n

2 , e.g., � is CAO but � /∈ K.

Example 3.2.8 Let K = {x1, x2, x1x2, y2, x1y2, z2, x1z2} ⊂ F4
2 and define t◦ : F4

2 →
{0, 1,−1} by

t◦(h) =

1, if h ∈ K
0, otherwise.

Note that we have

supp{t◦} = H ∪ (x2 +H) ∪ (y2 +H) ∪ (z2 +H),

where H = {x1, 0}. The underlying graph of supp{a} is given in Figure 3.2.

Theorem 3.2.9. Let k ≥ 2, K ⊂ F2n
2 be CAO and t◦ : F2n

2 → {0, 1,−1}. If t◦ ∈ Bf (K), then
supp{t◦} ∈ K.

Proof. Let t◦ ∈ Bf (K) and let h1, . . . , h` ∈ supp(t◦) be maximal with respect to the index `,
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x1z2

z2

x1y2y2

x1x2

x2

x1

Figure 3.5: The graph G(supp{t◦}∗) for t◦ in Example 3.2.8. The graph does not contain an
induced 4−cycle.

not inclusion maximal, satisfying hi · hj = 1 for all i 6= j. Then

supp{t◦} = ({h1}⊥ ∩ supp{t◦}) ∪ . . . ({h`}⊥ ∩ supp{t◦}) (3.18)

since this forces that every element h ∈ supp{t◦} has to be orthogonal to at least one hi
(otherwise h1, ..., h` cannot be maximal). We distinguish two cases:

1. ` = 1:
Then supp{t◦} ⊂ {h1}⊥ and due to the maximality of `, supp{t◦} is isotropic as well.
Moreover, since t◦ ∈ Bf (K) the set supp{t◦} is CAO and thus, supp{t◦} is an isotropic
subspace. Now, if dim(supp{t◦}) = k, choose any (k− 1)-dimensional subspace H with
h1 /∈ H and supp{t◦} = H ∪ (h1 +H).

2. ` ≥ 2 :
Let

H = {h1}⊥ ∩ {h2}⊥ ∩ supp{t◦}.

We will prove that this is the H of (3.17). Since hi · hj = 1 for all i 6= j, we have
supp{t◦} * {hi}⊥ and the last lemma implies that supp{t◦} ∩ {hi}⊥ is an isotropic
subspace for all i = 1, ..., `. Hence, H is an isotropic subspace as the intersection of
isotropic subspaces. For ` ≥ 3 we will show that

H = {h1}⊥ ∩ {h2}⊥ ∩ {h3}⊥ ∩ supp{t◦}

by contradiction.
Assume that there is h ∈

(
{h1}⊥ ∩ {h2}⊥ ∩ supp{t◦}

)
\{h3}⊥. This means that h ·h1 =

h ·h2 = 0 but h ·h3 = 1. Since supp{t◦} has to be CAO, it follows that h1 +h, h2 +h ∈
{h3}⊥∩ supp{t◦} but (h1+h)·(h2+h) = h1 ·h2 = 1, so the intersection {h3}⊥∩ supp{t◦}
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cannot be not isotropic and we get t◦ /∈ Bf (K) due to the last lemma, a contradiction.
Alternatively, we can argue that G(supp{t◦}) contains the induced subgraph generated
by the vertices h1, h1 + h, h3, h2 + h3 + h forming an induced 4-cycle. Continuing in
the same fashion for h4, ..., h` we can iteratively deduce that

H = {h1}⊥ ∩ {h2}⊥ ∩ · · · ∩ {h`}⊥ ∩ supp{t◦} = {h1}⊥ ∩ {h2}⊥ ∩ supp{t◦}
= {hi}⊥ ∩ {hj}⊥ ∩ supp{t◦}

for all 1 ≤ i 6= j ≤ `.
It remains to analyze the exact structure of {hi}⊥ ∩ supp{t◦}. Recall that H can
be expressed as the intersection of the orthogonal complements {h1}⊥ and {h2}⊥ with
supp{t◦}. We will fix i = 1 and set {h1}⊥∩ supp{t◦} = span{h1, a1 . . . as}. By observing
that span{h1, a1, . . . , as} = span{h1, h1+a1, . . . h1+as} and either ai ∈ H or h1+ai ∈ H
(since either ai ∈ {h2}⊥ or (h1 +ai) ∈ {h2}⊥ since we have (h1 +ai) ·h2 = 0 if ai ·h2 = 1)
we may choose the basis elements a1, ..., as ∈ H and it follows {h1}⊥ ∩ supp{t◦} =
span{h1, H} = H ∪ (h1 +H). By equation (3.18), we conclude that

supp{t◦} = H∪̇(h1 +H)∪̇ . . . ∪̇(h` +H).

Conversely, if we are given a set K = H ∪ (h1 + H) ∪ · · · ∪ (h` + H) ∈ K, we can easily
construct t◦ ∈ Bf such that supp{t◦} = K. Before analyzing the general construction we
consider the following example:

Example 3.2.10 Let f be defined as in (2.3) and consider t◦ ∈ Bf with support supp{t◦} =
{H, x3 + H, y3 + H, z3 + H}, where H = {0, x1x2, y1y2, z1z2}. We fix the assignments
t◦(x1x2) = t◦(z1z2) = t◦(x3) = t◦(z3) = 1 and t◦(y1y2) = t◦(y3) = −1, ensuring t◦|H ∈ A

f
2 .

Note that we have f(x3, h) = f(y3, h) = f(z3, h) = 1 for all h ∈ H.
This completely determines t◦ since for any h ∈ H the assignments on the cosets are

t◦(x3+h) = f(x3, h)·t◦(x3)·t◦(h) = t◦(h) = t◦(z3+h) and t◦(y3+h) = f(y3, h)·t◦(y3)·t◦(h) =
−t◦(h).

If dim(H) = k, we fix an arbitrary t ∈ Afk(H) (implying that supp{t} = H). We construct
t◦ as follows:
Set t◦(h) = t(h) for all h ∈ H. For all h1, ..., h` choose t◦(h) ∈ {1,−1}. This determines
the values on the cosets hi + H since for hi + h ∈ hi + H, h ∈ H we have t◦(hi + h) =
f(h, hi) · t◦(hi) · t(h). To show that t◦ satisfies condition(A2) on the whole set K we consider
arbitrary orthogonal h, h′ ∈ K. If h, h′ ∈ H, then h+ h′ ∈ H and due to t ∈ Afk(H) we have

t◦(h+ h′) = t(h+ h′) = f(h, h′) · t(h) · t(h′) = f(h, h′) · t◦(h) · t◦(h′).
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If h ∈ H and h′ ∈ hi +H for some i ∈ {1, ..., `}, then h′ = hi + h′′ for some h′′ ∈ H and using
bilinearity and symmetry for orthogonal elements of f it holds

t◦(h+ h′) = t◦(hi + (h+ h′′)) = f(hi, h+ h′′) · t◦(hi) · t◦(h+ h′′)
= f(hi, h) · f(hi, h′′) · f(h, h′′) · t◦(hi) · t◦(h) · t◦(h′′)
= f(hi + h′′, h) · f(hi, h′′) · t◦(hi) · t◦(h) · t◦(h′′)
= f(hi + h′′, h) · t◦(hi + h′′) · t◦(h)
= f(h, h′) · t◦(h) · t◦(h′).

If hi + h, hi + h′ ∈ hi + H (so h, h′ ∈ H), then once again bilinearity and symmetry for
orthogonal elements of f yields

t◦((hi + h) + (hi + h′))
=t◦(h, h′)
=f(h, h′) · t(h) · t◦(h′)
=f(h, h′) ·

(
f(hi, h) · f(hi, h)

)
·
(
f(hi, h′) · f(hi, h′)

)
·
(
t◦(hi) · t◦(hi)

)
· t◦(h) · t◦(h′)

=f(hi + h, hi + h′) · t◦(hi + h) · t◦(hi + h′).

If h ∈ hi + H and h′ ∈ hj + H for some i 6= j, then h and h′ are not orthogonal to each
other. Thus, we have considered all possible orthogonality relations between h and h′ and
have constructed t◦ ∈ Bf . Analogously to Proposition 3.1.2 (i) we have:

Proposition 3.2.11. Let t◦ ∈ Bf with K = H ∪ (h1 + H) ∪ · · · ∪ (h` + H) = supp{t◦} and
Hi = H ∪ (hi +H) for i = 1, ..., `. It holds

{(t◦)′ ∈ Bf | supp{(t◦)′} = K}
={ηt◦ | η|Hi

: Hi → {1,−1} is a character on the additve group Hi, i = 1, ..., `}.

Integral vertices of (Qf
k)◦

Having characterized the structure of supp{t◦} for t◦ ∈ Bf we are able to show that if the set
supp{t◦} is inclusion maximal in Bf , then t◦,∗ is a vertex of (Qfk)◦ and thus defines a facet
normal of Qfk . The idea is to show that every such t◦,∗ cannot be written as a proper convex
combination of elements in (Qfk)◦. Hence, it is an extreme point and therewith a vertex of
(Qfk)◦. This result cannot be simply extended to K ⊂ F2n

2 being CAO. However, in the next
section we will show that if K ∈ K then the projected polytope Qfk(K) is reflexive (i.e., the
dual polytope is integral).

In order to prove that certain integral functions in the dual polytope are vertices we need
a generalization of Theorem 3.2.2 for "partially" integral functionals in the dual polytope. If
a : K → R, we will write a∗ for a|K∗ .
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Lemma 3.2.12. Let k ≥ 2, K ⊂ F2n
2 be CAO and a : K → R with a∗ ∈ (Qfk(K))◦ and let

|a(h)| = 1 for some h ∈ K. Then

a(h+ h′) = f(h, h′) · a(h) · a(h′) (3.19)

for all h′ ∈ K such that h · h′ = 0 and h′ ∈ supp{a}.

Note that (3.19) is a generalization of (A2) since we just require that |a(h)| = 1 for all
tuples of orthogonal elements h, h′ ∈ K with |a(h)|, a(h′)| > 0.

Proof. Suppose that the assumptions of the theorem hold and let h′′ = h+h′. Let t ∈ Af2(K)
with supp{t} = {0, h, h′, h′′}. Since a∗ ∈ (Qfk(K))◦, we have

t(h)a(h) + t(h′)a(h′) + t(h′′)a(h′′) ≥ −1.

If we fix t(h) = −a(h), this translates to

t(h′)a(h′) + t(h′′)a(h′′) ≥ 0

and due to t(h′′) = f(h, h′) · t(h) · t(h′) = −f(h, h′) · a(h) · t(h′) (Condition (A2) for t) we
obtain (

− f(h, h′) · a(h) · t(h′)
)

︸ ︷︷ ︸
∈{1,−1}

·a(h′′) ≥ −t(h′) · a(h′).

Now we can choose t(h′) ∈ {1,−1} and if we multiply by −f(h, h′) · a(h) · t(h′), we get
a(h′′) ≤ f(h, h′) ·a(h) ·a(h′) for one of the cases and for the other a(h′′) ≥ f(h, h′) ·a(h) ·a(h′),
so

a(h′′) = f(h, h′) · a(h) · a(h′).

Our goal for the subsection is to prove the following theorem:

Theorem 3.2.13. Let k ≥ 2, t◦ ∈ Bf and supp{t◦} = H∪̇(h1 + H)∪̇ . . . ∪̇(h` + H) ∈ K,
where H is an isotropic subspace of dimension k, h1, ...h` ∈ H⊥ and hi · hj = 1 for all i 6= j.
If the chain h1, ..., h` is of maximal length in H⊥, then t◦,∗ is a vertex of Qfk .

The set supp{t◦} described in the theorem is inclusion maximal, meaning that there is no
other integral functional (t◦)′ ∈ Bf such that supp{t◦} ( supp{(t◦)′}. After the proof of the
theorem we will explain how these sets look like by using the properties about F2n

2 derived
in subsection 2.2. Moreover, if t◦,∗ is a vertex of (Qfk)◦, it gives rise to a facet normal of Qfk .
Once again, this result holds for all 2 ≤ k ≤ n.
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Figure 3.6: Illustration of the setup in case 1.1. The right part indicates the absolute values
of x1 that have to be assigned to the positions indicated on the left.

The idea of the proof is to assume that we can write such a t◦ as a proper convex combi-
nation, that is t◦,∗ = λa∗1 + (1− λ)a∗2 with 0 < λ < 1 and then to show that one of the points
a∗1, a

∗
2 cannot lie in (Qfk)◦. Therefore, we aim to construct � ⊂ supp{a1} where � is defined

as in Definition 3.2.3 and then to apply Lemma 3.2.4 to a1.

Proof of Theorem 3.2.13. Suppose that the assumption of the theorem holds for t◦. and
assume t◦,∗ = λa∗1 + (1 − λ)a∗2 for 0 < λ < 1 and a1, a2 : F2n

2 → R with a∗1, a∗2 ∈ (Qfk)◦ and
a1(0) = a2(0) = 1. Since |ai(h)| ≤ 1 for all h ∈ F2n

2 , we have λ|a∗1(h)| + (1 − λ)|a∗2(h)| ≤ 1
for all h ∈ (F2n

2 )∗ and equality is given if and only if |a∗1(h)| = |a∗2(h)| = 1. Thus, it must
hold a∗1(h) = a∗2(h) = t◦(h) whenever |t(h)| = 1 (i.e., h ∈ supp{t◦}). This forces supp{t◦} (
supp{ai} because for being a proper convex combination we require h̄ ∈ supp{ai} \ supp{t◦}
for i = 1, 2. Let |a1(h̄)| = ε > 0.

We analyze the orthogonality relations of h̄ with supp{t◦}. Let dim(H⊥/H) = 2(n −
dim(H)) = m. Then, due to Lemma 2.2.9 the longest chain of mutually non-orthogonal
elements in H⊥ has length ` = m+ 1. To do so, we distinguish two cases:

1. h̄ /∈ H⊥ :
This means that there is h ∈ H such that h · h̄ = 1. The maximal dimension for H is
n− 1 (in this case the sets H ∪ hi +H, i = 1, ..., `, are isotropic subspaces of dimension
n), so ` ≥ 3. Since we have h̄ ·hi = 0 or h̄ · (h+hi) = 0 and h+hi ∈ supp{t◦} ( supp{a}
for all i = 1, ..., `, we may assume without loss of generality that h̄ ·h1 = h̄ ·h2 = 0. The
elements h, h1, h2, h̄ form a 4−cycle in G(supp{a1}).

By applying Lemma 3.2.12 there is � with h, h1, h2, h̄ ∈ � and � ⊂ supp{a1} where
the necessary absolute values for the elements in � are shown in Figure 3.6. Now, all
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assumptions of Lemma 3.2.4 are met as we have symmetry of absolute values and

a(h2 + h̄) = f(h2, h̄) · a(h̄) · a(h2),
a(h1 + h̄) = f(h1, h̄) · a(h̄) · a(h1),

a(h) = f(h, h1) · a(h1) · a(h+ h1) = f(h, h2) · a(h2) · a(h+ h2)

coincide with equations (3.13),(3.14) and (3.15). Now,

f(h, hi) · a(h+ hi) · a(hj + h̄) = a(h+ h̄+ hi + hj) = f(hi + h̄) · a(hi + h̄) · a(h+ hj)

but Lemma 3.2.4 yields that

f(h, hi) · a(h+ hi) · a(hj + h̄) = −f(hi + h̄) · a(hi + h̄) · a(h+ hj),

forcing a(h+ h̄+ hi + hj) = 0, a contradiction.

2. h̄ ∈ H⊥:
This case is more tricky. If dimH = n− 1, then dimH⊥ = n+ 1 and ` = 3. Moreover,
H⊥ = H ∪ (h1 +H) ∪ (h2 +H) ∪ ((h1 + h2) +H) with h1 · h2 = 1 is a closed subspace
and we obtain supp{t◦} = H⊥ and h̄ ∈ H⊥ \ supp{t◦} is not possible.

Thus, it has to hold dim(H) < n−1. In this case the minimal length of a non orthogonal
chain is 5 (note that we require k ≥ 2 here), so we consider ` ≥ 5. As we have seen in
Lemma 2.2.9 we can write H⊥ = span{H,h1, ..., h`−1} and since h̄ /∈ H, we may choose
h1, ..., h` in such a way that h̄ ∈ span{h1, ..., h`−1} (this means that we replace hi by
hi + h′ for some h′ ∈ H if necessary). Observe that we have

∑`−1
i=1 hi = h` and ` − 1 is

even.

We assume without loss of generality that h̄ =
∑
i∈I hi for I = {1, ..., s}. If |I| is even,

we have s < ` − 2 because of h̄ 6= h`. Then, h̄ · hj = 0 for all j = s + 1, ..., ` and
h̄ ·hj = 1 for j = 1, ..., s. So, h̄ is orthogonal to at least two elements (e.g., h`−1, h`) and
non-orthogonal to at least one element (e.g., h1). Similarly, if |I| is odd, then h̄ · hj = 0
for all j = 1, ..., s, where s is at least 3, and h̄ · hj = 1 for all j = s+ 1, ..., `, where s < `

(as h̄ 6= 0 =
∑`
i=1 hj). Again, h̄ is orthogonal to at least two elements (e.g., h1, h2) and

non-orthogonal to at least one element (e.g., h`).

If we assume without loss of generality that h̄ · h1 = h̄ · h2 = 0 and h̄ · h3 = 1, we can
apply Lemma 3.2.12 and we are in the setting depicted in Figure 3.7. Once again, we
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Figure 3.7: Illustration of case 2. By Lemma 3.2.12 the ones on the diagonal force that all
other value assignments are non-zero.

have symmetry of the diagram and due to Lemma 3.2.12 we have

a(h̄) = f(h2, h̄+ h2) · a(h2) · a(h̄+ h2)
a(h̄+ h1 + h3) = f(h2, h̄+ h1 + h2 + h3) · a(h2) · a(h̄+ h1 + h2 + h3)
a(h̄+ h2 + h3) = f(h̄+ h2 + h3, h̄+ h1 + h2 + h3) · a(h̄+ h1 + h2 + h3) · a(h1)

= f(h̄+ h2 + h3, h̄+ h2) · a(h̄+ h2) · a(h3),

so the assumptions of Lemma 3.2.4 are satisfied. We have

f(h1, h) · a(h1) · a(h̄) = a(h̄+ h1) = f(h3, h̄+ h1 + h3) · a(h3) · a(h̄+ h1 + h3)

but, by Lemma 3.2.4, it has to hold

f(h1, h) · a(h1) · a(h̄) = −f(h3, h̄+ h1 + h3) · a(h3) · a(h̄+ h1 + h3),

consequently, a(h̄+ h1) = 0, a contradiction.

Hence, in both cases we get a contradiction and t◦,∗ cannot be written as a proper convex
combination of points in (Qfk)◦.

Remark 3.2.14 The proof cannot be simply translated to (Qfk(K))◦ for a CAO set K ⊂ F2n
2

since we required properties of the symplectic vector space F2n
2 . An adaption of the proof

would require a careful translation of these properties from F2n
2 to K.

If K = H ∪ (h1 +H) ∪ · · · ∪ (h` +H) ∈ K for a k-dimensional isotropic subspace H, then
t◦,∗ ∈ (Qfk)◦ with t◦ ∈ Bf and supp{t◦} = K is a vertex of (Qfk)◦ if ` = 2(n − k) + 1 due to
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Lemma 2.2.9. We will show that this is also a necessary condition. Therefore, assume that
` < 2(n− k) + 1. We will show that t◦ can be written as a convex combination of elements in
Bf (and t◦,∗ as a convex combination of elements in (Qfk)◦). We distinguish two cases:

1. There is h ∈ H⊥ \K such that h · hi = 1 for all i = 1, ..., `. We define t◦1, t◦2 ∈ Bf with
supp{t◦1} = supp{t◦2} = K ∪ (h+H) ∈ K by (t1)|K = (t◦2)|K = t◦|K and t◦1(h) = −t◦2(h).
This uniquely determines t◦1, t◦2 since t◦i (h+ h′) for h+ h′ ∈ h+H, h′ ∈ H has to satisfy
t◦i (h + h′) = f(h, h′) · t◦i (h) · t◦i (h′) for i = 1, 2. Then t◦ = 1/2(t◦1 + t◦2) and thus t◦,∗ is
not a vertex of (Qfk)◦.

2. If there is no element that can be added to h1, ..., h` while preserving non-orthogonality,
we are in the case that h` = h1 + · · · + h`−1 and ` < 2(n − k) (otherwise if h1, ..., h`

are linearly independent and ` < 2(n − k) we can always add an element until the
corresponding cosets h1 +H, ..., h`+H are a basis for H⊥/H (see Lemma 2.2.9)). Yet, in
this case we can enlarge the isotropic subspace H to H ′ while preserving h1, ..., h` ∈ H ′.
The subspace

M = {h′ ∈ F2n
2 |h′ · h = 0, h ∈ H, h′ · hi = 0, i = 1, ..., `}

has dimension 22n−(k+`) and contains H. Since

|M \H| = 22n−k−` − 2k ≥ 22n−k−(2(n−k)−1) − 2k = 2k+1 − 2k > 0,

there exists h′ ∈ M \ H and we are able to extend H to H ′ = H ∪ (h′ + H). In this
case we define t◦1, t◦2 ∈ Bf with supp{t◦i } = H ′ ∪ (h1 + H ′) ∪ · · · ∪ (h` + H ′) and set
t◦i (h) = t◦(h) for all h ∈ K and t◦1(h′) = −t◦2(h′). Then, once again, t◦ = t◦1 + t◦2.

We have seen that elements t◦ ∈ Bfwith inclusion maximal support give rise to facets of
Qfk for all k ≥ 2. The family of these facets is constant for all 2 ≤ k ≤ n. One might ask if it
is sufficient to fully describe Qfn:

Question 1.

Qfn
?= {x : (F2n

2 )∗ → {0, 1,−1} | (t◦,∗)Tx ≥ −1, t◦ ∈ Bf} = (conv{t◦,∗ | t◦ ∈ Bf})◦.

The inequalities on the RHS do not all induce facets of Qfn (respectively, they are not
all vertices of the dual polytope). As we have shown before this would require to restrict on
t◦ ∈ Bf such that supp{t◦} is inclusion maximal.

Facets of SPn as families of observables

So far, we have seen that there is a one-to-one correspondence between abelian subgroups
in ±Pn \ {−I} with 2k elements (respectively their associated projectors onto the common
+1 eigenspace) and functions in Afk . We will construct a similar correspondence between
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families of Pauli observables and integral functions in Bf for f defined as in (2.3). Using the
results of the last subsection this also enables us to construct facets of SPn as families of Pauli
observables in ±Pn.

Let (t◦,∗)Tx ≥ −1 with t◦ ∈ Bf be an inequality that defines a face of Qfk . Then due to
Theorem 3.2.9 we have

K 3 K := supp{t◦} = H ∪ (h1 +H) ∪ · · · ∪ (h` +H),

where H is an isotropic subspace, h1, ..., h` ∈ H⊥ and hi · hj = 1 for all i 6= j. We construct
an associated set of observables OK ⊂ ±Pn as follows:

OK = {g ∈ ±Pn | r(g) ∈ K, χ(g) = t◦(g)}. (3.20)

The set is constructed as the abelian subgroup in (3.6) and since t◦ satisfies (A2), it is
therewith closed under the multiplication of commuting elements (which implies that r(OK)
is CAO). We obtain

OK = S ∪ g1S ∪ · · · ∪ g`S,

where S ⊂ ±Pn is an abelian subgroup with r(S) = H and g1, ..., g` with r(gi) = hi commute
with all elements in S but mutually anticommute.

Example 3.2.15 Let t◦ be defined as in Example 3.2.10, that is to say, K = supp{t◦} =
{H,x3 + H, y3 + H, z3 + H}, where H = {0, x1x2, y1y2, z1z2}, and assignments defined
by t◦(x1x2) = t◦(z1z2) = t◦(x3) = t◦(z3) = 1 and t◦(y1y2) = t◦(y3) = −1. Then, S =
{X1X2,−Y1Y2, Z1Z2} ensures that χ(g) = t◦(g) for all g ∈ S. The associated set OK is

OK = S ∪ {X3g | g ∈ S} ∪ {−Y3g | g ∈ S} ∪ {Z3g | g ∈ S}.

Let OK be as in (3.20) with corresponding t◦ ∈ Bf . The function t◦ is the image of
1/2n

∑
g∈OK g under the linear map (3.4). Recall that it is defined as

φ : Hn → {x |x : F2n
2 → R}

A 7→ tA,

where tA(r(g)) = Tr (Ag) for g ∈ Pn. If PS′ = 1/2n
∑
g′∈S′ g

′ is a projector onto a stabilizer
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state, then

Tr
(
PS′ ·

∑
g∈OKg

g
)

= 1
2n

∑
g′∈S′

∑
g∈OK

Tr (gg′) = 1
2n

∑
g∈OK ,g′∈S′,g∈{g′,−g′}

2n · χ(g) · χ(g′)

= 1
2n

∑
h∈r(OK)∩r(S)

2n · tPS′ (h) · tK(h)

= (t◦)T tPS′

=

|K ∩ S′|, if t◦|S′ = (tPS′ )|S′
0, otherwise.

Hence, we have the following theorem:

Theorem 3.2.16. Let M be the set of all families O ⊂ ±Pn of observables of the form
O = S ∪ g1S ∪ . . . g`S where S ⊂ ±Pn \ {−I} is an abelian subgroup and the gi’s commute
with the elements in S but mutually anticommute, i.e., gigj = −gjgi for all i 6= j. Then it
holds

SPn ⊆ {A ∈ |Tr (A) = 1,
∑
O∈O

Tr (AO) ≥ 0 for all O ∈M}. (3.21)

Additionally, if O ⊂ M is inclusion maximal in M, then
∑
O∈O Tr (AO) ≥ 0 defines a facet

inequality of SPn.

The proof follows from the last observations and Theorem 3.2.13. It establishes a one-
to-one correspondence between functions in Bf and particular sets of observables. In the
next section we will see that these sets have an interesting interpretation in quantum physics.
Besides, if Question 1 can be answered with yes, we have equality in (3.21).

3.3 Contextuality related to Pauli observables and the poly-
tope Qf

k

In this section we will establish a connection between the characterized integral points in (Qfk)◦

(for k ≥ 2) and contextuality with respect to Pauli observables. Contextuality is a feature
that separates quantum mechanics from classical mechanics. One of its central aspects can
be phrased as the following question:
If a measurement is performed, does it just simply reveal a predetermined outcome and is this
outcome dependent upon other measurements?

We will explain the ideas of contextuality with the following gedankenexperiment, origi-
nally from [16]: Assume you sit in front of three boxes each hiding a black or a white ball and
you are supposed to open two of them. You open one box after the other and after doing this
several times you notice that you always uncover exactly one black and one white ball.
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Classically, opening one box and then the other should yield the same output as opening
two boxes simultaneously. But if two boxes are opened at the same time the probability that
two balls of different colors will occur is 1− P(Two balls of the same color) ≤ 1− 1/3 = 2/3.
So, if the game is played n rounds the probability of getting two balls of different color in
each round is bounded by (2/3)n which converges to 0 if n goes to infinity.

This raises the question if the balls already had a color before the boxes were opened,
respectively measured? So, if we are confronted with the situation that we always see one
black and one white ball we might be convinced that the balls had no colors before the
measurement was performed and that opening one of the boxes influences what is hidden
behind the other two.

Another important feature of quantum mechanics which is illustrated in this example is
that we never have simultaneous access to all three boxes. Classically however, we assume to
have this freedom.

In the sequel we will formally introduce contextuality and we will establish a connection
between the integral functions t◦ ∈ Bf (for f defined as in (2.3)) and contextuality with
respect to Pauli matrices.

The connection between contextuality and integral points in (Qf
k)◦

Formally, we introduce (state independent) contextuality with the following definition[17]:

Definition 3.3.1. Let O be a set of observables (that is to say, a set of matrices). A non-
contextual value assignment (NCVA) for O is a map λ : O → C such that λ(O) is an eigenvalue
of O for all O ∈ O and the map satisfies

(i) λ(O1O2) = λ(O1)λ(O2) for all O1, O2 ∈ O with O1O2 = O2O1.

(ii) λ(ωO) = ωλ(O) for all ω ∈ C, O ∈ O, that is, λ can be linearly extended to scalar
multiples of the observables.

Intuitively, this means that if one measures the observable O one gets an outcome λ(O)
that is independent of the context in which O is measured. A context refers to a set of
commuting observables. If a set of observables does not admit an NCVA, it is called state
independent contextual. We will always assume that the set of observables is closed under the
multiplication of commuting elements (which is also necessary for λ to be well-defined).

The classical example for a set of state independent contextual observables is given in
Figure 3.8. The illustration is also known as the Mermin-Peres square [18]. A simple proof
that the set exhibits state independent contextuality can be found in [17, Section IV] and a
proof with a topological flavor in [19].
Here, we will give an alternative proof based on another observation - essentially, we have
faced this diagram several times related to integral functions t◦ : F2n

2 → {0, 1,−1} where
supp{t◦} ⊂ F2n

2 is CAO but t◦,∗ /∈ (Qfk)◦ (e.g., Figure 3.1).
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X1

Z1Z2

X1X2

Y1Y2

Z1

X2

Z1X2

Z2

Z2X1

Figure 3.8: The Mermin-Peres square. Note that all rows and columns represent a single
context and the matrices of each row and column multiply to I, except for the most right
column which multiplies to −I.

From now on we concentrate on sets of Pauli observables, i.e., O ⊂ Pn (and we will write
g ∈ O for consistency) which are closed under the multiplication of commuting elements and
under phase shifts, i.e., if g ∈ O then ωg ∈ O for all ω ∈ {1,−1, i,−i}. As a main result, we
will see that the sets of Pauli observables admitting an NCVA are strongly related to integral
functions in (Qfk)◦ for k ≥ 2. Even more, the functions t◦ ∈ Bf can essentially be seen as
NCVAs for the set r−1(supp{t◦}) ⊂ Pn. Besides, for the remaining part of this thesis we
assume that the function f has exactly the form of equation (2.3).

Theorem 3.3.2. There is a bijection

{λ : O → {±1,±i} |λ NCVA for O, O ⊂ Pn} ←→ Bf . (3.22)

In other words, all possible NCVA’s for sets of Pauli observables can be interpreted as
integral points in the polytope (Qfk)◦.

Proof. Let t◦ ∈ Bf . We will construct the associated NCVA λt
◦ for the unique set of observ-

ables O ⊂ Pn with r(O) = supp{t◦} (uniqueness follows since we assume that O is closed
under phase shifts). For g ∈ Pn with r(g) ∈ supp{t◦} we set λt◦(g) = t◦(r(g)) ∈ {1,−1}.
In general, we set λt◦(g) = χ(g) · t◦(r(g)) for all g ∈ Pn with r(g) ∈ supp{t◦} guaranteeing
that λt◦(ωg) = ωλt

◦(g) for all ω ∈ {1,−1, i,−i}. The construction ensures that λt◦ maps
to the eigenvalues of the corresponding observable, that is λt◦(g) ∈ {1,−1} if g ∈ ±Pn and
λt
◦(g) ∈ {i,−i} if g ∈ ±iPn.
We have to show that the map λt

◦ is multiplicative. Therefore, consider commuting
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g1, g2 ∈ Pn with r(g1), r(g2) ∈ supp{t◦}, i.e., we have r(g1)·r(g2) = 0. Since t◦ ∈ Bf , Theorem
3.2.2 implies that t◦ satisfies Condition (A2), that is t◦(h1 + h2)f(h1, h2) = t◦(h1)t◦(h2) for
orthogonal h1, h2 ∈ supp{t◦}. We can put f(h1, h2) on the other side compared to the actual
form because f(h1, h2) ∈ {1,−1} for orthogonal h1, h2. Then, using the identity given in
equation (2.4) we obtain

λt
◦(g1) · λt◦(g2) =

(
χ(g1) · t◦(r(g1))

)
·
(
χ(g2) · t◦(r(g2))

)
= χ(g1) · χ(g2) · f(r(g1), r(g2))︸ ︷︷ ︸

=χ(g1g2)

·t◦(r(g1) + r(g2))

= χ(g1g2) · t◦(r(g1g2))
= λt

◦(g1g2),

Hence, we have proved the desired property of λt◦ .
Conversely, let O ⊂ Pn and let λ : O → C be an NCVA for O. We will construct an

integral function t◦λ ∈ Bf for λ with supp{t◦λ} = r(O). For g ∈ O with χ(g) = 1 we define
t◦λ : F2n

2 → {1,−1, 0} by setting t◦λ(r(g)) = λ(g). We want to show that t◦ ∈ Bf , which is
equivalent to t◦λ(h1 +h2) = f(h1, h2) · t◦λ(h1) · t◦λ(h2) for all h1, h2 ∈ supp{t◦λ} with h1 ·h2 = 0.
Let g1, g2 ∈ O with χ(gi) = 1. Since

t◦λ(r(g1)) · t◦λ(r(g2)) = λ(g1) · λ(g2) = λ(g1g2) = χ(g1g2) · λ(χ(g1g2) · g1g2)
= χ(g1g2) · t◦λ(r(g1g2))
= f(r(g1), r(g2)) · t◦λ(r(g1g2))

and supp{t◦} = r(O ∩ Pn), it follows t◦ ∈ Bf . In the last equation we once again used the
identity (2.4).

Essentially, we have shown that for every non-contextual set O ⊂ Pn the map

{λ NCVA for O} → {t◦ | supp{t◦} = r(O)}
λ 7→ t◦,

where

t◦(r(g)) =

λ(g), if g ∈ Pn, χ(g) = 1,
0, otherwise

is bijective. A consequence is the following corollary:

Corollary 3.3.3. Let O ⊂ Pn be a set of Pauli observables.

(i) If O admits an NCVA, it must hold r(O) ∈ K.

(ii) If the graph G(r(O)) contains an induced 4-cycle, then O is state independent contextual.
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The proof of (i) is an immediate consequence of the last theorem and the results of Section
3.2. The statement (ii) can be deduced from (i) because an induced 4-cycle in G(r(O)) means
that r(O) /∈ K by Lemma 3.2.5. The corollary can be easily applied to the Mermin-Peres
square setup (Figure 3.8). If we consider the observables X1, Z1, X2, Z2, their images form a
square in the commutativity graph and due to (ii) of the corollary the set of observables is
state independent contextual.

In general, we want to examine how observables interact with a state ρ. This motivates
the definition of a non-contextual hidden variable model1:

Definition 3.3.4. A non-contextual hidden variable model (NCHVM) for the setup (ρ,O) is
a triple (O, qρ,B) where O is a set of observables, B is a set of NCVA’s for the observables O
and qρ is a probability distribution over B related to the state ρ. Additionally, we have the
property:

Tr (ρO) =
∑
λ∈B

qρ(λ) · λ(O) (3.23)

for all O ∈ O.

If a setup (ρ,O) does not admit an NCHVM for (ρ,O), it is said to be contextual. The set
B can always be chosen maximal - if we do not require some NCVA λ we just set qρ(λ) = 0.

If we focus on Pauli observables, we can rephrase the definition by Theorem 3.3.2. Let
O ⊂ Pn and ρ be state with polarization vector tρ : F2n

2 → R defined as tρ(r(g)) = Tr (ρg) for
g ∈ Pn. For admitting an NCVA the set of observables O has to satisfy K := r(O) ∈ K. Let
B be the set of NCVAs for O. Due to Theorem 3.3.2 the assignments in B can be encoded
by elements t◦ ∈ Bf with supp{t◦} = K. For an NCVA λ let t◦λ ∈ Bf with supp{t◦} = r(O)
be the associated element in Bf , i.e., λ(g) = t◦λ(r(g)) for g ∈ O with χ(g) = 1. Hence, we can
rephrase Condition (3.23) as

tρ(r(g)) = Tr (ρg) =
∑
λ∈B

qρ(λ) · λ(g) =
∑
λ∈B

qρ(λ) · (t◦λ)|K(r(g))

for all g ∈ O with χ(g) = 1, which is equivalent to

(tρ)|K =
∑
λ∈B

qρ(λ)(t◦λ)|K .

If we choose B maximal, the sum ranges over all t◦ ∈ Bf with supp{t◦} = r(O). Now, the
existence of the probability distribution qρ that satisfies the above equality is equivalent to
(tρ)|K being a convex combination of t◦|K with t◦ ∈ Bf with supp{t◦} = r(O). Thus, we have
the characterization:

1There are several definitions of contextuality. For a detailed discussion see [20][21].
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Lemma 3.3.5. Let O ⊂ Pn be a set of Pauli observables and ρ a state. The setup (ρ,O)
admits an NCHVM if and only if K := r(O) ∈ K and (tρ)|K∗ ∈ QK where

QK = conv{t◦,∗ | t◦ ∈ Bf (K), supp{t◦} = K}. (3.24)

Hence, contextuality of the setup (ρ,O) can be interpreted as a membership problem of
QK (given that O admits an NCVA). The polytope QK is the convex hull of the integral
functions t◦,∗ with t◦ : K → {0, 1,−1} and maximal support in the polytope (Qfk(K))◦. In
the following theorem we will see that there is an even stronger connection, more precisely,
Qfk(K) and QK are dual to each other if k is chosen properly.

Theorem 3.3.6. Let K ∈ K with K = H ∪ (h1 +H)∪ · · · ∪ (h` +H) where H is an isotropic
subspace of dimension k − 1, h1, ..., h` ∈ H⊥ and hi · hj = 1 for all i 6= j. Then Qfk(K) is a
reflexive polytope and

Qfk(K) = conv{t∗ | t ∈ Afk(K)}
= {x : K∗ → R | (t◦,∗)Tx ≥ −1 | t◦ ∈ Bf (K), supp{t◦} = K}
= (QK)◦,

where QK is defined as in (3.24).

"Dually" to the theorem we have

QK = {x : K∗ → R | (t∗)Tx ≥ −1 for all t ∈ Afk(K)}.

The proof requires some preparations. For K ∈ K and t◦ ∈ Bf (K) we define the set

Mt◦ = {t∗ ∈ V(Qfk(K)) | (t◦,∗)T t∗ 6= −1}
= {t∗ ∈ V(Qfk(K)) | t◦|supp{t} = t|supp{t}}.

Note that if K = H ∪ (h1 +H) ∪ · · · ∪ (h` +H) we haveMt◦ = {t1, ..., t`} where supp{ti} =
H ∪ (hi +H), (ti)|H = t◦|H and ti(hi) = t◦(hi). The remaining value assignments for hr + h ∈
hr +H, h ∈ H are determined by t◦i (hr + h) = f(hr, h)t◦i (hr)t◦i (h).

The goal is to show that for every facet F there exists t◦ ∈ Bf (K) such that (t◦,∗)T t∗ = −1
for all t∗ ∈ V(F ). This will be the crucial observation to prove the theorem.

Lemma 3.3.7. Let K ∈ K and K = H ∪ (hi + H) ∪ . . . (h` + H) where H is a (k − 1)-
dimensional isotropic subspace, h1, ..., h` ∈ H⊥ and hi · hj = 1 for all i 6= j. If F is a face of
Qfk(K), then there is t◦ ∈ Bf (K) with supp{t◦} = K such that V(F ) ∩Mt◦ = ∅.

Proof. We will prove the statement by contraposition. Let F = conv{t∗ | t∗ ∈ I} where
I ⊂ V(Qfk(K)) such that I ∩Mt◦ 6= ∅ for all t◦ ∈ Bf (K) with supp{t◦} = K. We will show
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that 0 ∈ F and as the origin is an interior point of the polytope Qfk(K) the set F cannot be
one of its faces.

We fix t ∈ Afk−1(H) (consequently, supp{t◦} = H, as dimH = k). We encode all functions
t◦a ∈ Bf (K) satisfying t|H = (t◦a)|H by bitstrings a ∈ {1,−1}`, where we set t◦a(hi) = ai (every
element in the coset hi+h ∈ hr+H, h ∈ H is determined by t◦a(hi+h) = f(hi, h)·t◦a(hi)·t◦i (h)).
Then,Mt◦a = {ta,∗1 , ..., ta,∗` } ⊂ A

f
k(K) with tai (h) = t(h) = t◦a(h) for all h ∈ H and tai (hi) = ai

(and we have supp{tai } = H ∪ (hi +H)).
Since V(F ) ∩Mt◦a 6= ∅ for all a ∈ {1,−1}`, there is at least one r ∈ {1, ..., `} such that

ta,∗r ∈ V(F ) ∩Mt◦a . We can interpret this as follows:
Every t◦a is labeled by the associated bitstring a = (a1, ..., a`) ∈ {1,−1}` and every ta,∗i ∈Mt◦a

is labeled by the value ai ∈ {1,−1} for i = 1, ..., `. Now, V(F ) ∩Mt◦a 6= ∅ for all a ∈ {1,−1}`

means that we have to cover each string a ∈ {1,−1}` by at least one value ai for some
i ∈ {1, ..., `}. If ai covers a, we have ta,∗i ∈ V(F ) ∩Mt◦ , i.e.,

(t◦a)|H∪(hi+H) = (tai )|H∪(hi+H).

For covering all strings we require at least one position i ∈ {1, ..., `} such that the elements
labeled by ai = 1 and ai = −1 lie in F . That is to say, there is i ∈ {1, .., `} and a, ã ∈ {1,−1}`

with ai = −ãi such that ta,∗i , tã,∗i ∈ V(F ) ∩ (Mt◦a ∪Mt◦ã). The functions ta,∗r and tã,∗r coincide
on H∗ but they differ on the coset (hi +H) since for hi + h ∈ hi +H we have

ta,∗r (hi + h) = f(hi, h) · ta,∗r (hi)︸ ︷︷ ︸
=−tã,∗

r (hi)

· ta,∗r (h)︸ ︷︷ ︸
=tã,∗

r (h)

= −f(hi, h) · tã,∗r (hi) · tã,∗r (h),

and if we consider the midpoint of the line segment [ta,∗r , tã,∗r ] ⊂ Qfk(K), we get

1
2(ta,∗r + tã,∗r )(u) =


t(u), if u ∈ H∗

0, if u ∈ hi +H

0, if u ∈ K \ {H∗ ∪ (hi +H)}.

(3.25)

Since t ∈ Afk−1(H) with supp{t} = H was chosen arbitrarily, we find such a tuple for all
elements in Afk−1(H). We can label them as th for h ∈ H (as |Afk−1(H)| = |H|, due to
Proposition 3.1.2 (i)) and the tuples as t∗1,h, t∗2,h ∈ V(F ). Taking the convex combination of
all these elements and evaluating it at u ∈ K∗ we get

1
2|H|

∑
h∈H

(t∗1,h + t∗2,h)(u) =


∑
h∈H t

◦
h(u) = 0, if u ∈ H∗

0, otherwise,
(3.26)

where we used that equation (3.25) holds for every pair t∗1,h, t∗2,h and Proposition 3.1.2 (iii).
This yields F 3 1

2|H|
∑
h∈H(t∗1,h + t∗2,h) = 0, so the origin is contained in F and as it is an

interior point of Qfk(K), the set F is not a facet of Qfk(K).
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For the proof of the theorem we will require the notion of a dilation of a polytope, that
is if Q = conv{v1, ..., vN} and s > 0, then sQ = conv{sv1, ..., svN}. Note that a dilation does
not affect the facet structure, meaning if F is a face of Q, then sF is a face of sQ of the same
dimension. Moreover, if P is full-dimensional and x /∈ P , we can dilate P with s > 1 such
that x lies in a facet of sP .

Proof of Theorem 3.3.6. The inclusion Qfk(K) ⊆ (QK)◦ follows directly by Theorem 3.2.2
since the elements t◦,∗ ∈ Bf (K) are exactly the integral functions contained in (QK)◦.

For the other inclusion let x : K∗ → R such that x /∈ Qfk(K). Since Qfk(K) is full-
dimensional, we can find s > 1 such that x ∈ sF where sF is a facet of the dilation sQfk(K)
(and F is the corresponding facet of Qfk(K)). Hence, we can write x as a convex combination
of the vertices of sF , that is

x =
∑

s·t∗∈V(sF )
λt∗ · (st∗) = s

∑
t∗∈V(F )

λt∗ · t∗

for λt∗ ≥ 0 and
∑
s·t∗∈V(sF ) λt∗ = 1. Applying Lemma 3.3.7 there exists t◦ ∈ Bf (K) with

supp{t◦} = K such that V(F ) ∩Mt◦ = ∅, i.e., (t◦,∗)T t∗ = −1 for all t∗ ∈ V(F ). Thus,

(t◦,∗)Tx = s
∑

t∗∈V(F )
λt∗(t◦,∗)T t∗ = −s

∑
t∗∈V(F )

λt∗ = −s < −1

implying x /∈ (QK)◦, which finishes the proof.

Having characterized the facets of QK (respectively the vertices of (QK)◦) we are able
to deduce an interesting property of non-contextual sets of Pauli-observables, meaning they
cannot be used to exhibit contextuality for a given state ρ.

Corollary 3.3.8. If O ⊂ Pn admits an NCVA, the setup (ρ,O) does not exhibit contextuality
for all states ρ, i.e., there is an NCHVM for (ρ,O).

Proof. Let r(O) = K = H∪(h1+H)∪· · ·∪(h`+H) ∈ K where dim(H) = k−1 and let A be an
Hermitian matrix with TrA = 1 and polarization vector tA : F2n

2 → R where t(r(g)) = Tr (Ag)
for all g ∈ Pn. We will show that (tA)|K∗ ∈ QK is equivalent to Tr (APS) ≥ 0 for all
projectors PS onto the +1 eigenspace of abelian subgroups S with r(S) = H ∪ (hi + H) for
some i ∈ {1, ..., `} by using Theorem 3.3.6. Since the projectors PS are positive semidefinite,
it follows that Tr (ρPS) ≥ 0 for all states ρ and (tρ)|K∗ ∈ QK which implies that the setup
(ρ,O) admits an NCHVM.

Note that (tA)|K∗ ∈ QK is equivalent to (t∗)T (tA)|K∗ ≥ −1 for all t ∈ Afk(K) due to
Theorem 3.3.6. We define t′ ∈ Afk by t′(h) = t(h) for all h ∈ supp{t} and t(h) = 0 otherwise,
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so supp{t′} = H ∪ (hi +H) for some i ∈ {1, ..., `}. The associated projector to t′ is

PS = 1
2k
∑
g∈S

t′(r(g))g, (3.27)

where S = r−1(supp{t′}) ∩ Pn (the abelian subgroup associated to PS is {t′(r(g)) · g | g ∈ S}
in this case). Since Qfk ⊂ Qfn (Lemma 3.1.6), we can write t′ as a convex combination of
elements in Qfn whose associated projectors have rank 1 and which are psd (these are exactly
the projectors on the stabilizer states). Thus, PS is psd as a convex combination of psd
matrices. Observing that

Tr (ρPS) = Tr

( 1
2n

∑
g∈Pn

Tr (Ag)g
)( 1

2k
∑
g∈S

t′(r(g))g
)

= 1
2n+k

∑
g∈S

(
tA(r(g)) · t′(r(g))

)
· Tr (g2)

= 1
2k
∑
g∈S

tA(r(g)) · t′(r(g))

= 1
2k (tA)T t′

= 1
2k ((tA)|K)T t

= 1
2k (t(0)tA(0) + (t∗)T (tA)|K∗)

= 1
2k (1 + (t∗)T (tA)|K∗)

we obtain that Tr (APS) ≥ 0 iff (t∗)T (tA)|K∗ ≥ −1. If (t∗)T (tA)|K∗ ≥ −1 for all t ∈ Afk(K),
then (tA)|K∗ ∈ QK due to Theorem 3.3.6. Now, using the fact that Tr (ρPS) ≥ 0 for all states
ρ we have (tρ)|K∗ ∈ QK implying that the setup (ρ,O) admits an NCHVM.
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Chapter 4

Conclusion and outlook

We have introduced and examined a family of integral polytopes that proved to be extremely
useful to analyze the stabilizer polytope SPn, as its linear embedding in the real Euclidean
space, the polytope Qfn, is contained in this family. Especially, the integral points in the
corresponding dual polytope turned out to be interesting and by characterizing their sup-
port we were able to establish a strong connection between SPn and contextuality. Broadly
speaking, there is a one-to-one correspondence between non-contextual value assignments for
Pauli observables and integral points in Qfn. Additionally, the inclusion maximal sets of non-
contextual Pauli observables define facets of SPn since maximal value assignments are vertices
of the dual polytope (Qfn)◦. By using projections of the polytope Qfn and proving that they
are reflexive polytopes we showed that a set of Pauli observables O admits an NCVA then
(ρ,O) admits an NCHVM for all states ρ.

A characterization of non-contextual sets of Pauli observables has been recently done
by Raussendorf et al. in [5] producing the same results and similar connections have been
established for the qudit case [6] using graph based contextuality (for details see [21],[6]). In
these works contextuality was identified as a resource for performing quantum computation
with magic states.

There are still several open questions related to the results presented in this work - probably
the most interesting one if the derived (non-)contextuality related facets of SPn suffice to fully
describe the stabilizer polytope, or, equivalently, whether Qfn is reflexive. We will devote a
short extra subsection to another interesting family of valid inequalities for Qfn. In general, the
stabilizer polytope appears to be an extremely interesting object whose geometric properties
seem to be rather unknown. Nevertheless, a better understanding could be crucial to create
a strong mathematical basis for quantum computation with magic states. As a next step one
might resort to the help of software to examine SPn, respectively Qfn for small numbers of n.

Besides, it might be worth to take a closer look at the graphs G(supp{t◦}) for t◦ ∈
Bf . We have seen that they are induced 4-cycle free and the vertex set is closed under the
addition of orthogonal elements but it could be possible that they even hide more interesting
combinatorial structure.
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Apart from that we have constructed a mathematical new framework for the qubit stabi-
lizer polytope, such a framework could also be fruitful to analyze the qudit case, even if this
case has already been studied more extensively.

Other Facets of Qf
k?

Apart from the inequalities arising from integral points in Qfk there is another, rather "set
theoretic" family of valid inequalities. We will introduce them as follows: Given a set M in
the phase space F2n

2 what is value

max
t∈Af

k

∑
h∈M
|t(h)| ?

As the support of each t ∈ Afk is a k-dimensional isotropic subspace and |t(h)| ∈ {0, 1,−1}
this value coincides with maximal number of mutually orthogonal elements in M such that
the dimension of their span is bounded by k.

We define the following function on the power set of (F2n
2 )∗:

sk : 2(F2n
2 )∗ → N ∪ {0}
M 7→ max{|H| |H ⊂ H⊥, dim(span{H}) = k}

Note that H does not have to be a subspace but just an isotropic set. For example, if
we look at the set M = {x1, x2, x3, y3} the largest isotropic subset contains 3 elements but
dim(span{x1, x2, r(X3)}) = 3. Hence, s1(M) = 1, s2(M) = 2 and sk(M) = 3 for all k ≥ 3.
By definition, every t ∈ Afk satisfies ∑

h∈M
|t(h)| ≤ sk(M) (4.1)

for all M ⊆ (F2n
2 )∗.

Even more, this inequality is satisfied by all functions t : F2n
2 → {0, 1,−1} with t(h)t(h′) =

0 if h · h′ = 1 (A1) and |t| ≤ 2k (A3). This gives rise to another interesting polytope, namely
the convex hull of all functions satisfying (A1) and (A3). Their properties could help to
develop a better intuition for the stabilizer polytope.

The function sk has some similarities to the rank function of a matroid, for example we
have monotonicity, that is sk(M) ≤ sk(M ′) for all M ⊂M ′ (for more details about matroids
see [8] and [22]). Yet, in contrast to rank functions of matroids sk is not submodular, meaning
that we can find setsM1,M2 ⊂ (F2n

2 )∗ such that sk(M1∪M2)+sk(M1∩M2) > sk(M1)+sk(M2).
For instance, if we take M1 = {x1, z1} and M2 = {x1x2, z1}, then sk(M1) = sk(M2) = 1 but
sk(M1 ∩M2) + sk(M1 ∪M2) = 1 + 2 > 2 for k ≥ 2.

Another interesting question is how the inequalities of the form (4.1) and the ones coming
from the integral functions in Bf are related. Especially the case k = n might be a worth a
closer look. If the polytope Qfn was reflexive (which is equivalent to the statement of Question
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1), these set related inequalities cannot define facets. The associated functions in (Qfk)◦ to
inequalities as in (4.1) can be constructed as follows:
For M ⊂ (F2n

2 )∗ the inequality
∑
h∈M |t(h)| ≤ sk(M) is equivalent to

∑
h∈M (−1)ah · t(h) ≤

sk(M) for all a ∈ {0, 1}M being once again equivalent to (xM,a)T t∗ ≥ −1 where the function
xM,a : (F2n

2 )∗ → R is defined via

xM,a(h) =


(−1)ah

sk(M) , if h ∈M

0, otherwise

and xa,M ∈ (Qfk)◦. If sk(M) = 1 for all k ≥ 2, then M = {h1, ..., h`} ⊂ (F2n
2 )∗ and hi · hj = 1

for i 6= j. In this case the functions xM,a : (F2n
2 )∗ → {0, 1,−1} coincide with the functions

t◦ ∈ Bf with supp{t◦} = M . Such a relation cannot be reproduced for sets M containing
larger sets of mutually orthogonal elements.
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