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The Convolution Theorem does not apply to the James-Stein estimator or its numer-
ous practical descendants because they are not “regular”. The Local Asymptotic Minimax
(LAM) Theorem, in which limiting sample size greatly exceeds parameter dimension, does
not reveal the domain or magnitude of the risk improvement achievable by Stein shrinkage
when dimension is much larger than sample size.

Stein (1956, Inadmissibility of the usual estimator for the mean of a multivariate normal
distribution, Third Berkeley Symposium) sketched a dimensional asymptotics approach to
assessing estimation of the mean. Filling in details of his remarks leads by natural implica-
tions to an asymptotic minimax bound, as dimension of the mean tends to infinity, that is
achieved by the James-Stein estimator but not by the sample mean. This implied asymptotic
minimax bound turns out to be a special case of the later Pinsker (1980, Optimal filtration
of square-integrable signals in Gaussian white noise, Problems Inform. Transmission) asymp-
totic minimax bound, albeit obtained by an orthogonal invariance argument rather than by
Pinsker’s more general Bayes method.

For specifics of Stein’s (1956) approach and its initial implications, see Beran (1996, Stein
estimation in high dimensions: a retrospective, Madan Puri Festschrift, E. Brunner and M.
Denker, eds.). Practical descendants of James-Stein include multiple shrinkage, submodel
selection, and penalized least squares estimators whose tuning parameters are selected to
minimize estimated risk. For an exact treatment of multiple shrinkage, see Stein (1966, An
approach to the recovery of inter-block information in balanced incomplete block designs,
Festschrift for Jerzy Neyman, F. N. David, ed.). For further useful shrinkage estimators
and their dimensional asymptotics, see Beran and Dümbgen (1998, Modulation estimators
and confidence sets, Ann. Statist.) and Beran (2014, Hypercube estimators: penalized
least squares, submodel selection and numerical stability, Computational Statistics and Data
Analysis).


