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Chapter 1
Brownian Motion

This introduction to stochastic analysis starts with an introduction to Brownian motion.
Brownian Motion is a diffusion process, i.e. a continuous-time Markov process (B; )0
with continuous sample paths ¢ — B;(w). In fact, it is the only nontrivial continuous-
time process that is a Lévy process as well as a martingale and a Gaussian process. A
rigorous construction of this process has been carried out first by N. Wiener in 1923.
Already about 20 years earlier, related models had been introduced independently for
financial markets by L. Bachelier [Théorie de la spéculation, Ann. Sci. Ecole Norm.
Sup. 17, 1900], and for the velocity of molecular motion by A. Einstein [Uber die von
der molekularkinetischen Theorie der Wirme geforderte Bewegung von in ruhenden
Fliissigkeiten suspendierten Teilchen, Annalen der Physik 17, 1905].

It has been a groundbreaking approach of K. It6 to construct general diffusion processes
from Brownian motion, cf. [...]. In classical analysis, the solution of an ordinary dif-
ferential equation z’(t) = f(¢,x(t)) is a function, that can be approximated locally for
t close to ty by the linear function x(to) + f(to, x(to)) - (t — to). Similarly, Itd showed,
that a diffusion process behaves locally like a linear function of Brownian motion — the

connection being described rigorously by a stochastic differential equation (SDE).

The fundamental role played by Brownian motion in stochastic analysis is due to the
central limit Theorem. Similarly as the normal distribution arises as a universal scal-

ing limit of standardized sums of independent, identically distributed, square integrable

14



1.1. FROM RANDOM WALKS TO BROWNIAN MOTION 15

random variables, Brownian motion shows up as a universal scaling limit of Random

Walks with square integrable increments.

1.1 From Random Walks to Brownian Motion

To motivate the definition of Brownian motion below, we first briefly discuss discrete-
time stochastic processes and possible continuous-time scaling limits on an informal

level.

A standard approach to model stochastic dynamics in discrete time is to start from a se-
quence of random variables 7, 7)o, . . . defined on a common probability space (€2, A, P).
The random variables 7,, describe the stochastic influences (noise) on the system. Often
they are assumed to be independent and identically distributed (i.i.d.). In this case the
collection (7,) is also called a white noise, whereas a colored noise is given by depen-
dent random variables. A stochastic process X,,,n = 0,1,2, ..., taking values in R? is
then defined recursively on (€2, A, P) by

Xps1 = X4 ®et(Xn0psr), n=0,1,2,.... (1.1.1)

Here the ®,, are measurable maps describing the random law of motion. If X, and
71,72, - . . are independent random variables, then the process (X,,) is a Markov chain

with respect to P.

Now let us assume that the random variables 7),, are independent and identically dis-
tributed taking values in R, or, more generally, R%. The easiest type of a nontrivial
n

stochastic dynamics as described above is the Random Walk S,, = > n; which satisfies
i=1

Snt1 = Sn+ Ny forn=20,1,2,....

Since the noise random variables 7,, are the increments of the Random Walk (.S,,), the

law of motion (LLLI) in the general case can be rewritten as
Xpp1 = Xo = ©0i(Xo,Spa1—S,),  n=0,1,2,.... (1.1.2)

This equation is a difference equation for (X,,) driven by the stochastic process (.S, ).

University of Bonn 2015/2016



16 CHAPTER 1. BROWNIAN MOTION

Our aim is to carry out a similar construction as above for stochastic dynamics in con-
tinuous time. The stochastic difference equation (I.1.2]) will then eventually be replaced
by a stochastic differential equation (SDE). However, before even being able to think
about how to write down and make sense of such an equation, we have to identify a
continuous-time stochastic process that takes over the role of the Random Walk. For
this purpose, we first determine possible scaling limits of Random Walks when the time
steps tend to 0. It will turn out that if the increments are square integrable and the size
of the increments goes to 0 as the length of the time steps tends to 0, then by the Central
Limit Theorem there is essentially only one possible limit process in continuous time:

Brownian motion.

Central Limit Theorem

Suppose that Y,,; : 2 — R4 1 < i <n < oo, are identically distributed, square-
integrable random variables on a probability space (2, .4, P) such that Y, 1,...,Y,

are independent for each n € N. Then the rescaled sums

% Z(Yn,z - E[Yn,zD

converge in distribution to a multivariate normal distribution N (0, C') with covariance
matrix
k) (1
Ckl = Cov [Yn(,i)7 er,z)] .

To see, how the CLT determines the possible scaling limits of Random Walks, let us

consider a one-dimensional Random Walk
So=> m, ~n=012.,
=1

on a probability space (2, .4, P) with independent increments 7; € £2(Q, A, P) nor-

malized such that
En] = 0 and Varlp;] = L (1.1.3)

Plotting many steps of the Random Walk seems to indicate that there is a limit process

with continuous sample paths after appropriate rescaling:

Stochastic Analysis Andreas Eberle



1.1. FROM RANDOM WALKS TO BROWNIAN MOTION 17
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To see what appropriate means, we fix a positive integer m, and try to define a rescaled
Random Walk S\™ (¢ = 0,1/m, 2/m, ...) with time steps of size 1/m by

Spm = ewm Sk (k=0,1,2,..)

for some constants ¢,,, > 0. If ¢ is a multiple of 1/m, then

-m - t.

Var[S{™] = & -Var[Sm] = ¢

2
m

Hence in order to achieve convergence of St(m) as m — oo, we should choose ¢,

proportional to m~1/2. This leads us to define a continuous time process (S\™ )= by
St(m) (w) = —Smuw) whenever ¢ = k/m for some integer k,

vm

and by linear interpolation for t € (&1, £1].

University of Bonn 2015/2016



18 CHAPTER 1. BROWNIAN MOTION

S

Figure 1.1: Rescaling of a Random Walk.

Clearly,
E[S™] = 0  forallt>0,
and
Var[S™] = iVaur[Sm] = t
m

whenever ¢ is a multiple of 1/m. In particular, the expectation values and variances for a
fixed time ¢ do not depend on m. Moreover, if we fix a partition 0 < ¢, < t; < ... <,

such that each ¢; is a multiple of 1/m, then the increments

S~ gim = ﬁ (Smties = Swt),  i=0,1,2,...,n—1,  (1.1.4)
of the rescaled process (St(m))tzo are independent centered random variables with vari-
ances t;;1 — t;. If ¢; is not a multiple of 1/m, then a corresponding statement holds
approximately with an error that should be negligible in the limit m — oo. Hence, if
the rescaled Random Walks (St(m))tzo converge in distribution to a limit process (By):>0,
then (B;);>o should have independent increments By, — By, over disjoint time intervals

with mean 0 and variances t; 1 — t;.
It remains to determine the precise distributions of the increments. Here the Central
Limit Theorem applies. In fact, we can observe that by (LT.4) each increment

miiy1

m m 1
S-S = NI

k=mt;+1

Stochastic Analysis Andreas Eberle



1.1. FROM RANDOM WALKS TO BROWNIAN MOTION 19

of the rescaled process is a rescaled sum of m - (t;;41 — t;) i.i.d. random variables
with mean 0 and variance 1. Therefore, the CLT implies that the distributions of the

increments converge weakly to a normal distribution:

S s 2 N0, by — ).

tit1

Hence if a limit process (B;) exists, then it should have independent, normally dis-

tributed increments.

Our considerations motivate the following definition:

Definition (Brownian Motion).

(1). Let a € R. A continuous-time stochastic process By : {2 — R, t > 0, defined on
a probability space (2, A, P), is called a Brownian motion (starting in a) if and
only if

(a) Bo(w) = a foreachw € Q.
(b) For any partition 0 < 1y < t; < ... < t,, the increments B, ., — By, are

independent random variables with distribution

Bti+1 - Bt' a N(O, ti+1 - tz)

7

(¢) P-almost every sample path t — By(w) is continuous.

(2). AnR%valued stochastic process By(w) = (Bt(l)(w), Ceey Bt(d) (w)) is called a mul-
ti-dimensional Brownian motion if and only if the component processes

(Bt(l)), C (Bt(d)) are independent one-dimensional Brownian motions.

Thus the increments of a d-dimensional Brownian motion are independent over disjoint

time intervals and have a multivariate normal distribution:

Bi—Bs ~ N(0,(t—s)- 1) forany 0 < s <t.

University of Bonn 2015/2016
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Remark. (1). Continuity: Continuity of the sample paths has to be assumed sepa-

(2).

3).

).

rately: If (B;);>o is a one-dimensional Brownian motion, then the modified pro-
cess (Et)tzo defined by By, = B, and

Bt = Bt . [{BtER\Q} fort >0

has almost surely discontinuous paths. On the other hand, it satisfies (a) and (b)

since the distributions of (étl ,..., By, )and (By,, ..., B, ) coincide foralln € N
and ty,...,t, > 0.

Spatial Homogeneity: If (B;):>o is a Brownian motion starting at 0, then the

translated process (a + B;):>¢ is a Brownian motion starting at a.

Existence: There are several constructions and existence proofs for Brownian mo-
tion. In Section [L.3]below we will discuss in detail the Wiener-Lévy construction
of Brownian motion as a random superposition of infinitely many deterministic
paths. This explicit construction is also very useful for numerical approximations.
A more general (but less constructive) existence proof is based on Kolmogorov’s

extension Theorem, cf. e.g. [Klenke].

Functional Central Limit Theorem: The construction of Brownian motion as
a scaling limit of Random Walks sketched above can also be made rigorous.
Donsker’s invariance principle is a functional version of the central limit The-
orem which states that the rescaled Random Walks (St(m)) converge in distribu-
tion to a Brownian motion. As in the classical CLT the limit is universal, i.e., it
does not depend on the distribution of the increments 7; provided (I.1.3) holds,

cf. Section ??.

Brownian motion as a Lévy process.

The definition of Brownian motion shows in particular that Brownian motion is a Lévy

process, 1.e., it has stationary independent increments (over disjoint time intervals). In

fact, the analogues of Lévy processes in discrete time are Random Walks, and it is rather

obvious, that all scaling limits of Random Walks should be Lévy processes. Brownian

Stochastic Analysis Andreas Eberle



1.1. FROM RANDOM WALKS TO BROWNIAN MOTION 21

motion is the only Lévy process L; in continuous time with paths such that E[L,] =
0 and Var[L;] = 1. The normal distribution of the increments follows under these
assumptions by an extension of the CLT, cf. e.g. [Breiman: Probability]. A simple
example of a Lévy process with non-continuous paths is the Poisson process. Other
examples are «-stable processes which arise as scaling limits of Random Walks when
the increments are not square-integrable. Stochastic analysis based on general Lévy

processes has attracted a lot of interest recently.

Let us now consider consider a Brownian motion (B;);>( starting at a fixed point a €
R4, defined on a probability space (£, A, P). The information on the process up to time

t is encoded in the o-algebra
FEP = o(B,]0<s<t)
generated by the process. The independence of the increments over disjoint intervals
immediately implies:
Lemma 1.1. Forany 0 < s < t, the increment B; — By is independent of F5.

Proof. For any partition 0 = tq < t; < ... <t, = s of the interval [0, s|, the increment
B, — By is independent of the o-algebra

J(Btl - Bto7Bt2 - Bt17 . '7Btn - Btn—l)

generated by the increments up to time s. Since

k
Btk - Bto _'_ Z(Btz - Btifl)

=1
and By, is constant, this o-algebra coincides with o(B;,, By,, ..., By, ). Hence B, — B

is independent of all finite subcollections of (B, |0 < u < s) and therefore independent
of FE. 0

Brownian motion as a Markov process.

As a process with stationary increments, Brownian motion is in particular a time-homo-

geneous Markov process. In fact, we have:

University of Bonn 2015/2016



22 CHAPTER 1. BROWNIAN MOTION

Theorem 1.2 (Markov property). A Brownian motion (B;)s>o in R? is a time-homo-

geneous Markov process with transition densities

_ —d/2 _|$ —yl d
pt<x7y) - (27Tt) Y 24 ) t> 07 T,y € R )

i.e., for any Borel set A C R? and 0 < s < t,

P[Bica|FP = /pt_S(BS, y) dy P-almost surely.
A

Proof. For 0 < s < t we have B; = B, + (B; — B,) where B, is FZ-measurable, and
B; — B, is independent of 72 by Lemma[L[.1l Hence

PB e A|FPlw) = P[Byw)+Bi—B.c Al = N(Bu(w)(t—s)- LAl
= /(27r(t —5))" Y% exp (—%) dy  P-almost surely.
L

Remark (Heat equation as backward equation and forward equation). The tran-
sition function of Brownian motion is the heat kernel in R?, i.e., it is the fundamental

solution of the heat equation

ou 1
— = -Au
ot =
More precisely, p;(z, y) solves the initial value problem
0 1 d
apt(‘xay) - éAmpt(‘xay) foranyt > Oaxay €eR >
(1.1.5)
lim [ b1 )/ () dy = f(2) for any f € C4(RY),z € R,
d A2
where A, = > 92 denotes the action of the Laplace operator on the x-variable. The
i=1 O%;

equation (LL3) can be viewed as a version of Kolmogorov’s backward equation for

Stochastic Analysis Andreas Eberle



1.1. FROM RANDOM WALKS TO BROWNIAN MOTION 23

Brownian motion as a time-homogeneous Markov process, which states that for each
t >0,y € R and f € Cy(R?), the function

o(s.z) = / prs(,9) £ () dy

solves the terminal value problem

0 1

aZ(s x) = —§Amv(s,x) for s € [0, 1), 181}1%1)(5 x) = f(z). (1.1.6)
Note that by the Markov property, v(s,z) = (p;—sf)(x) is a version of the conditional
expectation E[f(B;) | Bs = z|. Therefore, the backward equation describes the depen-

dence of the expectation value on starting point and time.

By symmetry, p;(x, y) also solves the initial value problem

0 1
&pt( T,Y) = éAypt(a:,y) foranyt >0, and x,y € RY
(1.1.7)
lim [ g(x)p(z,y) de = g(y) for any g € Cb(Rd),y c R,

\,0

The equation (LL7) is a version of Kolmogorov’s forward equation, stating that for

g € Cy(R?), the function u(t,y) = [ g(z)pi(x, y) dz solves

ou 1 .
E(t,y) = aAyu(t,y) fort > 0, Ilfl\r%u(t,y) = g(y). (1.1.8)

The forward equation describes the forward time evolution of the transition densities

pe(x,y) for a given starting point x.

The Markov property enables us to compute the marginal distributions of Brownian

motion:

Corollary 1.3 (Finite dimensional marginals). Suppose that (By);>¢ is a Brownian

motion starting at o € R< defined on a probability space (2, A, P). Then for any

University of Bonn 2015/2016



24 CHAPTER 1. BROWNIAN MOTION

ne€Nand0 =ty < t; <ty <... <1, the joint distribution of By, , By,, ..., By, is

n

absolutely continuous with density

thl,...,Btn (l‘la D 7'1771) - pt1 ('Z‘O) xl)ptg—tl (l‘la xQ)pt;«x—tg (an :L‘3) T 'ptn—tnfl(l‘n—17 xn)
= ﬁ(Zw(t — 1)) - exp ——Zw (1.1.9)
i=1 b =iz

Proof. By the Markov property and induction on n, we obtain

P[By, € Ay,..., By, € A,
= E[P[Btn € An ‘ .F37 ] 3 Bt1 c Al, e ey Btn—l c Anfl]
— E[.ptn_tn 1 Btn 17A ) Bt1 6 Al,.. Btn 1 6 An 1]

= / / ptl To, T ptz tl(xlal?)
n 1

ptn 1—tn—29 xn 2y Tp— 1)ptn—tn 1(.27” 17A )df['n 1° dxl

_ / /(Hptl_tl (- 1,%)) d, -~ dy

foralln > 0and Ay, ..., A, € B(R?). ]

Remark (Brownian motion as a Gaussian process). The corollary shows in particular
that Brownian motion is a Gaussian process, i.e., all the marginal distributions in (L.1.9)
are multivariate normal distributions. We will come back to this important aspect in the

next section.

Wiener Measure

The distribution of Brownian motion could be considered as a probability measure on

[0:20) consisting of all maps = : [0,00) — R? A disadvantage

the product space (R%)
of this approach is that the product space is far too large for our purposes: It contains
extremely irregular paths x(¢), although at least almost every path of Brownian motion

is continuous by definition. Actually, since [0,00) is uncountable, the subset of all

Stochastic Analysis Andreas Eberle



1.1. FROM RANDOM WALKS TO BROWNIAN MOTION 25

continuous paths is not even measurable w.r.t. the product o-algebra on (R?)[0:>°),

Instead of the product space, we will directly consider the distribution of Brownian
motion on the continuous path space C'([0, c0), R?). For this purpose, we fix a Brownian
motion (B;);> starting at 7o € R on a probability space ({2, A, P), and we assume that
every sample path ¢ — B,;(w) is continuous. This assumption can always be fulfilled by
modifying a given Brownian motion on a set of measure zero. The full process (B;):>0
can then be interpreted as a single path-space valued random variable (or a "random

path").

o

B(u})

Figure 1.2: B: Q — C([0,0),R?), B(w) = (Bi(w))r>o0-

We endow the space of continuous paths x : [0, 00) — R? with the o-algebra
B = oX|t>0)
generated by the coordinate maps
X, : C([0,00),RY) — R4 X,(z) =y, t>0.

Note that we also have
B = o(X,|teD)

for any dense subset D of [0, c0), because X; = 1i1r% X for each t € [0, 00) by con-
S—
tinuity. Furthermore, it can be shown that B is the Borel o-algebra on C([0, c0), R9)

endowed with the topology of uniform convergence on finite intervals.

University of Bonn 2015/2016



26 CHAPTER 1. BROWNIAN MOTION

Theorem 1.4 (Distribution of Brownian motion on path space). The map B : () —
C([0,00),R?) is measurable w.r.t. the o-algebras A/B. The distribution P o B~* of B
is the unique probability measure i, on (C ([0, 00), R?), B) with marginals

fizo [{z € C([0,00),RY) s 2y, € Ay, 2y, € Ay} (1.1.10)
H27Tt_tz 1)) d/g/ /exp( th ? 1|>d:}cn---dx1
- bi—1
e Ay An

foranyn €N, 0<t, <...<ty, and Ay,..., A, € B(R?).

Definition. The probability measure ji,, on the path space C([0,00), R%) determined
by (ILI0) is called Wiener measure (with start in x).

Remark (Uniqueness in distribution). The Theorem asserts that the path space distri-
bution of a Brownian motion starting at a given point x; is the corresponding Wiener

measure. In particular, it is uniquely determined by the marginal distributions in (1.1.9).

Proof of Theorem[L4l Forn € N0 < t; < ... < t,, and A;,..., A, € B(R?), we
have
X, e AL X, €A} = {w: X, (Bw)) € AL..., X, (Bw))eA,}
- {BtleAla---aBtneAn} € A

Since the cylinder sets of type { Xy, € A;,..., X, € A, } generate the o-algebra B, the
map B is A/B-measurable. Moreover, by corollary the probabilities

PBe{X;, € Ay,....X;, € A,}] = P[By € Ay,...,B;, € A,

are given by the right hand side of (ILI.10). Finally, the measure yi,, is uniquely deter-
mined by (LL.IQ), since the system of cylinder sets as above is stable under intersections

and generates the o-algebra B. ]

Stochastic Analysis Andreas Eberle



1.2. BROWNIAN MOTION AS A GAUSSIAN PROCESS 27

Definition (Canonical model for Brownian motion.). By (I.1.10), the coordinate pro-
cess
Xt ($) = Ty, t Z 0,

on C([0,00),R%) is a Brownian motion starting at xo w.r.t. Wiener measure [i,,. We
refer to the stochastic process (C([0,00),RY), B, iz, (X¢)i>0) as the canonical model

Jor Brownian motion starting at x.

1.2 Brownian Motion as a Gaussian Process

We have already verified that Brownian motion is a Gaussian process, i.e., the finite
dimensional marginals are multivariate normal distributions. We will now exploit this

fact more thoroughly.

Multivariate normals

Let us first recall some basics on normal random vectors:

Definition. Suppose that m € R" is a vector and C' € R"™" is a symmetric non-
negative definite matrix. A random variable Y : {2 — R" defined on a probability
space (2, A, P) has a multivariate normal distribution N(m, C) with mean m and

covariance matrix C if and only if its characteristic function is given by

E[e?Y] = ¢iPm—3p-Cp forany p € R". (1.2.1)

If C' is non-degenerate, then a multivariate normal random variable Y is absolutely

continuous with density

fr(z) = (2ndetC) V?exp (—%(3: —m)-C Y (z — m)) :
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A degenerate normal distribution with vanishing covariance matrix is a Dirac measure:
N(m,0) = 6,.

Differentiating (L2.1) w.r.t. p shows that for a random variable Y ~ N(m, (), the
mean vector is m and Cj ; is the covariance of the components Y; and Y;. Moreover, the

following important facts hold:

Theorem 1.5 (Properties of normal random vectors).

(1). A random variable Y : Q) — R"™ has a multivariate normal distribution if and
only if any linear combination

n

p-Y = > pY, peR"

i=1
of the components Y; has a one dimensional normal distribution.

(2). Any daffine function of a normally distributed random vector Y is again normally

distributed:
Y ~Nm,C) = AY +b~ N(Am+b, ACAT)
foranyd € N, A € R>" and b € RY

(3). If Y = (Y1,...,Y,) has a multivariate normal distribution, and the components

Y1, ..., Y, are uncorrelated random variables, then Y1, . . .Y, are independent.

Proof. (1). follows easily from the definition.

(2). ForY ~ N(m,C), A € R”" and b € R? we have

E[eip-(AYer)] _ eip-bE[ei(ATp)-Y]
eip-bei(ATp)-m—%(ATp)~CATp

. 1
P (Am+b)—3p- ACAT for any p € R?,

ie, AY + b~ N(Am + b, ACAT).
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(3). If Y3,...,Y,, are uncorrelated, then the covariance matrix C; ; = Cov[Y;, Y]] is a

diagonal matrix. Hence the characteristic function

n
E[e?Y] = pirm=3pCp ||6imkpk—%(1k,kpi

k=1

is a product of characteristic functions of one-dimensional normal distributions.
Since a probability measure on R" is uniquely determined by its characteristic
function, it follows that the adjoint distribution of Y7, . . ., Y}, is a product measure,

ie. Yy, ..., Y, are independent.

O

If Y has a multivariate normal distribution N (m, C) then for any p, ¢ € R", the random

variables p - Y and ¢ - Y are normally distributed with means p - m and ¢ - m, and

covariance
Covlp-Y,q-Y] = Z piCijq; = p-Cq
ij=1
In particular, let {eq, ..., e,} C R" be an orthonormal basis consisting of eigenvectors

of the covariance matrix C'. Then the components e; - Y of Y in this basis are uncor-
related and therefore independent, jointly normally distributed random variables with

variances given by the corresponding eigenvectors \;:

COV[@Z‘ . Y, €; - Y] = )\i(;i,ja 1 S Z,j S n. (122)

Correspondingly, the contour lines of the density of a non-degenerate multivariate nor-
mal distribution N (m, C') are ellipsoids with center at m and principal axes of length

Vv A; given by the eigenvalues e; of the covariance matrix C'.
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Figure 1.3: Level lines of the density of a normal random vector Y ~
1 1 1
N , .

Conversely, we can generate a random vector Y with distribution N (m, C') from i.i.d.

standard normal random variables 7, . .., Z, by setting

Y = m+) VAZe. (1.2.3)
=1

More generally, we have:

Corollary 1.6 (Generating normal random vectors). Suppose that C = UANU " with
a matrix U € R d € N, and a diagonal matrix A = diag(\, ..., \y) € R4 with

nonnegative entries \;. If Z = (Zy,...,Zy) is a random vector with i.i.d. standard
normal random components 7, . .., Z, then
Y = UAPZ+m

has distribution N (m, C').
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Proof. Since Z ~ N(0, I,), the second assertion of Theorem [L3implies

Y ~ N(m,UAU").

Choosing for U the matrix (eq, .. ., e,) consisting of the orthonormal eigenvectors
el,...,e, of C, we obtain (I.2.3) as a special case of the corollary. For computational

purposes it is often more convenient to use the Cholesky decomposition
C = LL'

of the covariance matrix as a product of a lower triangular matrix L and the upper

triangular transpose L '
Algorithm 1.7 (Simulation of multivariate normal random variables).
Given: m € R", C' € R™" symmetric and non-negative definite.
Output: Sample y ~ N(m, C).

(1). Compute the Cholesky decomposition C' = LL".

(2). Generate independent samples 21, ...,2, ~ N(0,1) (e.g. by the Box-Muller
method).

(3). Sety := Lz+ m.

Gaussian processes

Let [ be an arbitrary index set, e.g. [ = N, = [0,00) or I = R".

Definition. A collection (Y;)ic1 of random variables Y; : Q) — R? defined on a proba-
bility space (), A, P) is called a Gaussian process if and only if the joint distribution
of any finite subcollection Yy, ...,Y, withn € Nandt,,... 1, € [ is a multivariate

normal distribution.
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The distribution of a Gaussian process (Y;);c; on the path space R or C'(I, R) endowed
with the o-algebra generated by the maps © — x4, ¢ € I, is uniquely determined by
the multinormal distributions of finite subcollections Y;, ..., Y; as above, and hence

by the expectation values
m(t) = E[Y, tel,
and the covariances
c(s,t) = Covl]Ys, Yy, s,t € l.
A Gaussian process is called centered, if m(t) = 0 forany ¢ € I.

Example (AR(1) process). The autoregressive process (Y},),—o.12,... defined recur-
sively by Yy ~ N(0, v),

Y,=aY, 1+en, forn € N,

with parameters vy > 0, a, ¢ € R, 7, i.i.d. ~ N(0, 1), is a centered Gaussian process.

The covariance function is given by
cn,n+k) = wvo+e’n foranyn,k >0 ifa=1,

and

52

1—a2

cn,n+k) = o (oﬂ"vo + (1 —a®)- ) forn,k >0 otherwise.

This is easily verified by induction. We now consider some special cases:
a = 0: In this case Y,, = en,. Hence (Y,,) is a white noise, i.e., a sequence of inde-
pendent normal random variables, and

Cov[V,, Y] = € 0um for any n,m > 1.

a=1: HereY, = Yo+ > n,ie., the process (Y,) is a Gaussian Random Walk, and
=1

Cov[Y,, Y] = v +e®-min(n,m) for any n, m > 0.

We will see a corresponding expression for the covariances of Brownian motion.
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a < 1: Fora < 1, the covariances Cov[Y,,, Y, | decay exponentially fast as k& — oo.

If vg = %, then the covariance function is translation invariant:
e2ak
cn,n+k) = T2 for any n, k > 0.
—

Therefore, in this case the process (Y,,) is stationary, i.e., (Y 1x)n>0 ~ (Y )n>o for all
k> 0.

Brownian motion is our first example of a nontrivial Gaussian process in continuous

time. In fact, we have:

Theorem 1.8 (Gaussian characterization of Brownian motion). A real-valued stoch-
astic process (By)ic(o,00) With continuous sample paths t — By(w) and By = 0 is a

Brownian motion if and only if (By) is a centered Gaussian process with covariances

Cov[Bs, By] = min(s,t) for any s,t > 0. (1.2.4)

Proof. For a Brownian motion (B;) and 0 =ty < t; < ... < t,, the increments B;, —
By, ,, 1 < i < n, are independent random variables with distribution N (0,¢; — t;_1).

Hence,
(Btl _Btoa"'aBtn _Btn,l) ~ ®N(07tz _ti—1)7
i=1

which is a multinormal distribution. Since B;, = By, = 0, we see that

10
1
By, By, — By,
Btn Btn Btn—l
11 1 10
11 1 1

also has a multivariate normal distribution, i.e., (B;) is a Gaussian process. Moreover,
since B, = B; — By, we have E[B;] = 0 and

Cov[Bs,B;] = Cov[Bs, Bs] + Cov[Bs, B, — Bs] = Var[By] = s
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forany 0 < s <, 1e., holds.

Conversely, if (B;) is a centered Gaussian process satisfying (I.2.4)), then for any 0 =
to <t <...<ty,,thevector (B;, — By,,...,B;, — By,_,) has a multivariate normal

distribution with
E[Btz - Bti—l] - E[Btz] - E[Bti—l] = 07 and

Cov|By, — By,_,, By, — By;,_,] = min(t;,t;) —min(t;,t;_1)
—min(t;,_y,t;) +min(¢;_q1,¢;_1)
= (ti—tic1)-0ij forany¢,j =1,...,n.
Hence by Theorem[1.3](3), the increments B;, — By, ,, 1 < i < n, are independent with

distribution N (0,t; — t;,_1), i.e., (B;) is a Brownian motion. O

Symmetries of Brownian motion

A first important consequence of the Gaussian characterization of Brownian motion are

several symmetry properties of Wiener measure:

Theorem 1.9 (Invariance properties of Wiener measure). Let (B;);>o be a Brown-
ian motion starting at 0 defined on a probability space (), A, P). Then the following

processes are again Brownian motions:
(1). (—Bi)i>0 (Reflection invariance)
(2). (Bisn — Br)isoforany h >0  (Stationarity)
(3). (a=Y2By) o foranya >0 (Scale invariance)
(4). The time inversion (§t>t20 defined by

By=0, Bi=t-By, fort>0.
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Proof. The proofs of (1), (2) and (3) are left as an exercise to the reader. To show (4),
we first note that for eachn € Nand 0 < t; < ... < t,, the vector (B,,, ..., B, ) hasa
multivariate normal distribution since it is a linear transformation of (B, , ..., Bi,),

(Bo, Bitys - - - » B, ) respectively. Moreover,

E[B)] = 0 for any ¢ > 0,
Cov|B,, B] = st-Cov|Bys, Biyl
= st- min(é, %) = min(t, s) forany s,¢ >0, and
Cov[By,B] = 0 for any ¢ > 0.

Hence (ét)tzo is a centered Gaussian process with the covariance function of Brownian
motion. By Theorem [L.8 it only remains to show that P-almost every sample path
t — By(w) is continuous. This is obviously true for ¢ > 0. Furthermore, since the finite
dimensional marginals of the processes (Et)tzo and (B;):>o are multivariate normal
distributions with the same means and covariances, the distributions of (ét)tzo and
(B4)t>0 on the product space R(>) endowed with the product o-algebra generated by

the cylinder sets agree. To prove continuity at 0 we note that the set

z:(0,00) > R | limz; =0
N0
1<0)

is measurable w.r.t. the product o-algebra on R(*:>) Therefore,

PllimB,=0| = PllimB, =0 = 1.
N0 t\0
teQ teQ

Since Et is almost surely continuous for ¢ > 0, we can conclude that outside a set of

measure zZero,

sup |B,| = sup |By] — 0 ast ™\, 0,
s€(0,t) s€(0,6)NQ
ie.,t— ét is almost surely continuous at 0 as well. U

University of Bonn 2015/2016



36 CHAPTER 1. BROWNIAN MOTION

Remark (Long time asymptotics versus local regularity, LLLN). The time inversion
invariance of Wiener measure enables us to translate results on the long time asymp-
totics of Brownian motion (¢ ,* co) into local regularity results for Brownian paths
(t \( 0) and vice versa. For example, the continuity of the process (Et) at 0 is equiva-

lent to the law of large numbers:
1 :
P {hm -B, = O} = P [hmsBl/s = O] = 1
t—oo ¢ s\0

At first glance, this looks like a simple proof of the LLN. However, the argument is based
on the existence of a continuous Brownian motion, and the existence proof requires

similar arguments as a direct proof of the law of large numbers.

Wiener measure as a Gaussian measure, path integral heuristics

Wiener measure (with start at 0) is the unique probability measure 4 on the continuous

path space C([0, 00), R?) such that the coordinate process
X;:C([0,00),RY) - R Xy(z) = m,

is a Brownian motion starting at 0. By Theorem [L.8] Wiener measure is a centered
Gaussian measure on the infinite dimensional space C([0, o), R?), i.e., for any n € N
and t1,...,t, € Ry, (X4, ..., X,) is normally distributed with mean 0. We now "de-
rive" a heuristic representation of Wiener measure that is not mathematically rigorous
but nevertheless useful:

Fix a constant 7" > 0. Then for 0 = t;, < t; < ... < t, < T, the distribution of

(X4, ., Xy,) wrt. Wiener measure is

1 |2y, — ? -
Mtl,---,tn(dxtlv ) dxtn) = Z(tl, ' eXp <__ Z t _ tz 11 ) H dxti?

.., i1

(1.2.5)
where Z(t1,...,t,) is an appropriate finite normalization constant, and zy := 0. Now
choose a sequence (7 )xen of partitions 0 = t(()k) < tgk) <... < t;’% = T of the interval
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(k) _
i+1

in , we obtain the heuristic asymptotic representation

[0, T'] such that the mesh size max |t tl(k)\ tends to zero. Taking informally the limit

T

1 1
wdr) = —exp |-t /
0

2

dt | So(dzo) [] de. (1.2.6)

te(0,7T

dx
dt

for Wiener measure on continuous paths x : [0, 7] — R? with a "normalizing constant"

Z . Trying to make the informal expression (I.2.6) rigorous fails for several reasons:

e The normalizing constant 7., = klim Z (tgk), ce tﬁk&
—00

)) is infinite.
2

7 dt is also infinite for p-almost every path z, since typical
paths of Brownian motion are nowhere differentiable, cf. below.

Tld
e The integral [ v
0

e The product measure [] dx; can be defined on cylinder sets but an extension to
te(0,7T
the o-algebra generated by the coordinate maps on C'([0, 00), R%) does not exist.

Hence there are several infinities involved in the informal expression (I.2.6). These
infinities magically balance each other such that the measure 1 is well defined in contrast

to all of the factors on the right hand side.

In physics, R. Feynman introduced correspondingly integrals w.r.t. "Lebesgue measure

on path space", cf. e.g. the famous Feynman Lecture notes [...], or Glimm and Jaffe [ ...

1.

Although not mathematically rigorous, the heuristic expression (L2.3) can be a very
useful guide for intuition. Note for example that takes the form

p(dr) o exp(—[lz|[F/2) A(da), (1.2.7)
1/2

where |||z = (x,x)y" is the norm induced by the inner product

T

dr d

(T, 9)n = /Eﬁﬁ (1.2.8)
0
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of functions x,y : [0,7] — R¢ vanishing at 0, and \ is a corresponding "infinite-

dimensional Lebesgue measure" (which does not exist!). The vector space
d
H = {r:]0,7] = R?: x(0) = 0,z is absolutely continuous with d—f € L*}

is a Hilbert space w.r.t. the inner product (I.2.8)). Therefore, (1.2.7]) suggests to consider
Wiener measure as a standard normal distribution on H. It turns out that this idea can
be made rigorous although not as easily as one might think at first glance. The difficulty
is that a standard normal distribution on an infinite-dimensional Hilbert space does not
exist on the space itself but only on a larger space. In particular, we will see in the next
sections that Wiener measure x can indeed be realized on the continuous path space

C([0,T], R%), but p-almost every path is not contained in H'!

Remark (Infinite-dimensional standard normal distributions). The fact that a stan-
dard normal distribution on an infinite dimensional separable Hilbert space H can not
be realized on the space H itself can be easily seen by contradiction: Suppose that p
is a standard normal distribution on H, and e,, n € N, are infinitely many orthonormal

vectors in /. Then by rotational symmetry, the balls

1
B, = {xEH:||x—en||H<§}, n €N,

should all have the same measure. On the other hand, the balls are disjoint. Hence by

o-additivity,
> uB.] = M[UBn} < plH = 1,
n=1

and therefore u[B,,] = 0 for all n € N. A scaling argument now implies
pl{x € H : ||z —h| <||h]|/2}] =0 forall h € H,

and hence 1 = 0.

1.3 The Wiener-Lévy Construction

In this section we discuss how to construct Brownian motion as a random superposi-

tion of deterministic paths. The idea already goes back to N. Wiener, who constructed

Stochastic Analysis Andreas Eberle



1.3. THE WIENER-LEVY CONSTRUCTION 39

Brownian motion as a random Fourier series. The approach described here is slightly
different and due to P. Lévy: The idea is to approximate the paths of Brownian mo-
tion on a finite time interval by their piecewise linear interpolations w.r.t. the sequence
of dyadic partitions. This corresponds to a development of the Brownian paths w.r.t.
Schauder functions ("wavelets") which turns out to be very useful for many applica-

tions including numerical simulations.

Our aim is to construct a one-dimensional Brownian motion B; starting at 0 for ¢t €
[0, 1]. By stationarity and independence of the increments, a Brownian motion defined
for all ¢ € [0, 00) can then easily be obtained from infinitely many independent copies

of Brownian motion on [0, 1]. We are hence looking for a random variable
B = (Bi)wep,y : 2 — C([0,1])
defined on a probability space (2, .4, P) such that the distribution P o B~! is Wiener

measure £ on the continuous path space C'([0, 1]).

A first attempt

Recall that 1 should be a kind of standard normal distribution w.r.t. the inner product

1

dr d

(., 9)n = /Ed—‘?dt (1.3.1)
0

on functions z, y : [0, 1] — R. Therefore, we could try to define
Bw) = Y Ziw)e(t) forte0,1]andw e Q, (1.3.2)
=1

where (Z;);en is a sequence of independent standard normal random variables, and

(€;)ien is an orthonormal basis in the Hilbert space

H = {z:[0,1] = R|z(0) =0, x is absolutely continuous with (z, z)y < co}.
(1.3.3)

However, the resulting series approximation does not converge in H:
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Theorem 1.10. Suppose (¢e;);cn is a sequence of orthonormal vectors in a Hilbert space

H and (Z;);en is a sequence of i.i.d. random variables with P[Z; # 0] > 0. Then the

o0

series Y Z;(w)e; diverges with probability 1 w.r.t. the norm on H.
i=1

Proof. By orthonormality and by the law of large numbers,

Z Zi(w)e;

P-almost surely as n — oo. L

2

= nZZ-cu2 — 00
D Ziw)
i=1

H

The Theorem again reflects the fact that a standard normal distribution on an infinite-

dimensional Hilbert space can not be realized on the space itself.

To obtain a positive result, we will replace the norm

N

L 2

dx
= — | dt
Izl 1%
0
on H by the supremum norm
llswp = sup [z,
t€[0,1]

and correspondingly the Hilbert space H by the Banach space C'([0, 1]). Note that the
supremum norm is weaker than the H-norm. In fact, for x € H and ¢t € [0, 1], the

Cauchy-Schwarz inequality implies

t

2 t
= / dds| <t / Pds < |l
0

0

and therefore

[2llsp < ll@lln foranyx e H.

Stochastic Analysis Andreas Eberle



1.3. THE WIENER-LEVY CONSTRUCTION 41

There are two choices for an orthonormal basis of the Hilbert space H that are of par-

ticular interest: The first is the Fourier basis given by

2
eo(t) = t, en(t) = £sin(7rmﬁ) forn > 1.
™m

With respect to this basis, the series in is a Fourier series with random coeffi-
cients. Wiener’s original construction of Brownian motion is based on a random Fourier
series. A second convenient choice is the basis of Schauder functions ("wavelets") that
has been used by P. Lévy to construct Brownian motion. Below, we will discuss Lévy’s
construction in detail. In particular, we will prove that for the Schauder functions, the
series in (I.3.2) converges almost surely w.r.t. the supremum norm towards a contin-
uous (but not absolutely continuous) random path (B).c(o,1). It is then not difficult to

conclude that (B;);c[o,1] is indeed a Brownian motion.

The Wiener-Lévy representation of Brownian motion

Before carrying out Lévy’s construction of Brownian motion, we introduce the Schauder
functions, and we show how to expand a given Brownian motion w.r.t. this basis of
function space. Suppose we would like to approximate the paths ¢t — B;(w) of a Brow-
nian motion by their piecewise linear approximations adapted to the sequence of dyadic

partitions of the interval [0, 1].

An obvious advantage of this approximation over a Fourier expansion is that the values

of the approximating functions at the dyadic points remain fixed once the approximating
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partition is fine enough. The piecewise linear approximations of a continuous function

on [0, 1] correspond to a series expansion w.r.t. the base functions

e(t) =t , and

enik(t) = 27"%eoo(2" — k), n=0,1,2,....k=0,1,2,...,2" — 1, , where
t fort € [0,1/2]
eoo(t) = min(t,1-1)" = 1—t forte (1/2,1]
0 fort € R\ [0, 1]
1+ e(t)
1
enyk(t)
o—(1+n/2) |
k-2 (k4127 1
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6070 (t)

1

The functions e, (n > 0,0 < k < 2") are called Schauder functions. It is rather
obvious that piecewise linear approximation w.r.t. the dyadic partitions corresponds to
the expansion of a function z € C(][0,1]) with 2(0) = 0 in the basis given by e(¢)
and the Schauder functions. The normalization constants in defining the functions e,
have been chosen in such a way that the e,, ;, are orthonormal w.r.t. the /-inner product

introduced above.

Definition. A sequence (e;);cn of vectors in an infinite-dimensional Hilbert space H is

called an orthonormal basis (or complete orthonormal system) of H if and only if
(1). Orthonormality:  (e;,ej) = 0;; foranyi,j € N, and

(2). Completeness: Any h € H can be expressed as

h = i(h, €i)He;.
i=1

Remark (Equivalent characterizations of orthonormal bases). Let ¢;,7 € N, be

orthonormal vectors in a Hilbert space . Then the following conditions are equivalent:
(1). (e;)ien is an orthonormal basis of H.

(2). The linear span

k
span{e; | i € N} = {Zciei

i=1

k‘GN,Cl,...,CkGR}
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is a dense subset of H.

(3). There is no element © € H,x # 0, such that (x,e;)y = 0 for every i € N.

(4). For any element x € H, Parseval’s relation

lzlf = i(az,e»% (1.3.4)
i=1
holds.
(5). Forany z,y € H,
(r,9)g = i(xaei)H(%ei)H- (1.3.5)
i=1

For the proofs we refer to any book on functional analysis, cf. e.g. [Reed and Simon:

Methods of modern mathematical physics, Vol. IJ.

Lemma 1.11. The Schauder functions e and e, (n > 0,0 < k < 2") form an or-
thonormal basis in the Hilbert space H defined by (L.3.3).

Proof. By definition of the inner product on H, the linear map d/dt which maps an
absolutely continuous function x € H to its derivative 2/ € L?(0,1) is an isometry
from H onto L*(0,1), i.e.,

($,y)H = (xlay/)LQ(O,l) for any x,y € H.
The derivatives of the Schauder functions are the Haar functions

ety = 1,

en’k(t) = 2n/2(I[k,2—n7(k+1/2)_2—n)(t) — ][(k+1/2)-2_”,(k+1)-2_")(t)) fora.e. t.
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e'(t) En (1)
1 o 2—n/24k —
(k+1)27"
1 REM
_2—n/24k —

It is easy to see that these functions form an orthonormal basis in L?(0,1). In fact,
orthonormality w.r.t. the L? inner product can be verified directly. Moreover, the linear
span of the functions ¢’ and ¢;, ; forn =0,1,...,mand k =0, 1,...,2" —1 consists of
all step functions that are constant on each dyadic interval [j - 2=+ (j41).27(m+D),
An arbitrary function in L?(0, 1) can be approximated by dyadic step functions w.r.t.
the L? norm. This follows for example directly from the L? martingale convergence
Theorem, cf. ... below. Hence the linear span of ¢’ and the Haar functions e], , is dense
in L?(0, 1), and therefore these functions form an orthonormal basis of the Hilbert space
L*(0,1). Since x — 2’ is an isometry from H onto L?(0, 1), we can conclude that e and

the Schauder functions e,, ;, form an orthonormal basis of H. O

The expansion of a function z : [0, 1] — R in the basis of Schauder functions can now
be made explicit. The coefficients of a function x € H in the expansion are
1 1

@@H::/fdﬁ - /fﬁ = (1) —2(0) = z(1)

0 0
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1 1

(x,enp)n = /:C'e;l’k dt = 2”/2/33'@)6’070(2"15— k) dt
0 0

2 [(a((h+ )27 = alk - 27) = al(h+ 1) 27) — (k4 ) - 27)

Theorem 1.12. Let € C([0, 1]). Then the expansion

co 2"—1

w(t) = z(e(t) =YD 2PN ennlt),

n=0 k=0

1 1
Ange = |(@((k+1)-27") —a((k+5) - 27)) = (2((k + 5) - 27") — (k- 27%))
holds w.r.t. uniform convergence on [0,1]. For x € H the series also converges w.r.t.

the stronger H-norm.

Proof. It can be easily verified that by definition of the Schauder functions, for each

m € N the partial sum

m 2"—1

M) = a(De(t) = >0 2P - eqi(t) (1.3.6)

n=0 k=0

is the polygonal interpolation of x(t) w.r.t. the (m+ 1)-th dyadic partition of the interval
[0, 1]. Since the function z is uniformly continuous on [0, 1], the polygonal interpola-
tions converge uniformly to z. This proves the first statement. Moreover, for x € H,
the series is the expansion of z in the orthonormal basis of [ given by the Schauder

functions, and therefore it also converges w.r.t. the H-norm. L

Applying the expansion to the paths of a Brownian motions, we obtain:

Corollary 1.13 (Wiener-Lévy representation). For a Brownian motion (By).co1] the
series representation

oo 2"—1

Biw) = Zwe®)+> > Znpwenxlt), te0,1], (13.7)

n=0 k=0
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holds w.r.t. uniform convergence on |0, 1| for P-almost every w € ), where
Z = DBy, and Z,j := —2"/2An7kB n>0,0<k<2"—1)

are independent random variables with standard normal distribution.

Proof. It only remains to verify that the coefficients Z and Z,, ; are independent with
standard normal distribution. A vector given by finitely many of these random variables
has a multivariate normal distribution, since it is a linear transformation of increments
of the Brownian motion B;. Hence it suffices to show that the random variables are

uncorrelated with variance 1. This is left as an exercise to the reader. |

Lévy’s construction of Brownian motion

The series representation (I.3.7) can be used to construct Brownian motion starting
from independent standard normal random variables. The resulting construction does
not only prove existence of Brownian motion but it is also very useful for numerical

implementations:

Theorem 1.14 (P. Lévy 1948). Let Z and Z,,, (n > 0,0 < k < 2" —1) be independent
standard normally distributed random variables on a probability space (2, A, P). Then
the series in ((L.37) converges uniformly on [0, 1] with probability 1. The limit process

(Bi)iejo,) is a Brownian motion.

The convergence proof relies on a combination of the Borel-Cantelli Lemma and the
Weierstrass criterion for uniform convergence of series of functions. Moreover, we will

need the following result to identify the limit process as a Brownian motion:

Lemma 1.15 (Parseval relation for Schauder functions). For any s,t € [0, 1],

oo 2"—1

e(t)e(s) + > Y enxlt)enn(s) = min(ts).

n=0 k=0
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Proof. Note that for g € H and s € [0, 1], we have
1

o(s) = gls)—g(0) = / d oy = (9.0,

0

where h(*)(t f Isy = min(s,t). Hence the Parseval relation (I.3.4) applied to

the functions A(*) and h® yields

s) + Zen,k(t)en,k(s)
= ( +Z €nk, enk,h())

1

= (h,(t), h(s)) = /[(0715)[(073) = min(t, 8).
0

Proof of Theorem |[.14] We proceed in 4 steps:

(1). Uniform convergence for P-a.e. w: By the Weierstrass criterion, a series of func-
tions converges uniformly if the sum of the supremum norms of the summands is

finite. To apply the criterion, we note that for any fixed ¢ € [0, 1] and n € N, only

one of the functions e,, ;,k = 0,1,...,2" — 1, does not vanish at ¢. Moreover,
len ()| < 27™/2, Hence
n—1

sup Z ZnrWw)en(t)| < 2 /2. M, (w), (1.3.8)

te(0,1] | 5,
where

M, = max |[Z,x|
0<k<2n

We now apply the Borel-Cantelli Lemma to show that with probability 1, M,
grows at most linearly. Let Z denote a standard normal random variable. Then
we have
P[M, >n] < 2"-P||Z]>n] < —-E[|Z|;|Z]|>n]
n
22" 2

.2
ze P dr = —— e
™n
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for any n € N. Since the sequence on the right hand side is summable, M, < n
holds eventually with probability one. Therefore, the sequence on the right hand
side of (I.3.8) is also summable for P-almost every w. Hence, by (I.3.8) and the

Weierstrass criterion, the partial sums

m 2"—1

B™(w) = +ZZan w)en k(t m € N,

n=0 k=0

converge almost surely uniformly on [0, 1]. Let

B, = lim B™

m—o0

denote the almost surely defined limit.

(2). L? convergence for fixed t: We now want to prove that the limit process (B;)
is a Brownian motion, i.e., a continuous Gaussian process with E[B;] = 0 and
Cov[By, Bs) = min(t, s) for any ¢, s € [0, 1]. To compute the covariances we first

show that for a given ¢ € |0, 1] the series approximation Bt(m)

of B, converges
also in L?. Let [,m € N with [ < m. Since the 7,  are independent (and hence

uncorrelated) with variance 1, we have

B((B" - B) <i ZZ ) = 3 Y ar

n=I[l+1 k=0 n=Il+1 k

The right hand side converges to 0 as [, m — oo since Y e, (t)? < oo by Lemma
n,k

.15l Hence B™,m € N, is a Cauchy sequence in L*(Q2, A, P). Since B; =

lim Bt(m) almost surely, we obtain

m— o0

B™  MZF B, in L9, A, P).

(3). Expectations and Covariances: By the L* convergence we obtain for any s,t €

0, 1]:
E[B] = lm EB™] = 0, and
m—ro0
Cov|B,,B,] = E[BB, = lim E[B/™B™]
m—0o0
m 2"—1
= e(t)e(s) + nllinooz_% ]; en e ()en(s)
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Here we have used again that the random variables Z and Z,, ;, are independent

with variance 1. By Parseval’s relation (Lemma[L.13]), we conclude
Cov[By, Bs] = min(t,s).

Since the process (B;):cjo,1) has the right expectations and covariances, and, by
construction, almost surely continuous paths, it only remains to show that (B;) is

a Gaussian process in oder to complete the proof:

(4). (By)icjoq is a Gaussian process: We have to show that (B, , ..., By, ) has a mul-
tivariate normal distribution for any 0 < ¢; < ... < t; < 1. By Theorem [L.3]
it suffices to verify that any linear combination of the components is normally

distributed. This holds by the next Lemma since

l !
_ . (m)
Z piBy, = 7711_1)%0 Z pi By P-as.
j=1 j=1

is an almost sure limit of normally distributed random variables for any

pl;---7pl€R-

Combining Steps 3, 4 and the continuity of sample paths, we conclude that (5;)c[o,1) is

indeed a Brownian motion. [l

Lemma 1.16. Suppose that (X,,),cn is a sequence of normally distributed random vari-
ables defined on a joint probability space (£, A, P), and X,, converges almost surely to

a random variable X. Then X is also normally distributed.

Proof. Suppose X,, ~ N(m,,c?) withm, € R and o,, € (0,00). By the Dominated

Convergence Theorem,

. . . . . 71 2 2
E[e™] = lim E[e?*"] = lim P™me 277"
n—oo n—o0

The limit on the right hand side only exists for all p, if either o,, — oo, or the sequences
o, and m,, both converge to finite limits o € [0,00) and m € R. In the first case,

the limit would equal 0 for p # 0 and 1 for p = 0. This is a contradiction, since
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characteristic functions are always continuous. Hence the second case occurs, and,
therefore
. . 1 2.2
E[e?PX] = ePm2? for any p € R,

ie, X ~ N(m,o?). 0

So far, we have constructed Brownian motion only for ¢ € [0, 1]. Brownian motion on
any finite time interval can easily be obtained from this process by rescaling. Brownian
motion defined for all ¢ € R, can be obtained by joining infinitely many Brownian

motions on time intervals of length 1:

B2
B®)
- 1 1 1
1 2 3
4 B®
Theorem 1.17. Suppose that Bt(l), Bt(z), ... are independent Brownian motions starting
at 0 defined for t € [0, 1]. Then the process
([t]+1) S (i)
t]+ i
B, := BY+> B, >0,
i=1

is a Brownian motion defined for t € [0, o).
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The proof is left as an exercise.

1.4 The Brownian Sample Paths

In this section we study some properties of Brownian sample paths in dimension one.
We show that a typical Brownian path is nowhere differentiable, and Holder-continuous
with parameter « if and only if @ < 1/2. Furthermore, theset A, = {t >0 : B; = a}
of all passage times of a given point a € R is a fractal. We will show that almost surely,
A, has Lebesgue measure zero but any point in A, is an accumulation point of A,,.

We consider a one-dimensional Brownian motion (B;);>¢ with By = 0 defined on a
probability space (€2, A, P). Then:

Typical Brownian sample paths are nowhere differentiable

For any ¢ > 0 and h > 0, the difference quotient M is normally distributed with

mean 0 and standard deviation
U[(Bt-i-h — Bt)/h] = U[Bt+h — Bt]/h = 1/\/5

This suggests that the derivative

d - . By — By
al T ey

does not exist. Indeed, we have the following stronger statement.

Theorem 1.18 (Paley, Wiener, Zygmund 1933). Almost surely, the Brownian sample
path t — By is nowhere differentiable, and

B, — B;
s—1

lim sup = o0 foranyt > 0.

s\t
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Note that, since there are uncountably many ¢ > 0, the statement is stronger than claim-

ing only the almost sure non-differentiability for any given ¢ > 0.

Proof. 1t suffices to show that the set

1
N:{weQ ’Elte[O,T],k,LENVsE(t,t—i—E) ;| Bs(w) — Bi(w)| gL\s—t|}

is a null set for any 7" € N. Hence fix 7' € N, and consider w € N. Then there exist
k,L € Nandt € [0,T] such that

1
|Bs(w) — By(w)| < L-|s—t holds for s € (t,t+E). (1.4.1)

To make use of the independence of the increments over disjoint intervals, we note that

for any n > 4k, we can find an i € {1,2,...,nT} such that the intervals (£, 1),

(2L, H22) and (42, 23) are all contained in (¢, + 7):

n’ n n’ n

i—1
n
|
I

4 3e
— 3
-+ 3

Hence by (1.4.1)), the bound

Bini (w) — Bi(w)’ < ’B%(w) - Bt(w)’ + )Bt(w) — Bi(w)

j+1

< L
n

“O+L(2-0 <

holds for j = 4,7 + 1,7 + 2. Thus we have shown that /V is contained in the set

¥ o= U NU{pe -

8L
< — forj:i,i+1,i+2}.
k,LEN n>4k i=1 n
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We now prove P[N] = 0. By independence and stationarity of the increments we have

[

8L
<= forj:i,i—i—l,i—i—QH
n

8L1? 8L1?
- PUB; g—} - P[|Bl|§—] (14.2)
n n \/ﬁ
( 1 16L)3 160 I
Var Vi var i

for any ¢ and n. Here we have used that the standard normal density is bounded from
above by 1/+/27. By (L.4.2) we obtain

nT

8L

PN U{’Bm _B,| < forj:i,i+1,i+2}

n>4k i=1 " " n

3
< s inf nTL*/n%? = 0.
\/E n>4k
Hence, P[N] = 0, and therefore N is a null set. ]

Holder continuity

The statement of Theorem[I. 18 says that a typical Brownian path is not Lipschitz contin-
uous on any non-empty open interval. On the other hand, the Wiener-Lévy construction
shows that the sample paths are continuous. We can almost close the gap between these

two statements by arguing in both cases slightly more carefully:

Theorem 1.19. The following statements hold almost surely:
(1). Forany a > 1/2,

limsup; = o0 forallt > 0.
St s —

(2). Forany a < 1/2,

sup ———— < o0 forall T > 0.
seefo.r] |5 —t°
s#t
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Hence a typical Brownian path is nowhere Holder continuous with parameter o > 1/2,
but it is Holder continuous with parameter o < 1/2 on any finite interval. The critical

case o = 1/2 is more delicate, and will be briefly discussed below.

Proof of Theorem|[[.I9 The first statement can be shown by a similar argument as in
the proof of Theorem [L.18 The details are left to the reader.

To prove the second statement for 7' = 1, we use the Wiener-Lévy representation

oo 2"—1

By = Z-t+Y > Zugear(t)  foranyte[0,1]

n=0 k=0

with independent standard normal random variables Z, Z,, . For t, s € [0, 1] we obtain
|B:—Bs| < |Z] '|t_5|+ZMnZ|€n,k(t)_en,k(3)|a
n k

where M,, = max |Z,, k| as in the proof of Theorem [[.14] We have shown above that

by the Borel-Cantelli Lemma, M,, < n eventually with probability one, and hence
M,(w) < Cw)-n

for some almost surely finite constant C'(w). Moreover, note that for each s, ¢ and n, at

most two summands in >, €, (t) — e, x(s)| do not vanish. Since |e,, 5 (¢)] < 1 -277/2
and [e;, ;. (1) < 2"/2 we obtain the estimates
leni(t) —enr(s)] < 272 and (1.4.3)
leni(t) —enn(s)] < 22|t —s. (1.4.4)
For given s,t € [0, 1], we now choose N € N such that
27N < jt-s] < 20N, (1.4.5)

By applying (1.4.3) for n > N and (I.4.4) for n < N, we obtain

N o)
B, — B,| < |Z|-|t—s|+20-<Zn2”/2-|t—s|+ > n2_"/2>.
n=1

n=N+1
By (L.4.3)) the sums on the right hand side can both be bounded by a constant multiple of
|t — s|* for any av < 1/2. This proves that (B;);c[o,1 is almost surely Holder-continuous

of order «. |
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Law of the iterated logarithm

Khintchine’s version of the law of the iterated logarithm is a much more precise state-
ment on the local regularity of a typical Brownian path at a fixed time s > 0. It implies
in particular that almost every Brownian path is not Holder continuous with parameter

a = 1/2. We state the result without proof:

Theorem 1.20 (Khintchine 1924). For s > 0, the following statements hold almost

surely:

By — By .. By, — By
lim sup Rl = +1, and liminf A = —
N0 2t loglog(1/t) N0 2t log log(1/t)

For the proof cf. e.g. Breiman, Probability, Section 12.9.
By a time inversion, the Theorem translates into a statement on the global asymptotics

of Brownian paths:

Corollary 1.21. The following statements hold almost surely:

B B
limsup ————— = +1, and liminf ! = —1.

oo v/2tloglogt t—oo (/2tloglogt

Proof. This follows by applying the Theorem above to the Brownian motion ét =

t - By ;. For example, substituting h = 1 /t, we have

. B, . h - By,
lim sup ————= = limsup = +1
t—oo /2t 1oglog(t) o +/2hloglogl/h
almost surely. 0

The corollary is a continuous time analogue of Kolmogorov’s law of the iterated log-
n

arithm for Random Walks stating that for S,, = > n;, n; i.i.d. with E[n;] = 0 and
=1

Var[n;] = 1, one has

S Sh,
limsup———-— = +1 and Iliminf— = —1

n—soo v 2nloglogn n—oo +/2nloglogn
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almost surely. In fact, one way to prove Kolmogorov’s LIL is to embed the Random

Walk into a Brownian motion, cf. e.g. Rogers and Williams, Vol. I, Ch. 7 or Section[3.3]

Passage times

We now study the set of passage times to a given level a for a one-dimensional Brownian
motion (B;);>o. This set has interesting properties — in particular it is a random fractal.
Fix a € R, and let

A(w) = {t>0: B(w)=a} C [0,00).

Assuming that every path is continuous, the random set A,(w) is closed for every w.
Moreover, scale invariance of Brownian motion implies a statistical self similarity prop-
erty for the sets of passage times: Since the rescaled process (c~/2B,;);>0 has the same
distribution as (B;);>¢ for any ¢ > 0, we can conclude that the set valued random vari-
able ¢ - A,z has the same distribution as A,. In particular, A is a fractal in the sense
that

Ao ~ c¢-Ay for any ¢ > 0.

Figure 1.4: Brownian motion with corresponding level set A.
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Moreover, by Fubini’s Theorem one easily verifies that A, has almost surely Lebesgue
measure zero. In fact, continuity of ¢ — B,(w) for any w implies that (¢,w) — B;(w) is
product measurable (Exercise). Hence {(¢,w) : B;(w) = a} is contained in the product

o-algebra, and

EMA)] = E /I{a}(Bt)dt _ /P[Bt:a]dt _—

Theorem 1.22 (Unbounded oscillations, recurrence).

>0

P [suth = +oo} = P [inth = —oo} = 1.

In particular, for any a € R, the random set A\, is almost surely unbounded, i.e. Brow-

nian motion is recurrent.

Proof. By scale invariance,

supB; ~ ¢ Y?supB, = ¢ Y?supB, for any ¢ > 0.
>0 >0 >0

Hence,

P [suth 2@] =P [suth Za-\/E]

>0 >0
for any ¢ > 0, and therefore sup B; € {0, oo} almost surely. The first part of the asser-
tion now follows since sup B; is almost surely strictly positive. By reflection symmetry,

we also obtain inf B; = —oo with probability one. 0

The last Theorem makes a statement on the global structure of the set A,. By invariance

w.r.t. time inversion this again translates into a local regularity result:

Theorem 1.23 (Fine structure of A,). The set A, is almost surely a perfect set, i.e., any

t € A, is an accumulation point of \,,.
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Proof. We prove the statement for a = 0, the general case being left as an exercise. We

proceed in three steps:

STEP 1: 0 is almost surely an accumulation point of Ay: This holds by time-reversal.
Setting Et =t - By, we see that 0 is an accumulation point of A, if and only of
for any n € N there exists ¢ > n such that Et = 0, i.e., if and only if the zero set
of ét is unbounded. By Theorem this holds almost surely.

STEP 2: Forany s > 0, T, := min(A, N [s,00)) = min{t > s : B; = a} is almost
surely an accumulation point of A,: For the proof we need the strong Markov
property of Brownian motion which will be proved in the next section. By The-
orem the random variable 7T is almost surely finite. Hence, by continuity,

Br, = a almost surely. The strong Markov property says that the process

B, = BTSth - BTsu t > 07

is again a Brownian motion starting at 0. Therefore, almost surely, 0 is an accu-
mulation point of the zero set of B, by Step 1. The claim follows since almost

surely
{tZOEtIO} = {tZO:BTSth:BTS} = {tZTS:Bt:CL} g Aa.
STEP 3: To complete the proof note that we have shown that the following properties

hold with probability one:

(1). A, is closed.

(2). min(A, N [s,00)) is an accumulation point of A, for any s € Q..

Since Q, is a dense subset of R, , (1) and (2) imply that any ¢ € A, is an accu-
mulation point of A,. In fact, for any s € [0, ¢] N Q, there exists an accumulation

point of A, in (s, t] by (2), and hence ¢ is itself an accumulation point.

Remark. It can be shown that the set A, has Hausdorff dimension 1/2.
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1.5 Strong Markov property and reflection principle

In this section we prove a strong Markov property for Brownian motion. Before, we give
another motivation for our interest in an extension of the Markov property to random

times.

Maximum of Brownian motion

Suppose that (B;);>o is a one-dimensional continuous Brownian motion starting at 0
defined on a probability space (2,4, P). We would like to compute the distribution of

the maximal value

M, = max B

t€[0,s]

attained before a given time s € R,. The idea is to proceed similarly as for Random

Walks, and to reflect the Brownian path after the first passage time
T, = min{t>0:B;,=a}

to a given level a > 0:

B,
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It seems plausible (e.g. by the heuristic path integral representation of Wiener measure,

or by a Random Walk approximation) that the reflected process (Et)tzo defined by

ét _ B; fort < 1T,
a—(By—a) fort>T,
is again a Brownian motion. At the end of this section, we will prove this reflection
principle rigorously by the strong Markov property. Assuming the reflection principle
is true, we can compute the distribution of M in the following way:
P[M; >a] = P[M;>a,Bs;<a|+ P[Ms > a,Bs > a
— P[B,>a]+ P[B, > d
= 2-P[Bs; > d
= P[|Bs| > a].
Thus M has the same distribution as | By|.
Furthermore, since M, > a if and only if M, = max{B, : t € [0,s]} > a, we obtain

the stronger statement

P[M,>a,B;<c = P[M,>a,B;,>2a—c = P[B,>2a—c

for any @ > 0 and ¢ < a. As a consequence, we have:

Theorem 1.24 (Maxima of Brownian paths).

(1). Forany s > 0, the distribution of M is absolutely continuous with density

) = = ep(=a/29)- Jom(a).

(2). The joint distribution of M, and By is absolutely continuous with density

2r —y 2z —y)?
—— 77 ] ] I o .
e eXp< = 0,00 (T) L (—c0,2) (Y)

fuB () = 2
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Proof. (1) holds since M, ~ |B;|. For the proof of (2) we assume w.l.o.g. s = 1. The
general case can be reduced to this case by the scale invariance of Brownian motion

(Exercise). Fora > 0 and ¢ < a let
G(a,c) = P[M;>a,B; <c|.
By the reflection principle,
G(a,c) = P[Bi1>2a—¢ = 1-—®2a—c),

where ¢ denotes the standard normal distribution function. Since lim G(a,c¢) = 0 and
a—r0o0
lim G(a,c) = 0, we obtain

Cc——00

P[M, > a,B, <] = G(a,¢c) = / / (z,y) dydx

T=a y=—00

_ / / 22—y exp< (ngy)z) dydz.

T=a Yy=—00

This implies the claim for s = 1, since M; > 0 and B; < M by definition of M;. [

The Theorem enables us to compute the distributions of the first passage times 7;. In

fact, fora > 0 and s € [0, c0) we obtain

P[T,<s] = PIMy>a] = 2-P[By;>a] = 2-P[B; > a/V5]
- \f / /2 4. (1.5.1)
e

Corollary 1.25 (Distribution of 7),). For any a € R \ {0}, the distribution of T, is

absolutely continuous with density

fr.(s) = e/,
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Proof. For a > 0, we obtain

a 2
s) = Fl(s) = ——e />
fTa< ) Ta< ) \/ﬁ

by (I.5.I). For a < 0 the assertion holds since T, ~ T_, by reflection symmetry of

Brownian motion. U

Next, we prove a strong Markov property for Brownian motion. Below we will then
complete the proof of the reflection principle and the statements above by applying the

strong Markov property to the passage time 7,,.

Strong Markov property for Brownian motion

Suppose again that (B;):>o is a d-dimensional continuous Brownian motion starting at

0 on a probability space ({2, A, P), and let
]:tB = o0(Bs : 0<s <, t>0,

denote the o-algebras generated by the process up to time .

Definition. A random variable T : Q — [0, o0 is called an (FP)-stopping time if and

only if
{T<t} € FP foranyt > 0.

Example. Clearly, for any a € R, the first passage time
T, = min{t >0 : B, =a}

to a level a is an (F7)-stopping time.
The o-algebra FZ describing the information about the process up to a stopping time 7'
is defined by

FB ={AcA: An{T <t} € FP foranyt > 0}.
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Note that for (F7) stopping times S and T with S < T we have FZ C FZ, since for
t>0

ANn{S<tye F’ = AN{T <t} = An{S<t}n{T <t} € FP.

For any constant s € R, the process (Bs;+ — Bs):>0 is @ Brownian motion independent
of F5.

A corresponding statement holds for stopping times:

Theorem 1.26 (Strong Markov property). Suppose that T is an almost surely finite
(FP) stopping time. Then the process (ét)tzo defined by

Et = Bry— By ifT < oo, 0 otherwise,

is a Brownian motion independent of F=.

Proof. We first assume that 7" takes values only in C' U {oo} where C' is a countable
subset of [0,00). Then for A € FZ and s € C, we have AN {T = s} € FZ and
ét = B;.s—Bs;on AN{T = s}. By the Markov property, (B;s— Bs):>o is a Brownian
motion independent of FZ. Hence for any measurable subset I' of C'([0, oc], RY), we

have

P{(Bi)izo €TYNA] = > P[{(Biys — B)izo € TYNAN{T = s}

= > wll]-PIAN{T =s}] = p[l]- P[A]

where iy denotes the distribution of Brownian motion starting at 0. This proves the

assertion for discrete stopping times.

For an arbitrary (F7) stopping time 7T that is almost surely finite and n € N, we set
T, = %[nTW, ie.,

k k—1 k
T, = — on { <T§—} for any £ € N.
n n n
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Since the event {7}, = k/n} is ]-",f/n—measurable for any k € N, T), is a discrete (F7)
stopping time. Therefore, (Br, 1+ — Br, ):>0 is a Brownian motion that is independent
of Ff , and hence of the smaller o-algebra 7. As n — oo, T,, — T, and thus, by

continuity,

B, = Bri—Br = lim (B, — Br,).

Now it is easy to verify that (ét)tzo is again a Brownian motion that is independent of
FE. 0

A rigorous reflection principle

We now apply the strong Markov property to prove a reflection principle for Brownian
motion. Consider a one-dimensional continuous Brownian motion (B;);>¢ starting at 0.

For a € R let

T, = min{t >0 : B, =a} (first passage time),
BtT * = B} (process stopped at 7,), and
Et = Br,— Brp, (process after T,).

Theorem 1.27 (Reflection principle). The joint distributions of the following random

variables with values in R x C([0,00)) x C([0,00)) agree:

(Tu, (Bf*)iz0, (Bizo)  ~ (T, (BI*)iz0. (= Bi)izo)

Proof. By the strong Markov property, the process B is a Brownian motion starting at
0 independent of Fr,, and hence of T, and B”* = (B/*),>¢. Therefore,

Po(T,,B™ B)™ = Po(T,,B")"' @ uy = Po (T, B —B)™".

O
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As a consequence of the theorem, we can complete the argument given at the beginning
of this section: The "shadow path" LA?t of a Brownian path B; with reflection when

reaching the level a is given by

~ Bl fort <T,
th = ~ )
a— Byp, fort>T,

whereas
Bl fort < T,
th - - .
a+ By_r, fort>T1T,
By the Theorem[I27, (B, ),>0 has the same distribution as (B, ). Therefore, and since

max B; > a if and only if max Et > q, we obtain for a > c:
t€(0,s] t€[0,s]
P maXBtZa,Bsgc} = P[maxEtZCL,ESZQa—C]

telo,s] te(0,s]

= P[ESZQCL—C}

o0

= ! / e~ /25 .
21

2a—c

V>
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Chapter 2
Martingales in discrete time

Classical analysis starts with studying convergence of sequences of real numbers. Sim-
ilarly, stochastic analysis relies on basic statements about sequences of real-valued ran-
dom variables. Any such sequence can be decomposed uniquely into a martingale, i.e.,
a real.valued stochastic process that is “constant on average”, and a predictable part.
Therefore, estimates and convergence theorems for martingales are crucial in stochastic

analysis.

2.1 Definitions and examples

We fix a probability space (€2,.4, P). Moreover, we assume that we are given an in-
creasing sequence J,, (n = 0,1,2,...) of sub-c-algebras of A. Intuitively, we often

think of F,, as describing the information available to us at time n. Formally, we define:

Definition (Filtration, adapted process). (1). A filtration on (2, A) is an increasing

sequence
Fo € FL C F C ...

of o-algebras F, C A.

(2). A stochastic process (X,)n>o is adapted to a filtration (F,)n>o iff each X,, is

F,-measurable.
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Example. (1). The canonical filtration (F.) generated by a stochastic process (X,)
is given by

FX = 0(Xo, X1,...,X,).

n

If the filtration is not specified explicitly, we will usually consider the canonical

filtration.

(2). Alternatively, filtrations containing additional information are of interest, for ex-

ample the filtration

Fn == O'(Z,Xo,Xl,...7Xn)

generated by the process (X,,) and an additional random variable Z, or the filtra-
tion

fn - U(X07%7X17Y17"'7Xnayn)

generated by the process (X,,) and a further process (Y,).

Clearly, the process (X,,) is adapted to any of these filtrations. In general, (X,,) is
adapted to a filtration (F,,) if and only if X C JF,, for any n > 0.

Martingales and supermartingales

We can now formalize the notion of a real-valued stochastic process that is constant

(respectively decreasing or increasing) on average:

Definition (Martingale, supermartingale, submartingale). (/). A sequence of real-
valued random variables M, : Q@ — R (n = 0,1,...) on the probability space
(Q, A, P) is called a martingale w.r.t. the filtration (F,,) if and only if

(a) (M,) is adapted w.r.t. (F,),
(b) M, is integrable for any n > 0, and
(¢c) EIM, |F,_1] = M,_1 foranyn € N.
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(2). Similarly, (M,) is called a supermartingale (resp. a submartingale) w.r.t. (F,)
if and only if (a) holds, the positive part M, (resp. the negative part M, ) is inte-
grable for any n > 0, and (c) holds with “=" replaced by “<”, “>" respectively.

Condition (c) in the martingale definition can equivalently be written as
() E[Mpy1 — M, | F,] =0 foranyn € Z,,

and correspondingly with “=" replaced by “<” or “>" for super- or submartingales.

Intuitively, a martingale is a “fair game™’, i.e., M,,_; is the best prediction (w.r.t. the
mean square error) for the next value M,, given the information up to time n — 1. A su-
permartingale is “decreasing on average”, a submartingale is “increasing on average”,
and a martingale is both “decreasing” and “increasing”, i.e., “constant on average”. In

particular, by induction on n, a martingale satisfies
E[M,] = E[M,] for any n > 0.

Similarly, for a supermartingale, the expectation values E[M,,] are decreasing. More

generally, we have:

Lemma 2.1. If (M,,) is a martingale (respectively a supermartingale) w.r.t. a filtration
(F,) then

&)
| =

E[M, . | Fn M, P-almost surely for any n, k > 0.

Proof. By induction on k: The assertion holds for £ = 0, since M, is F,,-measurable.

Moreover, the assertion for £ — 1 implies

= E[Myy|F)] = M,  Pas.

by the tower property for conditional expectations. L
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Remark (Supermartingale Convergence Theorem). A key fact in analysis is that
any lower bounded decreasing sequence of real numbers converges to its infimum. The
counterpart of this result in stochastic analysis is the Supermartingale Convergence The-
orem: Any lower bounded supermartingale converges almost surely, cf. Theorem

below.

Some fundamental examples
a) Sums of independent random variables
A Random Walk .
So = _m n=0,1,2,...,

=1

with independent increments 7; € £'(, A, P) is a martingale w.r.t. to the filtration
Fo = o(m,...,nn) = (S0, S1,--.,5n)
if and only if the increments 7); are centered random variables. In fact, for any n € N,
B[Sy — St | Fama] = Elnn | Fai] = Eln]

by independence of the increments. Correspondingly, (.S,,) is an (F,,) supermartingale
if and only if E[n;] <0 for any i € N.
b) Products of independent non-negative random variables
A stochastic process

M, = liy n=0,12,...,

with independent non-negative factors Y; € £!(Q, A, P) is a martingale respectively a

supermartingale w.r.t. the filtration
.Fn == O'(Yl,...,Yn)

if and only if E[Y;] = 1 foranyi € N, or E[Y;] < 1 for any ¢ € N respectively. In fact,

as M, is F,-measurable and Y, is independent of F,,, we have

E[My1 | F] = E[My, - Ypu1 | Fo] = My - E[Y,,]  foranyn > 0.
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Martingales and supermartingales of this type occur naturally in stochastic growth mod-

els.

Example (Exponential martingales). Consider a Random Walk S,, = >  n; with

i.i.d. increments 7);, and let
Z(\) = Elexp(An;)], A €ER,

denote the moment generating function of the increments. Then for any A € R with

Z(\) < oo, the process

n

M) = ez = [ /Z()

=1
is a martingale. This martingale can be used to prove exponential bounds for Ran-
dom Walks, cf. e.g. Chernov’s theorem [“Einfiihrung in die Wahrscheinlichkeitstheo-

rie”’, Theorem 8.3].

Example (CRR model of stock market). In the Cox-Ross-Rubinstein binomial model
of mathematical finance, the price of an asset is changing during each period either by
a factor 1 + a or by a factor 1 + b with a, b € (—1, 00) such that a < b. We can model

the price evolution in a fixed number NV of periods by a stochastic process
S =80 [ X n=0,1,2,...,N,

defined on Q = {1 + a,1 + b}", where the initial price Sy is a given constant, and
X;(w) = w;. Taking into account a constant interest rate > 0, the discounted stock

price after n periods is

~ L ¢
Sn = Sa/(L+7)" = SO'Hl—l—’r"

i=1

A probability measure P on () is called a martingale measure if the discounted stock
price is a martingale w.r.t. P and the filtration F,, = o(X3, ..., X,,). Martingale mea-
sures are important for option pricing under no arbitrage assumptions, cf. Section
below. For1 <n < N,

X, ~ ElX, | Fn_
‘ nl} = Sp-1- —[ | 1]-
1+7r

B[S | Faot] = E | Sp-s-
Bul Pl = B[S 1
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Hence (.5,,) is an (F,,) martingale w.r.t. P if and only if
EX,|Fu1] = 147 forany 1 <n < N. (2.1.1)

On the other hand, since in the CRR model X, only takes the values 1 4+ a and 1 + b,

we have

E[X,|Fo1] = (1+a)-PX,=14a|F, 1]+ (1+b)-PX,=1+4+0b|F,_1]
= 1l4+a+((b—a) - PX,=14+0|F,1]

Therefore, by 2.1.1)), (S,,) is a martingale if and only if

P[Xn:1+b\.7:n,1]zz_a foranyn=1,..., N,
—a
i.e., if and only if the growth factors X1, ..., Xy are independent with
— h—
PX,=1+0 =% and PX,=1+a = —_. (2.1.2)

b—a b—a
Hence for r ¢ [a, b], a martingale measure does not exist, and for r € [a, b, the product
measure P on () satisfying (Z1.2)) is the unique martingale measure. Intuitively this
is plausible: If » < a or r > b respectively, then the stock price is always growing
more or less than the discount factor (1 + )", so the discounted stock price can not be
a martingale. If, on the other hand, a < r < b, then (§n) is a martingale provided the
growth factors are independent with

PX,=1+b  (1+7r)—(1+a)

P[X, =1+d] (14+b)—1+r)

We remark, however, that uniqueness of the martingale measure only follows from

(2.1.1) since we have assumed that each X,, takes only two possible values (binomial
model). In a corresponding trinomial model there are infinitely many martingale mea-

sures!

¢) Successive prediction values

Let F' be an integrable random variable, and let (F,,) be a filtration on a probability
space (€2, A, P). Then the process

)

M, = E[F|F), n=012,...
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of successive prediction values for /' based on the information up to time 7 is a martin-

gale. Indeed, by the tower property for conditional expectations, we have
E[M, | F.-1] = E[E[F|F,)| Focr] = E[F | Faci] = Muy
almost surely for any n € N.

Remark (Representing martingales as successive prediction values). The class of
martingales that have a representation as successive prediction values almost contains
general martingales. In fact, for an arbitrary (F,,) martingale ()/,,) and any finite integer
m > 0, the representation

M, = E[M,, | F,]

holds for any n = 0,1,...,m. Moreover, the L' Martingale Convergence Theorem

implies that under a uniform integrability assumption, the limit M, = nll_lgo M, exists

in £!, and the representation
M, = E[My | F,]

holds for any n > 0, see Section [4.3]below .

d) Functions of martingales

By Jensen’s inequality for conditional expectations, convex functions of martingales are

submartingales, and concave functions of martingales are supermartingales:

Theorem 2.2 (Convex functions of martingales). Suppose that (M,,),>¢ is an (F,,)
martingale, and v : R — R is a convex function that is bounded from below. Then

(u(M,)) is an (F,,) submartingale.

Proof. Since u is lower bounded, u(M,,)~ is integrable for any n. Jensen’s inequality

for conditional expectations now implies
Elu(Mpi1) | Fo] 2 w(E[Mps | Fa]) = u(M,)
almost surely for any n > 0. U

Example. If ()/,) is a martingale then (| M,,|?) is a submartingale for any p > 1.
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e) Functions of Markov chains

Let p(z, dy) be a transition kernel on a measurable space (.5, 3).

Definition (Markov chain, superharmonic function). (/). A discrete time stochas-
tic process (Xp)n>0 with state space (S,B) defined on the probability space
(Q, A, P) is called a (time-homogeneous) Markov chain with transition kernel
p w.r.t. the filtration (F,,), if and only if
(a) (X,) is (F,) adapted, and
(b) P[X,+1 € B|F,| = p(X,, B) P-almost surely for any B € B and n > 0.

(2). A measurable function h : S — R is called superharmonic (resp. subharmonic)

w.r.t. p if and only if the integrals

W@ = [padphs).  wes.
exist, and
(oh)(z) < h(z)  (respectively (ph)(z) > h(z))
holds for any x € S.

The function h is called harmonic iff it is both super- and subharmonic, i.e., iff

(ph)(z) = h(z) forany x € S.

By the tower property for conditional expectations, any (F,,) Markov chain is also a

Markov chain w.r.t. the canonical filtration generated by the process.

Example (Classical Random Walk on Z<). The standard Random Walk (X,,),>o on
Z% is a Markov chain w.r.t. the filtration FX = o(Xj,..., X,,) with transition prob-

abilities p(z,r + e¢) = 1/2d for any unit vector e € Z?. The coordinate processes

(X")p>0, 7 =1,...,d, are Markov chains w.r.t. the same filtration with transition prob-
abilities . 0d 9

D 1) = plz,z—1) = —, P = —_-

Pl +1) = plaa—1) = 55 Blee) =
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A function h : Z¢ — R is superharmonic w.r.t. p if and only if
d
Agah(z) = = Z(h(x +¢;) = 2h(x) + h(z —¢;)) = 2d((ph)(z) — h(z)) < 0
i=1

for any x € Z.
A function h : Z — R is harmonic w.r.t. p if and only if h(z) = ax + b with a,b € R,

and h is superharmonic if and only if it is concave.

It is easy to verify that (super-)harmonic functions of Markov chains are (super-)mar-

tingales:

Theorem 2.3 (Superharmonic functions of Markov chains are supermartingales).

Suppose that (X,,) is an (F,,) Markov chain. Then the real-valued process
M, = h(X,), n=0,1,2...,

is a martingale (resp. a supermartingale) w.r.t. (JF,,) for every harmonic (resp. super-
harmonic) function h : S — R such that h(X,,) (resp. h(X,)") is integrable for all

n.

Proof. Clearly, (M,,) is again (F,,) adapted. Moreover,
E[Myi1 | Fo] = EM(Xni1) | Fa] = (ph)(Xy) P-as.
The assertion now follows immediately from the definitions. L

Below, we will show how to construct more general martingales from Markov chains,
cf. Theorem At first, however, we consider a simple example that demonstrates the

usefulness of martingale methods in analyzing Markov chains:

Example (Wright model for evolution). In the Wright model for a population of N
individuals (replicas) with a finite number of possible types, each individual in genera-

tion n + 1 inherits a type from a randomly chosen predecessor in the n th generation.
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The number X, of individuals of a given type in generation n is a Markov chain with

state space S = {0, 1, ..., N} and transition kernel
p(k,e) = Bin(N, k/N).

p(k,e)

Figure 2.1: Transition function of (X,).

Moreover, as the average of this binomial distribution is %, the function h(x) = x is
harmonic, and the expected number of individuals in generation n+ 1 given Xg, ..., X,
is

E[Xu1 | Xo, ..., X, = X,
Hence, the process (X,,) is a bounded martingale. The Martingale Convergence The-
orem now implies that the limit X, = lim X, exists almost surely, cf. Section
below. Since X, takes discrete values, we can conclude that X,, = X, eventually with

probability one. In particular, X, is almost surely an absorbing state. Hence
P[X, =0 or X, =N eventually] = 1. (2.1.3)

In order to compute the probabilities of the events “X,, = 0 eventually” and “X,, = N
eventually” we can apply the Optional Stopping Theorem for martingales, cf. Section
2.3 below. Let

T :=min{n>0: X,=0o0r X, =N}, minl := oo,

denote the first hitting time of the absorbing states. If the initial number X, of individ-

uals of the given type is k, then by the Optional Stopping Theorem,
E[Xr] = E[Xo] = k.
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Hence by we obtain
P[X, = N eventually] = P[Xr=N] = iE[XT] _k and
n N N’
k N —k
PX,=0 tuall = 1—-—= = —-.
[ eventually] ~ ~

Hence eventually all individuals have the same type, and a given type occurs eventually

with probability determined by its initial relative frequency in the population.

2.2 Doob Decomposition and Martingale Problem

We will show now that any adapted sequence of real-valued random variables can be
decomposed into a martingale and a predictable process. In particular, the variance
process of a martingale (M,,) is the predictable part in the corresponding Doob decom-
position of the process (M?2). The Doob decomposition for functions of Markov chains

implies the martingale problem characterization of Markov chains.

Doob Decomposition

Let (€2, A, P) be a probability space and (F,,),>¢ a filtration on (€2, A4).

Definition (Predictable process). A stochastic process (A,)n>o is called predictable

w.r.t. (Fy) ifand only if Ag is constant and A,, is measurable w.r.t. F,_1 foranyn € N.

Intuitively, the value A,,(w) of a predictable process can be predicted by the information

available at time n — 1.

Theorem 2.4 (Doob decomposition). Every (F,,) adapted sequence of integrable ran-

dom variables Y,, (n > 0) has a unique decomposition (up to modification on null sets)

Y, = M, + A, 2.2.1)
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into an (F,,) martingale (M,,) and a predictable process (A,) such that Ay = 0. Ex-
plicitly, the decomposition is given by

A, = Y E[Yi—Yio|Fiil, and M, =Y, — A,. (2.2.2)
k=1

Remark. (1). Theincrements E[Y;—Y}_1|Fy_1] of the process (A,,) are the predicted

increments of (Y,) given the previous information.

(2). The process (Y,,) is a supermartingale (resp. a submartingale) if and only if the

predictable part (A,,) is decreasing (resp. increasing).

Proof of Theorem Uniqueness: For any decomposition as in (2.2.1) we have
Y. —Y..1 = M,— M1+ A, — A4 for any k € N.
If (M,,) is a martingale and (A,,) is predictable then
ElYy —Yi1| Fra]l = E[Ap— A 1| Fra] = Ar— Ap, P-as.

This implies that (2.2.2)) holds almost surely if Ay = 0.
Existence: Conversely, if (A,) and (M,,) are defined by then (A,,) is predictable

with Ay = 0 and (M,,) is a martingale, since

E[My — My_1 | Fr—1] = 0 P-as. for any k € N.

Conditional Variance Process

Consider a martingale (M,,) such that M, is square integrable for any n > 0. Then,
by Jensen’s inequality, (M/?) is a submartingale and can again be decomposed into a

martingale (]T/fn) and a predictable process (M ),, such that (M), = 0:

M? = M, + (M), for any n > 0.
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The increments of the predictable process are given by

(M) — (M)y—y = E[M — My | Fi]
= E[(My— My_1)* | Focr] + 2 E[My—y - (M — My—y) | Fi—1]
= Var[My — My_1 | Fi_1] for any k € N.

Here we have used in the last step that E[M;, — Mj,_; | Fi_1| vanishes since (M,,) is a

martingale.

Definition (Conditional variance process). The predictable process

<M>n = ZV&I‘ [Mk — Mk,1 | -kal] 9 n > O,
k=1

is called the conditional variance process of the square integrable martingale (M,,).

Example (Random Walks). If M, = >~  n; is a sum of independent centered random

variables 7; and F,, = o(n,...,n,) then the conditional variance process is given by
<M>n = Z?:l Var[m]-

The conditional variance process is crucial for generalizations of classical limit theo-
rems such as the Law of Large Numbers or the Central Limit Theorem from sums of
independent random variables to martingales. A direct consequence of the fact that
M? — (M), is a martingale is that

E[M?] = E[M{] + E[(M),)] for any n > 0.
This can often be used to derive L?-estimates for martingales.

Example (Discretizations of stochastic differential equations). Consider an ordinary
differential equation
dX;

P WX > 2.2.
7t b(Xe), t >0, (2.2.3)
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where b : R? — R? is a given vector field. In order to take into account unpredictable

effects on a system, one is frequently interested in studying random perturbations of the
dynamics (2.2.3)) of type

dX; = b(X;)dt+ “noise” (2.2.4)

with a random noise term. The solution (X}):>o of such a stochastic differential equa-
tion (SDE) is a stochastic process in continuous time defined on a probability space
(Q, A, P) where also the random variables describing the noise effects are defined. The
vector field b is called the (deterministic) “drift”. We will make sense of general SDE

later, but we can already consider time discretizations.

For simplicity let us assume d = 1. Let b, : R — R be continuous functions, and let
(n:)ien be a sequence of i.i.d. random variables n; € L£%(), A, P) describing the noise

effects. We assume
E[ni] =0 and Var[n;] =1 for any i € N.

Here, the values 0 and 1 are just a convenient normalization, but it is an important
assumption that the random variables are independent with finite variances. Given an

initial value x5 € R and a fine discretization step size A > 0, we now define a stochastic

process (XT(Lh)) in discrete time by Xéh) = 1z, and
XM —xM = (X" b+ o(X)Whi, fork=0,1,2,... (2.2.5)

One should think of X ,gh) as an approximation for the value of the process (X;) at time
t = k - h. The equation (2.2.5)) can be rewritten as

n—1 n—1
XM = 2o+ > 0(XM) b+ o(XY) VR (2.2.6)
k=0 k=0

To understand the scaling factors h and v/h we note first that if o = 0 then (Z.2.9) re-
spectively (2.2.6)) is the Euler discretization of the ordinary differential equation (2.2.3).
Furthermore, if b = 0 and 0 = 1, then the diffusive scaling by a factor v/l in the second
term ensures that the continuous time process X E:L/)h pte [0, 00), converges in distri-

bution as h \, 0. Indeed, the functional central limit theorem (Donsker’s invariance
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principle) states that the limit process in this case is a Brownian motion (Bt)te[om). In

general, (2.2.6)) is an Euler discretization of a stochastic differential equation of type

where (B;):>o is a Brownian motion. Let F,, = o(ny, ..., 7,) denote the filtration gen-
erated by the random variables 7;. The following exercise summarizes basic properties

of the process X in the case of normally distributed increments.
Exercise. Suppose that the random variables 7; are standard normally distributed.

(1). Prove that the process X ) is a time-homogeneous (F;,) Markov chain with tran-
sition kernel
plz, o) = N(z+b(x)h,a(z)*h)[e].

(2). Show that the Doob decomposition X" = A" 4 A g given by

—_

A — b(X,gh))-h, MT(Lh) = 29+ U(X,gh))\/ﬁﬁkﬂ, (2.2.7)
0

i
o
3

i
o
i

and the conditional variance process of the martingale part is

n—1
(M = > a(xy (2.2.8)
k=0
(3). Conclude that
n—1
E[(M®M — 202 = E[o(X"™)? - h. (2.2.9)
k=0

The last equation can be used in combination with the maximal inequality for mar-
tingales to derive bounds for the processes (X (") in an efficient way, cf. Section

below.

Remark (Quadratic variation). The quadratic variation of a square integrable martin-
gale (M,,) is the process [M],, defined by

n

M, = S (M= My1),  n>0.
k=1
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It is easy to verify that M?> — [M], is again a martingale. However, [M],, is not pre-
dictable. For continuous martingales in continuous time, the quadratic variation and the
conditional variance process coincide. In discrete time or for discontinuous martingales

they are usually different.

Martingale problem

For a Markov chain (X,,) we obtain a Doob decomposition
f(X,) = MU 4 Al (2.2.10)

for any function f on the state space such that f(X,,) is integrable for each n. Compu-

tation of the predictable part leads to the following general result:

Theorem 2.5 (Martingale problem for time-homogeneuous Markov chains). Let p
be a stochastic kernel on a measurable space (S, B). Then for an (F,,) adapted stochas-

tic process (X,,)n>0 with state space (S, B) the following statements are equivalent:
(1). (X,) is a time homogeneous (F,,) Markov chain with transition kernel p.

(2). (X,) is a solution of the martingale problem for the operator £ = p — I, i.e.,

there is a decomposition
n—1
f(Xn) = MI + Y (ZH(X),  n>0,
k=0

with an (F,,) martingale (M,[@f])for every function f : S — R such that f(X,) is
integrable for each n, or, equivalently, for every bounded function f : S — R.

In particular, we see once more that if f(X,,) is integrable and f is harmonic (.Z f = 0)
then f(X,) is a martingale, and if f is superharmonic ((Zf < 0), then f(X,) is a

supermartingale. The theorem hence extends Theorem [2.3]above.
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Proof. The implication “(i)=-(ii)” is just the Doob decomposition for f(X,). In fact,
by Theorem 2.4 the predictable part is given by

Al = iE[f(Xk—i-l)_f(XkH]:k]
= S f) - ) = SZA(X),

and M} = f(X,) — Al is a martingale.
To prove the converse implication “(i1)=-(1)” suppose that MY
bounded f : S — R. Then

Visa martingale for any

0 = B, - MI| R

= E[f(Xn41) = [(Xa) | Fu] = ((pN)(Xn) — f(X0))
(Xn—f—l) | ]:n] - (pf)(Xn)

almost surely for any bounded function f. Hence (X,,) is an (F,,) Markov chain with

transition kernel p. ]

Example (One dimensional Markov chains). Suppose that under P,, the process (X,,)
is a time homogeneous Markov chain with state space S = R or S = Z, initial state
Xy = z, and transition kernel p. Assuming X,, € £%(Q, A, P) for each n, we define the
“drift’ and the “fluctuations” of the process by

b(l‘) = Ex[Xl—XQ]
a(r) = Var,[X; — Xo|.

We now compute the Doob decomposition of (X,,). Choosing f(x) = = we have

p-DI@ = [ysed)-v = EL6-X)] = bla)
Hence by Theorem [2.3]
n—1
X, = M+ bX) (2.2.11)
k=0
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with an (F,,) martingale (M,,). To obtain detailed information on },,, we compute the

variance process: By (2.2.11)) and the Markov property, we obtain

n—1 n—1 n—1
(M), = Y Var[Myy — My | Fi] = Y Var[Xpp — X | Fi] = a(X).
k=0 k=0 k=0
Therefore
n—1
M2 = My+Y a(Xp) (22.12)
k=0

with another (F,,) martingale (]T/fn) The functions a(x) and b(x) can now be used in
connection with fundamental results for martingales as e.g. the maximal inequality (cf.

2.4 below) to derive bounds for Markov chains in an efficient way.

2.3 Gambling strategies and stopping times

Throughout this section, we fix a filtration (F,,),,>0 on a probability space (€2, A, P).

Martingale transforms

Suppose that (M,,),>¢ is a martingale w.r.t. (F,,), and (C,,),en is a predictable sequence
of real-valued random variables. For example, we may think of C,, as the stake in the
n-th round of a fair game, and of the martingale increment M,, — M,,_; as the net gain
(resp. loss) per unit stake. In this case, the capital [, of a player with gambling strategy

(C,,) after n rounds is given recursively by

I, = 1,1+C, - (M,—M,) forany n € N,
ie.,
L, = I+ Ci-(My— M)
k=1
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Definition (Martingale transform). The stochastic process Cy M defined by
(CoM), = Z Cy - (My — My_4) foranyn >0,
k=1

is called the martingale transform of the martingale (M,),>0 w.r.t. the predictable

sequence (C,,),>1, or the discrete stochastic integral of C w.r.t. M.

We will see later that the process C'y M is a time-discrete version of the stochastic inte-
gral [ Cy dM; of a predictable continuous-time process C' w.r.t. a continuous-time mar-
tingale M. To be precise, (CyM),, coincides with the It6 integral fon Cry dMy of the

left continuous jump process ¢ — C; w.r.t. the right continuous martingale ¢ — M.

Example (Martingale strategy). One origin of the word “martingale” is the name of
a well-known gambling strategy: In a standard coin-tossing game, the stake is doubled
each time a loss occurs, and the player stops the game after the first time he wins. If the

net gain in n rounds with unit stake is given by a standard Random Walk
M, = m+...4n,  miid. with Pl; =1] = P[p; = —1] = 1/2,
then the stake in the n-th round is
C, =2""" ifg=...=n1=—-1, and C, = 0 otherwise.

Clearly, with probability one, the game terminates in finite time, and at that time the

player has always won one unit, i.e.,

P[(CeM), =1 eventually) = 1.

Stochastic Analysis Andreas Eberle



2.3. GAMBLING STRATEGIES AND STOPPING TIMES 87

At first glance this looks like a safe winning strategy, but of course this would only be

the case, if the player had unlimited capital and time available.

Theorem 2.6 (You can’t beat the system!). (1). If (M,),>o is an (F,) martingale,
and (C,),>1 is predictable with C,, - (M,, — M,,_1) € L}(Q, A, P) foranyn > 1,
then C,M is again an (F,,) martingale.

(2). If (M,) is an (F,,) supermartingale and (C.,),>1 is non-negative and predictable
with C,, - (M,, — M,,_1) € L for any n, then CyM is again a supermartingale.

Proof. For n > 1 we have

E[(CQM)n - (COM)n—l | fn—l] = E[Cn . (Mn - Mn—l) | fn—l]
— O, E[My—M, | Foa] = 0 Pas.
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This proves the first part of the claim. The proof of the second part is similar. L

The theorem shows that a fair game (a martingale) can not be transformed by choice of
a clever gambling strategy into an unfair (or “superfair”) game. In models of financial
markets this fact is crucial to exclude the existence of arbitrage possibilities (riskless

profit).

Example (Martingale strategy, cont.). For the classical martingale strategy, we obtain
E[(CoM),] = E[(CeM)o] = 0 forany n > 0

by the martingale property, although

lim (CoM), =1 P-almost surely.

n—oo

This is a classical example showing that the assertion of the dominated convergence

theorem may not hold if the assumptions are violated.

Remark. The integrability assumption in Theorem[2.6]is always satisfied if the random

variables (), are bounded, or if both C;, and M,, are square-integrable for any n.

Example (Financial market model with one risky asset). Suppose that during each
time interval (n — 1,n), an investor is holding ®,, units of an asset with price S,, per
unit at time n. We assume that (.S,,) is an adapted and (®,,) is a predictable stochastic
process w.r.t. a filtration (F,,). If the investor always puts his remaining capital onto
a bank account with guaranteed interest rate r (“riskless asset”) then the change of his

capital V,, during the time interval (n — 1,n) is given by

Vn = Vn—l + (I)n . (Sn — Sn—l) + (Vn—l — q)n . Sn—l) - T. (231)

Considering the discounted quantity \7” = V,/(1 + )", we obtain the equivalent
recursion

Vi, = Vo1 4+ @, - (S, — Syy) forany n > 1. (2.3.2)

In fact, (2.3.1)) holds if and only if

V= (L4 1)Viy = @, - (Sh — (1+7)S0 1),
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which is equivalent to [2.3.2]). Therefore, the discounted capital at time n is given by

Vi = Vot (9.5),.
By Theorem 2.6 we can conclude that, if the discounted price process (.S,) is an (F,,)

martingale w.r.t. a given probability measure, then (V},) is a martingale as well. In this

case, assuming that 1} is constant, we obtain in particular
EV,] = W,

or, equivalently,
E[V,] = (1+7r)"V, forany n > 0. (2.3.3)

This fact, together with the existence of a martingale measure, can now be used for
option pricing under a no-arbitrage assumption. To this end we assume that the payoff
of an option at time N is given by an (Fy )-measurable random variable F'. For example,
the payoff of a European call option with strike price K based on the asset with price

process (S,,) is Sy — K if the price S,, at maturity exceeds K, and 0 otherwise, i.e.,
F = (Sy—K)".

Suppose further that the option can be replicated by a hedging strategy (®,,), i.e., there
exists an Jp-measurable random variable V; and a predictable sequence of random vari-
ables (®,,)1<n<n such that

F =1Vy

is the value at time N of a portfolio with initial value Vj, w.r.t. the trading strategy (®,,).
Then, assuming the non-existence of arbitrage possibilities, the option price at time
0 has to be Vj, since otherwise one could construct an arbitrage strategy by selling
the option and investing money in the stock market with strategy (®,,), or conversely.
Therefore, if a martingale measure exists (i.e., an underlying probability measure such
that the discounted stock price (§n) is a martingale), then the no-arbitrage price of the
option at time 0 can be computed by (2.3.3) where the expectation is taken w.r.t. the

martingale measure.

The following exercise shows how this works out in the Cox-Ross-Rubinstein binomial

model:
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Exercise (No-Arbitrage Pricing in the CRR model). Consider the CRR binomial
model, ie., @ = {1 +a,1 +b}Y with -1 <a <7r < b < oo, X;(wi,...,wn) = w;,
Fn=0(Xy,...,X,),and

where Sy is a constant.

(1). Completeness of the CRR model: Prove that for any function F' : 2 — R there
exists a constant 1 and a predictable sequence (®,,)1<,<n such that FF = Vy
where (V},)1<n<n is defined by (2.3.1)), or, equivalently,

F
T

Hence in the CRR model, any Fx-measurable function /' can be replicated by

= ‘71\/ = Vo+(q).§)N-

a predictable trading strategy. Market models with this property are called com-

plete.

Hint: Prove inductively that forn = N,N —1,...,0, F = F/(1 + )~ can be

represented as
N

F=V,+ > &-(S—S.)

i=n+1

with an F,,-measurable function \7” and a predictable sequence (P;),+1<i<n-

(2). Option pricing: Derive a general formula for the no-arbitrage price of an option
with payoff function F' : 2 — R in the CRR model. Compute the no-arbitrage

price for a European call option with maturity /V and strike K explicitly.

Stopped Martingales

One possible strategy for controlling a fair game is to terminate the game at a time
depending on the previous development. Recall that a random variable 7" : Q —
{0,1,2,...} U {oo} is called a stopping time w.r.t. the filtration (F,,) if and only if
the event {T" = n} is contained in F,, for any n > 0, or equivalently, iff {T' < n} € F,
for any n > 0.
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Example (Hitting times). (1). The first hitting time
Ty = min{n>0:X, € B} (where min () := o)
and the first passage or return time
Sp = min{n>1:X, € B}
to a measurable subset B of the state space by an (F,,) adapted stochastic process
are (F,,) stopping times. For example, for n > 0,
{Tg=n} = {X,eBY. .. X,..€BX,eB} € F,.
If one decides to sell an asset as soon as the price .5,, exceeds a given level A > 0

then the selling time equals 7{, ) and is hence a stopping time.

(2). On the other hand, the last visit time
Ly = sup{n>0:X,¢€ B} (where sup () := 0)

is not a stopping time in general. Intuitively, to decide whether L = n, informa-

tion on the future development of the process is required.

We consider an (F,,)-adapted stochastic process (M,,),>0, and an (F,,)-stopping time
T on the probability space (£2,.4, P). The process stopped at time 7" is defined as
(MT/\n)nZO where

M, (w) forn < T'(w),

MT/\n(w) = MT(w)/\n(w) =
Mrpey(w)  forn > T(w).

For example, the process stopped at a hitting time 75 gets stuck at the first time it enters

the set B.

Theorem 2.7 (Optional Stopping Theorem,Version 1). If (M,,),>o is a martingale
(resp. a supermartingale) w.r.t. (F,), and T is an (JF,)-stopping time, then the stopped
process (Mrpn)n>o is again an (F,,)-martingale (resp. supermartingale). In particular,

we have

—~

<)

E[Mrpn) = E[M) foranyn > 0.
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Proof. Consider the following strategy:
Con = Iirsny = 1= Iir<n_y,

1.e., we put a unit stake in each round before time 7" and quit playing at time 7". Since

T is a stopping time, the sequence (C,,) is predictable. Moreover,
Mppn — My = (CuM),  foranyn > 0. (2.3.4)

In fact, for the increments of the stopped process we have

= Cn ' (Mn - Mn—1)7

M, — M, ifT >n
MT/\n_MT/\(nfl) = 0 ST <n—1

and (2.3.4) follows by summing over n. Since the sequence (C,,) is predictable, bounded
and non-negative, the process C, M is a martingale, supermartingale respectively, pro-
vided the same holds for M. O

Remark (IMPORTANT). (1). In general, it is NOT TRUE under the assumptions in
Theorem [2.7] that

E[My] = E[M,], E[Ms] < E[M,] respectively. (2.3.5)

Suppose for example that (M,,) is the classical Random Walk starting at 0 and
T = Ty is the first hitting time of the point 1. Then, by recurrence of the
Random Walk, T' < oo and My = 1 hold almost surely although M, = 0.

(2). If, on the other hand, T is a bounded stopping time, then there exists n € N such

that 7'(w) < n for any w. In this case, the optional stopping theorem implies
<
E[My] = E[Mrn] 2 E[M,).

More general sufficient conditions for (2.3.3)) are given in Theorems 2.8] 2.9 and

below.

Example (Classical ruin problem). Let a,b,x € Z with a < z < b. We consider the

classical Random Walk

n 1
X, =a+> m,  npiid with Pl = 1] = 3
1=1
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with initial value X, = 2. We now show how to apply the Optional Stopping Theorem

to compute the distributions of the exit time
T(w) = min{n >0 : X, (w) & (a,b)},

and the exit point X7. These distributions can also be computed by more traditional
methods (first step analysis, reflection principle), but martingales yield an elegant and

general approach.

(1). Ruin probability r(z) = P[Xr = a).
The process (X)) is a martingale w.r.t. the filtration F,, = o(ny,...,7n,), and
T < oo almost surely holds by elementary arguments. As the stopped process
X7, is bounded (a < X7p, < b), we obtain

n— o0

x = E[Xo| = E[Xrpa] = E[X7] = a-r(x)+b-(1—r(x))

by the Optional Stopping Theorem and the Dominated Convergence Theorem.

Hence

r(z) = (2.3.6)

(2). Mean exit time from (a, b).
To compute the expectation E[T], we apply the Optional Stopping Theorem to
the (F,,) martingale
M, = X?—n.

By monotone and dominated convergence, we obtain

2 =  E[M)] = E[Mpy] = E[X2,] — E[T An]

Therefore, by (2.3.6),

E[T] = E[X2] -2 = a* r(x) +b*- (1 —r(x)) — 22
= (b—2x) - (x—a). (2.3.7)
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(3).

4.

Mean passage time of b.
The first passage time 7, = min{n > 0 : X,, = b} is greater or equal than the
exit time from the interval (a, b) for any a < z. Thus by (2.3.7), we have

E[T,) > lim (b—2x)-(x —a) = oo,

a—r—00
i.e., T; is not integrable! These and some other related passage times are im-
portant examples of random variables with a heavy-tailed distribution and infinite

first moment.

Distribution of passage times.
We now compute the distribution of the first passage time 7}, explicitly in the case

x =0and b= 1. Hence let 7" = T}. As shown above, the process

M) = e /(cosh \)", n >0,

is a martingale for each A € R. Now suppose A > 0. By the Optional Stopping
Theorem,

1 = E[MJ] = E[M3,] = E[e*"/(cosh \)"""] (2.3.8)

for any n € N. As n — oo, the integrands on the right hand side converge
to e*(cosh A\) ™ - I{7<o0}. Moreover, they are uniformly bounded by e*, since
X7an < 1 for any n. Hence by the Dominated Convergence Theorem, the expec-
tation on the right hand side of (2.3.8) converges to Efe*/(cosh \)T ; T < oo,

and we obtain the identity
El(cosh\)™"; T < o0] = e for any A > 0. (2.3.9)

Taking the limit as A \, 0, we see that P[T" < oc| = 1. Taking this into account,
and substituting s = 1/cosh A in (2.3.9), we can now compute the generating

function of 7" explicitly:
E[s'] = e = (1-V1—-3s2)/s  foranys € (0,1). (2.3.10)

Developing both sides into a power series finally yields

an .P[T =n] = Z(_l)erl (1/2> g2m=1

n=0 m=1 m
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Therefore, the distribution of the first passage time of 1 is given by

P[T =2m—1] = (—1)™"! (17512) = (—1)’”“-%- (—%) _ (% —m + 1) /m!

and P[T = 2m] = 0 for any mN.

Optional Stopping Theorems

Stopping times occurring in applications are typically not bounded. Therefore, we need
more general conditions guaranteeing that (2.3.3) holds nevertheless. A first general

criterion is obtained by applying the Dominated Convergence Theorem:

Theorem 2.8 (Optional Stopping Theorem, Version 2). Suppose that (M,,) is a mar-
tingale w.r.t. (F,), T is an (F,,)-stopping time with P[T" < oo| = 1, and there exists a
random variable Y € L'(Q, A, P) such that

|Mrpn| < Y P-almost surely for any n € N.

Then
E[Mr] = E[M,].

Proof. Since P[T < co] = 1, we have

My = lim Mp,, P-almost surely.
n—o0

By Theorem 2.7 E[M,] = E[Mrn,), and by the Dominated Convergence Theorem,
E[Mpp,) — E[M7p] as n — oo. O

Remark (Weakening the assumptions). Instead of the existence of an integrable ran-
dom variable Y dominating the random variables Mr,,, n € N, it is enough to assume
that these random variables are uniformly integrable, i.e.,

sup E[|MTM\ s | Mpan| > c} - 0 as ¢ — 00.

neN
A corresponding generalization of the Dominated Convergence Theorem is proven in
Section 4.3 below.
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For non-negative supermartingales, we can apply Fatou’s Lemma instead of the Domi-
nated Convergence Theorem to pass to the limit as n — oo in the Stopping Theorem.
The advantage is that no integrability assumption is required. Of course, the price to

pay is that we only obtain an inequality:

Theorem 2.9 (Optional Stopping Theorem, Version 3). If ()M,,) is a non-negative

supermartingale w.r.t. (F,), then
E[My] > E[Mr; T < oo

holds for any (F,,) stopping time T.

Proof. Since My = lim Mpp, on {T < oo}, and My > 0, Theorem 2.7] combined
n—oo

with Fatou’s Lemma implies

E[M,] > liminf E[Mpn,] > B [liminf Mw] > E[My; T < ool.

n—oo n—oo

O

Example (Dirichlet problem for Markov chains). Suppose that w.r.t. the probability
measure P,, the process (X,,) is a time-homogeneous Markov chain with measurable
state space (S, B), transition kernel p, and start in . Let D € B be a measurable
subset of the state space, and f : D¢ — R a measurable function (the given “boundary
values™), and let

T = min{n >0 : X, € D}

denote the first exit time of the Markov chain from D. By conditioning on the first
step of the Markov chain, one can show that if f is non-negative or bounded, then the
function

ha) = Bf(Xr): T<ox], (ze9),

is a solution of the Dirichlet problem
(ph)(z) = h(z) forz € D,
h(z) = f(x) forz € D,
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see [ XXXStochastic Processes].

By considering the martingale h(Xr,,) for a function A that is harmonic on D, we

obtain a converse statement:

Exercise (Uniqueness of the Dirichlet problem). Suppose that P,[T < oo] = 1 for
any v € S.

(1). Prove that h(X7x,) is a martingale w.r.t. P, for any bounded solution A of the
Dirichlet problem and any = € S.

(2). Conclude that if f is bounded, then
h(z) = E.[f(X7)] (2.3.11)
is the unique bounded solution of the Dirichlet problem.

(3). Similarly, show that for any non-negative f, the function % defined by is

the minimal non-negative solution of the Dirichlet problem.

We finally state a version of the Optional Stopping Theorem that applies in particular to

martingales with bounded increments:
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Corollary 2.10 (Optional Stopping for martingales with bounded increments). Sup-
pose that (M,,) is an (F,,) martingale, and there exists a finite constant K € (0, 00) such

that
E[|Myi1 — M,| | F) €< K P-almost surely for any n > 0. (2.3.12)
Then for any (F,,) stopping time T with E[T| < oo, we have

E[Mr] = E[My).

Proof. For any n > 0,
| Mppa| < [Mo| + ) [Mig1 — Myl - Irsay.
i=0

Let Y denote the expression on the right hand side. We will show that Y is an integrable
random variable — this implies the assertion by Theorem 2.8 To verify integrability of
Y note that the event {7 > i} is contained in F; for any ¢ > 0 since 7 is a stopping
time. Therefore and by (2.3.12)),

Summing over %, we obtain

EY] < E[|Mo|]+k-ip[T>¢] = E[|Mo|] + k- E[T] < o0

=0

by the assumptions. ]

Exercise (Integrability of stopping times). Prove that the expectation E[T] of a stop-
ping time 7' is finite if there exist constants € > 0 and k£ € N such that

PT<n+k|F) > ¢ P-a.s. forany n € N.
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Wald’s identity for random sums

We finally apply the Optional Stopping Theorem to sums of independent random vari-
ables with a random number 7" of summands. The point is that we do not assume that
T is independent of the summands but only that it is a stopping time w.r.t. the filtration

generated by the summands.
Let S, = n1 + ... + 1, with i.i.d. random variables n; € £!(Q, A, P). Denoting by m
the expectations of the increments 7);, the process

M, =5,—n-m

is a martingale w.r.t. 7,, = o(n1, ..., n,). By applying Corollary 2.10/to this martingale,

we obtain:

Theorem 2.11 (Wald’s identity). Suppose that T is an (F,,) stopping time with E[T] <

0o. Then
E[Sr] = m - E[T)].

Proof. For any n > 0, we have
E[Mys1 — M| | Fo] = Ellnpr —m|[Fa] = Bl —ml]

by the independence of the 7;. As the 7); are identically distributed and integrable, the
right hand side is a finite constant. Hence Corollary 2.10/ applies, and we obtain

0 = E[My] = E[My] = E[Sy] —m- E[T].

2.4 Maximal inequalities

For a standard Random Walk S,, = 1y + ... + 1y, ; i.i.d. with P[n; = +1] = 1/2, the
reflection principle implies the identity
Plmax(Sy, S1,...,5,) > ¢ = P[S, > ]+ P[S, < ¢;max(Sy, Si,...,5) >
= P[|S,] > ]+ P[S, > (]
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for any ¢ € N. In combination with the Markov-Ceby3ev inequality this can be used to
control the running maximum of the Random Walk in terms of the moments of the last

value S,,.

Maximal inequalities are corresponding estimates for max(My, My, ..., M,) or sup M,
k>0
when (M,,) is a sub- or supermartingale respectively. These estimates are an important

tool in stochastic analysis. They are a consequence of the Optional Stopping Theorem.

Doob’s inequality

We first prove the basic version of maximal inequalities for sub- and supermartingales:

Theorem 2.12 (Doob).

(1). Suppose that (M,),>o is a non-negative supermartingale. Then

P [sup M, > c} <
k>0

Q|

- E[My] forany c > 0.

(2). Suppose that (M,,),>o is a non-negative submartingale. Then

1 1
P [max M, Zc] < -.F [Mn; max M, Zc] < —-E[M,] foranyc > 0.
0<k<n c < c

Proof. (1). For ¢ > 0 we consider the stopping time
T. = min{k >0 : My > c}, min () = oo.

Note that 7. < oo whenever sup M}, > c. Hence by the version of the Optional

Stopping Theorem for non-negative supermartingales, we obtain
1 1
Plsup My > ¢] < P[T, <] < —E[My,; T. < o0] < —E[M,).
c c

Here we have used in the second and third step that (M,,) is non-negative. Re-

placing ¢ by ¢ — ¢ and letting ¢ tend to zero we can conclude

1
Plsup My, > ¢] = li{‘rg)P[supMk > c—¢| < liminf E[My] = —- E[M,].
€ C

e\0 c—¢
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(2). For a non-negative supermartingale, we obtain

1
leax Mch} = P[T.<n| < —E[Mr,; T. <n]
c

0<k<n

1 1
= EZE[MR;TC:/@] < EZ/E[zwn;Tc:k]
k=0 k=0
1

= —-E[M,;T.<nl.
c
Here we have used in the second last step that E[M ; T, = k] < E[M,,; T. = k]
since (M,,) is a supermartingale and {7, = k} is in F.
U

First consequences of Doob’s maximal inequality for submartingales are extensions of

the classical Markov- Cebysev inequalities:

Corollary 2.13. (1). Suppose that (M,,),>¢ is an arbitrary submartingale (not neces-

sarily non-negative!). Then

1
P{maXMkZC} < —E{M+'
c

3 max My, > c] forany c > 0, and
k<n <n

P {I&ax M > c] < e F {e’\Mn ; Iil<aX M > c] forany \,c > 0.

(2). If (M,,) is a martingale then, moreover, the estimates
1
P {maX|Mk| > c} < —F {|Mn|p; max | M| > c}
k<n cP k<n

hold for any ¢ > 0 and p € [1, o).

Proof. The corollary follows by applying the maximal inequality to the non-negative
submartingales M, exp(AM,,), | M, | respectively. These processes are indeed sub-
martingales, as the functions x — 2" and = — exp(Az) are convex and non-decreasing

for any A > 0, and the functions x +— |z|? are convex for any p > 1. U
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102 CHAPTER 2. MARTINGALES IN DISCRETE TIME

LP inequalities

The last estimate in Corollary [2.13] can be used to bound the L? norm of the running
maximum of a martingale in terms of the L”-norm of the last value. The resulting bound,
known as Doob’s LP-inequality, is crucial for stochastic analysis. We first remark:

Lemma 2.14. IfY : Q — R, is a non-negative random variable, and G(y) = | g(z)dz

C—

is the integral of a non-negative function g : R, — R, then

o0

ElG(Y)] = / 9() - PIY > d de.

Proof. By Fubini’s theorem we have

EGY)] = E / g(0)de| = E / Tow(©)g(c) de

_ /g(c) P[Y > ¢ de.

Theorem 2.15 (Doob’s L? inequality). Suppose that (M,,),>o is a martingale, and let

My := max | M|, and ~ M* := sup |M,].
k

k<n
Then, for any p, q € (1, 00) such that% + % = 1, we have

IMlle < - [[Mallze,  and — [[M7|[r < g - sup || My| L.

In particular, if (M,) is bounded in LP then M* is contained in LP.
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Proof. By Lemma Corollary applied to the martingales M,, and (—M,), and
Fubini’s theorem, we have
BlOy) B [ pot P 2 d de

0
[

[Pk L
< /pcp E[|M,|; M} > c] dc

0
M*

n

Fub.

= B |Mn\-/pcp2dp
0

p #\p—1
= EEHMM'(MJ ]

forany n > 0 and p € (1, 00). Setting ¢ = -£ and applying Holder’s inequality to the

right hand side, we obtain
E[(M;)] < q- Mol - I(M7)P e = q- | Mal|ze - E[(M;;)"]M7,

i.e.,
1Ml = B[V < g | Mol (2.4.1)

This proves the first inequality. The second inequality follows as n — oo, since

IM s = |

lim M* = liminf | M}, < q-sup||M,|
n—»00 Lp n—00 neN

by Fatou’s Lemma. O

Hoeffding’s inequality

For a standard Random Walk (S,,) starting at 0, the reflection principle combined with

Bernstein’s inequality implies the upper bound

P[max(Sp,...,S,) >¢] < 2-P[S, > < 2-exp(—2c¢®/n)

forany n € Nand ¢ € (0, c0). A similar inequality holds for arbitrary martingales with

bounded increments:
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Theorem 2.16 (Azuma, Hoeffding). Suppose that (M,,) is a martingale such that
|M,, — M,—1| < a, P-almost surely

for a sequence (a,,) of non-negative constants. Then

1 n
— > < ) Z
P I;?Qf(Mk M) > c} < exp ( 5¢ El al> (2.4.2)

foranyn € Nand c € (0,00).

Proof. W.l.o.g. we may assume M, = 0. Let Y,, = M,, — M,,_; denote the martingale
increments. We will apply the exponential form of the maximal inequality. For A > 0

and n € N, we have,

n

[

i=1

E[M] = E = E[eMn B M| F]] (2.4.3)

To bound the conditional expectation, note that

Y, S - eann 4+ Z + eAan
2 a, 2 a,

e

holds almost surely, since z — exp(Az) is a convex function, and —a, < Y, <
a,. Indeed, the right hand side is the value at Y,, of the secant connecting the points

(—an, exp(—Aa,)) and (a,, exp(Aa,)). Since (M,,) is a martingale, we have
EY,|Foa] = 0,
and therefore
EBleM | Foo] < (e + €M) /2 = cosh(Ma,) < Pan)?/2
almost surely. Now, by (2.4.3]), we obtain

E[e)\Yn] < E[eAMn—l] ,e(Aan)2/2.
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Hence, by induction on n,

1
E[e*r] < exp <§>\2 Z af) for any n € N, (2.4.4)

and, by the exponential maximal inequality (cf. Corollary 2.13),

k<n

1 n
Plmax M, > ¢] < exp <—)\c + 5)\2 2@?) (2.4.5)

holds for any n € N and ¢, A > 0.
For a given c and n, the expression on the right hand side of is minimal for A =
¢/ >, a?. Choosing ) correspondingly, we finally obtain the upper bound 2.4.2). O

i=1""

Hoeffding’s concentration inequality has numerous applications, for example in the
analysis of algorithms, cf. [Mitzenmacher, Upful: Probability and Computing]. Here,

we just consider one simple example to illustrate the way it typically is applied:

Example (Pattern Matching). Suppose that X, X5, ..., X,, is a sequence of indepen-
dent, uniformly distributed random variables (“letters”) taking value sin a finite set S
(the underlying “alphabet”), and let

n—I

N = Iix—arXiamann X —a) (2.4.6)
=0

denote the number of occurrences of a given “word” ajas - - -a; with [ letters in the
random text. In applications, the “word” could for example be a DNA sequence. We

easily obtain
E[N] =) PXiy=a, fork=1,...1] = (n—1+1)/|S|" (2.4.7)
=0

To estimate the fluctuations of the random variable N around its mean value, we con-

sider the martingale

Mi :E[N|O'(X1,7XZ)], (Z:(),l,,n)
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with initial value M, = E[N] and terminal value M, = N. Since at most [ of the
summands in (2.4.6) are not independent of i, and each summand takes values 0 and 1
only, we have

|M; — M; 1| <1 foreach:=0,1,...,n.

Therefore, by Hoeffding’s inequality, applied in both directions, we obtain
PN — E[N]| > ¢] = P[|M, — My| > ¢] < 2exp(—c?/(2nl?))
for any ¢ > 0, or equivalently,
P[IN — E[N]| > ¢-l\/n] < 2-exp(—£?/2) for any € > 0. (2.4.8)

The equation (2.4.7)) and the bound (2.4.8]) show that N is highly concentrated around

its mean if [ is small compared to /7.
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Chapter 3
Martingales in continuous time

The notion of a martingale, sub- and supermartingale in continuous time can be defined
similarly as in the discrete parameter case. Fundamental results such as the optional
stopping theorem or the maximal inequality carry over from discrete parameter to con-
tinuous time martingales under additional regularity conditions as, for example, conti-
nuity of the sample paths. Similarly as for Markov chains in discrete time, martingale
methods can be applied to derive explicit expressions and bounds for probabilities and

expectations of Brownian motion in a clear and efficient way.

We start with the definition of martingales in continuous time. Let (2, A, P) denote a

probability space.

Definition. (/). A continuous-time filtration on (92, A) is a family (F;)ic,) of o-
algebras F; C A such that F, C F; forany 0 < s < .

(2). A real-valued stochastic process (M;)icjo,00) on (2, A, P) is called a martingale
(or super-, submartingale) w.r.t. a filtration (F;) if and only if

(a) (M,) is adapted w.rt. (F;), i.e., M, is F, measurable for any t > 0.
(b) Foranyt > 0, the random variable M, (resp. M,", M) is integrable.

(<,>)

(c) E[M;|Fs] M P-almost surely for any 0 < s < t.
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108 CHAPTER 3. MARTINGALES IN CONTINUOUS TIME

3.1 Some fundamental martingales of Brownian Motion

In this section, we identify some important martingales that are functions of Brownian

motion. Let (B;):>o denote a d-dimensional Brownian motion defined on (2, A, P).

Filtrations generated by Brownian motion

Any stochastic process (X;):>o in continuous time generates a filtration
F¥ = o0(X,:0<s<t), t>0.

However, not every hitting time that we are interested in is a stopping time w.r.t. this
filtration. For example, for one-dimensional Brownian motion (B;), the first hitting
time T = inf{t > 0 : B; > c} of the open interval (c, o) is not an (F7) stopping
time. An intuitive explanation for this fact is that for ¢ > 0, the event {T" < ¢} is not
contained in ]—"tB , since for a path with B; < con [0,¢] and B, = ¢, we can not decide
at time t, if the path will enter the interval (¢, o) in the next instant. For this and other

reasons, we also consider the right-continuous filtration

Fo=(Fl.. t=0

e>0

that takes into account “infinitesimal information on the future development.”

Exercise (Hitting times as stopping times). Prove that the first hitting time 74 =
inf{t >0 : B; € A} of aset A C R%is an (F?) stopping time if A is closed, whereas

Ty is an (F;) stopping time, but not necessarily an (F7) stopping time if A is open.

It is easy to verify that a d-dimensional Brownian motion (B;) is also a Brownian motion

w.r.t. the right-continuous filtration (F;):

Lemma 3.1. For any 0 < s < t, the increment B; — B, is independent of Fs with
distribution N (0, (t — s) - I).

Proof. Since t — B, is almost surely continuous, we have

B,— B, = lim (B, — B,;.)  P-as. (3.1.1)
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For small € > 0 the increment B; — B, is independent of F, fw and hence independent
of F;. Therefore, by (3.1.1)), B; — B, is independent of F; as well. O

Another filtration of interest is the completed filtration (F/"). A o-algebra F is called
complete w.r.t. a probability measure P iff it contains all subsets of P-measure zero
sets. The completion of a o-algebra A w.r.t. a probability measure P on (£2,.4) is the

complete o-algebra
AT = {ACQ:34, A€ A1 AL CAC Ay, P[A\ A =0}

generated by all sets in A and all subsets of P-measure zero sets in A.

It can be shown that the completion (F/) of the right-continuous filtration (F;) is again
right-continuous. The assertion of Lemma [3.1] obviously carries over to the completed

filtration.

Remark (The ‘“usual conditions”). Some textbooks on stochastic analysis consider
only complete right-continuous filtrations. A filtration with these properties is said to
satisfy the usual conditions. A disadvantage of completing the filtration, however, is
that (F7) depends on the underlying probability measure P (or, more precisely, on its
null sets). This can cause problems when considering several non-equivalent probability

measures at the same time.

Brownian Martingales

We now identify some basic martingales of Brownian motion:

Theorem 3.2 (Elementary martingales of Brownian motion). For a d-dimensional
Brownian motion (By) the following processes are martingales w.r.t. each of the filtra-
tions (FP), (F) and (FF):

(1). The coordinate processes Bt(i), 1< <d

(2). Bt(i)Bt(j) —t-0;; forany1 <i,j <d.
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(3). exp(a- B, — |al?t) forany a € R

The processes M = exp(a - B; — 3|a|*t) are called exponential martingales.

Proof. We only prove the second assertion for d = 1 and the right-continuous filtration
(F:). The verification of the remaining statements is left as an exercise.
For d = 1, since B; is normally distributed, the F;-measurable random variable B? — ¢

is integrable for any ¢. Moreover, by Lemma[3.1]

BB} - B} | F,] = El(B, - B,)’| F]+2B, E[B, - B, | F|]
= E[(Bt_Bs)]+QBS'E[Bt_BS] =t—s

almost surely. Hence
E[B? —t|F,) = B2—s  P-as.forany0 < s <t,
i.e., B? — tis an (F;) martingale. O

Remark (Doob decomposition, variance process of Brownian motion). For a one-

dimensional Brownian motion (B;), the theorem yields the Doob decomposition
B = M+t

of the submartingale (B?) into a martingale (M) and the continuous increasing adapted

process (B); = t.

A Doob decomposition of the process f(B;) for general functions f € C?*(R) will be

obtained below as a consequence of 1t0’s celebrated formula. It states that

f(B,) — /f )dB, + = /f” (3.1.2)

where the first integral is an Itd stochastic integral, cf. Section[6.3] If, for example, [’ is
bounded, then the Itd integral is a martingale as a function of ¢. If f is convex then f(B;)

is a submartingale and the second integral is a continuous increasing adapted process in
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t. It is a consequence of that Brownian motion solves the martingale problem for
the operator .2 f = f” /2 with domain Dom(.%#) = {f € C*(R) : f’ bounded}.

1t6’s formula can also be extended to the multi-dimensional case, see Section
below. The second derivative is then replaced by the Laplacian Af = Zle g%’;.
The multi-dimensional It6 formula implies that a sub- or superharmonic function of d-
dimensional Brownian motion is a sub- or supermartingale respectively, if appropriate

integrability conditions hold. We now give a direct proof of this fact by the mean value

property:

Lemma 3.3 (Mean value property for harmonic function in R?). Suppose that h €

C?(R?) is a (super-)harmonic function, i.e.,

©

Ah(zx) 0 forany v € R

Then for any x € R and any rotationally invariant probability measure (1 on R?,
&)
/ hz +y) u(dy) = h(x). (3.1.3)

Proof. By the classical mean value property, h(z) is equal to (resp. greater or equal

than) the average value { h of h on any sphere OB, (x) with center at = and radius
9B, ()
r > 0, cf. e.g. [XXXKo0nigsberger: Analysis II]. Moreover, if j is a rotationally invari-

ant probability measure then the integral in (3.1.3)) is an average of average values over

spheres:
)
[rarnutn) = [ f bundr) € ha),
9B (x)
where 15 is the distribution of R(z) = |z| under p. O

Theorem 3.4 (Superharmonic functions of Brownian motion are supermartin-
gales). If h € C%*(RY) is a (super-) harmonic function then (h(By)) is a (super-) mar-
tingale w.r.t. (F;) provided h(By) (resp. h(By)") is integrable for any t > 0.
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Proof. By Lemma/[3.1land the mean value property, we obtain
E[h(By) | Fo(w) = E[h(Bs + By — By) | Fo](w)
= FE[h(Bs(w) + B, — By)]

_ / h(By(w) +y) N(O,(t — ) T)(dy)
= h(

Bs(w))

forany 0 < s <t and P-almost every w. L

3.2 Optional Sampling and Optional Stopping

The Optional Sampling Theorem

The optional stopping theorem can be easily extended to continuous time martingales

with continuous sample paths. We directly prove a generalization:

Theorem 3.5 (Optional Sampling Theorem). Suppose that (M;).c(0,) is a martingale
w.r.t. an arbitrary filtration (F;) such that t — M;(w) is continuous for P-almost every
w. Then

E[Mr | Fs] = Ms P-almost surely (3.2.1)

for any bounded (F;) stopping times S and T with S < T.

We point out that an additional assumption on the filtration (e.g. right-continuity) is not
required in the theorem. Stopping times and the o-algebra Fg are defined for arbitrary

filtrations in complete analogy to the definitions for the filtration (F7) in Section [L.3l

Remark (Optional Stopping). By taking expectations in the Optional Sampling The-
orem, we obtain
E[Mz] = E[E[My | Fo]] = E[M]

for any bounded stopping time 7". For unbounded stopping times,

E[MT] = E[Mo]
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holds by dominated convergence provided 7' < oo almost surely, and the random vari-

ables Mrp,,n € N, are uniformly integrable.

Proof of Theorem[3.5] We verify the defining properties of the conditional expectation
in (3.4) by approximating the stopping times by discrete random variables:

(1). Mg has an Fs-measurable modification: For n € N let S, =2 |2"S ], i.e.,

Sy, = k-27" on {k-27"<S<(k+1)2"}forany k=0,1,2,....

We point out that in general, S, is not a stopping time w.r.t. (F). Clearly, the

sequence (gn)neN is increasing with S = lim S,,. By almost sure continuity

Mg = lim Mg P-almost surely. 3.2.2)

n—oo

On the other hand, each of the random variables M 3, is Fg-measurable. In fact,

M§n is<ny = Z My.o-n - Itpo-n<s<(ki1)2-7 and <t}

k:k-2—n<t

is Fi-measurable for any ¢ > 0 since S is an (F;) stopping time. Therefore, by
(32.2), the random variable Mg := lim sup M 5, is an Fg-measurable modifica-

n—o0

tion of Mg.

(2). E[Mr; A] = E[Ms; Al forany A € Fg: Forn € N, the discrete random vari-
ables T, = 27" - [2"T'] and S,, = 27™ - [2™S] are (F;) stopping times satisfying
T, > S, > S, cf. the proof of Theorem[L.26 In particular, F5 C Fs, C Fr..
Furthermore, (7,) and (S,,) are decreasing sequences with 7 = lim7,, and
S = limS,. As T and S are bounded random variables by assumption, the
sequences (7},) and (.S,,) are uniformly bounded by a finite constant ¢ € (0, 00).

Therefore, we obtain
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Figure 3.1: Two ways to approximate a continuous stopping time.

k:k-2—n<c
= > EM; AN{T, =k-27] (323)
k:k-2—n<c

= E[M,.; A] forany A € Fr,,
and similarly
E[Ms, ; A] = E[M.; A] forany A € Fg. . (3.2.4)

In (3.2.3) we have used that (1) is an (F;) martingale, and AN{7T,, = k-27"} €
Fro-n. Aset A € Fgis contained both in Fr, and Fg . Thus by (3.2.3) and
,

E[Mr, ; Al = E[Mg, ; A foranyn € Nandany A € Fs.  (3.2.5)

Asn — oo, My, — My and Mg, — Mg almost surely by continuity. It remains

to show that the expectations in (3.2.3) converge as well. To this end note that by

(3.2.3) and (3.2.4),

My, = E[M.|Fr] and Mg, = E[M,|Fs,] P-almost surely.
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We will prove in Section that any family of conditional expectations of a
given random variable w.r.t. different o-algebras is uniformly integrable, and that
for uniformly integrable random variables a generalized Dominated Convergence

Theorem holds, cf. Theorem .13l Therefore, we finally obtain
E[Mr; A] = E[lim Mg, ; A] = lim E[My, ; A
= limE[Mg, ; A] = Ellim Mg, ; A] = E[Mg; A,
completing the proof of the theorem.

O

Remark (Measurability and completion). In general, the random variable Mg is not
necessarily Fs-measurable. However, we have shown in the proof that Mg always has
an JFg-measurable modification M. 5. If the filtration contains all measure zero sets, then

this implies that M itself is Fg-measurable and hence a version of E[My | Fg].

Ruin probabilities and passage times revisited

Similarly as for random walks, the Optional Sampling Theorem can be applied to com-
pute distributions of passage times and hitting probabilities for Brownian motion. For a

one-dimensional Brownian motion (B;) starting at 0, and a, b > 0, let
T=inf{t >0 : B, & (—b,a)} and T,=inf{t >0 : B, =a}

denote the first exit time from the interval (—b, a) and the first passage time to the point
a, respectively. In Section [1.5/we have computed the distribution of 7}, by the reflection
principle. This and other results can be recovered by applying optional stopping to the
basic martingales of Brownian motion. The advantage of this approach is that it carries

over to other diffusion processes.
Exercise (Exit and passage times of Brownian motion). Prove by optional stopping:
(1). Law of the exit point: P[By = a] =b/(a+0b), P[Br=—bl=a/(a+b),

(2). Mean exit time: E[T| = a-band E[T,] = oo,
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(3). Laplace transform of passage times: For any s > 0,
Elexp(—sT,)] = exp(—aV/2s).

Conclude that the distribution of T}, on (0, o) is absolutely continuous with density

fr,(t) = a- (2mt3)7V2 . exp(—a?/2t).

Exit laws and Dirichlet problem

Applying optional stopping to harmonic functions of a multidimensional Brownian mo-
tion yields a generalization of the mean value property and a stochastic representation
for solutions of the Dirichlet problem. This will be exploited in full generality in Chap-
ter[7l Here, we only sketch the basic idea.

Suppose that h € C?(R?) is a harmonic function and that (B;);> is a d-dimensional

Brownian motion starting at  w.r.t. the probability measure P,. Assuming that
E.[h(B;)] < o0 forany ¢t > 0,

the mean value property for harmonic functions implies that i(B;) is a martingale under
P,, cf. Theorem 3.4l The first hitting time 7' = inf{t > 0 : B, € R?\ D} of the com-
plement of an open set D C R? is a stopping time w.r.t. the filtration (F). Therefore,
by Theorem [3.5land the remark below, we obtain

E.[h(Brn,)] = E.[h(Bo)] = h(x) for any n € N. (3.2.6)

Now let us assume in addition that the set D is bounded. Then 7' is almost surely
finite, and the sequence of random variables h(Bry,) (n € N) is uniformly bounded
because Bry, takes values in the closure D for any n € N. Applying the Dominated

Convergence Theorem to (3.2.6), we obtain the integral representation
ba) = Eh(B) = [ h)na(dy) (327
oD

where 1, = P, o B, ! denotes the exit law from D for Brownian motion starting at z.

In Chapter [7, we show that the representation (3.2.7) still holds true if h is a continuous
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function defined on D that is C? and harmonic on D. The proof requires localization
techniques that will be developed below in the context of stochastic calculus. For the
moment we note that the representation (3.2.7)) has several important aspects and appli-

cations:

Generalized mean value property for harmonic functions. For any bounded do-
main D C R? and any = € D, h(z) is the average of the boundary values of i on 9D

w.r.t. the measure f,.

Stochastic representation for solutions of the Dirichlet problem. A solution h €
C?*(D) N C(D) of the Dirichlet problem

Ah(z) = 0 forz € D, (3.2.8)
h(z) = f(x) for z € 0D,

has a stochastic representation

h(z) = E.[f(Br)] for any x € D. (3.2.9)

Monte Carlo solution of the Dirichlet problem. The stochastic representation (3.2.9)
can be used as the basis of a Monte Carlo method for computing the harmonic function
h(z) approximately by simulating a large number n of sample paths of Brownian motion
starting at =, and estimating the expectation by the corresponding empirical average. Al-
though in many cases classical numerical methods are more efficient, the Monte Carlo
method is useful in high dimensional cases. Furthermore, it carries over to far more

general situations.

Computation of exit law. Conversely, if the Dirichlet problem (3.2.8)) has a unique
solution h, then computation of A (for example by standard numerical methods) enables
us to obtain the expectations in (3.2.8). In particular, the probability h(x) = P,[Br € A]
for Brownian motion exiting the domain on a subset A C 0D is informally given as the

solution of the Dirichlet problem

Ah =0 onD, h=14 ondD.
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This can be made rigorous under regularity assumptions. The full exit law is the har-
monic measure, i.e., the probability measure y, such that the representation (3.2.7) holds
for any function h € C%(D) N C(D) with Ah = 0 on D. For simple domains such as

half-spaces, balls and cylinders, this harmonic measure can be computed explicitly.

Example (Exit laws from balls). For d > 2, the exit law from the unit ball D = {y €
R? : |y| < 1} for Brownian motion starting at a point z € R? with |z| < 1 is given by

1— |zf?

pa(dy) = (dy)

" -z’

where v denotes the normalized surface measure on the unit sphere ¢! = {y € R?¢ :
ly| = 1}. Indeed, the classical Poisson integral formula states that for any f € C(S%71),

the function
W) = / F() paldy)

solves the Dirichlet problem on D with boundary values lim h(x) = f(z) for any z €

Tz

S4=1 cf. e.g. [XXX Karatzas/Shreve, Ch. 4]. Hence by (3.2.9),

- |af?

y—z1”

E.[f(Br)) = / f(v) (dy)

holds for any f € C(S9°!), and thus by a standard approximation argument, for any

indicator function of a measurable subset of S9!,

3.3 Maximal inequalities and the Law of the Iterated

Logarithm

The extension of Doob’s maximal inequality to the continuous time case is straight-
forward. As a first application, we give a proof for the upper bound in the law of the

iterated logarithm.

Maximal inequalities in continuous time
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Theorem 3.6 (Doob’s LP inequality in continuous time). Suppose that (M;);c(o,00) is
a martingale with almost surely right continuous sample paths t — M;(w). Then the

following estimates hold for any a € [0,00), p € [1,00), ¢ € (1, 00] with % + % =1,

and ¢ > 0:
(1). P|sup |My] > ¢c| < P E[|M,],
te(0,a]
(2). || sup | My < g || My e
te(0,a] Ip

Remark. The same estimates hold for non-negative submartingales.

Proof. Let (m,) denote an increasing sequence of partitions of the interval [0, a] such
that the mesh size of m,, goes to 0 as n — co. By Corollary applied to the discrete

time martingale (M), , We obtain

P [max|Mt| > c} < E[|M,]P]/cP for any n € N.

tETI'n

Moreover, as n — o0,

max |[My| 7 sup |M,] almost surely
temn te[0,a)

by right continuity of the sample paths. Hence

U {maX|Mt| > c}]
tE™

n

P

sup |Mt|>c] = P

t€(0,a]

= lim P [maX|Mt| > c} < E[|M,JP]/c.

n—oo temy

The first assertion now follows by replacing ¢ by ¢ — ¢ and letting € tend to 0. The
second assertion follows similarly from Theorem U

As a first application of the maximal inequality to Brownian motion, we derive an upper
bound for the probability that the graph of one-dimensional Brownian motion passes a

line in R?:
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lm,T _

Lemma 3.7 (Passage probabilities for lines). For a one-dimensional Brownian motion

(By) starting at 0 we have
P[B; > B+ at/2 forsomet > 0] < exp(—af) forany o, 5 > 0.
Proof. Applying the maximal inequality to the exponential martingale

M = exp(aB; — a’t/2)

yields
P[B; > f+at/2 forsomet e [0,a]] = P sE]p](Bt —at/2) >
tel0,a
= P sup My = exp(aﬁ)] < exp(—af) - E[M;] = exp(—ap)
te0,a
for any a > 0. The assertion follows in the limit as a — oo. L

With slightly more effort, it is possible to compute the passage probability and the dis-
tribution of the first passage time of a line explicitly, cf. ?? below.

Application to LIL

A remarkable consequence of Lemma[3.7lis a simplified proof for the upper bound half
of the Law of the Iterated Logarithm:
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Theorem 3.8 (LIL, upper bound). For a one-dimensional Brownian motion ( B;) start-

ing at 0, e
lim sup : < +1 P-almost surely. (3.3.1)

N0 y/2tloglogt—!

Proof. Let o > 0. We would like to show that almost surely,

B, < (14 0)h(t) for sufficiently small ¢ > 0,

where h(t) := +/2tloglogt~!. Fix § € (0, 1). The idea is to approximate the function
h(t) by affine functions

Lo(t) = B+ ant/2

on each of the intervals [§™, "], and to apply the upper bounds for the passage prob-

abilities from the lemma.
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We choose «, and f3,, in a such way that [,,(6™) = h(6™) and [,,(0) = h(6")/2, i.e.,

By = h(6™)/2 and a, = h(6")/0".

For this choice we have ,,(0") > 0 - 1,,(6"'), and hence

L(t) < LET) < = (3.3.2)
— h(g) < @ for any t € [0, 6™ 1].
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wey + 7

h(0m)/2 +

We now want to apply the Borel-Cantelli lemma to show that with probability one,
By < (14 0)l,,(t) for large n. By Lemmal[3.7]

P[B; > (14 6)l,(t) forsomet > 0] < exp(—a,S,-(1+0)%)

mp<-h222«1+5f).

Choosing h(t) = /2tloglogt~1, the right hand side is equal to a constant multiple of
n~(+9? which is a summable sequence. Note that we do not have to know the precise
form of h(t) in advance to carry out the proof — we just choose A(t) in such a way that
the probabilities become summable!

Now, by Borel-Cantelli, for P-almost every w there exists N(w) € N such that
Bi(w) < (140)l,(t) forany ¢t € [0,1] and n > N(w). (3.3.3)

By (3.3.2), the right hand side of (3.3.3) is dominated by (1+6)h(t) /60 fort € [0, 671].

Hence

1
B; < i5h(t) forany ¢t € U [0, 6m1,

0
n>N

i.e., for any ¢ € (0, HN’l), and therefore,

B 1446
limsup —~ < o P-almost surely.
t\0 h(t) 8
The assertion then follows in the limitas # 1 and 0 0. OJ
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Since (—By) is again a Brownian motion starting at 0, the upper bound (3.3.1) also

implies 5
lim inf ! > —1 P-almost surely. 3.3.4)

N0 /2t loglogt—t

The converse bounds are actually easier to prove since we can use the independence of

the increments and apply the second Borel-Cantelli Lemma. We only mention the key

steps and leave the details as an exercise:

Exercise (Complete proof of LIL). Prove the Law of the Iterated Logarithm:

) By R >
1 — = 41 and 1 f—— = —1
Rt TR B

where h(t) = /2t loglogt—!. Proceed in the following way:

(1). Let @ € (0,1) and consider the increments Z,, = Byn — Bygn+1,n € N. Show that
if € > 0, then

P|Z, > (1 —¢)h(0") infinitely often] = 1.
(Hint: [ exp(—2?/2)dz < 2! exp(—2?/2))
(2). Conclude that by (3.3.4),

B
lim sup L > 11— P-almost surely for any € > 0,
o h(t)

and complete the proof of the LIL by deriving the lower bounds

B B
limsup— > 1 and liminf —= < —1 P-almost surely.  (3.3.5)
~o  h(t) N0 R(t)
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Chapter 4
Martingale Convergence Theorems

The strength of martingale theory is partially due to powerful general convergence the-
orems that hold for martingales, sub- and supermartingales. In this chapter, we study
convergence theorems with different types of convergence including almost sure, L>

and L' convergence, and consider first applications.

At first, we will again focus on discrete-parameter martingales — the results can then be

easily extended to continuous martingales.

4.1 Convergence in >

Already when proving the Law of Large Numbers, L? convergence is much easier to
show than, for example, almost sure convergence. The situation is similar for mar-
tingales: A necessary and sufficient condition for convergence in the Hilbert space
L?(£2, A, P) can be obtained by elementary methods.

Martingales in >

Consider a discrete-parameter martingale (M, ),,>o w.r.t. a filtration (F,,) on a probabil-

ity space (2, A, P). Throughout this section we assume:
Assumption (Square integrability). F[M?| < oo for any n > 0.

We start with an important remark:
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Lemma 4.1. The increments Y,, = M, — M,_, of a square-integrable martingale are

centered and orthogonal in L*(2, A, P) (i.e. uncorrelated).

Proof. By definition of a martingale, E[Y,, | F,,—1] = 0 for any n > 0. Hence E[Y,] =0
and E[Y,,Y,] = E[Y,, - E[Y, | Fz1]] = 0for 0 < m < n.

Since the increments are also orthogonal to M, by an analogue argument, a square
integrable martingale sequence consists of partial sums of a sequence of uncorrelated

random variables:

M, :M0+ZYk for any n > 0.
k=1

The Convergence Theorem

The central result of this section shows that an L?-bounded martingale (}M,,) can always
be extended ton € {0,1,2,...} U{oo}:

Theorem 4.2 (L? Martingale Convergence Theorem). The martingale sequence
(M,,) converges in L*(Q, A, P) as n — oo if and only if it is bounded in L? in the
sense that

sup E[M?] < co. 4.1.1)

n>0

In this case, the representation
M, = E[M | F,]

holds almost surely for any n > 0, where M, denotes the limit of M,, in L*(Q, A, P).

We will prove in the next section that (A/,,) does also converge almost surely to M.
An analogue result to Theorem E.2/holds with L? replaced by L? for any p € (1, c0) but
not for p = 1, cf. Section 43| below.

Proof. (1). Let us first note that

E[(M, — M,)?] = E[M? — E[M2]  for0<m < n. (4.1.2)
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Indeed,

E[MZ] - E[an] = E[(Mn - Mm)(Mn + Mm)]
= E[(M, — M,)? + 2E[M,, - (M,, — M,,)],

and the last term vanishes since the increment M,, — M,, is orthogonal to M, in
L2,

(2). To prove that (£.1.1)) is sufficient for L? convergence, note that the sequence
(E[M?]),>0 is increasing by (@.1.2). If (.1.1)) holds then this sequence is bound-
ed, and hence a Cauchy sequence. Therefore, by @.1.2), (M,,) is a Cauchy se-

quence in L?. Convergence now follows by completeness of L*(2, A, P).

(3). Conversely, if (M,,) converges in L? to a limit M, then the L? norms are bound-

ed. Moreover, by Jensen’s inequality, for each fixed k£ > 0,
E[M, | Fi] — E[My | F] in L*(Q, A, P) as n — oo.
As (M,,) is a martingale, we have E[M,, | F;] = M, for n > k, and hence
My = E[My | Fi P-almost surely.
O

Remark (Functional analytic interpretation of L? convergence theorem). The asser-
tion of the L? martingale convergence theorem can be rephrased as a purely functional

analytic statement:

An infinite sum > Y, of orthogonal vectors Y), in the Hilbert space L?(Q, A, P) is
k=1

convergent if and only if the sequence of partial sums »_ Y} is bounded.
k=1

How can boundedness in L? be verified for martingales? Writing the martingale (M,,)

as the sequence of partial sums of its increments Y,, = M,, — M,,_;, we have

E[M?] = <M0+zn:Yk,Mo+zn:Yk> = E[M§]+§:E[Yk2]

k=1 = L2 k=1
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by orthogonality of the increments and M. Hence

sup E[MZ] = E[M3]+)_ E[V].
n>0 k=1

Alternatively, we have E[M?] = E[MZ] + E[(M),]. Hence by monotone convergence

sup E[My] = E[Mg] + E[(M)]

n>0

where (M), = sup(M),.

Summability of sequences with random signs

As a first application we study the convergence of series with coefficients with random
signs. In an introductory analysis course it is shown as an application of the integral and

Leibniz criterion for convergence of series that

o0

> n~“ converges <~ a>1 , whereas
o n=1
> (—1)"n"* converges = a>0.
n=1

Therefore, it seems interesting to see what happens if the signs are chosen randomly.

The L? martingale convergence theorem yields:

Corollary 4.3. Let (a,,) be a real sequence. If (¢,,) is a sequence of independent random
variables on (2, A, P) with Ple,, = +1] = Ple,, = —1] = 1/2, then

Z Enan  converges in L*(Q, A, P) <= Z a? < oo.

n=1 n=1

n
Proof. The sequence M,, = > £jay, of partial sums is a martingale with
k=1

oup B(01Z] = Y Blefad] = 3 at

nz0 k=1 k=1

O
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o
Example. The series Y &, - n~“ converges in L? if and only if o > %
n=1

Remark (Almost sure asymptotics). By the Supermartingale Convergence Theorem
(cf. Theorem[4.3]below), the series » | £,,a,, also converges almost surely if > ai < 00.
On the other hand, if " a? = oo then the series of partial sums has almost surely
unbounded oscillations:
Exercise. Suppose that Y a,, = 0o, and let M,, = > ea.

k=1

(1). Compute the conditional variance process (M),,.

(2). For¢ > 0let T, = inf{n > 0 : |M,| > c}. Apply the Optional Stopping
Theorem to the martingale in the Doob decomposition of (A/?), and conclude
that P[T. = oco] = 0.

(3). Prove that (M,,) has almost surely unbounded oscillations.

L2 convergence in continuous time

The L? convergence theorem directly extends to the continuous-parameter case.

Theorem 4.4 (L? Martingale Convergence Theorem in continuous time). Let a €
(0, 00l. If (My)ejo,0) is a martingale w.rt. a filtration (Fy)cjo,a) Such that

sup E[M?] < oo

te[0,u)
then M, = 5{1 M, exists in L*(Q, A, P) and (My)iejo. is again a square-integrable

martingale.

Proof. Choose any increasing sequence ¢, € [0, u) such that t,, — w. Then (M, ) is an
L?-bounded discrete-parameter martingale. Hence the limit M, = lim M, exists in L?,
and

M,, = E[M,|F,,] for any n € N. (4.1.3)
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For an arbitrary ¢ € [0, u), there exists n € N with ¢,, € (¢, u). Hence
M, = ElM,, | F] = E[M,|F]

by (4.1.3) and the tower property. In particular, (M;).cjo, i a square-integrable mar-

tingale. By orthogonality of the increments,
B[(M, — M,,)*| = BE[(M, — My)*] + E[(M; — M,,)?] > E[(M, — M,)’]
whenever t,, <t < u. Since M, — M, in L?, we obtain

. N 2] _

O
Remark. (1). Note that in the proof it is enough to consider a fixed sequence ¢,, ,/* .

(2). To obtain almost sure convergence, an additional regularity condition on the sam-
ple paths (e.g. right-continuity) is required, cf. below. This assumption is not

needed for L? convergence.

4.2 Almost sure convergence of supermartingales

Let (Z,)n>0 be a discrete-parameter supermartingale w.r.t. a filtration (F,,),>o on a
probability space (£2,.4, P). The following theorem yields a stochastic counterpart to

the fact that any lower bounded decreasing sequence of reals converges to a finite limit:

Theorem 4.5 (Supermartingale Convergence Theorem, Doob). If sup E[Z, ] < oo
n>0

then (Z,) converges almost surely to a random variable Z,, € L}(Q, A, P).
In particular, supermartingales that are uniformly bounded from below converge almost

surely to an integrable random variable.
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Remark (L' boundedness vs. L' convergence). (1). The conditionsup F[Z,] < oo
holds if and only if (Z,,) is bounded in L'. Indeed, as E[Z,] < oo by our defini-

tion of a supermartingale, we have

E[|Z,|] = E[Z.)) +2E[Z;] < E[Z) +2E[Z;]  foranyn > 0.

(2). Although (Z,) is bounded in L' and the limit is integrable, L' convergence does

not hold in general, cf. the examples below.

For proving the Supermartingale Convergence Theorem, we introduce the number

U@ (w) of upcrossings of an interval (a, b) by the sequence Z,,(w), cf. below for the

AN
AN

AL
——

exact definition.

. J/

~
Ist upcrossing 2nd upcrossing

Note that if U (w) is finite for every non-empty bounded interval [a, b] then
lim sup Z,,(w) and lim inf Z,, (w) coincide, i.e., the sequence (Z,,(w)) converges. There-
fore, to show almost sure convergence of (Z,,), we derive an upper bound for U(*?), We

first prove this key estimate and then complete the proof of the theorem.

Doob’s upcrossing inequality

Forn € Nand a,b € R with a < b, we define the number U™ of upcrossings of the

interval [a, b] before time n by

UMY = max{k>0:30<s;<t; <sp<ty...<sp <t <n:

Zs,(w) < a, Zy,(w) > b}.

i
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Lemma 4.6 (Doob). If (Z,,) is a supermartingale then
(b—a)-E[U™Y] < E[(Z, —a)] foranya < bandn > 0.

Proof. We may assume E[Z, ] < oo since otherwise there is nothing to prove. The key
idea is to set up a predictable gambling strategy that increases our capital by (b — a)
for each completed upcrossing. Since the net gain with this strategy should again be a
supermartingale this yields an upper bound for the average number of upcrossings. Here

is the strategy:
I—) e Wait until 7, < a.

e Then play unit stakes until Z; > b.

’7 repea

The stake C}, in round k is

1 if Zy <a,
Cy =
0 otherwise,
and for £ > 2,
o 1 if (Cxy=1and Zx_1 <b)or (Cx_1 =0and Z;_; < a),
k= )

0 otherwise

Clearly, (Cy) is a predictable, bounded and non-negative sequence of random variables.

Moreover, Cy, - (Zy, — Z_1) is integrable for any & < n, because C}, is bounded and

E[1Z] = 2B2}) - ElZ) < 2E|Z] - E|2,) < 2E[Z{] - E|Z;]

n

for k < n. Therefore, by Theorem and the remark below, the process

k
(Co2)y = ZCZ' (Zi = Zi—v), 0<k<n,

i=1
is again a supermartingale.

Clearly, the value of the process C,Z increases by at least (b — a) units during each

Stochastic Analysis Andreas Eberle



4.2. ALMOST SURE CONVERGENCE OF SUPERMARTINGALES 133

completed upcrossing. Between upcrossing periods, the value of (C,Z); is constant.
Finally, if the final time n is contained in an upcrossing period, then the process can
decrease by at most (Z,, — a)~ units during that last period (since Z; might decrease

before the next upcrossing is completed). Therefore, we have
(CoZ)n > (b—a)-UY —(Z,—a)", ie.,

(b—a) -UY < (CoZ)p+ (Zn—a)".

A /\v/\ [\
ANV RN

Zy,
Gain>b—a Gain>b—a Loss < (Z, —a)~
Since C, 7 is a supermartingale with initial value 0, we obtain the upper bound
(b —a)B[U™] < B[(CuZ)n] + E[(Zy — a)7] < E[(Zn—a)7].
O

Proof of Doob’s Convergence Theorem

We can now complete the proof of Theorem

Proof. Let

U(a,b) = sup Uﬁa,b)
neN

denote the total number of upcrossings of the supermartingale (Z,,) over an interval
(a,b) with —co < a < b < oco. By the upcrossing inequality and monotone conver-

gence,

EU“Y] = lim B[U™Y] < -sup E[(Z, —a)7]. (4.2.1)

n—o0 b — Qa neN
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Assuming sup E[Z] < oo, the right hand side of is finite since (Z, —a)~ <
la| + Z,,. Therefore,

U <« o P-almost surely,

and hence the event

{liminf Z,, # limsup Z,} = U (U@ = 0}

a,beQ
a<b

has probability zero. This proves almost sure convergence.

It remains to show that the almost sure limit Z,, = lim Z,, is an integrable random
variable (in particular, it is finite almost surely). This holds true as, by the remark below

Theorem 4.3} sup F[Z,] < oo implies that (Z,,) is bounded in L', and therefore
E[|Zs|] = Elliminf |Z,|] < liminf E[|Z,]] < oo

by Fatou’s lemma. ]

Examples and first applications

We now consider a few prototypic applications of the almost sure convergence theorem:

Example (1. Sums of i.i.d. random variables). Consider a Random Walk

=1

on R with centered and bounded increments
n; ii.d. with |n;| < cand E[n;] =0, c€R.

Suppose that P[n; # 0] > 0. Then there exists € > 0 such that P[|n;| > €] > 0. As the
increments are i.i.d., the event {|n;| > £} occurs infinitely often with probability one.

Therefore, almost surely, the martingale (.S,,) does not converge as n — 0.

Now let a € R. We consider the first hitting time

T, = inf{t >0 : S, >a}

Stochastic Analysis Andreas Eberle



4.2. ALMOST SURE CONVERGENCE OF SUPERMARTINGALES 135

of the interval [a, c0). By the Optional Stopping Theorem, the stopped Random Walk
(ST,An)n>0 1s again a martingale. Moreover, as S, < a for any & < T, and the incre-

ments are bounded by ¢, we obtain the upper bound
Stoan < a+c for any n € N.

Therefore, the stopped Random Walk converges almost surely by the Supermartingale

Convergence Theorem. As (S,,) does not converge, we can conclude that
PT, <] =1 for any a > 0, i.e., limsup S, = oo almost surely.
Since (S,,) is also a submartingale, we obtain
liminf S,, = —oo  almost surely

by an analogue argument. A generalization of this result is given in Theorem 4.7l below.

Remark (Almost sure vs. LP convergence). In the last example, the stopped process

does not converge in L? for any p € [1, 00). In fact,

lim E[St,nn] = E[St,] > a  whereas FE|[St,,] = FE[So] = 0 for all n.

n—oo

Example (2. Products of non-negative i.i.d. random variables). Consider a growth

process
Zn = 1Iv
i=1
with i.i.d. factors Y; > 0 with finite expectation a € (0, 00). Then
M, = Z,/a"

is a martingale. By the almost sure convergence theorem, a finite limit M, exists al-
most surely, because M,, > 0 for all n. For the almost sure asymptotics of (7,,), we

distinguish three different cases:

(1). a < 1: In this case,
Z, = M, -a"

converges to 0 exponentially fast with probability one.
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(2). a = 1: Here (Z,,) is a martingale and converges almost surely to a finite limit. If
P[Y; # 1] > 0 then there exists ¢ > 0 such that Y; > 1 + ¢ infinitely often with
probability one. This is consistent with convergence of (Z,,) only if the limit is
zero. Hence, if (Z,) is not almost surely constant, then also in the critical case,

Z, — 0 almost surely.
(3). a > 1 (supercritical): In this case, on the set { M., > 0},
Ly = M, -a" ~ DMy-a",

i.e., (Z,) grows exponentially fast. The asymptotics on the set { M., = 0} is not

evident and requires separate considerations depending on the model.

Although most of the conclusions in the last example could have been obtained without
martingale methods (e.g. by taking logarithms), the martingale approach has the advan-
tage of carrying over to far more general model classes. These include for example

branching processes or exponentials of continuous time processes.

Example (3. Boundary behaviors of harmonic functions). Let D C R? be a bounded
open domain, and let ~ : D — R be a harmonic function on D that is bounded from

below:

Ah(z) = 0 foranyz € D, mlng) h(z) > —ooc. (4.2.2)

To study the asymptotic behavior of h(x) as = approaches the boundary 0D, we con-
struct a Markov chain (X,,) such that h(X,,) is a martingale: Let r : D — (0, 00) be a

continuous function such that
0 < r(z) < dist(z,0D) forany z € D, (4.2.3)

and let (X,,) w.r.t P, denote the canonical time-homogeneous Markov chain with state

space D, initial value x, and transition probabilities

p(z,dy) = Uniform distributionon {y € R : |y — x| = r(z)}.
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By (@.2.3)), the function h is integrable w.r.t. p(x, dy), and, by the mean value property,
(ph)(z) = h(x) forany x € D.

Therefore, the process h(X,,) is a martingale w.r.t. P, for each x € D. As h(X,) is
lower bounded by (4.2.2)), the limit as n — oo exists P,-almost surely by the Super-
martingale Convergence Theorem. In particular, since the coordinate functions x — x;
are also harmonic and lower bounded on D, the limit X, = 11113010 X,, exists P,-almost

surely. Moreover, X is in 9D, because r is bounded from below by a strictly positive

constant on any compact subset of D.

Summarizing we have shown:

(1). Boundary regularity: If h is harmonic and bounded from below on D then the
limit lim A(X,,) exists along almost every trajectory X, to the boundary 9D.

n—oo

(2). Representation of h in terms of boundary values: If h is continuous on D, then
h(X,) = h(Xs) P,-almost surely and hence

W) = lim E.[h(Xn)] = E[h(X)],

n—oo

i.e., the law of X w.r.t. P, is the harmonic measure on 0D.

Note that, in contrast to classical results from analysis, the first statement holds without
any smoothness condition on the boundary dD. Thus, although boundary values of A
may not exist in the classical sense, they do exist along almost every trajectory of the

Markov chain!
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Generalized Borel-Cantelli Lemma

Another application of the almost sure convergence theorem is a generalization of the
Borel-Cantelli lemmas. We first prove a dichotomy for the asymptotic behavior of mar-

tingales with L!-bounded increments:

Theorem 4.7 (Asymptotics of martingales with ! bounded increments). Suppose

that (M,) is a martingale, and there exists an integrable random variable Y such that
|M, — M,_1| <Y forany n € N.

Then for P-almost every w, the following dichotomy holds:

Either: The limit lim M, (w) exists in R,

n—oo

or: limsup M, (w) = +oco and liminf M, (w) = —o0.
n—o0

n—oo

The theorem and its proof are a generalization of Example 1 above.

Proof. Fora € (—00,0) let T, = min{n > 0 : M, > a}. By the Optional Stopping

Theorem, (Mr, »,,) is @ martingale. Moreover,
My, pn > min(My,a —Y) for any n > 0,

and the right hand side is an integrable random variable. Therefore, (},,) converges
almost surely on {7}, = oco}. Since this holds for every a < 0, we obtain almost sure

convergence on the set

{liminf M, > —oo} = U{Ta:oo}.
a<0
acQ

Similarly, almost sure convergence follows on the set {lim sup M,, < oo}. O

Now let (F,,),>0 be an arbitrary filtration. As a consequence of Theorem 4.7] we obtain:
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Corollary 4.8 (Generalized Borel-Cantelli Lemma). If (A,,) is a sequence of events

with A, € F, for any n, then the equivalence

w € A, infinitely often < Z P[A, | Foi](w) = oo

n=1

holds for almost every w € ().

Proof. Let S, = kz Iy, and T, = kz E[l4, | Fx—1]. Then S,, and T,, are almost surely
=1 =1

increasing sequences. Let S, = suI; S, and T,, = sup T,, denote the limits on [0, 0c].

The claim is that almost surely,
Seo = 00 <= T = oo. 4.2.4)

To prove (@.2.4) we note that S,, — T,, is a martingale with bounded increments. There-
fore, almost surely, S,, — T}, converges to a finite limit, or (lim sup(.S,, — 7},) = oo and
liminf(.S,, — T,,) = —o0). In the first case, (4.2.4) holds. In the second case, So, = oo
and T, = o0, SO holds, too. O

The assertion of Corollary generalizes both classical Borel-Cantelli Lemmas: If
(A,) is an arbitrary sequence of events in a probability space (£2,.4, P) then we can
consider the filtration F,, = (A, ..., A,). By Corollary 4.§] we obtain:

1% Borel-Cantelli Lemma: 1f ) P[A,] < cothen ) P[A, | F,—1] < oo almost surely,

and therefore

P[A, infinitely often] = 0.

2" Borel-Cantelli Lemma: 1f 5" P[A,] = oo and the A, are independent then
Y P[A, | Fo1] = > P[A,] = oo almost surely, and therefore

P[A, infinitely often] = 1.

University of Bonn 2015/2016



140 CHAPTER 4. MARTINGALE CONVERGENCE THEOREMS

Upcrossing inequality and convergence theorem in continuous time

The upcrossing inequality and the supermartingale convergence theorem carry over im-
mediately to the continuous time case if we assume right continuity (or left continuity)
of the sample paths. Let u € (0, cc], and let (Z;),c[o,.) be a supermartingale in contin-
uous time w.r.t. a filtration (F5). We define the number of upcrossings of (Z) over an
interval (a, b) before time ¢ as the supremum of the number of upcrossings over all time

discretizations (Zs)sc, where 7 is a partition of the interval [0, ¢]:

USP12) = sup UY((Z,)sen)-
wC[0,t]
finite

Note that if (Z;) has right-continuous sample paths and () is a sequence of partitions

of [0,¢] such that 0, t € 7o, 7, C 7,1 and mesh(7,) — 0 then

Uz] = lim U“D[(Z,)sen].

n—o0

Theorem 4.9 (Supermatingale Convergence Theorem in continuous time). Suppose

that (Zs)scjo,u) is a right continuous supermartingale.
(1). Upcrossing inequality: For any t € [0,u) and a < b,

EU*Y] <

(2). Convergence Theorem: If sup E|[Z;] < oo, then the limit Z,_ = li}n Z exists
s€[0,u) s u
almost surely, and Z,,_ is an integrable random variable.

Proof. (1). By the upcrossing inequality in discrete time,

BUCY[(Z,)ser)] < E[(Z —a)T]  foranyn €N,

where (7, ) is a sequence of partitions as above. The assertion now follows by the

Monotone Convergence Theorem.
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(2). The almost sure convergence can now be proven in the same way as in the discrete

time case.

O

More generally than stated above, the upcrossing inequality also implies that for a right-
continuous supermartingale (Z)cjo,) all the left limits 151% Zs, t € [0,u), exist simul-
taneously with probability one. Thus almost every sample path is cadlag (continue a
droite, limites a gauche, i.e., right continuous with left limits). By similar arguments,
the existence of a modification with right continuous (and hence cadlag) sample paths
can be proven for any supermartingale (Z) provided the filtration is right continuous

and complete, and s — F[Zj] is right continuous, cf. e.g. [XXXRevuz/Yor, Ch.IL,§2].

4.3 Uniform integrability and L' convergence

The Supermartingale Convergence Theorem shows that every supermartingale (Z,,) that
is bounded in L' converges almost surely to an integrable limit Z.,. However, L' con-

vergence does not necessarily hold:

Example. (1). Suppose that Z,, = [[_,Y; where the Y; are i.i.d. with E[Y;] = 1,
P[Y; # 1] > 0. Then, Z,, — 0 almost surely, cf. Example 2 in Section 4.2l On

the other hand, L' convergence does not hold as E[Z,,] = 1 for any n.

(2). Similarly, the exponential martingale M, = exp(B; — t/2) of a Brownian motion

converges to 0 almost surely, but E[M;] = 1 for any ¢.

L' convergence of martingales is of interest because it implies that a martingale se-
quence (M) can be extended to n = oo, and the random variables M,, are given as
conditional expectations of the limit M. Therefore, we now prove a generalization of
the Dominated Convergence Theorem that leads to a necessary and sufficient condition

for L' convergence.
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Uniform integrability

Let (€2, A, P) be a probability space. The key condition required to deduce L' conver-
gence from convergence in probability is uniform integrability. To motivate the defini-

tion we first recall two characterizations of integrable random variables:

Lemma 4.10. If X : Q — R is an integrable random variable on (), A, P), then
(1). [}L%EHXL | X| >¢] =0, and
(2). for any € > 0 there exists 0 > 0 such that

E[|X|; Al < e forany A € Awith P[A] <.

The second statement says that the positive measure
Q(A) = E[IX]|; A, AeA,

with relative density | X| w.r.t. P is absolutely continuous w.r.t. P in the following

sense: For any € > 0 there exists 6 > 0 such that

PA] <6 = QA < e

Proof. (1). For an integrable random variable X the first assertion holds by the Mono-

tone Convergence Theorem, since | X| - Ijjx|>c} \ 0O asc 7 oo.

(2). Lete > 0. By (1),

ElIX|: Al = EIX|; An{X] = )] + E[X]: A {|X] < c}]
< E|X]: [X] > d+c- P[4]
< iif oo

provided ¢ € (0, o0) is chosen appropriately and P[A] < ¢/2c.
L
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Uniform integrability means that properties (1) and (2) hold uniformly for a family of

random variables:

Definition (Uniform integrability). A family {X; : i € I} of random variables on
(Q, A, P) is called uniformly integrable if and only if

sup E[| Xi|; | Xs| > — O as c — oo.
el

Exercise (Equivalent characterization of uniform integrability). Prove that {X;

i € I} is uniformly integrable if and only if sup F[|X;|; A] < oo, and the measures
Qi(A) = E[|X;| ; A] are uniformly absolutely continuous, i.c., for any ¢ > 0 there
exists § > 0 such that

P[A] <6 = supFE[|X,|; A < e.
iel

We will prove below that convergence in probability plus uniform integrability is equiv-
alent to L' convergence. Before, we state two lemmas giving sufficient conditions for
uniform integrability (and hence for L' convergence) that can often be verified in appli-

cations:

Lemma 4.11 (Sufficient conditions for uniform integrability). A family {X; : i € I}

of random variables is uniformly integrable if one of the following conditions holds:

(1). There exists an integrable random variable Y such that

|1 X;| <Y foranyi e I.

(2). There exists a measurable function g : R, — R such that

lim 9(x) = 00 and sup Elg(|X;])] < oo.

T—00 €T icl
Proof. (1). If | X;| <Y then
sup E[|X;|; | Xi| > ] < E[Y; Y > (.
i€l

The right hand side converges to 0 as ¢ — oo if Y is integrable.
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(2). The second condition implies uniform integrability, because

Yy
sup E[|X;|; | Xi] > ] < sup —— -sup Flg(|Xi])].
i€l y>e g(y) iel

O

The first condition in Lemma is the classical assumption in the Dominated Con-

vergence Theorem. The second condition holds in particular if

sup E[| Xi|P] < oo for some p > 1 (LP boundedness),
iel

or, if

sup E[|X;|(log | Xi[)"] < oo (Entropy condition)

el
is satisfied. Boundedness in L', however, does not imply uniform integrability, cf. the

examples at the beginning of this section.

The next observation is crucial for the application of uniform integrability to martin-

gales:

Lemma 4.12 (Conditional expectations are uniformly integrable). If X is an inte-

grable random variable on (), A, P) then the family

{EIX|F]: FCA o-algebra}
of all conditional expectations of X given sub-c-algebras of A is uniformly integrable.
Proof. By Lemmad.10, for any £ > 0 there exists 6 > 0 such that

E[EX | F]|; [EIX | Fl[=d < E[E[|X||F]; [EIX[F][=d 43.D
= EIX]; [EIX[Fl=d < ¢

holds for ¢ > 0 with P[|E[X | F]| > ¢] < 4. Since
1 1
PIEWX | )l > d < ZEEX | F]) < “E[IX])

holds simultaneously for all o-algebras F C A if ¢ is sufficiently large. O
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Definitive version of Lebesgue’s Dominated Convergence Theorem

Theorem 4.13. Suppose that (X, )nen is a sequence of integrable random variables.
Then (X,,) converges to a random variable X w.r.t. the L* norm if and only if X,

converges to X in probability and the family {X,, : n € N} is uniformly integrable.

Proof. (1). We first prove the “if” part of the assertion under the additional assumption
that the random variables | X,,| are uniformly bounded by a finite constant ¢: For

e >0,

El|X,— X|] = E[|X,—X|: |X, - X| > ] + B[ | X, — X|; [X, — X| <]
< 2-P[|X,— X|>¢] + <. (4.3.2)

Here we have used that | X,,| < cand hence | X| < ¢ with probability one, because
a subsequence of (X,,) converges almost surely to X . For sufficiently large n, the
right hand side of (4.3.2)) is smaller than 2¢. Therefore, F[ | X, — X|] — 0 as

n — oQ.

(2). To prove the “if”” part under the uniform integrability condition, we consider the

cut-off-functions

¢e(r) = (zAc) V(=)
¢C

|
o
Qa.f
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For ¢ € (0, 00), the function ¢. : R — R is a contraction. Therefore,
|0e(Xn) — ¢e(X)] < | X, — X| for any n € N.
If X,, — X in probability then ¢.(X,,) — ¢.(X) in probability. Hence by (1),
El|¢pe(Xn) — 0e(X)|]] — 0 for any ¢ > 0. (4.3.3)

We would like to conclude that E| | X, — X|]| — 0 as well. Since (X,,) is
uniformly integrable, and a subsequence converges to X almost surely, we have

E[|X]] <liminf E[|X,|] < co by Fatou’s Lemma. We now estimate

E[[ Xy — X[]
< E[Xn = 0e(Xn)[ ]+ El¢e(Xn) = ¢e(X)| ] + E[|¢e(X) — X[ ]
< E[Xl; | Xal 2 d + El¢e(Xn) = ¢o(X) ]+ E[[X]; [X]| = c].

Let € > 0 be given. Choosing c large enough, the first and the last summand on
the right hand side are smaller than /3 for all n by uniform integrability of { X, :
n € N} and integrability of X. Moreover, by (4.3.3)), there exists ny(c) such that
the middle term is smaller than £/3 for n > ny(c). Hence E[ |X,, — X|] < ¢ for
n > ng, and thus X,, — X in L'.

(3). Now suppose conversely that X,, — X in L!. Then X,, — X in probability by

Markov’s inequality. To prove uniform integrability, we observe that
E[|X,|; 4 < E[|X]|; Al+ E[|X — X, ] foranyn € Nand A € A.
For £ > 0, there exist nyg € N and 6 > 0 such that

E[|X -X,|] < ¢/2 for any n > ny, and
E[|X]; Al < ¢/2 whenever P[A] < 6,

cf. Lemmal.10l Hence, if P[A] < § then sup,,-,, E[|X,|; A] <e.
Moreover, again by Lemma4. 10} there exist 04, . . ., d,, > 0 such that for n < ny,

E[|X,]: Al < e if P[A] <6,

Stochastic Analysis Andreas Eberle



4.3. UNIFORM INTEGRABILITY AND L! CONVERGENCE 147

Choosing 5 = min(d, 41, da, . . ., Op, ), W Obtain

sup B[ | X,|; Al <e€ whenever P[A] < 0.

neN

Therefore, {X,, : n € N} is uniformly integrable by the exercise below the defi-
nition of uniform integrability on page
O

L! convergence of martingales

If X is an integrable random variable and (F,,) is a filtration then M,, = E[X | F,,]
is a martingale w.r.t. (F,,). The next result shows that an arbitrary martingale can be

represented in this way if and only if it is uniformly integrable:

Theorem 4.14 (L' Martingale Convergence Theorem). Suppose that (M,,),>o is a

martingale w.r.t. a filtration (F,,). Then the following statements are equivalent:
(1). {M, : n > 0} is uniformly integrable.
(2). The sequence (M,,) converges w.r.t. the L' norm.

(3). There exists an integrable random variable X such that

M, = E[X | F,] foranyn > 0.

Proof.
(3) = (1) holds by Lemma4.12j

(1) = (2): If the sequence (M,) is uniformly integrable then it is bounded in L!

because

sup E[|M,|] < sup E[|M,|; |[M,| >c]+c¢c < 1+¢
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for ¢ € (0,00) sufficiently large. Therefore, the limit M, = lim M,, exists al-
most surely and in probability by the almost sure convergence theorem. Uniform

integrability then implies
M, — M, inL'
by Theorem 4.13]
(2) = (3): If M,, converges to a limit M., in L' then
M, = E[My | F,] for any n > 0.

Indeed, M, is a version of the conditional expectation since it is J,,-measurable

and
E[My ; A] = klim E[M,,; A] = E[M, ; A forany A € F, (4.3.4)
—00

by the martingale property.
O

A first consequence of the L! convergence theorem is a limit theorem for conditional

expectations:

Corollary 4.15. If X is an integrable random variable and (F,,) is a filtration then
E[X|F,] — E[X|Fx]  almostsurelyandin L',

where Fo, := o(|J Fn)-

Proof. Let M,, := E[X | F,]. By the almost sure and the L' martingale convergence
theorem, the limit M., = lim M,, exists almost surely and in L'. To obtain a measurable
function that is defined everywhere, we set M, := lim sup M,,. It remains to verify, that
M, is a version of the conditional expectation E[X | F,]. Clearly, M, is measurable

w.r.t. Foo. Moreover, forn > 0and A € F,,

E[My; A] = E[M, ; A] = E[X; A]
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by (@.3.4). Since | J F,, is stable under finite intersections,
E[Ms; Al = E[X; A
holds for all A € o(|JF,) as well. O

Example (Existence of conditional expectations). The common existence proof for
conditional expectations relies either on the Radon-Nikodym Theorem or on the exis-
tence of orthogonal projections onto closed subspaces of the Hilbert space L*. Martin-
gale convergence can be used to give an alternative existence proof. Suppose that X is
an integrable random variable on a probability space (£2,.4, P) and F is a separable
sub-o-algebra of A, i.e., there exists a countable collection (A4;);cn of events A; € A
such that F = o(A; : i € N). Let

Fn = o(Ayq, ... Ay), n > 0.

Note that for each n > 0, there exist finitely many atoms By, ..., B, € A (i.e. disjoint
events with | J B; = Q) such that 7, = o(By, ..., By). Therefore, the conditional

expectation given JF,, can be defined in an elementary way:

EX|F):= > E[X|B]-Is,
i : P[Bj]#0
Moreover, by Corollary d.15] the limit M, = lim F[X | F,,| exists almost surely and in

L', and M, is a version of the conditional expectation E[X | F].

You might (and should) object that the proofs of the martingale convergence theorems
require the existence of conditional expectations. Although this is true, it is possible
to state the necessary results by using only elementary conditional expectations, and
thus to obtain a more constructive proof for existence of conditional expectations given

separable o-algebras.

Another immediate consequence of Corollary 4.15]is an extension of Kolmogorov’s 0-1

law:
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Corollary 4.16 (0-1 Law of P.Lévy). If (F,) is a filtration on (2, A, P) then for any
event A € o(|J Fn),

P[A|F)] — 14 P-almost surely. (4.3.5)

Example (Kolmogorov’s 0-1 Law). Suppose that F,, = o(Ay,...,.A,) with indepen-
dent o-algebras A; C A. If Ais a tail event, i.e., Aisin o(A, 1, An19,...) for every
n € N, then A is independent of F,, for any n. Therefore, the corollary implies that
P[A] = I, P-almost surely, i.e.,

P[A] € {0,1} for any tail event A.

The L' Martingale Convergence Theorem also implies that any martingale that is L?

bounded for some p € (1, 00) converges in L”:

Exercise (LP Martingale Convergence Theorem). Let (1/,,) be an (F,,) martingale
with sup E[|M,|? ] < oo for some p € (1, 00).

(1). Prove that (M, ) converges almost surely and in L', and M,, = E[M,, | F,] for
any n > 0.

(2). Conclude that |M,, — M. |? is uniformly integrable, and M,, — M, in L”.

Note that uniform integrability of | M,,|P holds automatically and has not to be assumed !

Backward Martingale Convergence

We finally remark that Doob’s upcrossing inequality can also be used to prove that the
conditional expectations F[X | F,] of an integrable random variable given a decreasing
sequence (F,,) of o-algebras converge almost surely to F[X | () F,]. For the proof one

considers the martingale M_,, = E[X | F,] indexed by the negative integers:

Exercise (Backward Martingale Convergence Theorem and LLN). Let (F,,),>0 be

a decreasing sequence of sub-o-algebras on a probability space (€2, .4, P).
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(1). Prove that for any random variable X € L, A, P), the limit M_,, of the

sequence M_,, := E[X | F,] as n — —oo exists almost surely and in L', and

M_ = E[X| ﬂ]—"n] almost surely.

(2). Now let (X,,) be a sequence of i.i.d. random variables in £!(Q, A, P), and let
Fn=0(Sn, Sni1,-..) where S, = X; + ...+ X,,. Prove that

S
ElX, | F] = 22,

and conclude that the strong Law of Large Numbers holds:

S
— — FE[X4] almost surely.
n
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Chapter 5

Stochastic Integration w.r.t.

Continuous Martingales

Suppose that we are interested in a continuous-time scaling limit of a stochastic dynam-

ics of type X((]h) = T,

X]E;ﬁ—)l - Xlgh) = O'(X]E;h)) ’ \/E * k415 k= 07 17 27 RS (501)

with i.i.d. random variables 7; € £? such that E[r;] = 0 and Var[n;] = 1, a continuous

function o : R — R, and a scale factor & > 0. Equivalently,

3
—

XM = X+ Vh- S o(XM) o, n=0,1,2,.... (5.0.2)
0

B
Il

If o is constant then as h N\ 0, the rescaled process (X ff/)h | )e>0 converges in distribution
to (o - B;) where (B;) is a Brownian motion. We are interested in the scaling limit for
general 0. One can prove that the rescaled process again converges in distribution, and

the limit process is a solution of a stochastic integral equation
t
Xy = Xo+ /U(XS) dB, t>0. (5.0.3)
0
Here the integral is an Itd stochastic integral w.r.t. a Brownian motion (B;). Usually the

equation (3.0.3) is written briefly as

dX, = o(X,) dB,, (5.0.4)

152
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and interpreted as a stochastic differential equation. Stochastic differential equations
occur more generally when considering scaling limits of appropriately rescaled Markov
chains on R? with finite second moments. The goal of this section is to give a meaning
to the stochastic integral, and hence to the equations (3.0.3), (5.0.4) respectively.

Example (Stock prices, geometric Brownian motion). A simple discrete time model

for stock prices is given by
Xir1 — X = X g1, n; id.d.

To set up a corresponding continuous time model we consider the rescaled equation
(.0.1) as A \, 0. The limit in distribution is a solution of a stochastic differential
equation

dX, = X, dB; (5.0.5)

w.r.t. a Brownian motion (B;). Although with probability one, the sample paths of
Brownian motion are nowhere differentiable, we can give a meaning to this equation by
rewriting it in the form (3.0.3) with an It6 stochastic integral.

A naive guess would be that the solution of (5.0.3) with initial condition X, = 1 is
X; = exp B;. However, more careful considerations show that this can not be true! In

fact, the discrete time approximations satisfy
XM= (4 Vi) - XY fork > 0.

Hence (X ,Eh)) is a product martingale:

n

X = H(l + Vhi) for any n > 0.

k=1
In particular, E[Xflh)] = 1. We would expect similar properties for the scaling limit
(X}), but exp By is not a martingale and E[exp(B;)] = exp(t/2).

It turns out that in fact, the unique solution of (5.0.5) with X, = 1 is not exp(B;) but
the exponential martingale

Xy = exp(B; —t/2),

which is also called a geometric Brownian motion. The reason is that the irregularity of
Brownian paths enforces a correction term in the chain rule for stochastic differentials

leading to Itd’s famous formula, which is the fundament of stochastic calculus.
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5.1 Defining stochastic integrals: A first attempt

Let us first fix some notation that will be used constantly below: By a partition 7 of
R, we mean an increasing sequence 0 =ty < t; < t3 < ...such thatsupt, = oco. The

mesh size of the partition is
mesh(7) = sup{|t; —t;_1] : ¢ € N}

We are interested in defining integrals of type
t
I, = /HS dXs, t >0, (5.1.1)
0

for continuous functions and, respectively, continuous adapted processes (H,) and (Xj).

For a given ¢ > 0 and a given partition 7 of R, we define the increments of (X) up to

time ¢ by
0Xs = Xon — Xons for any s € T,

where s’ := min{u € 7 : u > s} denotes the next partition point after s. Note that
the increments 0 X vanish for s > ¢. In particular, only finitely many of the increments
are not equal to zero. A nearby approach for defining the integral /; in would be

Riemann sum approximations:

Riemann sum approximations

There are various possibilities to define approximating Riemann sums w.r.t. a given

sequence (7,,) of partitions with mesh(m,) — 0, for example:

Variant 1 (non-anticipative): I} = > H X,

SETR

Variant 2 (anticipative): ft” = > Hg6X,,

SETy

Variant 3 (anticipative): Iot” = > %(HS + Hy)0Xs.

SETy
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Note that for finite ¢, in each of the sums, only finitely many summands do not vanish.

For example,

I = Y HSX, = Y Hy- (Xopn — X).

SET SETn
s<t s<t

Now let us consider at first the case where H, = X, and £ = 1, i.e., we would like to
1

define the integral I = [ X, dX,. Suppose first that X : [0,1] — R is a continuous
0

function of finite variation, i.e.,

V(X)) = sup{Z\éXs\ . 7 partition ofRJr} < 00.

sem

Then for H = X and ¢ = 1 all the approximations above converge to the same limit as
n — oo. For example,

17 =17 = ) (6X.)* < VO(X) - sup [6X,],

SET.
SET "

and the right-hand side converges to 0 by uniform continuity of X on [0, 1]. In this case

the limit of the Riemann sums is a Riemann-Stieltjes integral

n—oo n—oo

1
lim I’ = lim IT = / X, dX,,
0

which is well-defined whenever the integrand is continuous and the integrator is of finite
variation or conversely. The sample paths of Brownian motion, however, are almost
surely not of finite variation. Therefore, the reasoning above does not apply, and in fact

if X; = B, is a one-dimensional Brownian motion and H; = X, then

BN} =] = Y El@#B)] = Y ds = 1,
SETn SETn
i.e., the L'-limits of the random sequence (I7") and (I7") are different if they exist. Below
we will see that indeed the limits of the sequences (I7), (I7) and (Ioln) do exist in L?,
and all the limits are different. The limit of the non-anticipative Riemann sums /"
is the It6 stochastic integral fol B, dB,, the limit of (I7") is the backward Ité integral
fol B, (les, and the limit of ;) is the Stratonovich integral fol B, odB,. All three notions
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of stochastic integrals are relevant. The most important one is the Itd integral because
the non-anticipating Riemann sum approximations imply that the Itd integral |, Ot H,dB;
is a continuous time martingale transform of Brownian motion if the process (Hj) is

adapted.

Ito integrals for continuous bounded integrands

We now give a first existence proof for It6 integrals w.r.t. Brownian motion. We start

with a provisional definition that will be made more precise later:

Preliminary Definition. For continuous functions or continuous stochastic processes
(Hs) and (Xs) and a given sequence (r,,) of partitions with mesh(w,) — 0, the Itd
integral of H w.r.t. X is defined by

t
/ H,dX, = lim Z HOX,
0

SETn
whenever the limit exists in a sense to be specified.

Note that the definition is vague since the mode of convergence is not specified. More-
over, the Itd integral might depend on the sequence (7). In the following sections we
will see which kind of convergence holds in different circumstances, and in which sense

the limit is independent of (7,,).

To get started let us consider the convergence of Riemann sum approximations for the
t
1t6 integrals [ H, dB; of a bounded continuous (F) adapted process (H,)s>o W.L.t. an

0
(Fs) Brownian motion (By). Let (7,,) be a fixed sequence of partitions with m,, C 7,41

and mesh(7,) — 0. Then for the Riemann-It6 sums

I' = Y HB, = Y Hy(Byn — By)

SETy SETy
s<t

we have

I'—1" = (H,—Hyy,)0B,  foranym <n,

SETY
s<t
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where [s],, = max{r € m,, : r < s} denotes the next partition point in 7, below

s. Since Brownian motion is a martingale, we have F[0B; | Fs] = 0 for any s € .

Moreover, E[(6B,)* | Fs] = ds. Therefore, we obtain by conditioning on F, F,
respectively:
Bl 1) = SO S E(H, — Hy, )(H, — Hy), )6B.0B,
s

= Y E[(H,— Hy),)%s] < E[Vi]- > ds = E[Vy] ¢,

SETn SETY
s<t s<t
where
V., = sup (Hy— H,)> — 0 as m — 0o

|s—r|<mesh(mm)
by uniform continuity of (Hy) on [0,t]. Since H is bounded, E[V,,] — 0 as m — oo,
and hence (I') is a Cauchy sequence in L*(2, A, P) for any given ¢t > 0. Thus we

obtain:

Theorem 5.1 (It6 integrals for bounded continuous integrands, Variant 1). Suppose
that (Hy)s>o is a bounded continuous (Fs) adapted process, and (By)s>o is an (Fy)

Brownian motion. Then for any fixed t > 0, the It6 integral
/HS dB;, = lim I}’ (5.1.2)
n—00

exists as a limit in L*(Q, A, P). Moreover; the limit does not depend on the choice of a

sequence of partitions (m,) with mesh (m,) — 0.

Proof. An analogue argument as above shows that for any partitions 7 and 7 such that
7 D 7, the L? distance of the corresponding Riemann sum approximations I and I7 is
bounded by a constant C'(mesh(7)) that only depends on the maximal mesh size of the
two partitions. Moreover, the constant goes to 0 as the mesh sizes go to 0. By choosing

a joint refinement and applying the triangle inequality, we see that

17— I |l 12p) < 20(A)
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holds for arbitrary partitions 7, 7 such that max(mesh(7)), mesh(7)) < A. The asser-

tion now follows by completeness of L?(P). O

The definition of the Itd integral suggested by Theorem[3.1]has two obvious drawbacks:

Drawback 1: The integral fot H,dB4 is only defined as an equivalence class in L*(Q, A, P),
i.e., uniquely up to modification on P-measure zero sets. In particular, we do not have a

pathwise definition of fot Hg(w) dBs(w) for a given Brownian sample path s — B, (w).

Drawback 2: Even worse, the construction above works only for a fixed integra-
tion interval [0,¢]. The exceptional sets may depend on ¢ and therefore, the process
t— fot H, dB; does not have a meaning yet. In particular, we do not know yet if there

exists a version of this process that is almost surely continuous.

The first drawback is essential: In certain cases it is indeed possible to define stochastic
integrals pathwise, cf. Chapter |6/ below. In general, however, pathwise stochastic inte-
grals cannot be defined. The extra impact needed is the Lévy area process, cf. the rough
paths theory developed by T. Lyons and others [ XXXLyons, Friz and Victoir, Friz and

Hairer].

Fortunately, the second drawback can be overcome easily. By extending the Itd isom-
etry to an isometry into the space M? of continuous L? bounded martingales, we can
construct the complete process ¢ — fot H, dB; simultaneously as a continuous martin-
gale. The key observation is that by the maximal inequality, continuous L? bounded

martingales can be controlled uniformly in ¢ by the L? norm of their final value.

The Hilbert space M2

Fix u € (0, 00] and suppose that for ¢ € [0, u], ({}*) is a sequence of Riemann sum
approximations for fot H, dB; as considered above. It is not difficult to check that for
each fixed n € N, the stochastic process ¢ — I;* is a continuous martingale. Our aim is
to prove convergence of these continuous martingales to a further continuous martingale

I, = fot H,dB,. Since the convergence holds only almost surely, the limit process
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will not necessarily be (F;) adapted. To ensure adaptedness, we have to consider the

completed filtration
FI' = {Ae A: P[A A B] =0 for some B € F.}, t>0,

where A A B = (A\ B) U (B \ A) is the symmetric difference of the sets A and B.
Note that the conditional expectations given F; and F/ agree P-almost surely. Hence,
if (B;) is a Brownian motion resp. a martingale w.r.t. the filtration (F;) then it is also a

Brownian motion or a martingale w.r.t. (F7).
Let M2([0,u]) denote the space of all L?-bounded (F}’) martingales (M;)o<;<, on
(Q, A, P). By M2?(|0,u]) and M?2(]0,u]) we denote the subspaces consisting of all
continuous (respectively right continuous) martingales M € M?([0,u]). Recall that
by the L? martingale convergence theorem, any (right) continuous L?-bounded martin-
gale (M;) defined for ¢ € [0,u) can be extended to a (right) continuous martingale in
ME([0, u)).
Two martingales M, M € M?2([0,u]) are called modifications of each other if

P[M, =M, = 1 forany t € [0, u].
If the martingales are right-continuous then two modifications agree almost surely, i.e.,

P[M, = MVt € [0,u]] = 1.

In order to obtain norms and not just semi-norms, we consider the spaces

MQ([O,U]) = MQ([Ovu])/N and MCQ([O,U]) = Mz([oau])/w

of equivalence classes of martingales that are modifications of each other. We will

frequently identify equivalence classes and their representatives.

We endow the space M?([0, u]) with the inner product
(M7 N)M2([O,u}) = (-2\4117]\/vu)L2 = E[MuNu]

As the process (M?) is a submartingale for any M € M?([0, u]), the norm correspond-

ing to the inner product is given by

IM 320y = EIMZI] = sup E[M{].

0<t<u
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Moreover, if (M;) is right continuous then by Doob’s L?-maximal inequality,

sup [ M|
0<t<u

S 2- sup HMtHL2(Q7A7p) = 2”M”M2([0,u]) (513)
L2(Q,A,P) Ostsu

This crucial estimate shows that on the subspaces M? and M2, the M? norm is equiva-
lent to the L? norm of the supremum of the martingale. Therefore, the M? norm can be

used to control (right) continuous martingales uniformly in t!

Lemma 5.2 (Completeness). (). The space M?([0,u]) is a Hilbert space, and the
linear map M — M, from M?([0,u]) to L*(S), F., P) is onto and isometric.

(2). The spaces M?([0,u]) and M3([0,u]) are closed subspaces of M?*(|0,u)), i.e.,
if (M™) is a Cauchy sequence in M?([0,u]), or in M?3(|0,u]) respectively, then
there exists a (right) continuous martingale M € M?([0, u]) such that

sup |M" — M| — 0 in L*(Q, A, P).

te(0,u]

Proof.  (1). By definition of the inner product on M?([0,u]), the map M + M, is
an isometry. Moreover, for X € L?(Q, F,, P), the process M; = E[X | F,]
is in M*([0,u]) with M, = X. Hence, the range of the isometry is the whole
space L*(Q2, F,, P). Since L*(Q, F,, P) is complete w.r.t. the L? norm, the space
M?([0,u]) is complete w.r.t. the M? norm.

(2). If (M™) is a Cauchy sequence in M2([0, u]) or in M3 ([0, u]) respectively, then by
(.13,

|M™ — M™||sup = sup |M—M" — 0 in L*(Q, A, P).
0<t<u
In particular, we can choose a subsequence (M ™) such that
P[||M™+1 — M™||gp >27F] < 27F for all k € N.
Hence, by the Borel-Cantelli Lemma,

P[ ”‘Ajnk7L1 - Mnk”sup < 27]6 eventually] = 17
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and therefore M, converges almost surely uniformly in ¢ as & — oo. The limit
of the sequence (M™) in M?([0,u]) exists by (1), and the process M defined by
lim M;**  if (M™) converges uniformly,

M, = (5.14)
0 otherwise,

is a continuous (respectively right continuous) representative of the limit. Indeed,

by Fatou’s Lemma,

IM™ = MBaouy < BLIM™ = MIZ,] = EfJin [ M™ = M™|2,]

sup sup

< liminf E[||M™ — M™|2, ],
l—o00

sup

and the right hand side converges to 0 as £ — oo. Finally, M is a martingale w.r.t.
(FF), and hence an element in M?2([0, u]) or in M2 ([0, u]) respectively.
O

Remark. We point out that the (right) continuous representative (/) defined by
is a martingale w.r.t. the complete filtration (F[), but it is not necessarily adapted w.r.t.

(F2)-

Definition of Itd integral in M?

Let u € R*. For any bounded continuous (F;) adapted process (H;) and any sequence
(m,) of partitions of R, the processes
I' = Y Ho(Bone—Ban),  t€[0,u],
SETR
are continuous L? bounded martingales on [0, u]. We can therefore restate Theorem [3.1]

in the following way:

Corollary 5.3 (It6 integrals for bounded continuous integrands, Variant 2). Suppose
that (Hy)s>o is a bounded continuous (Fs) adapted process. Then for any fixed u > 0,
the Ito integral

/ H,dB, = lim (I}, (5.1.5)
0
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exists as a limit in M>([0,u]). Moreover, the limit does not depend on the choice of a

sequence of partitions (m,) with mesh (m,) — 0.

Proof. The assertion is an immediate consequence of the definition of the M? norm,
Theorem [5.1]and Lemma (5.2 O

Similar arguments as above apply if Brownian motion is replaced by a bounded mar-
tingale with continuous sample paths. In the rest of this chapter we will work out the
construction of the Itd integral w.r.t. Brownian motion and more general continuous

martingales more systematically and for a broader class of integrands.

5.2 Ito’s isometry

Let (M;);>0 be a continuous (or, more generally, right continuous) martingale w.r.t. a
filtration (F;) on a probability space (£2, A4, P). We now develop a more systematic
approach for defining stochastic integrals fot Hg dM, of adapted processes (H;) w.r.t.
(My).

Predictable step functions

In a first step, we define the integrals for predictable step functions (H;) of type

withn € N,0 <t) <t <ty <...<t,, and bounded F; -measurable random vari-
ables A;,7=0,1,...,n — 1. Let & denote the vector space consisting of all stochastic

processes of this form.
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Definition (It6 integral for predictable step functions). For stochastic processes H €
& andt > 0 we define

/ HydM, = Y Ai- (Myne — Mype) = ) Ai- (Mype — My,).
The stochastic process Ha M given by
t
(HoM); = /Hs dM, fort €10, 0]
0

is called the Ito integral of H w.r.t. M.

Note that the map (H, M) — H,M is bilinear. The process H,M is a continuous time
martingale transform of M w.r.t. H. It models for example the net gain up to time ¢

if we hold A; units of an asset with price process (M;) during each of the time intervals

(ti, tia].

Lemma 5.4. Forany H € &, the process HoM is a continuous (F;) martingale up to

time t = oo.

Similarly to the discrete time case, the fact that A; is predictable, i.e., F;,-measurable,

is essential for the martingale property:

Proof. By definition, H, M is continuous and (F;) adapted. It remains to verify that
E[(H.M), | FJ] = (H.M), forany0<s<t. (5.2.1)
We do this in three steps:

(1). At first we note that (5.2.1) holds for s,t € {to,1,...,t,}. Indeed, since A; is
Ji,-measurable, the process

J
(HOM)tj = ZAi'(Mti_H _Mti)a jzoala"'ana

-1
=0
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is a martingale transform of the discrete time martingale (1/;,), and hence again

a martingale.

(2). Secondly, suppose s,t € [t;,t;41] for some j € {0,1,2,...,n — 1}. Then
E[(H M), = (H M), | F] = E[A;- (M, = My) [ Fy] = A E[M; = M, [ Fi] = 0
because A; is F;,-measurable and hence F,-measurable, and (M, ) is a martingale.

(3). Finally, suppose that s € [t;,¢;41] and t € [ty, tj41] With j < k.

Then by the tower property for conditional expectations and by (1) and (2),

E[(HOM)t | fs] = E[E[E[(HOM)t |Ek] |~th+1] |~Fs]
& EE(HM)y | Fy) | F) € E[(HM),,, | F)
@ (H.M),.

1)

O

Remark (Riemann sum approximations). Non-anticipative Riemann sum approxi-

mations of stochastic integrals are It6 integrals of predictable step functions: If (H,) is

an adapted stochastic process and m = {t¢, 1, ..., t,} is a partition then
n—1 ¢
> Hy - (Myn — Myp) = / HT dM, (5.2.2)
=0 0
n—1
where H™ := »  H; - I, 4,.,)1s a process in &
i=0
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It6’s isometry for Brownian motion

Recall that our goal is to prove that non-anticipative Riemann sum approximations
for a stochastic integral converge. Let (7,) be a sequence of partitions of [0, ¢] with
mesh(7,) — 0. By the remark above, the corresponding Riemann-Itd sums /™ defined
by (5.2.2)) are integrals of predictable step functions H™. Hence in order to prove that

the sequence (1™ ) converges in the Hilbert space M? it suffices to show that

(1). (H™) is a Cauchy sequence w.r.t. an appropriate norm on the vector space &,

and

(2). the “Itd map” J : & — M? defined by
J(H) = HM = /HS M,
0

1s continuous w.r.t. this norm.

It turns out that we can even identify explicitly a simple norm on & such that the It6

map is an isometry. We first consider the case where (1/;) is a Brownian motion:

Theorem 5.5 (Itd’s isometry for Brownian motion). [f (B;) is an (F;) Brownian mo-
tion on (), A, P) then for any u € [0, o], and for any process H € &,

2

|5 Bl 3200 = E /Hs dB, =F /Hf ds| = HHH;(P@AM) (5.2.3)
0 0

Proof. Suppose that H = Z?;Ol A Ty
A; bounded and F;,-measurable. With the notation 6; B := By, nu — B, ru, We obtain

)
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By the martingale property, the summands on the right hand side vanish for i # k.

Indeed, if, for instance, ¢ < k then
E[A;Ax6;BépB] = E[A;AL0;B - E[oyB | F]] = 0.

Here we have used in an essential way, that A, is F;, -measurable. Similarly,
E[A}-(6:B)%] = E[AZE[(6:B)*| F,]] = E[A} - 4it]

by the independence of the increments of Brownian motion. Therefore, by we

obtain
w 2 n—1 u
0 =0 0
The assertion now follows by definition of the A/? norm. L

Theorem [5.5] shows that the linear map
T &= MA0,u)),  T(H) = (/ H, st) ,
0 rel0,u]

is an isometry if the space & of simple predictable processes (s,w) — Hg(w) is en-

dowed with the L2 norm

u 1/2
Hleone) = B | [ 1205
0

on the product space 2 x (0, u). In particular, 7 respects P ® A classes, i.e., if Hg(w) =
H,(w) for P® \-almost every (w, 5) then [* HdB = [ HdB P-almost surely. Hence
J also induces a linear map between the corresponding spaces of equivalence classes.
As usual, we do not always differentiate between equivalence classes and functions, and

so we denote the linear map on equivalence classes again by J:

T+ ECLAP@A\ow) — M([0,4]),
1T (H)|arzqoy = 1H | 22(Porg.y)- (5.2.5)
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Ito’s isometry for martingales

An It6 isometry also holds if Brownian motion is replaced by a continuous square-
integrable martingale (M;). More generally, suppose that (M;);> is a right continuous

square integrable (F;) martingale satisfying the following assumption:

Assumption A. There exists a non-decreasing adapted continuous process ¢ — (M),
such that (M) = 0 and M? — (M), is a martingale.

For continuous square integrable martingales, the assumption is always satisfied. In-
deed, assuming continuity, the “angle bracket process” (M), coincides almost surely
with the quadratic variation process [M]; of M, cf. Section [6.3] below. For Brownian

motion, Assumption A holds with
(B); = t.
Note that for any 0 < s < ¢, Assumption A implies
E[(M,— M) | F] = E[M} = MZ|F,] = E[(M), — (M),|FJ. (52.6)

Since t — (M);(w) is continuous and non-decreasing for a given w, it is the distribution

function of a unique positive measure (M)(w, dt) on R,

Theorem 5.6 (It6’s isometry for martingales). Suppose that (M;);>¢ is a right con-
tinuous (JF;) martingale with angle bracket process (M) satisfying Assumption A. Then
for any u € [0, 0|, and for any process H € &,

([ o)

where d{M) denotes integration w.r.t. the positive measure with distribution function
F(t) = (M)

2
||H-M||M2([o,u]) =E

= F { /0 ’ H? d(M)S] (5.2.7)

For Brownian motion (B); = t, so (5.2.7) reduces to (3.2.3).
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Proof. The proof is similar to the proof of Theorem above. Suppose again that
H=Y"0A Tt withn € N0 <ty <t <...<t,and A bounded and F;,-
measurable. With the same notation as in the proof above, we obtain by the martingale
properties of M and M? — (M),

it1]

E[A; AL ;M 6 M] = 0 fori # k, and

BlA? - (:M)*] = E[AJE[(0:M)* | F]] = E[AIE[6(M) | Fi]] = E[A7 - 6:{M)].

;
E[A25(M)] = E U H?d }

cf. (3.2.6). Therefore,

([ maw)] -

—

&=

n—1
AiéiM> = Z [A; Ay 6;M 6, M)

I
o

n—1
=0

O

For a continuous square integrable martingale, Theorem [5.6 implies that the linear map
J & — M2[0,u]), J(H) = (/ H, dMs) ,
0 re[0,u]

is an isometry if the space & of simple predictable processes (s,w) — H,(w) is en-

dowed with the L? norm

2
| s xomrag) = [/ H? d ]

on the product space 2 x (0, u) endowed with the positive measure
Popy(dwdt) = P(dw) (M) (w,dt). (5.2.8)

Again, we denote the corresponding linear map induced on equivalence classes by the

same letter 7.
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Definition of It6 integrals for square-integrable integrands

From now on we assume that ();) is a continuous square integrable (F;) martingale

with angle bracket process (M);. We fix u € [0, oo] and consider the isometry

J & C L x (0,u), Pary) — MZ([0,u]),. (5.2.9)
H — HM

mapping an elementary predictable process H to the continuous martingale
t
(HM), = / H, dM.
0

More precisely, we consider the induced map on equivalence classes.

Let &, denote the closure of the space & in L2(Q2 x (0,u), Piyy). Since 7 is linear with
| T E)l 2oy = IHl 2@ 0u),Ppyy) — forany H € E,
there is a unique extension to a continuous (and even isometric) linear map
T é S LHAx(0,u),Pan) —  M([0,4]).

This can be used to define the Ito integral for any process in &, i.e., for any process that

can be approximated by predictable step functions w.r.t. the LQ(P< M)) horm:
t
H,B = J(H), / H,dB; = (H,B);.
0

Explicitly, we obtain the following definition of stochastic integrals for integrands in &,:

Definition (Ité integral). For H € &, the process HoM = ([, Hy dMy) 0.4 is the up

to modifications unique continuous martingale on [0, u| satisfying

(HM), = lim (H!M), inL*(P)  foranyt € [0,u]

n—o0

whenever (H™) is a sequence of elementary predictable processes such that H" — H
in LQ(Q X (0, u), P(M>).
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Remark. (1). By construction, the map H +~ H,M is an isometry from &, endowed
with the L?(P;y) norm to M2([0, u]). If t — (M), is absolutely continuous, then
the closure &, of the elementary processes actually contains any (F;’) adapted

process (w,t) — H,(w) that is square-integrable w.r.t. P, see XXX below.

(2). The definition above is consistent in the following sense: If H, M is the stochastic
integral defined on the time interval [0, v] and u < v, then the restriction of H, M

to [0, u] coincides with the stochastic integral on [0, u].

For 0 < s < t we define
t
/ H,.dM, := (HeM); — (HeM)s.

Exercise. Verify that for any H € &,

t t t t
/ H,n er = / H,n dBr — / ](073)(T’)HT dMT = / I(s,t) (T)Hr dM,n.
s 0 0 0
Having defined the 1t6 integral, we now show that bounded adapted processes with
left-continuous sample paths are contained in the closure of the simple predictable pro-
cesses, and the corresponding stochastic integrals are limits of predictable Riemann sum
approximations. As above, we consider a sequence (7,,) of partitions of R, such that

mesh(m,) — 0.

Theorem 5.7 (Approximation by Riemann-Ité sums). Ler u € (0, c0), and suppose
that (Hy)iepo,) is an (FL) adapted stochastic process on (2, A, P) such that (t,w) —
Hy(w) is product-measurable and bounded. If t — H, is P-almost surely left continuous
then H is in &,, and

t
/0 H,dM, = lim > Ho(Map — M), te[0,ul, (5.2.10)

SETR

w.r.t. convergence uniformly in t in the L?(P) sense.
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Remark. (1). In particular, a subsequence of the predictable Riemann sum approxi-

mations converges uniformly in ¢ with probability one.
(2). The assertion also holds if H is unbounded with sup,, |H,| € L*(P).

Proof. For any t € [0, u], the Riemann sums on the right hand side of (3.2.10)) are the
stochastic integrals fot H? dM; of the predictable step functions

H == Y H.-Ioo(t), neN
SETR,s<U

By left-continuity, H;* — H; as n — oo for any ¢ € [0, u], P-almost surely. Therefore,

H" — H Pp-almost surely, and, by dominated convergence,

H" - H in L2<P<M>).
Here we have used that the sequence (H") is uniformly bounded since H is bounded by
assumption. Now, by It6’s isometry,

/Hdes = lim | H!dM, in M2([0,u)).
0

n—oo 0

Identification of admissible integrands

Let u € (0,00]. We have already shown that if u < oo then any product-measurable
adapted bounded process with left-continuous sample paths is in &,. More generally,
we will prove now that if M; = B, is a Brownian motion then any adapted process
in £L2(P ® A,) is contained in &,, and hence “integrable” w.r.t. (B;). Let £2(0,u)
denote the linear space of all product-measurable, (/) adapted stochastic processes
(w,t) — Hy(w) defined on Q x (0, u) such that

EU H} dt
0

The corresponding space of equivalence classes of P®\ versions is denoted by L2 (0, u).

< 00.

Lemma 5.8. L2(0, u) is a closed linear subspace of L*(P @ \(o.))-
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Proof. Tt only remains to show that an L?(P ® \) limit of (F}) adapted processes again
has an (F}") adapted P ® A-version. Hence consider a sequence H" € £2(0,u) with
H™ — H in L*(P ® \). Then there exists a subsequence (H™) such that H;"(w) —
H,(w) for P @ A-almost every (w, t) € Q x (0,u). The process H defined by H,(w) :=
lim H"™ (w) if the limit exists, H,(w) := 0 otherwise, is an (FF) adapted version of
H. U

We can now identify the class of integrands H for which the stochastic integral H, B is

well-defined as a limit of integrals of predictable step functions in M2 ([0, u]):

Theorem 5.9 (Admissible integrands for Brownian motion). For any u € (0, oo),

&, = L2(0,u).

Proof. Since & C L2(0,u) it only remains to show the inclusion “2”. Hence fix a
process H € £2(0,u). We will prove in several steps that H can be approximated by

simple predictable processes w.r.t. the L*(P ® A(g)) norm:

(1). Suppose first that H is bounded and has almost surely continuous trajectories.
Then for u < oo, H is in &, by Theorem 5.7l For v = oo, H is still in &,
provided there exists ¢y € (0, c0) such that H; vanishes for ¢ > .

(2). Now suppose that (H;) is bounded and, if u = oo, vanishes for ¢ > ;. To
prove H € &, we approximate H by continuous adapted processes. To this end
let ¢, : R — [0,00),n € N, be continuous functions such that ¢(s) = 0 for
s ¢ (0,1/n)and [7_tpn(s)ds = 1. Let H" := H x 1y, i.e.,

1/n
0@ = [ o) b (5.2.11)
0
where we set [{; := 0 for ¢ < 0. We prove that

(a) H" — H in L*(P ® A(g,4)), and
(b) H™ € &, for any n € N.
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Combining (a) and (b), we see that H is in &, as well.

(a) Since H is in L*(P ® A(o,)), we have

/u Hy(w)?dt < oo (5.2.12)
0

for P-almost every w. It is a standard fact from analysis that (5.2.12)) implies

/ |H"(w) — Hy(w)]*dt — 0 as n — oo.
0

By dominated convergence, we obtain

E[/ |H[‘—Ht|2dt] — 0 as n — 00 (5.2.13)
0

because H is bounded, the sequence (H,,) is uniformly bounded, and H and
H" vanish fort > ty + 1.

(b) This is essentially a consequence of part (1) of the proof. We sketch how to

verify that H" satisfies the assumptions made there:

The sample paths ¢ — H]*(w) are continuous for all w.

|H}| is bounded by sup | H]|.

The map (w,t) — H}'(w) is product measurable by and Fu-
bini’s Theorem, because the map (w, t,e) — H;_.(w)1-(w) is product
measurable.

If the process (H;) is progressively measurable, i.e., if the map (s, w) —
Hy(w) (s € (0,t),w € Q) is measurable w.r.t. the product o-algebra
B(0,t) ® FF for any t > 0, then (H[) is (F!) adapted by (G.2.11))
and Fubini’s Theorem. This is for example the case if (H;) is right
continuous or left continuous.

In general, one can prove that ( H;) has a progressively measurable mod-
ification, whence (H[*) has an (F/") adapted modification. We omit the

details.

(3). We finally prove that general H € £2(0,u) are contained in &,. This is a conse-

quence of (2), because we can approximate /1 by the processes

H]' == (HiAn)V (=n)) - Lon(t), n € N.
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These processes are bounded, they vanish for ¢ > n, and H" — H in LQ(P X
)‘(O,u))- By (2), H" is contained in &, for any n, so H isin &, as well.

O

Remark (Riemann sum approximations). For discontinuous integrands, the predict-
able Riemann sum approximations considered above do not converge to the stochastic
integral in general. However, one can prove that for u < oo any process H € L2(0,u)
is the limit of the simple predictable processes

2n—1 127"y

th = Z 2"/( H, ds - I(ig—nu,(¢+1)2*"u] (t)
i=1

i—1)2-"u

w.r.t. the L*(P ® X)) norm, cf. [XXXSteele: “Stochastic calculus and financial ap-
plications”, Sect 6.6]. Therefore, the stochastic integral fot H dB can be approximated

for t < u by the correspondingly modified Riemann sums.

For continuous martingales, a similar statement as in Theorem [5.9] holds provided the
angle bracket process is absolutely continuous. Let £2(0, u; M) denote the linear space

of all product-measurable, (F/") adapted stochastic processes (w,t) — H;(w) such that

E UOUHE d(M),

The corresponding space of equivalence classes w.r.t. P is denoted by L2(0, u; M).

< 00.

Exercise (Admissible integrands w.r.t. martingales). Suppose that (1/;) is a contin-
uous square integrable (F;) martingale. Show that if almost surely, ¢ — (M), is abso-
lutely continuous, then the closure &, of the elementary processes w.r.t. the L*(P, M))
norm is given by

E, = L2(0,u; M).

5.3 Localization

Square-integrability of the integrand is still an assumption that we would like to avoid,

since it is not always easy to verify or may even fail to hold. The key to extending
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the class of admissible integrands further is localization, which enables us to define a
stochastic integral w.r.t. a continuous martingale for any continuous adapted process.
The price we have to pay is that for integrands that are not square integrable, the Itd

integral is in general not a martingale, but only a local martingale.

Throughout this section we assume that ), is a continuous square integrable martingale

with absolutely continuous angle bracket process (M );.

Local dependence on integrand and integrator

The approximations considered in the last section imply that the stochastic integral de-

pends locally both on the integrand and on the integrator in the following sense:

Corollary 5.10. Suppose that T : Q2 — [0, 00| is a random variable, M, M are square
integrable martingales with absolutely continuous angle bracket processes (M), <M ),
and H, H are processes in L2(0,00; M), L2(0, co; M ) respectively, such that almost
surely, H, = H, forany t € [0,T) and M; = M, forany t € [0, T). Then almost surely,

t t
/ H,dM, = / H, dM, foranyt € [0,T)]. (5.3.1)
0 0

Proof. We go through the same approximations as in the proof of Theorem [5.9]above:

(1). Suppose first that H; and I:Tt are almost surely continuous and bounded, and there
exists ty € R, such that H; = f]t = 0 fort > ty. Let (m,) be a sequence of
partitions with mesh(m,,) — 0. Then by Theorem[5.7]

t
/HdM = lim » H,- (Mg —M,), and
0 n—oo

SET

s<t
t — ~ —_— —
/HdM = lim Y H, - (Mgp — M,)
0 7%»008 oy

with P-almost sure uniform convergence on finite time-intervals along a common

subsequence. For ¢ < T the right-hand sides coincide, and thus (3.3.1)) holds true.
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(2). Now suppose that H and H are bounded and H, = ﬁt = 0 fort > t3. Then the

approximations

1/n - /n _
HY — / He abn(e)de, BN = / o in(e)
0 0

(with 1,, defined as in the proof of Theorem and H; := f[t = 0fort < 0)
coincide for ¢ < T'. Hence by (1), on {t < T},

t t t N t
/HdM = lim/ H"dM = = lim/ H"dM = / H dM,
0 0 0 0

where the convergence holds again almost surely uniformly in ¢ along a subse-

quence.

(3). Finally, in the general case the assertion follows by approximating /7 and H by

the bounded processes

HY = ((HeAn)V (=n)) - To(t), HY = (HeAn)V (=n)) - Io.(2).

It6 integrals for locally square-integrable integrands

Let M be a continuous square integrable martingale with absolutely continuous angle
bracket process (M), and let T : 2 — [0, o] be an (F[) stopping time. We will also
be interested in the case where 7' = oo. Let Lfmoc(o, T; M) denote the linear space

consisting of all stochastic processes (¢,w) +— H;(w) defined for ¢t € [0, T (w)) such that

the trivially extended process

~ H, fort<T,
Ht =
0 fort > T,

is product measurable in (¢, w), adapted w.r.t. the filtration (F[), and

t e Hy(w) isin £2.([0, T(w)),d(M)(w)) for P-ae. w. (5.3.2)

loc

Stochastic Analysis Andreas Eberle



5.3. LOCALIZATION 177

Here for u € (0, o0, the space L2 ([0, ), d(M)(w)) consists of all measurable func-
tions f : [0,u) — [—00, oc] such that [; f(¢)? d(M),(w) < oo forany s € (0,u). In
particular, it contains all continuous functions.

From now on, we use the notation H, - Iy;.7y for the trivial extension (ﬁt)0§t<oo of
a process (H¢)o<t<7 beyond the stopping time 7'. Locally square integrable adapted

processes allow for a localization by stopping times:

Lemma 5.11 (Localization by stopping). If (H;)o<i<r is a process in E?IJOC(O, T; M)
then there exists an increasing sequence (T,)en of (FL) stopping times such that T =

sup 1;, almost surely, and
Hy - Iyer,y € L£2(0,00; M) foranyn € N.

Proof. One easily verifies that the random variables 7;, defined by
t
T, = inf{0§t<T:/ H? d(M)SZn}/\T, n €N, (5.3.3)
0

are (F[) stopping times. Moreover, for almost every w, the function ¢ + H(w) is
in £2_([0,T),d(M)(w)). Hence the function ¢ — fot Hy(w)? d{M), is increasing and
finite on [0, T (w)), and therefore T,,(w) , T(w) as n — oo. Since T}, is an (F/)
stopping time, the process H, - Ij;r,y is (F)-adapted, and by (3.3.3),
E U (H - Isery)? d(M)s} =E {
0

Tn
H? d<M>S} <n for any n.
0

O

A sequence of stopping times as in the lemma will also be called a localizing sequence.
We can now extend the definition of the Itd integral to locally square-integrable adapted

integrands:

Definition (It6 integral with locally square integrable integrand). For a process H €
L2, (0,T; M), the Ité stochastic integral w.r.t. the martingale M is defined for t €

a,loc

[0,T) by

t t
/0 H,dM; = /0 H- [{5<T} dM; foranyt € [0,T] (5.34)
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whenever T is an (FF) stopping time such that H, - T 1<ty € L£2(0, 00; M).

Theorem 5.12. For H € £2,,.(0,T; M) the Ité integral t — [, H,dM, is almost surely

a,loc

well defined by (5.3.4)) as a continuous process on [0, T).

Proof. We have to verify that the definition does not depend on the choice of the local-
izing stopping times. This is a direct consequence of Corollary [5.10k Suppose that T
(<7 are both in £3(0, oo; M).
Since the two trivially extended processes agree on [0,7" A T'), Corollary implies

and T are stopping times such that H; - [ (1<} and H; - [

that almost surely,
t t
/0 H - I gy dM, = /0 H, - I{s<f} dM, forany t € [0, T A T).

Hence, by Lemma[5.11] the stochastic integral is well defined on [0, T'). O

Stochastic integrals as local martingales

It6 integrals w.r.t. square integrable martingales are not necessarily martingales if the
integrands are not square integrable. However, they are still local martingales in the

sense of the definition stated below.

Definition (Predictable stopping time). An (F7) stopping time T is called predictable
iff there exists an increasing sequence (Ty)ren consisting of (FF') stopping times such
that Ty, < T on {T # 0} for any k, and T' = sup Tj.

Example (Hitting time of a closed set). The hitting time 74 of a closed set A by a
continuous adapted process is predictable, as it can be approximated from below by the
hitting times 7’4, of the neighbourhoods A, = {z : dist(z, A) < 1/k}. On the other

hand, the hitting time of an open set is not predictable in general.

Stochastic Analysis Andreas Eberle



5.3. LOCALIZATION 179

Definition (Local martingale). Suppose that T : Q) — [0, 00| is a predictable stopping
time. A stochastic process M(w) defined for 0 < t < T'(w) is called a local martingale
up to time T, if and only if there exists an increasing sequence (T},) of stopping times
with T' = sup T}, such that for any k € N, T, < T on {T > 0}, and the stopped process
(Minr, ) is a martingale for t € [0, 00).

Recall that by the Optional Stopping Theorem, a continuous martingale stopped at a
stopping time is again a martingale. Therefore, any continuous martingale (M;):>o is a
local martingale up to 7' = oo. Even if (}/;) is assumed to be uniformly integrable, the

converse implication fails to hold:

Exercise (A uniformly integrable local martingale that is not a martingale). Let
r € R3 with x # 0, and suppose that (B;) is a three-dimensional Brownian motion with
initial value By = x. Prove that the process M; = 1/|B,| is a uniformly integrable local

martingale up to 7" = oo, but (1/;) is not a martingale.

On the other hand, note that if (}/;) is a continuous local martingale up to 7" = oo, and
the family { M7, : k € N} is uniformly integrable for each fixed t > 0, then (M) is a

martingale, because for 0 < s <t
E[Mt | ‘FS] = llm E[Mt/\Tk |f5] = hm MS/\Tk = Ms
k—oo k—o0

with convergence in L.

As a consequence of the definition of the Itd integral by localization, we immediately

obtain:

Theorem 5.13 (It6 integrals as local martingales). Suppose that 'T' is a predictable
stopping time w.r.t. (FF). Then for any H € L£2,,.(0,T; M), the It6 integral process

a,loc

t— fot H, dM; is a continuous local martingale up to time T'.
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Proof. We can choose an increasing sequence (7},) of stopping times such that 7, < T’
on {T" > 0} and H, - Iyycr,y € L2(0,00; M) for any k. Then, by definition of the Ito
integral,

tATy tATy,

H,dM, = Hy - Itseryy dM, almost surely for any k € N,
0 0

and the right-hand side is a continuous martingale in M?([0, 00)). O

The theorem shows that for a predictable (F7) stopping time 7', the Itd map H +
fo. H dM extends to a linear map

j : L2 (O,T, M) _)Mc,]oc([ovT))a

loc

2
where L,

(0, T; M) is the space of equivalence classes of processes in L2 _(0,7; M)
that coincide for Pppy-a.e. (w,t), and M, c([0,7")) denotes the space of equivalence
classes of continuous local (F/") martingales up to time 7' w.r.t. P-almost sure coin-
cidence. Note that different notions of equivalence are used for the integrands and the

integrals.

We finally observe that continuous local martingales (and hence stochastic integrals
w.r.t. continuous martingales) can always be localized by a sequence of bounded mar-

tingales in M?([0, oo0):

Exercise (Localization by bounded martingales). Suppose that (1/;) is a continuous

local martingale up to time 7', and (7}) is a localizing sequence of stopping times.

(1). Show that
T = Tp Ainf{t >0 : |M| >k} Ak

is another localizing sequence, and for all k, the stopped processes (M f /\ﬁ) 000
t€[0,00

are bounded martingales in M?2([0, c0)).

(2). Show that if T = oo then T}, := inf{t > 0 : |M,| > k} is also a localizing

sequence for M.
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Approximation by Riemann-It6 sums

If the integrand (H;) of a stochastic integral | H dB has continuous sample paths then
local square integrability always holds, and the stochastic integral is a limit of Riemann-

It6 sums: Let (7,) be a sequence of partition of R, with mesh(m,) — 0.

Theorem 5.14. Suppose that T is a predictable stopping time, and (H;)o<i<T is a
stochastic process defined for t < T. If the sample paths t — H,(w) are continuous on
0, T'(w)) for any w, and the trivially extended process Hy - I;;1y is (F) adapted, then

H isin L2 ,.(0,T; M), and for any t > 0,
t
/ H,dM, = lim > H,-(Myy—M,)  on{t<T} (5.3.5)
0 neree SETR
s<t

with convergence in probability.

Proof. Let |t|, = max{s € m, : s < t} denote the next partition point below ¢. By

continuity,

Hy- Iyery = nh_)HOlo Hyyy, - I<ry.

Hence (H; - Iy<ry) is (F{) adapted. It is also product-measurable, because

Hyy, - Tgery = Y He Taery - Ty (t) - To.oo) (T — 1),

SETY

By continuity, t — Hy(w) is locally bounded for every w, and thus H is in £2 (0, T’; M).

Moreover, suppose that (7}) is a sequence of stopping times approaching 7" from below

in the sense of the definition of a predictable stopping time given above. Then

Ty = Ty Ainf{t >0:|H,| >k}, keN,
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is a localizing sequence of stopping times with H; - Iy} in £2(0,T; M) for any F,
and fk T Therefore, by definition of the It6 integral and by Theorem 5.7,

t t t
/0‘ HSdMS — /0 HS‘]{S<T]€} dMS — /0‘ HS‘]{SSTk}dMS
= lim Y H,-(Mgn — M,) on {t < T}
n~>oos€7rn

s<t

w.r.t. convergence in probability. Since

P =0,

{t<T\UJit <7}
k

we obtain (3.3.3)). O
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Chapter 6
Ito’s formula and pathwise integrals

Our approach to Itd’s formula in this chapter follows that of [Follmer: Stochastic Anal-
ysis, Vorlesungsskript Uni Bonn WS91/92]. We start with a heuristic derivation of the

formula that will be the central topic of this chapter.

Suppose that s — X is a function from [0, ¢] to R, and F' is a smooth function on R. If
(m,) is a sequence of partitions of the interval [0, ¢] with mesh(7,,) — 0 then by Taylor’s

theorem

1
F(Xy)-F(X,) = F'(X,) (Xy—X,)+ QF"(XS) -(Xy — X,)? +higher order terms.
Summing over s € 7, we obtain

F(X;) — F(Xo) = Z F'(X,) - (Xy — X,) + %F”(XS) (Xy — X2 +... (6.0.1)

SETR

We are interested in the limit of this formula as n — oo.

(a) Classical case, e.g. X continuously differentiable For X € C' we have

dXs
Xy — X, = d—(s'—s)+0(|s—s'|2), and
s

(Xy — X)? = O(ls— 5.

Therefore, the second order terms can be neglected in the limit of (6.0.1) as mesh(7,,) —

0. Similarly, the higher order terms can be neglected, and we obtain the limit equation

F(X;) — F(X,) = / F'(X,) dX,, (6.0.2)
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or, in differential notation,
dF(X;) = F'(Xy) dX;, (6.0.3)

Of course, (6.0.3) is just the chain rule of classical analysis, and (6.0.2)) is the equivalent
chain rule for Stieltjes integrals, cf. Section 6.1 below.

(b) X; Brownian motion If (X;) is a Brownian motion then

Summing these expectations over s € 7, we obtain the value ¢ independently of n. This
shows that the sum of the second order terms in (6.0.1)) can not be neglected anymore.
Indeed, as n — o0, a law of large numbers type result implies that we can almost surely
replace the squared increments (X, — X)? in (6.0.1) asymptotically by their expectation
values. The higher order terms are on average O(|s’ — s|*2) whence their sum can be
neglected. Therefore, in the limit of (6.0.1)) as n — oo we obtain the modified chain

rule
t t

1
F(Xy) — F(Xy) = /F'(XS) dX, + 2 /F"(XS) ds (6.0.4)
0 0
with probability one. The equation (6.0.4)) is the basic version of 1t6’s celebrated for-

mula.

In Section[6.1] we will first introduce Stieltjes integrals and the chain rule from Stieltjes
calculus systematically. In Section we prove a general version of Itd’s formula for
continuous functions with finite quadratic variation in dimension one. Here the setup
and the proof are still purely deterministic. As an aside we obtain a pathwise definition
for stochastic integrals involving only a single one-dimensional process due to Follmer.
After computing the quadratic variation of Brownian motion in Section[6.3) we consider
first consequences of Itd’s formula for Brownian motions and continuous martingales.
Section contains extensions to the multivariate and time-dependent case, as well as

further applications.
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6.1 Stieltjes integrals and chain rule

In this section, we define Lebesgue-Stieltjes integrals w.r.t. deterministic functions of
finite variation, and prove a corresponding chain rule. The resulting calculus can then

be applied path by path to stochastic processes with sample paths of finite variation.

Lebesgue-Stieltjes integrals

Fix u € (0,00], and suppose that t — A; is a right-continuous and non-decreasing
function on [0, u). Then A; — A, is the distribution function of the positive measure p

on (0, u) determined uniquely by

wal(s, t]] = Ay — Ag forany 0 < s <t < u.

t
Therefore, we can define integrals of type [ H, dA, as Lebesgue integrals w.r.t. the

1
loc

measure p4. We extend i trivially to the interval [0, u), so £;.([0,u), pa) is the space
of all functions H : [0,u) — R that are integrable w.r.t. ;14 on any interval (0,¢) with
t < u. Then for any u € [0, oo and any function H € L. ([0, u), 1), the Lebesgue-

Stieltjes integral of H w.r.t. A is defined by

t
/Hr dA, = /HT (s q(r)pealdr) for0 <s<t<u.

It is easy to verify that the definition is consistent, i.e., varying u does not change the
t

definition of the integrals, and that ¢ — f H,. dA, is again a right-continuous function.
0

For an arbitrary right-continuous function A : [0,u) — R, the (first order) variation of

A on an interval [0, ¢) is defined by
‘/;5(1)<A) ‘= Sup Z‘As’m& - As/\t| for 0 <t < u,
T senm

where the supremum is over all partitions 7 of R,. The function ¢ — A, is said to be

(locally) of finite variation on the interval [0, u) iff Vt(l)(A) < oo forany t € [0,u).
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Any right-continuous function of finite variation can be written as the difference of two

non-decreasing right-continuous functions. In fact, we have

A = A — A (6.1.1)
with
A7 = s (Avn = A" = %(Vf”(AHAt), (6.12)
sem
A = s (Avn = Au)” = %(VJ”(A) — Ay (6.13)
sem

Exercise. Prove that if A, is right-continuous and is locally of finite variation on [0, u)
then the functions Vt(l) (A), Atf and At\ are all right-continuous and non-decreasing for

t < u.

Remark (Hahn-Jordan decomposition). The functions At/ — AO/ and A}‘ — A}‘ are
again distribution functions of positive measures ;1 and i, on (0, u). Correspondingly,

Ay — Ay is the distribution function of the signed measure
palB) = pilB) — palBl. B e B(0,u), (6.1.4)

and Vt(l) is the distribution of the measure |y 4| = i —pu ;. Itis a consequence of (6.1.3)
and (6.1.6) that the measures p/; and 1, are singular, i.e., the mass is concentrated on
disjoint sets ST and S~. The decomposition (6.1.7) is hence a particular case of the
Hahn-Jordan decomposition of a signed measure p of finite variation into a positive and
a negative part, and the measure || is the total variation measure of yu, cf. e.g. [Alt:

Lineare Funktionalanalysis].

We can now apply (6.1.1) to define Lebesgue-Stieltjes integrals w.r.t. functions of finite
variation. A function is integrable w.r.t. a signed measure x if and only if it is integrable
w.r.t. both the positive part ;™ and the negative part ;.~. The Lebesgue integral w.r.t. u
is then defined as the difference of the Lebesgue integrals w.r.t. u+ and ;. Correspond-
ingly, we define the Lebesgue-Stieltjes integral w.r.t. a function A, of finite variation as

the Lebesgue integral w.r.t. the associated signed measure fi4:
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Definition. Suppose that t — A, is right-continuous and locally of finite variation on
[0, u). Then the Lebesgue-Stieltjes integral w.r.t. A is defined by

t
/Hr dA, = /HT (sq(r) dArf - /HT L(sq(r) dAr\-‘, 0<s<t<u,

for any function H € L},.((0,u), |dA|) where
Lioe((0,w), [dA]) == Lioe((0,0), dA”) 0 L1 (0, 1), dA™)

is the intersection of the local L' spaces w.r.t. the positive measures dA” = p and
dA> = p; on [0,u), or, equivalently, the local L* space w.r.t. the total variation mea-

sure |dA| = |pal-

n—1
Remark. (1). Simple integrands: It H, = ) ¢; - I, 4,,,) is a step function with
i=0

0<ty<ti <...<t, <uandco,c1,...,_cn,1 € R then
¢ n—1
/Hs dA, = Zci : (Atiﬂmt - Atmt)-
0 i=0

(2). Continuous integrands; Riemann-Stieltjes integral: If H : [0,u) — R is a contin-

uous function then the Stieltjes integral can be approximated by Riemann sums:

t
/Hs dA, = lim Y H,-(Avn— A,  t€[0,u),
n—oo c
0 S&Tn

s<t

for any sequence () of partitions of R such that mesh(7,) — 0. For the proof

note that the step functions

H! = Y H,-Iou(r),  rel0u),
et
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converge to H, pointwise on (0, u) by continuity. Moreover, again by continuity,
H, is locally bounded on [0, u),and hence the sequence H" is locally uniformly

bounded. Therefore,

/HT"I(M (r)dA, — /Hr[(oﬂs} (r) dA,
for any ¢ < n by the dominated convergence theorem.

(3). Absolutely continuous integrators: If A; is an absolutely continuous function on

[0, u) then A, has locally finite variation

t
v(4) = /\A;\ds < 00 fort € [0, u).
0

The signed measure p4 with distribution function A, — A is then absolutely

continuous w.r.t. Lebesgue measure with Radon-Nikodym density

d
%(t) = A for almost every ¢t € [0, u).

Therefore,
Lioe([0,u), [dA]) = Ly ([0, u), |A'|dt),

and the Lebesgue-Stieltjes integral of a locally integrable function H is given by

t t
/Hs dA, = /HSA’S ds fort € [0,u).
0 0

In the applications that we are interested in, the integrand will mostly be continuous,

and the integrator absolutely continuous. Hence Remarks (2) and (3) above apply.

The chain rule in Stieltjes calculus

We are now able to prove It0’s formula in the special situation where the integrator has
finite variation. In this case, the second order correction disappears, and Itd’s formula

reduces to the classical chain rule from Stieltjes calculus:
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Theorem 6.1 (Fundamental Theorem of Stieltjes Calculus). Suppose that A

[0,u) — R is a continuous function of locally finite variation. Then for any F € C*(R),

F(A) — F(A) = / F'(A,) dA, Yt eo,u). (6.1.5)

0

Proof. Let t € [0,u) be given. Choose a sequence of partitions (7,) of R, with
mesh(m,) — 0, and let

0A, := Agn — Aspe for s € m,,

where, as usual, s’ denotes the next partition point. By Taylor’s formula, for s € m,

with s < ¢t we have

F(Ayn) = F(A) = F(A)6A, + SF"(Z) - (54,

where Z; is an intermediate value between A, and A, ,;. Summing over s € m,, we

obtain
! 1 " 2
F(A;) = F(Ay) = EZF (AOA, + 5;1«" (Z,)(6A,). (6.1.6)
s<t s<t

t

As n — oo, the first (Riemann) sum converges to the Stieltjes integral [ F'(A,) dA; by
0

continuity of F’(A;), cf. Remark (2) above.

To see that the second sum converges to zero, note that the range of the continuous
function A restricted to [0, ¢] is a bounded interval. Since " is continuous by assump-
tion, F” is bounded on this range by a finite constant c. As Z, is an intermediate value

between A, and A, ,;, we obtain

STFNZ)0A)| < e D (64, < e VIV(A) - sup|oA,].

SET

SET SETy s<t

s<t s<t
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Since V;'"(A) < o0, and A is a uniformly continuous function on [0, ], the right hand
side converges to 0 as n — oo. Hence we obtain (6.1.3) in the limit of (6.1.6) as
n — oo. ]

To see that (6.1.3)) can be interpreted as a chain rule, we write the equation in differential

form:

dF(A) = F'(A)dA. (6.1.7)

In general, the equation (6.1.7) is to be understood mathematically only as an abbrevia-
tion for the integral equation (6.1.5). For intuitive arguments, the differential notation is
obviously much more attractive than the integral form of the equation. However, for the
differential form to be useful at all, we should be able to multiply the equation (6.1.7)
by another function, and still obtain a valid equation. This is indeed possible due to the
next result, which states briefly that if d/ = H dA then also G dI = GH dA:

Theorem 6.2 (Stieltjes integrals w.r.t. Stieltjes integrals). Suppose that I, = [ H,dA,
0
where A : |0,u) — R is a function of locally finite variation, and H € L}, ([0, u), |dA]).

loc

Then the function s +— I, is again right continuous with locally finite variation

t
v < [ 1H| |dA| < oo, and, for any function G € L}, ([0,u),|dI|),
0

loc

¢ ¢
/Gs Gh— /GSHS dA, fort € ]0,u). (6.1.8)
0 0

Proof. Right continuity of /; and the upper bound for the variation are left as an exercise.

We now use Riemann sum approximations to prove (6.1.8)) if G is continuous. For a

partition 0 =ty < t; < ... <1y =t, we have

n_1 n—1 tit1 t
> G, — 1) =Y G- / H,dA, = /GLSJHS dA,
=0 =0 b 0
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where |s| denotes the largest partition point < s. Choosing a sequence (7,,) of parti-

tions with mesh(m,,) — 0, the integral on the right hand side converges to the Lebesgue-

t
Stieltjes integral [ G5H; dAs by continuity of G and the dominated convergence the-
0

t
orem, whereas the Riemann sum on the left hand side converges to f G dI,. Hence

0
(6.1.8) holds for continuous G. The equation for general G € L] ([0, u), |dI|) follows
then by standard arguments. U

6.2 Quadratic variation and It6’s formula

Our next goal is to derive a generalization of the chain rule from Stieltjes calculus to
continuous functions that are not of finite variation. Examples of such functions are
typical sample paths of Brownian motion. As pointed out above, an additional term will

appear in the chain rule in this case.

Quadratic variation

Consider once more the approximation (6.1.6) that we have used to prove the funda-
mental theorem of Stieltjes calculus. We would like to identify the limit of the last sum
S° F"(Z,)(6A,)? when A has unfinite variation on finite intervals. For F” = 1 this

SETR
limit is called the quadratic variation of A if it exists:

Definition. Ler u € (0,00] and let (7,) be a sequence of partitions of R, with
mesh(7,) — 0. The quadratic variation [ X|; of a continuous function X : [0,u) — R

w.r.t. the sequence (,) is defined by

[(X]e = lim Y (Xgne = Xon)?  fort €[0,u)

SETR

whenever the limit exists.

WARNINGS (Dependence on partition, classical 2-variation)
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(1). The quadratic variation should not be confused with the classical 2-variation de-
fined by

V(X)) = sup Y [Xne — Xond]?

sem
where the supremum is over all partitions 7. The classical 2-variation Vt@) (X)
is strictly positive for any function X that is not constant on [0, ¢] whereas [X];

vanishes in many cases, cf. Example (1) below.

(2). In general, the quadratic variation may depend on the sequence of partitions con-

sidered. See however Examples (1) and (3) below.

Example. (1). Functions of finite variation: For any continuous function A : [0, u) —

R of locally finite variation, the quadratic variation along (7,,) vanishes:
[Al, =0 forany ¢ € [0, u).
In fact, for 0 A, = Agry — Agpy We have

Z I6A,* < Vt(l)(A) -sup|dAs] — 0 asn — 0o

SETT

SETn s<t

by uniform continuity and since Vt(l)(A) < 00.

(2). Perturbations by functions of finite variation: If the quadratic variation [X]; of X

w.r.t. (m,) exists, then [X + AJ; also exists, and
(X + Al = [X].
This holds since

DX+ AP =D (0X)+2) 6XA+ Y (A,

and the last two sums converge to 0 as mesh(rw,) — 0 by Example (1) and the

Cauchy-Schwarz inequality.

(3). Brownian motion: If (B;):>o is a one-dimensional Brownian motion then P-
almost surely,
By =t forallt > 0
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w.r.t. any fixed sequence (7, ) of partitions such that mesh(m,) — 0, cf. Theorem
[6.6] below.

t

(4). Ito processes: If I, = [ H, dB is the stochastic integral of a process H €
0

£2

a10c(0,00) w.r.t. Brownian motion then almost surely, the quadratic variation

w.r.t. a fixed sequence of partitions is

t
1], = /H2 ds for all ¢ > 0.
0

(5). Continuous martingales: |M] exists and is almost surely finite, see below.

Note that in Examples (3), (4) and (5), the exceptional sets may depend on the sequence
(7). If it exists, the quadratic variation [X]; is a non-decreasing function in ¢. In

particular, Stieltjes integrals w.r.t. [ X are well-defined provided [X] is right continuous.

Lemma 6.3. Suppose that X : [0,u) — R is a continuous function. If the quadratic

variation [ X, along (m,,) exists for t € [0,u), and t — [X]; is continuous then

t
d Hy (Xgn— X)) — /HS d[X],  asn— oo (6.2.1)
SET 0
s<t

for any continuous function H : [0,u) — R and any t > 0.

Remark. Heuristically, the assertion of the lemma says that

“/Hd[X] = /H(dX)Q”,

i.e., the infinitesimal increments of the quadratic variation are something like squared
infinitesimal increments of X. This observation is crucial for controlling the second

order terms in the Taylor expansion used for proving the It6-Doeblin formula.

Proof. The sum on the left-hand side of (6.2.1)) is the integral of H w.r.t. the finite

positive measure
Hn = Z(Xs’/\t - Xs)2 : 55

SET
s<t
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on the interval [0, ¢). The distribution function of i, is

Fo(u) =: > (Xop—Xo)*  ue(0,1.
e

Asn — oo, F,(u) — [X], forany u € [0, t] by continuity of X. Since [X], is a contin-
uous function of u, convergence of the distribution functions implies weak convergence

of the measures 1, to the measure d[X] on [0, ¢) with distribution function [X]. Hence,

/Hsunds H/Hd asn — oo

for any continuous function H : [0,¢] — R. O

It6’s formula and pathwise integrals in R!

We are now able to complete the proof of the following purely deterministic (pathwise)
version of the one-dimensional Itdé formula going back to [Follmer: Calcul d’Itd sans
probabilités, Sém. Prob XV, LNM850XXX]:

Theorem 6.4 (Itd’s formula without probability). Suppose that X : [0,u) — R is a
continuous function with continuous quadratic variation [ X| w.r.t. (m,). Then for any
function F that is C? in a neighbourhood of X ([0,u)), and for any t € [0,u), the Ito

integral
¢

/FI<XS) dX, = nh_{lolo E F/(Xs) o (Xs//\t — Xs) (6.2.2)
0 SETY
s<t

exists, and Ito’s formula
t ¢
F(Xy) — F(Xo) = /F’(XS) dX, + % /F”(XS) d[X]s (6.2.3)
0 0
holds. In particular, if the quadratic variation [ X| does not depend on (r,,) then the Ito
integral (6.2.2) does not depend on (r,,) either.
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Note that the theorem implies the existence of f f(Xs) dX, for any function f €
0
C1(R)! Hence this type of Ito integrals can be defined in a purely deterministic way

without relying on the Itd isometry. Unfortunately, the situation is more complicated in

higher dimensions, cf. ?? below.

Proof. Fix t € [0,u) and n € N. As before, for s € 1, we set 0X, = Xgnr — Xon

where s’ denotes the next partition point. Then as above we have

F(X) - F(Xo) = > F/(X,)0X,+5 ZF”Z")(éX)

SETn s€7rn
s<t s<t
(6.2.4)
= ) FI(X)0X, + - ZF” )(0X.)*+ > R™,
SETy SEﬂ'n SETY
s<t s<t s<t
(6.2.5)
where Z\™ is an intermediate point between X, and X, and R™ .= L (ZS(")) -

F"(X)) - (5X )2. As n — oo, the second sum on the right hand side of (6.2.4) con-
verges to f F"(X,)d[X], by Lemmal63l We claim that the sum of the remainders R."
0

(n)

converges to 0. To see this note that Z; ' = X, for some r € [s, s’ A t], whence

1
[RO| = [F"(Z) = F'(X)| - (0X.)° < gen(6X0)%

where

co= s FU(X) - )|
a,be(0,t]
|a—b|<mesh(my)

As n — o0, &, converges to 0 by uniform continuity of F” o X on the interval [0, ¢].
Thus

1
Z\RE”)\ < 5&,12(5)(3)2 — 0 as well,

SETY
s<t

because the sum of the squared increments converges to the finite quadratic variation
[XT:-
We have shown that all the terms on the right hand side of (6.2.4) except the first
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t

Riemann-Itd6 sum converge as n — oo. Hence, by (6.2.4), the limit f F'(X;) dX

0
of the Riemann It6 sums also exists, and the limit equation (6.2.2) holds. O

Remark. (1). In differential notation, we obtain the 1t chain rule

2).

AF(X) = F/(X)dX + %F”(X) d[X]

which includes a second order correction term due to the quadratic variation. A

justification for the differential notation is given in Section ??.

For functions X with [X] = 0 we recover the classical chain rule dF'(X) =

F'(X) dX from Stieltjes calculus as a particular case of It6’s formula.

Example. (1). Exponentials: Choosing F'(z) = e” in It0’s formula, we obtain

2).

¢ t
1
Xt X0 /eXS dXS+§/eXS d[X]s,
0 0

or, in differential notation,
de® = X dX + %ex d[X].
Thus e* does not solve the Ito differential equation
A7z = ZdX (6.2.6)

if [X] # 0. An appropriate renormalization is required instead. We will see below

that the correct solution of (6.2.6)) is given by
Zy = exp (X — [X]/2),
cf. the first example below Theorem

Polynomials: Similarly, choosing F'(x) = ™ for some n € N, we obtain

n—1)

dX" = nx1dx + ™ X L],

Again, X™ does not solve the equation dX" = nX" ! dX. Here, the appropriate
renormalization leads to the Hermite polynomials : X :”, cf. the second example
below Theorem
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The chain rule for anticipative integrals

The form of the second order correction term appearing in [t6’s formula depends cru-
cially on choosing non-anticipative Riemann sum approximations. For limits of antic-
ipative Riemann sums, we obtain different correction terms, and hence also different

notions of integrals.

Theorem 6.5. Suppose that X : [0,u) — R is continuous with continuous quadratic
variation [X] along (w,)). Then for any function F that is C? in a neighbourhood of
X([0,w)) and for any t > 0, the backward Ité integral

t
/FI<XS> AXs = nh_glo ZFI<XS’/\t) ’ (Xs’/\t - XS)7
0 SETY

s<t

and the Stratonovich integral

t

/ F/(X,) 0dX, = lim Z%(F’(XSHF'(XS,M)) (Xygp — Xs)

0 SETY
s<t
exist, and
t t
F(X;) — F(Xo) = /F’(Xs)c?Xs— /F”(Xs)d[X]S 6.2.7)
0 0
t
= /F’(Xs) o dX,. (6.2.8)
0

Proof. The proof of the backward Itd formula (6.2.7)) is completely analogous to that of
It6’s formula. The Stratonovich formula (6.2.8)) follows by averaging the Riemann sum

approximations to the forward and backward It6 rule. U

Note that Stratonovich integrals satisfy the classical chain rule

odF(X) = F'(X) odX.
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This makes them very attractive for various applications. For example, in stochastic dif-
ferential geometry, the chain rule is of fundamental importance to construct stochastic
processes that stay on a given manifold. Therefore, it is common to use Stratonovich
instead of Itd calculus in this context, cf. the corresponding example in the next sec-
tion. On the other hand, Stratonovich calculus has a significant disadvantage against 1t6

calculus: The Stratonovich integrals
) 1
/HS 0dB, = lim ) 5 (Hs + Hype)(Byne = Bs)

w.r.t. Brownian motion typically are not martingales, because the coefficients %(Hs +

Hg ) are not predictable.

6.3 Ito’s formula for Brownian motion and martingales

Our next aim is to compute the quadratic variation and to state 1t6’s formula for typical
sample paths of Brownian motion. More generally, we will show that the quadratic

variation exists almost surely for continuous local martingales.

Let (7,) be a sequence of partitions of R, with mesh(m,) — 0. We note first that for

any function ¢ — X, the identity

XP—Xg =) (X2, —X2) = V420 (6.3.1)

SET
s<t

with
‘/;n = Z(XS//\t — XS)Q and Itn = ZXS : (XS//\t - XS)

SETy SETn
s<t s<t

holds. The equation (6.3.1)) is a discrete approximation of 1t6’s formula for the function

F(x) = 2*. The remainder terms in the approximation vanish in this particular case.

Note that by (6.3.1)), the quadratic variation [X]; = lim,,_,», V;" exists if and only if the

Riemann sum approximations /;* to the It6 integral fot X dX, converge:

n—oo n—o0

t
3[X], = lm V" < 3 / X,dX, = lim I7".
0
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Now suppose that (X;) is a continuous martingale with E[X?] < oo for any ¢ > 0.
Then the Riemann sum approximations (;*) are continuous martingales for any n € N.
Therefore, by the maximal inequality, for a given u > 0, the processes (/) and (V")
converge uniformly for ¢ € [0, u] in L?(P) if and only if the random variables I” or V"

respectively converge in L?(P).

Quadratic variation of Brownian motion

For the sample paths of a Brownian motion B, the quadratic variation [ B] exists almost
surely along any fixed sequence of partitions (r,,) with mesh(rw,) — 0, and [B]; =t
a.s. In particular, [B] is a deterministic function that does not depend on (7). The
reason is a law of large numbers type effect when taking the limit of the sum of squared

increments as 7. — 0Q.

Theorem 6.6 (P. Lévy). If (B;) is a one-dimensional Brownian motion on (2, A, P)

then as n — oo

sup Z (Bone— B —t| — 0 P-a.s. and in L*(Q, A, P)  (6.3.2)

t€[0,u] semm

s<t

forany u € (0, 00), and for each sequence (m,,) of partitions of R with mesh(m,) — 0.

Warning. (1). Although the almost sure limit in (6.3.2) does not depend on the se-

quence (7,), the exceptional set may depend on the chosen sequence!

(2). The classical quadratic variation V,*)(B) = sup, _._ (6B,)? is almost surely

sem

infinite for any ¢ > 0. The classical p-variation is almost surely finite if and only

ifp > 2.
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Proof. (1). L*-convergence for fixed t: As usual, the proof of L? convergence is com-
paratively simple. For V;* = >~ (§B,)? with 0 B, = By — Bgat, We have

SETY

E[V"l = Y E[(0B)"] =) bs =t, and

Var[l'] = Y Var[(6B,)*] = ) E[((6B,)* — ds)7]
= E[(Z*>-1)%- 2(55)2 < const. - t - mesh(m,,)

where Z is a standard normal random variable. Hence, as n — oo,
Vi—t =V'—E[V — 0 in LQ(Q,A,P).

Moreover, by (0.3.1), V;* — V™ = I}* — I is a continuous martingale for any
n,m € N. Therefore, the maximal inequality yields uniform convergence of V"

to ¢ for ¢ in a finite interval in the L?(P) sense.

(2). Almost sure convergence if »_ mesh(m,) < oo: Similarly, by applying the max-
imal inequality to the process V,* — V™ and taking the limit as m — oo, we

obtain

P

2
t€[0,u] €

2
sup |V —t| > E] < ZE[(V/*—1)?] < const. -t mesh(m,)

for any given ¢ > 0 and u € (0,00). If > mesh(m,) < oo then the sum of

the probabilities is finite, and hence sup |V/* — ¢| — 0 almost surely by the
te[0,u]
Borel-Cantelli Lemma.

(3). Almost sure convergence if > mesh(m,) = oco: In this case, almost sure conver-
gence can be shown by the backward martingale convergence theorem. We refer
to Proposition 2.12 in [Revuz, YorXXX], because for our purposes almost sure
convergence w.r.t arbitrary sequences of partitions is not essential.

O
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1to’s formula for Brownian motion

By Theorem [6.6] we can apply Theorem to almost every sample path of a one-

dimensional Brownian motion (B;):

Theorem 6.7 (Itd’s formula for Brownian motion). Suppose that F € C?*(I) where

I C R be an open interval. Then almost surely,

t t

F(B,) — F(By) = / F'(B,) st+% / F'(B)ds  forallt <T, (6.3.3)
0 0

where T' = inf{t > 0 : B, & I} is the first exit time from I.

Proof. For almost every w, the quadratic variation of ¢ — B, (w) along a fixed sequence
of partitions is ¢. Moreover, for any r < T'(w), the function F' is C? on a neighbourhood
of {Bi(w) : t € [0,7]}. The assertion now follows from Theorem [6.7] by noting that
the pathwise integral and the It6 integral as defined in Section [3 coincide almost surely
since both are limits of Riemann-Itd sums w.r.t. uniform convergence for ¢ in a finite

interval, almost surely along a common (sub)sequence of partitions. U

Consequences

t
(1). Doob decomposition in continuous time: The Itd integral M} = [ F'(B;) dB
0

is a local martingale up to 7', and M} is a square integrable martingale if I = R
and F” is bounded. Therefore, (6.3.3) can be interpreted as a continuous time
Doob decomposition of the process (F'(B;)) into the (local) martingale part M*
and an adapted process of finite variation. This process takes over the role of the

predictable part in discrete time.

In particular, we obtain:
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Corollary 6.8 (Martingale problem for Brownian motion). Brownian motion is a so-
2

1
lution of the martingale problem for the operator £ = 332 with domain Dom(.¥) =
x
{F € C*R) : 9 is boundedy}, i.e., the process

MF = F(B) - F(By) — / (LF)(B.) ds

is a martingale for any F' € Dom(.%).

The corollary demonstrates how Itd’s formula can be applied to obtain solutions of

martingale problems, cf./ below for generalizations.

(2). Kolmogorov’s forward equation: Taking expectation values in (6.3.3)), we recover

Kolmogorov’s equation
E[F(B))] = E[F(By)] + /tE[(ZF)(BS)] ds Vit>0

for any ' € CZ(R). In differential form,

d 1 "
G EIF(B)] = SE[(F7)(B)].

(3). Computation of expected values: The Itd formula can be applied in many ways to

compute expectation values:

Example. (a) For any n € N, the process

t t

1
Bf—%/BQ‘Qd‘S - n-/Bg—lst
0 0

is a martingale. By taking expectation values for ¢ = 1 we obtain the recur-
sion

1 n(n —1) /

- / E[B!™?]ds = —— / s""*% ds - B[By?

0 0

E[BY]
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for the moments of the standard normally distributed random variable B5;.
Of course this identity can be obtained directly by integration by parts in the

Gaussian integral [ 2" - e=%"/% dx.

(b) For a € R, the process

2

t t
exp(aBy) — %/ exp(aBy) ds = a/ exp(aBs) dBs
0 0

is a martingale because E[fot exp(2aBs) ds] < oo. Denoting by T, =
min{t > 0 : B; = b} the first passage time to a level b > 0, we obtain the
identity
T 2
E {/0 exp(aBs) ds] = ?(eab -1 for any a > 0

by optional stopping and dominated convergence.

1t6’s formula is also the key tool to derive or solve stochastic differential equations

for various stochastic processes of interest:

Example (Brownian motion on S'). Brownian motion on the unit circle S* =

{z € C : |z| = 1} is the process given by
Zy = exp(iBy) = cos By +i-sin B,

where (B;) is a standard Brownian motion on R!. 1td’s formula yields the stochas-

tic differential equation

1

12
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where t(z) = iz is the unit tangent vector to S at the point z, and n(z) = z is the
. . 1 .

outer normal vector. If we would omit the correction term —3n(Z;) dt in (6.3.4),

the solution to the s.d.e. would not stay on the circle. This is contrary to classical

o.d.e. where the correction term is not required. For Stratonovich integrals, we

obtain the modified equation
OdZt == t(Zt) e} dBt,

which does not involve a correction term!

Quadratic variation of continuous martingales

Next, we will show that the sample paths of continuous local martingales almost surely
have finite quadratic variation. Let ()/;) be a continuous local martingale, and fix a
sequence (7,,) of partitions of R, with mesh(m,) — 0. Let

V' = > (Myp — Map)?

SETy
denote the quadratic variation of M along 7,,. Recall the crucial identity
M — M = Z (Mo — M) = Vi + 217 (6.3.5)
SETY
where I} = > My(Mgyp — Msy) are the Riemann sum approximations to the Ito
integral fot M dM. The identity shows that V," converges (uniformly) as n — oo if and

only if the same holds for /;*. Moreover, in this case, we obtain the limit equation

t
M? — M? = [M], + 2/0 M, dM, (6.3.6)

which is exactly Itd’s equation for F(x) = x°.

Theorem 6.9 (Existence of quadratic variation). Suppose that (M,) is a continuous
local martingale on (), A, P). Then there exist a continuous non-decreasing process

t +— [M]; and a continuous local martingale t — fg M dM such that as n — oo,

sup |V' = [M]s| — 0 and sup
s€[0,t] s€[0,t]

Ig—/ MdM‘ — 0
0
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in probability for any t > 0, and in L*(P) respectively if M is bounded. Moreover, the
identity (6.3.6) holds.

Notice that in the theorem, we do not assume the existence of an angle bracket process
(M). Indeed, the theorem proves that for continuous local martingales, the angle bracket
process always exists and it coincides almost surely with the quadratic variation process

[M] ! We point out that for discontinuous martingales, (M) and [M] do not coincide.

Proof. We first assume that M is a bounded martingale: |M;| < C for some finite
constant C. We then show that (I,,) is a Cauchy sequence in the Hilbert space M?([0, t])
for any given ¢ € R,. To this end let n, m € N. We assume without loss of generality
that 7, C m,, otherwise we compare to a common refinement of both partitions. For
s € m,, we denote the next partition point in 7, by &, and the previous partition point
in 7, by |$|m. Fix t > 0. Then

=1 = ) (M= Myy,) (Myn — M,), and hence

SETy
s<t

y T E[(Itn_Itm)Q]
= ZE [(Ms - MLSJm)Q (Mg pe — MS>2}

SETR
s<t

1 = I [[ag2 0.

1/2

< E[éfn}”?E[(Z((SMSVﬂ , (6.3.7)

where 4, := sup{|M; — M,|* : |s — r| < mesh(r,,)}. Here we have used that the

non-diagonal summands cancel because ) is a martingale.

Since M is bounded and continuous, dominated convergence shows that E[62,] — 0 as

m — o0o. Furthermore,

E (Z(5M3)2> = E|) (M) + E| Y (5Mr)2(5Ms)2]
< 4C°E | (6M.)*| + 2E | (6M,)°E Z((SMS)z\J-}”

< 6C*E[M? -~ M} < 6C* < .
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Here we have used that by the martingale property,

E|Y (6M.)*| = E[M]—M;] < C?  and
E | (M| F.| = E[M—M|F,] < C
s>r .

By ©.3.7), || I" — Imewg([O’t]) — 0 as n,m — oo. Hence (I7')scjo, converges uni-
formly as n — oo in the L*(P) sense. By (©3.3), (V,")sejo, converges uniformly as
n — oo in the L?(P) sense as well. Hence the limits [ M dM and [M] exist, the
stochastic integral is in M?2([0, ¢]), and the identity (6.3.6)) holds.

It remains to extend the result from bounded martingales to local martingales. If M is a
continuous local martingale then there exists a sequence of stopping times 7} 1 oo such
that the stopped processes (M, r¢)1>0 are continuous bounded martingales. Hence the
corresponding quadratic variations [Mr, »e] converge uniformly in the L?(P) sense for
any finite ¢ and k. Therefore, the approximations V;" for the quadratic variation of M
converge uniformly in the L?(P) sense on each of the random intervals [0, T}, A ¢], and
thus for any €, > 0,
P sg)ﬂfsn—[M]s\ >e| < Pt>Ty + P s3£)|VS"—[M]S\ >e|l <6
s< s<T},

for k, n sufficiently large. 0

Having shown the existence of the quadratic variation [M] for continuous local martin-

gales, we observe next that [/] is always non-trivial if M is not constant:

Theorem 6.10 (Non-constant continuous martingales have non-trivial quadratic
variation). Suppose that (M,) is a continuous local martingale. If [M]; = 0 almost

surely for some t > 0, then M is almost surely constant on the interval |0, t].

Proof. Again, we assume at first that M/ is a bounded martingale. Then the It6 integral
Js M dM is a martingale as well. Therefore, by (€.3.6)),

1M = Moll320) = EI(M: — Mo)*] = E[M; — Mg] = E[[M],] = 0,
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i.e., My = My for any s € [0, t]. In the general case, the assertion follows once more by

localization. |

The theorem shows in particular that every local martingale with continuous finite vari-
ation paths is almost surely constant, i.e., the Doob type decomposition of a continu-
ous stochastic process into a local martingale and a continuous finite variation pro-
cess starting at 0 is unique up to equivalence. As a consequence we observe that the
quadratic variation is the unique angle bracket process of M. In particular, up to mod-

ification on measure zero sets, [M| does not depend on the chosen partition sequence

(7):

Corollary 6.11 (Quadratic variation as unique angle bracket process). Suppose that
(M,) is a continuous local martingale. Then [M] is the up to equivalence unique contin-

uous process of finite variation such that [M|y = 0 and M? —[M); is a local martingale.

Proof. By (6.3.6), M? — [M]; is a continuous local martingale. To prove uniqueness,
suppose that (A,) and (A,) are continuous finite variation processes with Ay = Ay = 0
such that both M? — A; and M? — A, are local martingales. Then A, — A, is a continuous
local martingale as well. Since the paths have finite variation, the quadratic variation of
A — A vanishes. Hence almost surely, A; — Zt = Ay — ZO = 0 for all ¢. O

From continuous martingales to Brownian motion

A remarkable consequence of It6’s formula for martingales is that any continuous local
martingale (M;) (up to T = oc) with quadratic variation given by [M], = ¢ for any

t > 0 is a Brownian motion ! In fact, for 0 < s < ¢ and p € R, Itd’s formula yields

t

t
. . . p2 .
eszt o eszs — Z.p/GZpMT er o 5 /eszr dr

S S
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where the stochastic integral can be identified as a local martingale. From this identity
it is not difficult to conclude that the increment M; — M is conditionally independent

of FM with characteristic function
ElePMimMo)) — =P (t=5)/2 for any p € R,

i.e., (M;) has independent increments with distribution M; — My ~ N(0,t — s).

Theorem 6.12 (P. Lévy 1948). A continuous local martingale (M,):c(0,) is a Brownian

motion if and only if almost surely,

[M]; =t  foranyt > 0.

Exercise (Lévy’s characterization of Brownian motion). Extend the sketch above to
a proof of Theorem [6.12]

Lévy’s Theorem is the basis for many important developments in stochastic analysis
including transformations and weak solutions for stochastic differential equations. An
extension to the multi-dimensional case with a detailled proof, as well as several appli-

cations, are contained in Section [[T.1] below.

One remarkable consequence of Lévy’s characterization of Brownian motion is that ev-
ery continuous local martingale can be represented as a time-changed Brownian motion

(in general possibly on an extended probability space):

Exercise (Continuous local martingales as time-changed Brownian motions). Let
(M})1ej0,00) be a continuous local martingale, and assume for simplicity that ¢ — [M];
is almost surely strictly increasing with lim; ,.[M]; = oco. Prove that there exists a

Brownian motion (B );c[o,o0) such that
M, = By,  fort € [0,00). (6.3.8)

Hint: Set B, = My, where T, = [M]™(a) = inf{t > 0 : [M]; = a}, and verify by

Lévy’s characterization that B is a Brownian motion.
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In a more general form, the representation of continuous local martingales as time-
changed Brownian motions is due to Dambis and Dubins-Schwarz (1965), cf. [37/]] or
Section below for details. Remarkably, even before Itd, Wolfgang Doeblin, the
son of Alfred Doeblin, had developed an alternative approach to stochastic calculus
where stochastic integrals are defined as time changes of Brownian motion. Doeblin
died when fighting as a French soldier at the German front in World War II, and his
results that were hidden in a closed envelope at the Académie de Sciences have become
known and been published only recently, more than fifty years after their discovery, cf.
[Doeblin, Sur I’équation de Kolmogoroff, 1940/2000], [ Yor: Présentation du pli cacheté,
C.R.Acad.Sci. Paris 2000].

6.4 Multivariate and time-dependent It6 formula

We now extend It6’s formula to R?-valued functions and stochastic processes. Let
u € (0,00] and suppose that X : [0,u) — D, X, = (X",..., X?), is a continu-
ous function taking values in an open set D C R?. As before, we fix a sequence (7,,) of
partitions of R, with mesh(m,,) — 0. For a function F' € C?*(D), we have similarly as

in the one-dimensional case:

F(Xgn) — F(X,) = VF(X,) (Xon — X,) + (6.4.1)

L~ PF (i @)\ ( v () 1 )
5 2 T KX, = X)X, — X)) + R

for any s € m, with s < ¢t where the dot denotes the Euclidean inner product R is the
remainder term in Taylor’s formula. We would like to obtain a multivariate 1t6 formula
by summing over s € m, with s < ¢ and taking the limit as n — oo. A first problem

that arises in this context is the identification of the limit of the sums

> 9(X)exxy)

SETy
s<t

for a continuous function g : D — R as n — oc.
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Covariation

Suppose that X, Y : [0,u) — R are continuous functions with continuous quadratic

variations [X]; and [Y]; w.r.t. (7).

Definition. The function
(X, Y] = lim > (Xone — Xont) Yone = Yenr), £ € [0,0),
oo SETY

is called the covariation of X and Y w.r.t. (7,,) if the limit exists.

The covariation [ X, Y], is the bilinear form corresponding to the quadratic form [X];.

In particular, [ X, X] = [X]. Furthermore:

Lemma 6.13 (Polarization identity). The covariation [X,Y|; exists and is a continu-
ous function in t if and only if the quadratic variation [ X + Y|, exists and is continuous

respectively. In this case,
1
(X, Y] = S(X + Y] = [X] = [Y]h).
Proof. Forn € N we have

2 OXOY, = ) (0X 40V = > (6X,)7 = ) (6YL)%

SETR SETT SETR SETT

The assertion follows as n — oo because the limits [ X|; and [Y]; of the last two terms

are continuous functions by assumption. L

Remark. Note that by the polarization identity, the covariation [X, Y], is the difference

of two increasing functions, i.e., t — [X, Y], has finite variation.

Example. (1). Functions and processes of finite variation: If Y has finite variation
then [ X, Y], = 0 for any ¢ > 0. Indeed,

Z 5X0Y,

SETR

< sup [0X,[- Y [0V

SETn

SETR
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and the right hand side converges to 0 by uniform continuity of X on [0,¢]. In

particular, we obtain again

X +Y] = [X]|+[Y]+2[X,Y] = [X].

(2). Independent Brownian motions: 1f (B,) and (B,) are independent Brownian mo-

tions on a probability space (€2, A, P) then for any given sequence (),

[B,E]t = lim ZéBséés =0 forany t > 0
oo SETn

P-almost surely. For the proof note that (B, + B;)/v/2 is again a Brownian

motion, whence

BBl = [(B+B)/V3— 5Bl (Bl = 1

5 =0 almost surely.

t

2 2
t

(3). It6 processes: If I, = fot G,dB;and F;, = f H, d B, with continuous adapted
0

processes (G;) and (H,) and Brownian motions (B,) and (B,) then

I,J; = 0 if B and B are independent, and (6.4.2)

t
1,J], = / G,H,ds  if B=B, (6.4.3)
0

cf. Theorem ?? below.

More generally, under appropriate assumptions on GG, H, X and Y, the identity

[Ia J]t = /GsHs d[va]s

0

t t
holds for Itd integrals I; = [ G5 dX; and J, = [ Hy dY, cf. e.g. Corollary ??.
0 0

1to to Stratonovich conversion

The covariation also occurs as the correction term in Itd6 compared to Stratonovich inte-

grals:
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Theorem 6.14. If the It0 integral

SETY
s<t

t
[xv. =t Y,
0

and the covariation [ X, Y| exists along a sequence () of partitions with mesh(r,) —

t A
0 then the corresponding backward It integral [ X dYy and the Stratonovich integral
0

¢
f X, odY, also exist, and
0
t
/&&;=/&m+mﬂh and
0

t
1
/XS Od}/; = /Xs}/:s+§[X7Y]t
0

Proof. This follows from the identities
Y XondY, = > XY+ XY, and
1 1
> 5 (Ko Xup)dYe = > X0V, + 5 > X0

It6’s formula in R?

By the polarization identity, if [X];, [Y]; and [X + Y; exist and are continuous then

[X, Y], is a continuous function of finite variation.

Lemma 6.15. Suppose that X,Y and X + Y are continuous function on [0,u) with

continuous quadratic variations w.r.t. (7). Then

¢
ZHS(XS/M—XS)(YS/M—YS) — /HS d[X,Y]s asn — 0o
0

SET
s<t
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for any continuous function H : [0,u) — R and any t > 0.

Proof. The assertion follows from Lemmal6.3]by polarization. U

By Lemma [6.15 we can take the limit as mesh(7w,) — 0 in the equation derived by
summing over all s € m, with s < t. In analogy to the one-dimensional case,

this yields the following multivariate version of the pathwise It6 formula:

Theorem 6.16 (Multivariate It6 formula without probability). Suppose that
X : [0,u) = D C R is a continuous function with continuous covariations

[(X® X, 1<i,j <d, wrt (7,). Then forany F € C*(D) andt € [0,u),

t

F(X;) = F(Xo)—l—/VF( dXs+ = Z/@a;’ e [X(Z) X(])]

0

where the Ité integral is the limit of Riemann sums along (,,):

/ VF(X,)-dX, = lim Y VF(X,) (Xopn — X,). (6.4.4)
SETR
s<t

The details of the proof are similar to the one-dimensional case and left as an exercise
to the reader. Note that the theorem shows in particular that the Itd integral in (6.4.4) is

independent of the sequence (7, ) if the same holds for the covariations [X ), X )],

Remark (Existence of pathwise It6 integrals). The theorem implies the existence of
t

the Itd integral [ b(X;) - dX, if b = VF is the gradient of a C? function F' : D C
0

R? — R. In contrast to the one-dimensional case, not every C! vector field b : D — R4
is a gradient. Therefore, for d > 2 we do not obtain existence of fot b(Xs) - dX; for
any b € C’l(D R?) from 1t0’s formula. In particular, we do not know in general if the
E(X,) dx¥ 1< < d, exists and if

t
/ VF(X,)- Z / o S) dX
0

=1 0

integrals 0 a
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If (X}) is a Brownian motion this is almost surely the case by the existence proof for It6

integrals w.r.t. Brownian motion from Section

Example (It6’s formula for Brownian motion in R¢). Suppose that B; = (Bfl) e Bt(d))
is a d-dimensional Brownian motion defined on a probability space (€2, A, P). Then the
component processes Bt(l), NN Bt(d) are independent one-dimensional Brownian mo-
tions. Hence for a given sequence of partitions (7, ) with mesh(m,) — 0, the covari-
ations [B®W, BU)] 1 < i,j < d, exists almost surely by Theorem [6.6] and the example
above, and

[B(i)’B(j)] =t 4y Yt >0

P-almost surely. Therefore, we can apply Itd’s formula to almost every trajectory. For

an open subset D C R? and a function ' € C?(D) we obtain:

t t
1
F(B;) = F(BO)+/VF(BS)-dBS+§/AF(BS)ds Vit <Tpe P-as. (6.4.5)
0 0
where Tpe = inf{t > 0 : B; ¢ D} denotes the first exit time from D. As in
the one-dimensional case, (6.4.9) yields a decomposition of the process F'(B;) into a
continuous local martingale and a continuous process of finite variation, cf. Section ??

for applications.

Product rule, integration by parts

As a special case of the multivariate It6 formula, we obtain the following integration by

parts identity for It0 integrals:

Corollary 6.17. Suppose that X,Y : [0,u) — R are continuous functions with contin-

uous quadratic variations [ X| and [Y], and continuous covariation [X,Y]. Then

[ (Y.
X.Y; — XoYy = / <X> d (Xy) VIX,Y], foramyte[0,u). (6.4.6)

0 S
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t t
If one, or, equivalently, both of the 1t6 integrals [ YydX and [ X, dY exist then (6.4.6))
0 0

vields
t

t
XY, — XYy = / Y, dX, + / X, dY, + [X,Y],. (6.4.7)
0

0

Proof. The identity (6.4.6) follows by applying Itd’s formula in R? to the process (X;, Y;)
and the function F'(x,y) = xy. If one of the integrals f(f Y dX or f(f X dY exists, then

the other exists as well, and

t t t
v\ (X

/ -d = /YSdXSJr/XSdYS.
x.) T\¥ J )

0

O

As it stands, (6.4.7)) is an integration by parts formula for Itd integrals which involves the

correction term [X, Y. In differential notation, it is a product rule for It6 differentials:
d(XY) = XdY +YdX + [X,Y].

Again, in Stratonovich calculus a corresponding product rule holds without the correc-
tion term [X, Y:
od(XY) = X odY +Y odX.

Remark / Warning (Existence of [ X dY, Lévy area). Under the conditions of the
t t

theorem, the Itd integrals [ X dY and [V dX do not necessarily exist! The following
0 0

statements are equivalent:

t
(1). The Itd integral [ Y, dX, exists (along (7,)).
0

t
(2). The Itd integral [ X, dY; exists.
0
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(3). The Lévy area A,(X,Y) defined by

t

A(X,Y) = /(Y dX =X dY) = lim Y (Y,AX, - X,AY,)
n—oo
0 SETy
s<t

exists.

Hence, if the Lévy area A,(X,Y’) is given, the stochastic integrals [ X dY and [ Y dX
can be constructed pathwise. Pushing these ideas further leads to the rough paths theory

developed by T. Lyons and others, cf. [Lyons, St. Flour], [Friz: Rough paths theory].

Example (Integrating finite variation processes w.r.t. Brownian motion). If (H,) is
an adapted process with continuous sample paths of finite variation and (B;) is a one-

dimensional Brownian motion then [H, B] = 0, and hence

t t
H,B, — HyBy = / H, dB; + / B, dH,.
0 0
This integration by parts identity can be used as an alternative definition of the stochastic
t

integral [ H dB for integrands of finite variation, which can then again be extended to
0

general integrands in £2(0, ¢) by the It6 isometry.

Time-dependent It6 formula

The multi-dimensional It6 formula can be applied to functions that depend explicitly
on the time variable ¢ or on the quadratic variation [X];. For this purpose we simply
add t or [X]; respectively as an additional component to the function, i.e., we apply the

multi-dimensional It6 formula to Y; = (¢, X;) or Y; = (¢, [X];) respectively.

Theorem 6.18. Suppose that X : [0,u) — R? is a continuous function with continuous
covariations [ X, XU)),, along (), and let F € C?(A([0,u))xR9). IfA: [0,u) — R

is a continuous function of finite variation then the integral
t
/VIF(AS, X,)-dX, = lim Y V.F(A, X,) - (Xon — X,)

n—oo
0 SETY

s<t
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exists, and the Ito formula

t
F(A,X;) = F(O,X0)+/VIF(AS,XS)~dXS+

0 0

8F

5o (A, X,) dA, 464.8)

= (As, X,) dI XD X0, 6.4.9
Z]Z / al_z 8IJ ) ) [ J ] ( )
holds for any t > 0. Here OF /Oa denotes the derivative of F'(a,x) w.r.t. the first com-
ponent, and V . F and 8*F/0x;0x; are the gradient and the second partial derivatives
w.r.t. the other components. The most important application of the theorem is for A; = t.

Here we obtain the time-dependent It6 formula

dF(t,X,) = V. F(t,X,)-dX +8—F(t X)dt+1 Zaz—F(t X)) d[X®, x0)]
0=250)) == T =4 t at =40 9 = axlaxj =25 9 t-
(6.4.10)
Similarly, if d = 1 and A, = [ X, then we obtain
_ OF oF 10*F

If (X)) is a Brownian motion and d = 1 then both formulas coincide.

Proof. LetY; = (Y7, v,V . V) := (4, X,). Then [Y© Y], = 0 forany ¢ > 0

and 0 < ¢ < d because Y;( = A, has finite variation. Therefore, by Itd’s formula in
Rd'H,
O*F . .
F(A, X)) = F(Ao, Xo) + I As, X)) d[ XD, X)),
( ty t) ( 05 0)+ ¢+ = Z 6$18$]< ) ) [ ) ]
where
1 As’ - As
L = lim Y V¥"F(A,X,)- N
nree SET XS//\t - XS
s<t
. or
= nlLHSO Z 9a (Asu X )(As’/\t - As) + Z va(AS7Xs> : (Xs’/\t - Xs) .
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The first sum on the right hand side converges to the Stieltjes integral fot %—5 (A, Xs)dAs
as n — oo. Hence, the second sum also converges, and we obtain (6.4.7) in the limit as

n — 0. [l

Note that if h(t, z) is a solution of the dual heat equation

oh  10°h
—t 55 = fort > R 4.12
8t+28:c2 0 ort >0,z € R, 6 )
then by (6.4.11),
t
oh
h([X]t7Xt) = h(07X0)+/%<[X]37X3) dXs

0

In particular, if (X;) is a Brownian motion, or more generally a local martingale, then
h([X];, X;) is also a local martingale. The next example considers two situations where

this is particular interesting:
Example. (1). It6 exponentials: For any o € R, the function
h(t,r) = exp(az — a*t/2)
satisfies and Oh/0x = ah. Hence the function
7% = exp (aXt — %az[X]t)
is a solution of the It6 differential equation

Az = oz dX,

) — 1. This shows that in Itd calculus, the functions Zt(a)

with initial condition Z{®
are the correct replacements for the exponential functions. The additional factor
exp(—a?[X];/2) should be thought of as an appropriate renormalization in the
continuous time limit.

For a Brownian motion (X;), we obtain the exponential martingales as general-

ized exponentials.
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(2). Hermite polynomials: Forn = 0,1, 2, ..., the Hermite polynomials

o 1
Do exp(ozx o §O‘2t)‘a=0

ho(t,z) =

also satisfy (6.4.12). The first Hermite polynomials are 1, z, 2> — ¢, 2> — 3tx, . . ..
Note also that

exp(az — a’t/2) = Z %hn(t, x)

n=0

by Taylor’s theorem. Moreover, the following properties can be easily verified:

ar

h,(1 — z2/2 1) e /2
(1,) e”’"(-1) e

ho(t,z) = t"2h,(1,2/V/t) foranyt >0,z € R, (6.4.14)
Ohy, Ohy 107y,

— ah
9z M1, o T 52

for any r € R, (6.4.13)

— 0. (6.4.15)
For example, holds since
exp(ar — a?/2) = exp(—(z — a)?/2) exp(2?/2)

yields

n

exp(—5?/2)

(L) = expla?/2)(-1)" oo N

and (6.4.14) follows from

exp(az — a’t/2) = exp(avt- (z/V) - (aVt)?/2)
_ Zi—?t"ﬂhn(l,x/ﬁ).

n=0

By (©.4.13) and (6.4.14), h,, is a polynomial of degree n. For any n > 0, the

function

H™ = h,([X];, X,)

is a solution of the It6 equation

dH™ = nH"™ Y dX,. (6.4.16)
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Therefore, the Hermite polynomials are appropriate replacements for the ordinary

)

monomials ™ in It calculus. If X, = 0 then HO(" = 0 for n > 1, and we obtain

inductively
t t s
7Y =1, HY = / ax,, HP? = / HY dX, = / / dX, dX,,
0 0 O
and so on.

Corollary 6.19 (It6 1951). If X : [0, u) — R is continuous with X = 0 and continuous

quadratic variation then for t € [0, u),

t sn 52
1
/// dXsy -+ dX,,, dX,, = —ha([X]y, Xy).
n!
0 0 0

Proof. The equation follows from (6.4.16)) by induction on n. O

Iterated It6 integrals occur naturally in Taylor expansions of 1t6 calculus. Therefore, the
explicit expression from the corollary is valuable for numerical methods for stochastic

differential equations, cf. Section ?? below.
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Chapter 7

Brownian Motion and Partial

Differential Equations

The stationary and time-dependent It6 formula enable us to work out the connection of
Brownian motion to several partial differential equations involving the Laplace operator
in detail. One of the many consequences is the evaluation of probabilities and expec-
tation values for Brownian motion by p.d.e. methods. More generally, 1t6’s formula
establishes a link between stochastic processes and analysis that is extremely fruitful in

both directions.

Suppose that (B;) is a d-dimensional Brownian motion defined on a probability space
(Q, A, P) such that every sample path ¢ — B;(w) is continuous. We first note that Itd’s
formula shows that Brownian motion solves the martingale problem for the operator

1
L = §A in the following sense:

Corollary 7.1 (Time-dependent martingale problem). The process
t

MF = F(t, B,) — F(0, By) — / (88—1;+%AF) (s, B,) ds
0

is a continuous (FP) martingale for any C? function F : [0,00) x RY — R with
bounded first derivatives. Moreover, M¥ is a continuous local martingale up to Tpc =
inf{t >0 : B; & D} forany F € C*(|0,00) x D), D C R? open.
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Proof. By the continuity assumptions one easily verifies that M* is (F?) adapted.

Moreover, by the time-dependent It6 formula (6.4.10),
t
M = / V.F(s, By) - dB, fort < T,
0

which implies the claim. U

Choosing a function F' that does not explicitly depend on ¢, we obtain in particular that

M} = F(Bt)—F(BO)—/%AF(BS)ds

0

is a martingale for any f € CZ(R?), and a local martingale up to Thc for any F €

C2(D).

7.1 Dirichlet problem, recurrence and transience

As a first consequence of Corollary [7.1] we can now complete the proof of the stochastic
representation for solutions of the Dirichlet problem that has been already mentioned in
Section [3.2] above. By solving the Dirichlet problem for balls explicitly, we will then

study recurrence, transience and polar sets for multi-dimensional Brownian motion.

The Dirichlet problem revisited

Suppose that b € C?(D) N C (D) is a solution of the Dirichlet problem
Ah =0 onD, h=f ondD, (7.1.1)

for a bounded open set D C R? and a continuous function f : 9D — R. If (B;) is under
P, a continuous Brownian motion with By = = P,-almost surely, then by Corollary [7.1]

the process h(B;) is a local (F?) martingale up to The. By applying the optional
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stopping theorem with a localizing sequence of bounded stopping times S,, ,/* Tpc, we
obtain
h(z) = E.[h(By)] = E.[h(Bg,)] for any n € N.

Since P,[Tpc < oo] = 1 and h is bounded on D, dominated convergence then yields

the stochastic representation
hz) = Eu[hM(Br,.)] = E[f(Br,.)] for any z € R”.

We thus have shown:

Theorem 7.2 (Stochastic representation for solutions of the Dirichlet problem).
Suppose that D is a bounded open subset of R, f is a continuous function on the
boundary dD, and h € C*(D) N C (D) is a solution of the Dirichlet problem (Z1.1).
Then

h(z) = E,[f(Br)] foranyx € D.

We will generalize this result substantially in Theorem [Z.3 below. Before, we apply the

Dirichlet problem to study recurrence and transience of Brownian motions:

Recurrence and transience of Brownian motion in R

Let (B;) be a d-dimensional Brownian motion on (£2,.4, P) with initial value By =
xo, o # 0. Forr > 0 let

T, = inf{t >0 : |B =r}.

We now compute the probabilities P[T, < Tp] for a < |zo| < b. Note that this is a
multi-dimensional analogue of the classical ruin problem. To compute the probability

for given a, b we consider the domain
D = {zeR?: a<|z| <b}.
For b < oo, the first exit time 7Tpc is almost surely finite,

The = min(Ta,Tb), and P[Ta < Tb] = PHBTDC‘ :CL].
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Suppose that b € C(U) N C?(U) is a solution of the Dirichlet problem

1 if|z] =a,
Ah(z) = 0 forallx € D, h(z) = (7.1.2)
0 if|z| =0b.

Then h(B;) is a bounded local martingale up to 7pc and optional stopping yields
PIT, <Ty] = E[MBr,.)] = h(z). (7.1.3)

By rotational symmetry, the solution of the Dirichlet problem (Z.1.2) can be computed
explicitly. The Ansatz h(xz) = f(|z|) leads us to the boundary value problem
d*f

pres

d—1df

(lz]) = 0, fla) =1,f(b) =0,

for a second order ordinary differential equation. Solutions of the o.d.e. are linear

combinations of the constant function 1 and the function

S ford =1,
¢(s) == <logs ford=2,

s2=4  ford > 3.
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¢(s)

Figure 7.1: The function ¢(s) for different values of d: red (d = 1), blue (d = 2) and
purple (d = 3)

Hence, the unique solution f with boundary conditions f(a) = 1 and f(b) = 0 is

¢(b) — o(r)

1) = 5o = ola)

Summarizing, we have shown:

Theorem 7.3 (Ruin problem in RY). Fora,b > 0 with a < |xg| < b,

o0 ~ oz
PIL<Til = Sy @ ™
PIT, < 00 = 1 ford <2

(a/lxo))2  ford > 2.

Proof. The first equation follows by [6.4.121 Moreover,

1 ford <2

P[T, < o0] = lim P[T, <Tp] =
bree ¢(|zol)/¢(a)  ford = 3.

O

University of Bonn 2015/2016



226 CHAPTER 7. BROWNIAN MOTION AND PDE

Corollary 7.4. For a Brownian motion in R? the following statements hold for any

initial value x, € R?:

(1). If d < 2 then every non-empty ball D C RY is recurrent, i.e., the last visit time of

D is almost surely infinite:
Ly = sup{t>0: B, € D} = P-a.s.
(2). If d > 3 then every ball D is transient, i.e.,

L; < o0 P-a.s.

(3). If d > 2 then every point x € R? is polar, i.e.,

P[3t>0: B,=x] = 0.

We point out that the last statement holds even if the starting point z( coincides with z.
The first statement implies that a typical Brownian sample path is dense in R?, whereas

by the second statement, tlim | B;| = oo almost surely for d > 3.
— 00

Proof.

(1),(2) The first two statements follow from Theorem [7.3]and the Markov property.
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(3). For the third statement we assume w.l.o.g. x = 0. If xy # 0 then
P[Ty < ] = bli}rglo P[Ty < Ty
for any a > 0. By Theorem[7.3]
P[Ty < Ty < ELEEP[T“ <Ty =0 ford > 2,

whence T, = oo almost surely. If 2y = 0 then by the Markov property,

P[3t>¢e : B,=0] = E[Pp.[Ty <] =0
for any € > 0. thus we again obtain

P[Ty < ] = li{‘rg)P[Ht>5 : By=0] = 0.

O

Remark (Polarity of linear subspaces). For d > 2, any (d — 2) dimensional subspace
V C R4 is polar for Brownian motion. For the proof note that the orthogonal projection
of a one-dimensional Brownian motion onto the orthogonal complement V= is a 2-

dimensional Brownian motion.

7.2 Boundary value problems, exit and occupation times

The connection of Brownian motion to boundary value problems for partial differential

equations involving the Laplace operator can be extended substantially:

The stationary Feynman-Kac-Poisson formula

Suppose that f : 0D — R,V : D — Rand g : D — [0, 00) are continuous functions
defined on an open bounded domain D C RY, or on its boundary respectively. We

assume that under P,, (B;) is Brownian motion with P,[By = z| = 1, and that

T
E, exp/V(BS) ds| < oo forany x € D, (7.2.1)
0
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where T' = T'he is the first exit time from D.

Note that (Z.2.1)) always holds if V' is non-negative.

Theorem 7.5. If u € C2(D) N C(D) is a solution of the boundary problem

%Au(gj) = V(x)u(z) — g(x) forx € D

(71.2.2)
u(z) = f(x) forx € 0D, (7.2.3)
and (Z.2.1) holds then
r T
u(z) = E, [exp —/V(BS) ds |- f(Br)| + (7.2.4)
- T ' ¢
E, /exp —/V(BS) ds | - g(By)dt
0 0
forany z € D.

Remark. Note that we assume the existence of a smooth solution of the boundary value
problem (Z.2.2). Proving that the function u defined by is a solution of the b.v.p.
without assuming existence is much more demanding.

Proof. By continuity of V' and (Bj), the sample paths of the process

t

A = / V(B.) ds

0

are C'! and hence of finite variation for t < T Let

Xt = eiAt’U,<Bt), t < T.
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Applying 1td’s formula with F'(a, b) = e~ “u(b) yields the decomposition
1
dX, = e M"Vu(B,)-dB; — e Yu(B,) dA, + ée’AtAu(Bt) dt
1
= e Vu(B,) - dB, + et <§Au -V u) (B,) dt

of X, into a local martingale up to time 7" and an absolutely continuous part. Since u
is a solution of (Z.2.2)), we have %Au — Vu = —g on D. By applying the optional
stopping theorem with a localizing sequence T,, /T of stopping times, we obtain the
representation
Ty
u(z) = E.[Xo] = EJ[Xr1,]+ E. / e g(By) dt

0
Tn

= E,Je ™ u(Byg,)] + E, / e Mg(By) dt
0
for x € D. The assertion (Z.2.4) now follows provided we can interchange the limit
as n — oo and the expectation values. For the second expectation on the right hand
side this is possible by the monotone convergence theorem, because g > 0. For the first

expectation value, we can apply the dominated convergence theorem, because

T
}e‘ATnu(BTn)’ < exp /V_(BS) ds | -sup [u(y)| Vn e N,
0 yeD
and the majorant is integrable w.r.t. each P, by Assumption[Z.2.1l O

Remark (Extension to diffusion processes). A corresponding result holds under ap-
propriate assumptions if the Brownian motion (B;) is replaced by a diffusion process
(X:) solving a stochastic differential equation of the type dX; = o(X;) dB; + b(X;) dt,
and the operator A in (Z.2.2) is replaced by the generator

Z aij(x axlaxj +b(z) -V, a(z) = o(x)o(x)",

of the diffusion process, cf. ??. The theorem hence establishes a general connection
between It6 diffusions and boundary value problems for linear second order elliptic

partial differential equations.
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By Theorem[7.5lwe can compute many interesting expectation values for Brownian mo-

tion by solving appropriate p.d.e. We now consider various corresponding applications.

Let us first recall the Dirichlet problem where V' = 0 and ¢ = 0. In this case,
u(r) = E.[f(B;)]. We have already pointed out in the last section that this can be
used to compute exit distributions and to study recurrence, transience and polarity of
linear subspaces for Brownian motion in R%. A second interesting case of Theorem

is the stochastic representation for solutions of the Poisson equation:

Poisson problem and mean exit time

If V and f vanish in Theorem [Z.3] the boundary value problem (Z.2.2) reduces to the

boundary value problem
1
§Au =—g onD, u=0 onD,

for the Poisson equation. The solution has the stochastic representation
T
u(z) = E, /g(Bt) dt|, x €D, (7.2.5)
0
which can be interpreted as an average cost accumulated by the Brownian path before
exit from the domain D. In particular, choosing g = 1, we can compute the mean exit

time

from D for Brownian motion starting at = by solving the corresponding Poisson prob-

lem.

Example. If D = {z € R? : |z| < r} is a ball around 0 of radius 7 > 0, then the

solution u(x) of the Poisson problem

1 -1 forl|z| <r
—Au(x) =
2 0 for |z| =r
can be computed explicitly. We obtain
2 12
E.[T] = u(z) = % forany x € D.
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Occupation time density and Green function

If (B;) is a Brownian motion in R? then the corresponding Brownian motion with ab-
sorption at the first exit time from the domain D is the Markov process (X;) with state
space D U {A} defined by

B, fort<T
Xt = )
A fort>T

where A is an extra state added to the state space. By setting g(A) = 0, the stochastic

representation (Z.2.3) for a solution of the Poisson problem can be written in the form

u(z) = E, /Q(Xt) dt| = /(p?g)(:c) dt, (7.2.6)
0 0
where
pP(x,A) = P,[X, € A], A C R%measurable,

is the transition function for the absorbed process (X;). Note that for A C RY,
pP(z,A) = PB, € Aandt <T] < py(z,A) (7.2.7)

where p, is the transition function of Brownian motion on R%. For t > 0 and z € R¢,
the transition function p;(x, @) of Brownian motion is absolutely continuous. There-
fore, by (Z.2.7)), the sub-probability measure pP (x, o) restricted to R is also absolutely
continuous with non-negative density

D —d/2 v —y/?
py(z,y) < pe(z,y) = (27t)"“ " exp )

The function p? is called the heat kernel on the domain D w.r.t. absorption on the

boundary. Note that
GP(wy) = [ PGog)de
0

is an occupation time density, i.e., it measures the average time time a Brownian mo-

tion started in x spends in a small neighbourhood of y before it exits from the Domain
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D. By (1.2.6)), a solution u of the Poisson problem %Au = —gonD,u=0ondD,can

be represented as
u(zr) = /GD(x,y)g(y) dy forz € D.
D

This shows that the occupation time density G”(z,y) is the Green function (i.c.,
the fundamental solution of the Poisson equation) for the operator % with Dirichlet

boundary conditions on the domain D.

Note that although for domains with irregular boundary, the Green’s function might not

exist in the classical sense, the function G (x, y) is always well-defined!

Stationary Feynman-Kac formula and exit time distributions

Next, we consider the case where ¢ vanishes and f = 1 in Theorem Then the
boundary value problem takes the form

1
§Au =Vu onD, u=1 ondD. (7.2.8)

The p.d.e. %Au = Vu is a stationary Schrodinger equation. We will comment on the
relation between the Feynman-Kac formula and Feynman’s path integral formulation of
quantum mechanics below. For the moment, we only note that for the solution of (??),

the stochastic representation

u(zr) = E, |exp —/V(Bt) dt

holds for z € D.

As an application, we can, at least in principle, compute the full distribution of the exit
time 7. In fact, choosing V' = « for some constant o > 0, the corresponding solution
u,, of (Z.2.8) yields the Laplace transform

uo(z) = Eyle 7] / b (dt) (7.2.9)
0

of iy = P,oT 1,
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Example (Exit times in R'). Suppose d = 1 and D = (—1,1). Then (Z.2.8) with

V = areads
1
éug(:ﬁ) = auy(zr) forz e (—=1,1), us(l) = us(—=1) = 1.

This boundary value problem has the unique solution

ua(z) = cosh(z - v2a)
“ cosh(v/2a)

forz € [-1,1].

By inverting the Laplace transform (7.2.9)), one can now compute the distribution i,
of the first exit time 7" from (—1, 1). It turns out that y, is absolutely continuous with

density

_ (4n+171)2

frlt) = —— > (<4n+1+x>e——‘4“*sﬁ> 1 — e ) >0
T

n=—oo

Figure 7.2: The density of the first exit time 7' depending on the starting point x &
[—1,1] and the time ¢ € (0, 2].
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Boundary value problems in RY and total occupation time

Suppose we would like to compute the distribution of the total occupation time
/ I A(B s) ds
0

of a bounded domain A C R? for Brownian motion. This only makes sense for d > 3,
since for d < 2, the total occupation time of any non-empty open set is almost surely

infinite by recurrence of Brownian motion in R! and R?. The total occupation time is of
the form [ V(B;) ds with V' = I . Therefore, we should in principle be able to apply

0
Theorem [7.3] but we have to replace the exit time 7" by +o0o and hence the underlying
bounded domain D by R

Corollary 7.6. Suppose d > 3 and let V : R — [0, 00) be continuous. If u € C*(R?)

is a solution of the boundary value problem

1
aAu = Vu onRY ‘l‘im u(z) =1 (7.2.10)
T|[—00
then
u(z) = E, |exp —/V(Bt) dt for any r € R

Proof. Applying the stationary Feynman-Kac formula on an open bounded subset D C

R?, we obtain the representation

The

u(z) = E, |u(Br,.)exp | — / V(By) dt (7.2.11)
0

by Theorem[Z.3] Now let D,, = {z € R? : |z| < n}. Then Tpc oo asn — co. Since

d > 3, Brownian motion is transient, i.e., tlim | B;| = 00, and therefore by (Z.2.10)
— 00

lim w(Br ) = 1 P,-almost surely for any x.

n—oo
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Since u is bounded and V' is non-negative, we can apply dominated convergence in

(7.2.11)) to conclude
o

u(z) = E, |exp —/V(Bt) dt

O

Let us now return to the computation of occupation time distributions. consider a
bounded subset A C R%, d > 3, and let

e}

vo(x) = E, |exp —a/]A(BS) ds ||, a >0,
0

denote the Laplace transform of the total occupation time of A. Although V' = «al, is
not a continuous function, a representation of v, as a solution of a boundary problem
holds:

Exercise. Prove that if A C R? is a bounded domain with smooth boundary A and
u, € CHRY) N C?(RE\ DA) satisfies

1
EAua = alsu, onR%\ A, lim uy(2) = 1, (7.2.12)

|z|—o00
then v, = u,.

Remark. The condition u,, € C'(R?) guarantees that u,, is a weak solution of the p.d.e.
(Z2.10) on all of R? including the boundary OU .

Example (Total occupation time of the unit ball in R3). Suppose A = {z € R? :
|x| < 1}. In this case the boundary value problem (Z.2.10)) is rotationally symmetric.
The ansatz u,(z) = fu.(|z|), yields a Bessel equation for f, on each of the intervals
(0,1) and (1, c0):

%fc’é(rHrlf;(r) = afa(r) forr <1, %fg(r)wlfa(r) =0 forr>1
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Taking into account the boundary condition and the condition u,, € C*(IR%), one obtains

the rotationally symmetric solution

( tanh(v/2
4 (BmhV29) ) e 1, 00),
V2«
ua(z) = sinh(v2ar) oL forr € (0,1
\/QOéfOSh V2« (0.1)
forr =0

| cosh(v/20)

of (Z.2.10), and hence an explicit formula for v,. In particular, for z = 0 we obtain the
simple formula

Ey |exp —a/]A(Bt)dt = Uuy(0) = ————.

cosh(v/2a)

0
The right hand side has already appeared in the example above as the Laplace transform
of the exit time distribution of a one-dimensional Brownian motion starting at 0 from the
interval (—1, 1). Since the distribution is uniquely determined by its Laplace transform,
we have proven the remarkable fact that the total occupation time of the unit ball for a
standard Brownian motion in R? has the same distribution as the first exit time from the

unit ball for a standard one-dimensional Brownian motion:

. 3
/I{|B$3<1} dt ~ inf{t >0 :|BY|>1}.
0
This is a particular case of a theorem of Ciesielski and Taylor who proved a correspond-

ing relation between Brownian motion in R%*2 and R for arbitrary d.

7.3 Heat Equation and Time-Dependent Feynman-Kac

Formula

1t6’s formula also yields a connection between Brownian motion (or, more generally, so-
lutions of stochastic differential equations) and parabolic partial differential equations.
The parabolic p.d.e. are Kolmogorov forward or backward equations for the correspond-

ing Markov processes. In particular, the time-dependent Feynman-Kac formula shows
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that the backward equation for Brownian motion with absorption is a heat equation with

dissipation.

Brownian Motion with Absorption

Suppose we would like to describe the evolution of a Brownian motion that is absorbed
during the evolution of a Brownian motion that is absorbed during an infinitesimal time
interval [, ¢ + dt] with probability V (¢, x)dt where x is the current position of the pro-
cess. We assume that the absorption rate V (t,z) is given by a measurable locally-

bounded function
Vi [0,00) x RY — [0, 00).
Then the accumulated absorption rate up to time ¢ is given by the increasing process

t
A = /V(S,BS) ds, t>0.

0

We can think of the process A; as an internal clock for the Brownian motion determining

the absorption time. More precisely, we define:

Definition. Suppose that (B;):>o is a d-dimensional Brownian motion and T is a with
parameter 1 exponentially distributed random variable independent of (By). Let A be
a separate state added to the state space R%. Then the process (X;) defined by

Bt for At < T,
A for Ay > T,

Xt =

is called a Brownian motion with absorption rate V (t, x), and the random variable
¢ :=inf{t>0: A>T}

is called the absorption time.
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A justification for the construction is given by the following informal computation: For

an infinitesimal time interval [¢, ¢ + dt| and almost every w,

P <t+dt|(Bs)sz0,¢ > t](w) = PlApalw) 2T | A(w) <T]

by the memoryless property of the exponential distribution, i.e., V (¢, x) is indeed the

infinitesimal absorption rate.

Rigorously, it is not difficult to verify that (X;) is a Markov process with state space
R? U {A} where A is an absorbing state. The Markov process is time-homogeneous if

V (¢, x) is independent of .
For a measurable subset D C R and ¢ > 0 the distribution y; of X, is given by
w[D] = P[X;€D] = P[B;€D and A; <T]
= E[P[A, <T|(By)]; B, € D] (7.3.1)

t
= FE |exp —/V(S,Bs)ds ; Bre D
0
Itd’s formula can be used to prove a Kolmogorov type forward equation:

Theorem 7.7 (Forward equation for Brownian motion with absorption). The sub-

probability measures (i, on R? solve the heat equation

0 1
S = A= Vit e (7.3.2)

in the following distributional sense:

[ F@utds) = [ f@aldo) = / [ GAL@ = V(s,2)7@)psldo) ds

for any function f € CZ(R?).
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Here CZ(RY) denotes the space of C?-functions with compact support. Under additional
regularity assumptions it can be shown that y; has a smooth density that solves (Z.3.1)
in the classical sense. The equation (Z.3.1)) describes heat flow with cooling when the

heat at x at time ¢ dissipates with rate V' (¢, x).

Proof. By (3D,
[ #dn = Elexp(-): (o) (7.33)

for any bounded measurable function f : R? — R. For f € C2(R%), an application of

[t6’s formula yields

t t

e M f(B,) = f(BO)+Mt+/e‘ASf(BS)V(s,BS)ds+%/e‘ASAf(BS)ds,
0 0

for ¢t > 0, where (M,) is a local martingale. Taking expectation values for a localizing
sequence of stopping times and applying the dominated convergence theorem subse-

quently, we obtain

t

Bl f(B)] = EUf(Bol+ [ Bl (507 = V(s )f)(B) ds.

Here we have used that A f(z)—V (s, z) f () is uniformly bounded for (s, z) € [0, ¢] x

R?, because f has compact support and V is locally bounded. The assertion now follows

by (7.3.3). O

Exercise (Heat kernel and Green’s function). The transition kernel for Brownian mo-

tion with time-homogeneous absorption rate V (z) restricted to R? is given by

¢
p (x,D) = E, |exp —/V(Bs) ds| ; Bie D
0

(1). Prove that for any ¢ > 0 and x* € RY, the sub-probability measure p} (z, ®) is

absolutely continuous on R? with density satisfying

0 < pY(a,y) < (2mt) P2 exp(—|a — yP/(21).
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(2). Identify the occupation time density

GV (z,y) = /ptv(fc,y) dt
0

as a fundamental solution of an appropriate boundary value problem. Adequate

regularity may be assumed.

Time-dependent Feynman-Kac formula

In Theorem [7.7] we have applied Itd’s formula to prove a Kolmogorov type forward
equation for Brownian motion with absorption. To obtain a corresponding backward

equation, we have to reverse time:

Theorem 7.8 (Feynman-Kac). Fixt > 0, and let f : R? — RandV, g : [0,1] x R —

R be continuous functions. Suppose that f is bounded, g is non-negative, and V' satisfies

t
E, exp/V(t—s,BS)_ ds| < oo forall € R% (7.3.4)

0

Ifu € CH2((0,t] x RY) N C([0,t] x R?) is a bounded solution of the heat equation

a(s, x) = %Au(s, z) — V(s,z)u(s,x) + g(s, ) fors € (0,t],z € RY,
(7.3.5)
u(0,z) = f(x),

then u has the stochastic representation

u(t,z) = E, |f(B;)exp —/V(t—s,Bs) ds | | +
0

t T
E, /g(t— r, B,) exp —/V(t— s, Bs)ds | dr
0 0
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Remark. The equation (7.3.3)) describes heat flow with sinks and dissipation.

Proof. We first reverse time on the interval [0, ¢]. The function

u(s,x) = u(t—s,x)
solves the p.d.e.
ou ou 1
g(s,x) = —E(t —s,x) = — (§Au —Vu +g) (t—s,x)

1 -
S (§Aa —Va +g) (s,2)
on [0, ¢t] with terminal condition @(¢,z) = f(x). Now let X, = exp(—A,)u(r, B,) for

r € [0,¢t], where
A, = /V(S,BS) ds = /V(t—s,BS) ds.
0 0

By Itd’s formula, we obtain for 7 € [0, ¢],

T

r i1
X. - X, = M, — /6_‘4”"21(7“, B,) dA, +/e—Ar (% + §Aa) (r, B,) dr
S
0 0

T

S A
= M, + /eAT <% + §A11 — V?l) (r, B,) dr

0
= MT_/G_ATQ(Tv B?") dr
0

with a local martingale (M )c[o,4 vanishing at 0. Choosing a corresponding localizing
sequence of stopping times 7;, with T,, * ¢, we obtain by the optional stopping theorem

and by dominated convergence,

u(t,z) = au(0,z) = E,[X]
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O

Remark (Extension to diffusion processes). Again a similar result holds under a ap-
propriate regularity assumptions for Brownian motion replaced by a solution of a s.d.e.

dX; = o(X;)dB; + b(X;)dt and A replaced by the corresponding generator, cf. ??.

Occupation times and arc-sine law

The Feynman-Kac formula can be used to study the distribution of occupation times
of Brownian motion. We consider an example where the distribution can be computed
explicitly: The proportion of time during the interval [0, ¢] spent by a one-dimensional

standard Brownian motion (B;) in the interval (0, o). Let

t

A = M{s€0,4] : B,>0}) = /1(0,00)(33> ds.

Theorem 7.9 (Arc-sine law of P.Lévy). Foranyt > 0 and 6 € [0, 1],

PlAJt <] = = arcsm Vo = /

Figure 7.3: Density of A, /t.
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Note that the theorem shows in particular that a law of large numbers does not hold!

Indeed, for each € > 0,

t

Py %/I(O,oo)(Bs) ds—% > A 0 ast — oo.
0

Even for large times, values of A;/t close to 0 or 1 are the most probable. By the func-

tional central limit theorem, the proportion of time that one player is ahead in a long

coin tossing game or a counting of election results is also close to the arcsine law. In

particular, it is more then 20 times more likely that one player is ahead for more than

98% of the time than it is that each player is ahead between 49% and 51% of the time

[Steele].

Before proving the arc-sine law, we give an informal derivation based on the time-
dependent Feynman-Kac formula.

The idea for determining the distribution of A; is again to consider the Laplace trans-

forms
U(t,l’) = Ex[exp(_ﬁAtﬂv ﬁ > 0.
By the Feynman-Kac formula, we could expect that u solves the equation
ou 10%u
— = - 7.3.6
ot 2 0x? ( )

with initial condition u(0,x) = 1. To solve the parabolic p.d.e. (Z3.6), we consider

another Laplace transform: The Laplace transform

Va(z) = /e‘atu(t, x)dt = E, /e_“t_“‘ dt|, a>0,
0 0
of a solution u(¢, z) of (Z.3.6) w.r.t. . An informal computation shows that v, should

satisfy the o.d.e.

1 [ (18
5% ~ Ploec)ta = /6 t <§@ - ﬁf(o,oo)u> (t, ) dt
0

= /e_“t%(t, o)dt = e “u(t,e)|° —a / e~ u(t, o) dt
0 0
= 1—av,,
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i.e., v, should be a bounded solution of
1
v, — §Ug + Bloola = g (7.3.7)
where g(x) = 1 for all z. The solution of (Z.3.7)) can then be computed explicitly, and

yield the arc-sine law by Laplace inversion.

Remark. The method of transforming a parabolic p.d.e. by the Laplace transform into
an elliptic equation is standard and used frequently. In particular, the Laplace trans-
form of a transition semigroup (p;):;>¢ is the corresponding resolvent (ga)a>0, o =

fooo e~ “'p; dt, which is crucial for potential theory.

Instead of trying to make the informal argument above rigorous, one can directly prove

the arc-sine law by applying the stationary Feynman-Kac formula:
Exercise. Prove Lévy’s arc-sine law by proceeding in the following way:

(1). Let g € Cy(R). Show that if v, is a bounded solution of (Z.3.7) on R \ {0} with
vy € CHR) N C?(R\ {0}) then

o0

vo(x) = E, /g(Bt)e_at_BAt dt for any x € R.

0

(2). Compute a corresponding solution v, for g = 1, and conclude that

[e.9]

/e_atEO[e_BAt] dt =

0

1

Vala+8)

(3). Now use the uniqueness of the Laplace inversion to show that the distribution i,

of A;/t under P, is absolutely continuous with density

1

fagi(s) = Wﬁ
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Chapter 8

Stochastic Differential Equations:

Explicit Computations

Suppose that (B;):>( is a given Brownian motion defined on a probability space (€2, A, P).

We will now study solutions of stochastic differential equations (SDE) of type

where b and ¢ are continuous functions defined on R, x R? or an appropriate subset.

Recall that F;>*" denotes the completion of the filtration F? = o(B, |0 < s < 1)
generated by the Brownian motion. Let 7" be an (]—"tB’P) stopping time. We call a

process (t,w) +— X;(w) defined for t < T'(w) adapted w.r.t. (]—"P ’P>, if the trivially
extended process )A(/t = X - Iyy<ry defined by

~ X; fort<T
Xt = y
0 fort > T

is (F")-adapted.
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Definition. An almost surely continuous stochastic process (t,w) — X;(w) defined for
t € [0,T(w)) is called a strong solution of the stochastic differential equation (8.0.1) if
it is (F2'F')-adapted, and the equation
t t
X, = Xo+ /b(s, X,)ds + /0(5, X,)dBs forte[0,T) (8.0.2)
0 0

holds P-almost surely.

The terminology “strong” solution will be explained later when we introduce “weak”
solutions. The point is that a strong solution is adapted w.r.t. the filtration (FtB ’P) gener-
ated by the Brownian motion. Therefore, a strong solution is essentially (up to modifi-
cation on measure zero sets) a measurable function of the given Brownian motion! The
concept of strong and weak solutions of SDE is not related to the analytic definition of

strong and weak solutions for partial differential equations.

In this section we study properties of solutions and we compute explicit solutions for

one-dimensional SDE. We start with an example:

Example (Asset price model in continuous time). A nearby model for an asset price

process (Sy,)n—0,1.2,.. in discrete time is to define S,, recursively by
Sn+1 - Sn - an(307 ceey Sn)Sn + O-n(Sm ceey Sn)Snnn—i—l

with i.i.d. random variables 7;,7 € N, and measurable functions «,,, o, : R* — R.
Trying to set up a corresponding model in continuous time, we arrive at the stochastic

differential equation

dSt = OétSt dt + UtSt dBt (803)

with an (F;)-Brownian motion (B;) and (F}") adapted continuous stochastic processes
(cow)i>0 and (oy)¢>0, Where (F) is a given filtration on a probability space (€2, .4, P).
The processes «; and o, describe the instantaneous mean rate of return and the volatility.

Both are allowed to be time dependent and random.
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In order to compute a solution of ([8.0.3)), we assume S; > 0 for any ¢ > 0, and divide
the equation by S;:

1
§ dSt = Oy dt + Oy dBt (804)
t

We will prove in Section 8.1l that if an SDE holds then the SDE multiplied by a contin-
uous adapted process also holds, cf. Theorem[8.1l Hence is equivalent to (8.0.3)
if §; > 0. If would be a classical ordinary differential equation then we could
use the identity d log S; = s% dS; to solve the equation. In Itd calculus, however, the
classical chain rule is violated. Nevertheless, it is still useful to compute d log S; by

It6’s formula. The process (.S;) has quadratic variation

. t
[S]: = /JTST dB,| = /afo dr forany ¢t > 0,
0 t 0

almost surely along an appropriate sequence (7, ) of partitions with mesh (7, ) — 0. The
t
first equation holds by (8.0.3), since ¢ — [ .S, dr has finite variation, and the second

0
identity is proved in Theorem [8.1] below. Therefore, It6’s formula implies:

1 1
legSt = §d5t—2—52
t t

1
= Oy dt+0't dBt — 50’3 dt

d[S];

= pg dt + oy dB;,

where p; := oy — 02 /2, i.e.,
t t
log S; — log Sy = /us ds + /as dB,
0 0

or, equivalently,
t t

Sy = Sp-exp /,us ds+/cr$ dB, | . (8.0.5)

0 0
Conversely, one can verify by Itd’s formula that (S;) defined by (8.0.3) is indeed a

solution of (8.0.3). Thus we have proven existence, uniqueness and an explicit repre-
sentation for a strong solution of (8.0.3). In the special case when oy, = cvand 0, = o

are constants in ¢ and w, the solution process

S, = Spexp (0B, + (a — 0°/2)t)
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is called a geometric Brownian motion with parameters o« and o.

Figure 8.1: Three one dimensional geometric Brownian motions with a* = 1 and o =
0.1 (blue), 0 = 1.0 (red) and o = 2.0 (magenta).

8.1 Stochastic Calculus for Ité processes

By definition, any solution of an SDE of the form (8.0.1)) is the sum of an absolutely

continuous adapted process and an It6 stochastic integral w.r.t. the underlying Brownian

motion, i.€.,
Xy = A+ 1, fort < T, (8.1.1)
where
t t
A = /Ks ds and I; = /HS dB, (8.1.2)
0 0

with (H,),<r and (K)o almost surely continuous and (F;>"')-adapted. A stochas-

tic process of type (8.1.I) is called an Itd process. In order to compute and analyze
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solutions of SDE we will apply Itd’s formula to Itd processes. Since the absolutely con-
tinuous process (A;) has finite variation, classical Stieltjes calculus applies to this part

of an Itd process. It remains to consider the stochastic integral part (1;):

Stochastic integrals w.r.t. I1t6 processes

Let (m,) be a sequence of partitions of R, with mesh(m,,) — 0. Recall that for ¢ > 0,

t
= /HS B, = lim, ZHS%BSW—BS)
0 SETy

s<t

w.r.t. convergence in probability on {t < T'}, cf. Theorem [5.14l

Theorem 8.1 (Composition rule and quadratic variation). Suppose that T is a pre-

dictable stopping time and (H,);~r is almost surely continuous and adapted.

(1). For any almost surely continuous, adapted process (Gy)o<i<, and for any t > 0,

t

lim Y Go(Ion — L) = / G.H, dB, (8.1.3)
n—oo c

SC&Tn 0

s<t

with convergence in probability on {t < T'}. Moreover, if H is in L2([0, a]) and G
is bounded on |0, a] x Q for some a > 0, then the convergence holds in M?([0, a])
and thus uniformly for t € [0, a] in the L*(P) sense.

(2). Foranyt > 0, the quadratic variation (I, along () is given by

t
1 = lim y (Ion— L) = /Hf ds (8.1.4)
SETn 0
s<t

w.r.t. convergence in probability on {t < T'}.

XXX gleich [I, J] berechnen, Beweis analog
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Remark (Uniform convergence). Similarly to the proof of Theorem[3.14]one can show
that there is a sequence of bounded stopping times 7, * T" such that almost surely along
a subsequence, the convergence in (8.1.3) and (8.1.4) holds uniformly on [0, T} for any
ke N.

Proof. (1). We first fix @ > 0 and assume that H is in £2([0,a)) and G is bounded,
s'At
left-continuous and adapted on [0, 00) X €. Since Iy — I, = f H, dB,, we

obtain .

> Gullop — 1) = /GMRHT dB,

SET 0
s<t

where |r|, = max{s € m, : s < r}is the next partition point below .
As n — oo, the right-hand side converges to ft G, H, dB, in M?([0,a]) because
G, H, — G, H, in L*(P ® Ao,a)) by conti(;luity of G and dominated conver-
gence.

The assertion in the general case now follows by localization: Suppose (.S;) and

(T}) are increasing sequences of stopping times with 7}, ,* T and Hylp<s,y €
£2([0,00)), and let

T = Se AT Ainf{t >0 : |Gy >k} A k.
Then T}, /T, the process H* := HyIp<7,y isin £2([0, 00)) the process G =
G 1<,y is bounded, left-continuous and adapted, and

S

I, = / H® dB,., G, = GV for any s € [0, 1]
0

holds almost surely on {¢ < T} }. Therefore as n — oo,

ZGS<[S//\t - [s) = ZGL(gk)([s’/\t - ]s)

SET SET
s<t s<t

t t
— / GPH®™ 4B, = / G,.H, dB,
0 0

Stochastic Analysis Andreas Eberle



8.1. STOCHASTIC CALCULUS FOR ITO PROCESSES 251

(2).

uniformly for ¢ < T}, in L%(P). The claim follows, since

P = 0.

{t<T\Jir <7}

We first assume that H is in £2([0, o)), continuous and bounded. Then for s €

Tns
s'AE
oI, = Iy — 1, = | H,dB, = HB, + R™
s'AE

where R™ = [ (H,— H r]) dB,. Therefore,

> (L) = Y HX(6B.)*+2> RWHGB,+ Y (RM)%

SETY SETY SETn SETy

s<t s<t s<t s<t
Since [B]; = t almost surely, the first term on the right-hand side converges

t
to [ HZ? ds with probability one. It remains to show that the remainder terms
0

converge to 0 in probability as n — oco. This is the case, since

s'At
B[S (R0?] = SERP? = X [ Bl - B dr
t s
— [ Bl ~ P — 0
0

by the Itd isometry and continuity and boundedness of 1, whence Z(Rg") )2 =0
in £! and in probability, and > R™W H_ 5B, — 0 in the same sense by the Schwarz
inequality.

For H defined up to a stopping time 7', the assertion now follows by a localization

procedure similar to the one applied above.
O

The theorem and the corresponding composition rule for Stieltjes integrals suggest that

we may define stochastic integrals w.r.t. an It process

t t
X, = X0+/HSdBS+/KSds, t<T,
0 0
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in the following way:

Definition. Suppose that (By) is a Brownian motion on (2, A, P) w.r.t. a filtration (F),
Xy is an (FL)-measurable random variable, T is a predictable (FF)-stopping time,
and (Gy), (Hy) and (K;) are almost surely continuous, (F') adapted processes defined
fort < T. Then the stochastic integral of (G;) w.r.t. (X;) is the Ito process defined by

t t t

/GS dX, = /GSHS dB; + /GSKS ds, t<T.

0 0 0

By Theorem [8.1] this definition is consistent with a definition by Riemann sum approx-
imations. Moreover, the definition shows that the class of It6 processes w.r.t. a given
Brownian motion is closed under taking stochastic integrals! In particular, strong solu-

tions of SDE w.r.t. It processes are again It6 processes.

Calculus for Ito6 processes

We summarize calculus rules for It processes that are immediate consequences of the
definition above and Theorem Suppose that (X;) and (Y;) are 1td processes, and
(Gy), (Gy) and (H,) are adapted continuous process that are all defined up to a stopping

time 7". Then the following calculus rules hold for Itd stochastic differentials:
Linearity:
d(X +cY) = dX +cdY forany c € R,

(G+cH)dX = GdX +cHdX for any ¢ € R.

Composition rule:
dY = GdX = GdY = GGdX,

Quadratic variation:

dY = GdX = d[Y] = G*d[X],
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Itd rule: For any function F' € C'?(R, x R),

OF OF 10°F
AF(8,X) = Z(6,X) dX + 2 (6, X) di + 5=—(8,X) dX]

All equations are to be understood in the sense that the corresponding stochastic inte-
grals over any interval [0, ¢], ¢ < T, coincide almost surely.
The proofs are straightforward. For example, if

t
th = }/E)+/Gsts
0

and

t t
Xy = X0+/K8ds+/Hsst
0 0

then, by the definition above, for t < 7',

t t

Y, = YO+/Gssts+/GSHSdBS,
0 0

and hence

t

t t
/ G, dY, = / G.G.K, ds + / G.G.H,dB, = / G.G, dX,
0 0 0

t

0

and
° t

t
Y], = /GSHS dB,| = /G§H§ ds = /G§ d[X]s.
0 ¢ 0 0
Moreover, Theorem guarantees that the stochastic integrals in 1t6’s formula (which
are limits of Riemann-It6 sums) coincide with the stochastic integrals w.r.t. [t processes

defined above.

Example (Option Pricing in continuous time I). We again consider the continuous
time asset price model introduced in the beginning of Chapter 8l Suppose an agent is
holding ¢; units of a single asset with price process (.S;) at time ¢, and he invests the

remainder V; — ¢;S; of his wealth V; in the money market with interest rate ;. We
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assume that (¢;) and (R;) are continuous adapted processes. Then the change of wealth

in a small time unit should be described by the It6 equation
dV; = ¢y dSy + Ry(V; — ¢Sy) dt

Similarly to the discrete time case, we consider the discounted wealth process

t

Vi = exp —/des V.
0

t

Since ¢t — f R ds has finite variation, the It6 rule and the composition rule for stochas-
0

tic integrals imply:

t
AV, = exp | — Rds dV, — exp —/des RV, dt

0
t

= exp /RS ds | ¢ dS; — exp —/RS ds | RipySy dt

0 0
t

= ¢ | exp /des dS; — exp —/des R.S; dt
0

- (bt dSt7

where §t is the discounted asset price process. Therefore,
V, — 170 = /gf)s d§8 vVt > 0 P-almost surely.

As a consequence, we observe that if (gt) is a (local) martingale under a probability
measure P, that is equivalent to P then the discounted wealth process (V;) is also a
local martingale under P.,. A corresponding probability measure P, is called an equiv-
alent martingale measure or risk neutral measure, and can be identified by Girsanov’s
theorem, cf. Section [9.3| below. Once we have found P, option prices can be computed
similarly as in discrete time under the additional assumption that the true measure P for

the asset price process is equivalent to P, see Section
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The It6-Doeblin formula in R!

We will now apply 1t6’s formula to solutions of stochastic differential equations. Let
b,o € C(Ry x I) where I C R is an open interval. Suppose that (B;) is an (F;)-
Brownian motion on (£2, A, P), and (X;)o<;<7 is an (F})-adapted process with values

in I and defined up to an (F/") stopping time 7" such that the SDE

t t
X — X, = /b(s,XS) ds + /O’(S,XS) dB, forany t < T (8.1.5)
0 0

holds almost surely.

Corollary 8.2 (Doeblin 1941, 1t6 1944). Let F' € C1?(R . x I). Then almost surely,

F(t, X,) — F(0,X,) = /(O'F/)(S,XS)dBS (8.1.6)

0

t
F 1
+/ (aa—t + 502}7’” + bF’) (s,Xs)ds  foranyt <T,

where F' = OF/Ox denotes the partial derivative w.rt. .

Proof. Let (,) be a sequence of partitions with mesh(m, ) — 0. Since the process ¢ —
t

Xo + [ b(s, X;) ds has sample paths of locally finite variation, the quadratic variation
0

of (X}) is given by

t

X], = ja(s,xs) dB,| = /o—(s,xs)ms vt <T

t 0
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w.r.t. almost sure convergence along a subsequence of (7, ). Hence It6’s formula can be

applied to almost every sample path of (X;), and we obtain

t t
F(t,X,) — F(0,Xy) = /F’(S,XS)dXSJr/%—f(s,XS)der%/F"(S,XS) d[X],
0 0

t

0
t

_ / (0F")(s, X,) dB. + / (bF')(s, X,) ds + / %—f(s,xs) ds+% / (02F")(s, X,) ds

0 0 0

t t

for all t < T, P-almost surely. Here we have used (8.1.3) and the fact that the It6
integral w.r.t. X is an almost sure limit of Riemann-It6 sums after passing once more to

an appropriate subsequence of (7, ). O

Exercise (Black Scholes partial differential equation). A stock price is modeled by a
geometric Brownian Motion (.S;) with parameters v, 0 > 0. We assume that the interest
rate is equal to a real constant 7 for all times. Let ¢(¢, z) be the value of an option at
time ¢ if the stock price at that time is S; = x. Suppose that c(¢, S;) is replicated by a
hedging portfolio, i.e., there is a trading strategy holding ¢, shares of stock at time ¢ and
putting the remaining portfolio value V; — ¢;S; in the money market account with fixed

interest rate 7 so that the total portfolio value V; at each time ¢ agrees with c(t, S;).

“Derive” the Black-Scholes partial differential equation

Jc Jc 1, ,0%
_ - = d.
t(t’ x)+re—(t,z)+ 57 7 (t,x) re(t, x) (8.1.7)

and the delta-hedging rule

)
¢ = a—;(t, S) (= Delta). (8.1.8)

Hint: Consider the discounted portfolio value \7,5 = e "V, and, correspondingly, the
discounted option value e~ "'c(t, S;). Compute the Ito differentials, and conclude that
both processes coincide if c is a solution to (8_L7) and ¢; is given by (8.1.3).
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Martingale problem for solutions of SDE

The 1t6-Doeblin formula shows that if (X}) is a solution of (8.1.3) then
t

ME = PlX) — FO.X0) — [(2F)(s.X) ds
0
is a local martingale up to T for any F' € C'?(R, x I) and

(ZF)(t,x) = %U(t,l‘)QF”(t,ZE) +0(t,x)F'(t,x).

In particular, in the time-homogeneous case and for 7' = oo, any solution of (8.1.3)
solves the martingale problem for the operator £’ F = 20 F” +bF’ with domain C3(1).
Similarly as for Brownian motion, the martingales identified by the 1t6-Doeblin formula
can be used to compute various expectation values for the It6 diffusion (X;). In the next

section we will look at first examples.

Remark (Uniqueness and Markov property of strong solutions). If the coefficients
are, for example, Lipschitz continuous, then the strong solution of the SDE (8.1.3)) is
unique, and it has the strong Markov property, i.e., it is a diffusion process in the
classical sense (a strong Markov process with continuous sample paths). By the Ito-
Doeblin formula, the generator of this Markov process is an extension of the operator
(£,C3(1).

Although in general, uniqueness and the Markov property may not hold for solutions of
the SDE (8.1.3)), we call any solution of this equation an It6 diffusion.

8.2 Stochastic growth

In this section we consider time-homogeneous It diffusions taking values in the inter-
val I = (0,00). They provide natural models for stochastic growth processes, e.g. in
mathematical biology, financial mathematics and many other application fields. Ana-
logue results also hold if [ is replaced by an arbitrary non-empty open interval.

Suppose that (X;)o<:<7 is a strong solution of the SDE
dXt = b(Xt) dt —+ O'(Xt) dBt fOl‘ t e [0, T),

Xo = o,
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with a given Brownian motion (B;), o € (0, 00), and continuous time-homogeneous
coefficients b, o : (0,00) — R. We assume that the solution is defined up to the explo-
sion time

T =supT1.,, T.,=inf{t>0X, &)}

e,r>0

The corresponding generator is
/ 1 2 1
ZLF = bF' + 30 .

Before studying some concrete models, we show in the general case how harmonic func-
tions can be used to compute exit distributions (e.g. ruin probabilities) and to analyze

the asymptotic behaviour of X; ast " T.

Scale functions and exit distributions

To determine the exit distribution from a finite subinterval (&, 7) C (0, c0) we compute
the harmonic functions of .. For h € C?(0, co) with i/ > 0 we obtain:

2b 2b
ZLh =0 <= K = _ﬁh/ < (logh') = 3

Therefore, the two-dimensional vector space of harmonic functions is spanned by the

constant function 1 and by the function

s(z) = / exp | — / f_lzsji dy | d=.

s(x) is called a scale function of the process (X;). It is strictly increasing and harmonic
on (0, 00). Hence we can think of s : (0,00) — (s(0), s(c0)) as a coordinate transfor-
mation, and the transformed process s(.X;) is a local martingale up to the explosion time
T'. Applying the martingale convergence theorem and the optional stopping theorem to

s(X;) one obtains:

Theorem 8.3. Forany e,r € (0,00) withe < zo < r we have:
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(1). The exit time T., = inf{t € [0,T) : X; & (e,7)} is almost surely less than T..

(2). PIT. <T,] = P[Xz., =¢] = M

The proof of Theorem [8.3]is left as an exercise.

Remark. (1). Note that any affine transformation s(x) = c¢s(x) + d with constants
¢ > 0 and d € R is also harmonic and strictly increasing, and hence a scale
function. The ratio (s(r) — s(z))/(s(r) — s(e)) is invariant under non-degenerate

affine transformations of s.

(2). The scale function and the ruin probabilities depend only on the ratio b(z) /o (x)?.

Recurrence and asymptotics

We now apply the formula for the exit distributions in order to study the asymptotics of

one-dimensional non-degenerate It6 diffusions as ¢t ,* T'. For ¢ € (0, z() we obtain

P[T. <T|] = P[T. <T, forsomer € (xy,0)]

= lim = lim 7S(T) — 5(0)
= rl_moP[Ta <T,] rl_)Oo () = 5(2)

In particular, we have
P[X;=ceforsomet € [0,T)] = P[I.<T] =1

if and only if s(c0) = lifm s(r) = oo.
):

Similarly, one obtains for r € (z, 0o
P[X;=rforsomet € [0,T)] = P[T,<T] =1

if and only if s(0) = li\n% s(e) = —oo.
Moreover,

it 20 566)
N l\o rl/‘oo s(r) — s(e)

)

P[X; — occast /T = P

U N <1}

e>0r<oco
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and

= lim lim M

P X;—0ast ~T| = P Jim T = =)

U <1}

r<oo e>0

Summarizing, we have shown:

Corollary 8.4 (Asymptotics of one-dimensional It6 diffusions).
(1). If s(0) = —o0 and s(0c0) = oo, then the process (X,) is recurrent, i.e.,
P X;=y forsomete[0,T)] =1 forany xy,y € (0,00).
(2). If s(0) > —o0 and s(00) = oo then thfn% X: = 0 almost surely.
(3). If s(0) = —o0 and s(00) < oo then thfn% X; = oo almost surely.
(4). If s(0) > —o0 and s(c0) < oo then

P -1ith=0} _ 5(00) = s(0)

g s(o00) — s(0)
and )
P |lim X, = oo| = 280 =30)
o 5(c0) — 5(0
Intuitively, if s(0) = —oo, in the natural scale the boundary is transformed to —oo,

which is not a possible limit for the local martingale s(X;), whereas otherwise s(0) is

finite and approached by s(X;) with strictly positive probability.

Example. Suppose that b(z)/o(z)?> ~ vr~t as x 7 oo and b(x)/o(x)? ~ dz~! as
x N\, 0 holds for 7,5 € R in the sense that b(z)/o(z)?> — vz~ ! is integrable at oo and
b(z)/o(x)* — dz~! is integrable at 0. Then s'(z) is of order 727 as x * oo and of

order 2% as x \, 0. Hence

s(0) = 00 — <, s(0) = —o0 <= §>

DO | =
N —

In particular, recurrence holds if and only if v < £ and § > .
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More concrete examples will be studied below.

Remark (Explosion in finite time, Feller’s test). Corollary[8.4]does not tell us whether
the explosion time 7' is infinite with probability one. It can be shown that this is always
the case if (X;) is recurrent. In general, Feller’s test for explosions provides a necessary
and sufficient condition for the absence of explosion in finite time. The idea is to com-
pute a function g € C(0, 00) such that e *g(X;) is a local martingale and to apply the
optional stopping theorem. The details are more involved than in the proof of corollary

above, cf. e.g. Section 6.2 in [Durrett: Stochastic calculus].

Geometric Brownian motion

A geometric Brownian motion with parameters & € R and ¢ > 0 is a solution of the

s.d.e.
dS; = oS, dt +0S; dB;. (8.2.1)

We have already shown in the beginning of Section ?? that for By = 0, the unique

strong solution of (8.2.1]) with initial condition Sy = x is
St = xo . eXp (O'Bt + (O[ — 0'2/2)t) .

The distribution of S; at time ¢ is a lognormal distribution, i.e., the distribution of c¢- e’
where c is a constant and Y is normally distributed. Moreover, one easily verifies that
(S;) is a time-homogeneous Markov process with log-normal transition densities
1 (log(y/x) — pt)?
pe(r,y) = ——=exp | — 5
V2rto? 2to

where ;1 = a — 02 /2. By the Law of Large Numbers for Brownian motion,

)7 t7x7y>07

4+oo ifpu>0
lim St =
t—o0 O

ifp<0
If ;o = 0 then (S;) is recurrent since the same holds for (B;).
We now convince ourselves that we obtain the same results via the scale function:

The ratio of the drift and diffusion coefficient is

b(x) ax a
2 2

o(x) (o)
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and hence
/ 2a —2a/0?
s'(z) = const.-exp | — [ ——dy | = const.-x :
o7y
xo
Therefore,
s(0) = 0 = 2a/0?<1, s(0) = oo <= 2a/o*>1,

which again shows that S; — oo for a > 02/2, S; — 0 for a < ¢%/2, and S; is

recurrent for o = 02 /2.

Feller’s branching diffusion

Our second growth model is described by the stochastic differential equation
dXt = BXt dt + 0/ Xt ch XO = Ty, (822)

with given constants 5 € R,o > 0, and values in R,. Note that in contrast to the
equation of geometric Brownian motion, the multiplicative factor /X, in the noise term
is not a linear function of X;. As a consequence, there is no explicit formula for a
solution of (8.2.2)). Nevertheless, a general existence result guarantees the existence of
a strong solution defined up to the explosion time

T = sup Tg\(,r),

e,r>0

cf. 2?. SDEs similar to (8.2.2)) appear in various applications.

Example (Diffusion limits of branching processes). We consider a Galton-Watson
branching process Z}' with time steps t = 0, h, 2h, 3h, ... of size h > 0, i.e., Zl is a
given initial population size, and
z
ZPy, =Y Nit/h fort=k-hk=012 ..
i=1
with independent identically distributed random variables N; ;.7 > 1,k > 0. The

random variable Z!, describes the size of a population in the k-th generation when N;
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is the number of offspring of the i-th individual in the /-th generation. We assume that

the mean and the variance of the offspring distribution are given by
E[N;;) = 1+8h and Var[N;)] = o*

for finite constants 3,0 € R.

We are interested in a scaling limit of the model as the size & of time steps goes to 0. To
establish convergence to a limit process as h \, 0 we rescale the population size by h,

i.e., we consider the process
X} = h-Zy, t €[0,00).
The mean growth (“drift”) of this process in one time step is
EIX[o— X! Fl) = h-E[Zl, — 20| FI) = hZl = hpXD,
and the corresponding condition variance is
Var[X],, — X['| FI] = b*-Var[Z}, — Z! | F}'| = WPo*Z} = ho’X],

where F' = o(N;;|i > 1,0 <[ < k) fort =k - h. Since both quantities are of order
O(h), we can expect a limit process (X;) as h \, 0 with drift coefficient 5 - X, and
diffusion coefficient v/o2X,, i.e., the scaling limit should be a diffusion process solving
as.d.e. of type .2.2)). A rigorous derivation of this diffusion limit can be found e.g. in
Section 8 of [Durrett: Stochastic Calculus].

We now analyze the asymptotics of solutions of (8.2.2)). The ratio of drift and diffusion

coefficient is 3z /(0+/z)? = /o, and hence the derivative of a scale function is
s'(z) = const. - exp(—28z/0).

Thus s(0) is always finite, and s(co) = oo if and only if § < 1. Therefore, by Corollary

[8.4] in the subcritical and critical case 3 < 1, we obtain

lim X; =0 almost surely,
t T
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whereas in the supercritical case 5 > 1,

P Lhﬂn%Xt = 0} >0 and P Ll;HTlXt = oo} > 0.
This corresponds to the behaviour of Galton-Watson processes in discrete time. It can
be shown by Feller’s boundary classification for one-dimensional diffusion processes
that if X; — 0 then the process actually dies out almost surely in finite time, cf. e.g.
Section 6.5 in [Durrett: Stochastic Calculus]. On the other hand, for trajectories with
Xy — 00, the explosion time 7' is almost surely infinite and X, grows exponentially as

t — o0.

Cox-Ingersoll-Ross model

The CIR model is a model for the stochastic evolution of interest rates or volatilities.

The equation is
th = (Oé — BRt) dt + g/ Rt dBt RQ = Xy, (823)

with a one-dimensional Brownian motion (B;) and positive constants «, 3,0 > 0. Al-
though the s.d.e. looks similar to the equation for Feller’s branching diffusion, the
behaviour of the drift coefficient near 0 is completely different. In fact, the idea is that
the positive drift a pushes the process away from 0 so that a recurrent process on (0, 00)
is obtained. We will see that this intuition is true for e > ¢ /2 but not for o < o2 /2.
Again, there is no explicit solution for the s.d.e. (8.13)), but existence of a strong solution
holds. The ratio of the drift and diffusion coefficient is (o« — ) /o?x, which yields

s'(x) = const. - p20/0% 2B)0?

Hence s(o0) = oo for any 8 > 0, and s(0) = oo if and only if 2a. > o. Therefore, the
CIR process is recurrent if and only if o > 02/2, whereas X; — 0 as t " T almost
surely otherwise.

By applying 1t6’s formula one can now prove that X; has finite moments, and compute

the expectation and variance explicitly. Indeed, taking expectation values in the s.d.e.

t t

R, = x0+/(a—ﬁRs) ds+/a\/Rs dB;,

0 0
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we obtain informally

d
%E[Rt] = a— BE[RY],

and hence by variation of constants,

E[R] = zo-e P+ %(1 —e P,

t

To make this argument rigorous requires proving that the local martingale t — [ o/Rd B
0

is indeed a martingale:

Exercise. Consider a strong solution (R;)¢>o of (813) for a > o%/2.

(1). Show by applying Itd’s formula to x — |z|? that E[|R;|P] < oo for any ¢t > 0 and
p=1L

(2). Compute the expectation of R, e.g. by applying It&’s formula to e*'x.
(3). Proceed in a similar way to compute the variance of R,. Find its asymptotic value

lim Var[R,].
t—o00

8.3 Linear SDE with additive noise

We now consider stochastic differential equations of the form
dXt = Btct dt + O¢ dBt, XO =, (831)

where (B;) is a Brownian motion, and the coefficients are deterministic continuous
functions 3,0 : [0,00) — R. Hence the drift term (; X; is linear in X, and the diffusion
coefficient does not depend on X, i.e., the noise increment o; dB; is proportional to

white noise d B; with a proportionality factor that does not depend on Xj.
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Variation of constants

An explicit strong solution of the SDE (8.3.1) can be computed by a “variation of con-
stants” Ansatz. We first note that the general solution in the deterministic case o; = 0 is

given by
t
X; = const. - exp /ﬁs ds
0

To solve the SDE in general we try the ansatz

t
Xy = Cy-exp /ﬁsds
0

with a continuous It6 process (C;) driven by the Brownian motion (B;). By the It6

product rule,

t
dXt = BtXt dt + exXp /68 dS dCt
0

Hence (X;) solves (8.3.1) if and only if

t
dCt = exp _/ﬁs ds ¢ dBt,
0

i.e.,
t

C, = Co—l—/exp —/ﬁsds o, dB,.
0

0
We thus obtain:

Theorem 8.5. The almost surely unique strong solution of the SDE (8.3 I)with initial

value x is given by

t

t t
Xy = x-exp —/Bsds +/exp /ﬁsds o, dB,.
0 0 P
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Note that the theorem not only yields an explicit solution but it also shows that the
solution depends smoothly on the initial value x. The effect of the noise on the solution
is additive and given by a Wiener-Ito integral, i.e., an It0 integral with deterministic

integrand. The average value
t
E[X]] = x-exp /Bs ds |, (8.3.2)
0
coincides with the solution in the absence of noise, and the mean-square deviation from

this solution due to random perturbation of the equation is

t t t

t
Var[X}] = Var /exp /ﬁs ds | o,dB,| = /exp 2/63 ds | o dr
0 r 0 r

by the Itd isometry.

Solutions as Gaussian processes

We now prove that the solution (X;) of a linear s.d.e. with additive noise is a Gaussian

process. We first observe that X, is normally distributed for any ¢ > 0.

Lemma 8.6. For any deterministic function h € L*(0,1), the Wiener-1t6 integral I, =

f h, d By is normally distributed with mean 0 and variance f h? ds.

n—1

Proof. Suppose firstthat h = > ¢; - Iy, 4,1 is a step function withn € N, ¢y,..., ¢, €
i=0

R,and 0 <ty <ty < .. n. Then I, = Z ¢; - (By,,, — By,) is normally distributed

with mean zero and variance
t

n—1
Var[l;] Zc i1 — /h? ds.
=0

0

In general, there exists a sequence (h(™), ey of step functions such that A" — h in
L*(0,t), and
t t

I, = /th = lim [ R™ dB in L2(Q, A, P).

n—00
0 0
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Hence I, is again normally distributed with mean zero and

t t

Var[l;] = lim Var /h(") dB| = /h2 ds.

n—00
0 0

Theorem 8.7 (Wiener-Ito integrals are Gaussian processes). Suppose that h €

t
L3 .([0,00),R). Then I; = [ hs dB; is a continuous Gaussian process with
0

tAs
ElL] =0 and Cov[l,I] = /hz ds foranyt,s > 0.

0

Proof. Let0 < t; < ... < t,. To show that (I, ..., I;, ) has a normal distribution it
suffices to prove that any linear combination of the random variables I;,, ..., I; is nor-
mally distributed. This holds true since any linear combination is again an It6 integral
with deterministic integrand:

t"

> NI, = / D A o (5)hs dB,
i=1 o =1

forany n € N and A, ..., \, € R. Hence ([;) is a Gaussian process with E[[;] = 0

and

Cov[l;, I,] = E[LI]
- F /hr'l(O,t)(T) dBr/hr'I(o,s)(T) dB,
0 0
= (h-Ton,h- o) 200

sAt

= /h? dr.

0

O
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Example (Brownian motion). If » = 1 then /, = B;. The Brownian motion (B;) is a

centered Gaussian process with Cov|[By, By] = t A s.

More generally, by Theorem [8.7] and Theorem [8.5] any solution (X;) of a linear SDE
with additive noise and deterministic (or Gaussian) initial value is a continuous Gaussian
process. In fact by (8.3.1), the marginals of (X,) are affine functions of the correspond-
ing marginals of a Wiener-1t0 integral:
t T
Xf:i~ SC—i—/hrUrdBr with A, = exp —/ﬁudu
0 0

Hence all finite dimensional marginals of (X’) are normally distributed with

tAs

1
E[X{] = »/H, and Cov[X], X]] = " -/h?az dr.
tlts
0

The Ornstein-Uhlenbeck process

In 1905, Einstein introduced a model for the movement of a “big” particle in a fluid.
Suppose that V** is the absolute velocity of the particle, V; is the mean velocity of the
fluid molecules and V; = V;® — V, is the velocity of the particle relative to the fluid.

Then the velocity approximatively can be described as a solution to an s.d.e.
dVy = —yVidt + odB;. (8.3.3)

Here (B;) is a Brownian motion in R% d = 3, and 7, o are strictly positive constants
that describe the damping by the viscosity of the fluid and the magnitude of the random
collisions. A solution to the s.d.e. (8.3.3)) is called an Ornstein-Uhlenbeck process.
Although it has first been introduced as a model for the velocity of physical Brown-
ian motion, the Ornstein-Uhlenbeck process is a fundamental stochastic process that is
almost as important as Brownian motion for mathematical theory and stochastic model-
ing. In particular, it is a continuous-time analogue of an AR(1) autoregressive process.
Note that (8.3.3) is a system of d decoupled one-dimensional stochastic differential
equations th(i) = —’th(i) + adBt(i). Therefore, we will assume w.l.o.g. d = 1. By the

considerations above, the one-dimensional Ornstein-Uhlenbeck process is a continuous
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Gaussian process. The unique strong solution of the s.d.e. (8.3.3) with initial condition

x 1s given explicitly by

t
Vi = et x+0/675 dB; | . (8.34)
0
In particular,
BlVi'] = ex,
and
tAs
Cov[VE, VI = e 10F9),2 / o2
0
o2
= %(e_w_s‘ — et for any ¢, s > 0.

Note that as t — o0, the effect of the initial condition decays exponentially fast with rate
~v. Similarly, the correlations between V;* and V.* decay exponentially as |t — s| — oo.

The distribution at time ¢ is
o2
Vi ~ N (e'yt:c, (1 — eM)> ) (8.3.5)
2y
In particular, as t — oo

D o?
Ve — N (0, —) .
2y
One easily verifies that N (0, 02 /2) is an equilibrium for the process: If Vy ~ N(0,02/27)

and (B,) is independent of Vj then

t
Vi, = e’YtVOJro—/e’Y(“) dB

0
t

2
~ N O,g—e_QVtJrUQ/eZ”(S_t) ds | = N(0,0%/27)
Y

0

for any ¢ > 0.
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Theorem 8.8. The Ornstein-Uhlenbeck process (V/*) is a time-homogeneous Markov

process w.rt. the filtration (F'7) with stationary distribution N (0,52 /2v) and transi-
tion probabilities
pi(z,A) = Ple Mo+ ——I—e2Zc A|, Z~N(0,1).
V2

Proof. We first note that by (8.3.3)),

o
Ve ~ et ——V1—e g forany ¢t > 0
. e "x+ \/ﬂ e yit >

with Z ~ N(0, 1). Hence,
Ef(VO] = (pf)(@)
for any non-negative measurable function f : R — R. We now prove a pathwise coun-

terpart to the Markov property: For t,r > 0, by (83.4)

t t+r
Ve, = e (g1 o / e dB, | + o / e’ 4B,
0 0
= "V 4o / ") 4B, (8.3.6)

0
where B, := By, — B, is a Brownian motion that is independent of ]—"tB’P. Hence, the
random variable o - [ ¢’“~") dB, is also independent of 7" and, by (8.34), it has

the same distribution as the Ornstein-Uhlenbeck process with initial condition 0:

r

oo [ dB, o~ V.
0
Therefore, by (8.3.6), the conditional distribution of V;% . given FP coincides with the

distribution of the process with initial V;* at time 7:
BIf(VE) I FXT] = Bl Vi w) + V7))
= E[f(VYEN = (p,f)(VE(w)) for P-a.e. w.

r

This proves that (V*) is a Markov process with transition kernels p,., r > 0. O
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Remark. The pathwise counterpart of the Markov property used in the proof above is

called cocycle property of the stochastic flow z — V,*.

The 1t6-Doeblin formula can now be used to identify the generator of the Ornstein-

Uhlenbeck process: Taking expectation values, we obtain the forward equation

EIF()) = Fo)+ [ E(ZF) V)] ds

0

for any function F' € C3(R) and ¢ > 0, where

(L)) = 50* (@) ~ 7 f (x).

For the transition function this yields

(peF) () )+ / psLF)(x forany z € R,
whence
i PO > [ Bz - e

by continuity and dominated convergence. This shows that the infinitesimal generator

of the Ornstein-Uhlenbeck process is an extension of the operator (., CZ(R)).

Change of time-scale

We will now prove that Wiener-1t0 integrals can also be represented as Brownian motion
with a coordinate transformation on the time axis. Hence solutions of one-dimensional
linear SDE with additive noise are affine functions of time changed Brownian motions.
We first note that a Wiener-It6 integral [; = fo h, dB, with h € L (0, 00) is a contin-

uous centered Gaussian process with covariance

tAs

Cov[ly, I] = /h2 dr = 7(t) AN7(s)

0
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where
t

7(t) = / h%dr = Var|l}]
0
is the corresponding variance process. The variance process should be thought of as an

“internal clock” for the process (/;). Indeed, suppose & > 0 almost everywhere. Then

T is strictly increasing and continuous, and

T :]0,00) — [0,7(c0)) is a homeomorphism.
Transforming the time-coordinate by 7, we have

Cov[l -1, Ir1(5)) = tAs for any ¢, s € [0, 7(c0)].

These are exactly the covariance of a Brownian motion. Since a continuous Gaussian

process is uniquely determined by its expectations and covariances, we can conclude:

Theorem 8.9 (Wiener-1t6 integrals as time changed Brownian motions). The pro-

cess By = L1y, 0 <5< 7(00),isaBrownian motion, and

I, = §T(t) forany t > 0, P-almost surely.

Proof. Since (ES)O§3<T(OO) has the same marginal distributions as the Wiener-Itd in-
tegral (I;);o (but at different times), (B,) is again a continuous centered Gaussian

process. Moreover, Cov[By, Bs] = tAs, so that (By) is indeed a Brownian motion. [J

Note that the argument above is different from previous considerations in the sense that
the Brownian motion (B,) is constructed from the process (I;) and not vice versa.

This means that we can not represent (I;) as a time-change of a given Brownian motion
(e.g. (B;)) but we can only show that there exists a Brownian motion (B;) such that I
is a time-change of B. This way of representing stochastic processes w.r.t. Brownian
motions that are constructed from the process corresponds to the concept of weak solu-

tions of stochastic differential equations, where driving Brownian motion is not given a
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priori. We return to these ideas in Section 9, where we will also prove that continuous

local martingales can be represented as time-changed Brownian motions.

Theorem [8.9]enables us to represent solution of linear SDE with additive noise by time-
changed Brownian motions. We demonstrate this with an example: By the explicit
formula (8.3.4)) for the solution of the Ornstein-Uhlenbeck SDE, we obtain:

Corollary 8.10 (Mehler formula). A one-dimensional Ornstein-Uhlenbeck process V,*

with initial condition x can be represented as
‘/tz = eiwt(ﬂf —+ O'Bi(emt,l))
2y

with a Brownian motion (By),so such that By = 0.

Proof. The corresponding time change for the Wiener-Itd integral is given by

t

T(t) = /eXp(st) ds = (exp(2vt) — 1)/2~.

8.4 Brownian bridge

In many circumstances one is interested in conditioning diffusion process on taking a
given value at specified times. A basic example is the Brownian bridge which is Brow-
nian motion conditioned to end at a given point z after time ¢,. We now present several
ways to describe and characterize Brownian bridges. The first is based on the Wiener-
Lévy construction and specific to Brownian motion, the second extends to Gaussian
processes, whereas the final characterization of the bridge process as the solution of a
time-homogeneous SDE can be generalized to other diffusion processes. From now on,
we consider a one-dimensional Brownian motion (B;)o<;<1 With By = 0 that we would

like to condition on taking a given value y at time 1
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Wiener-Lévy construction

Recall that the Brownian motion (B;) has the Wiener-Lévy representation

Biw) = Y(w)t+ > Y 2" =1V, j(w)enp(t)  fort €[0,1] (8.4.1)
n=0 k=0
where e, ;, are the Schauder functions, and Y and Y, (n > 0,k = 0,1,2,...,2" —

1) are independent and standard normally distributed. The series in (8.4.1)) converges
almost surely uniformly on [0, 1], and the approximating partial sums are piecewise

linear approximations of ;. The random variables Y = B; and

co 2"—1

Xt = Z Z Yn7ken7k(t) = Bt —tBl

n=0 k=0
are independent. This suggests that we can construct the bridge by replacing Y (w) by

the constant value y. Let
Xiy = yt+Xt = Bt+(y_Bl) 't,

and let p,, denote the distribution of the process (X )o<t<1 on C([0, 1]). The next theo-

rem shows that X/ is indeed a Brownian motion conditioned to end at y at time 1:

Theorem 8.11. The map y — p, is a regular version of the conditional distribution of

(Bt)o<t<1 given By, ie.,
(1). p, is a probability measure on C([0,1]) for any y € R,

(2). P[(Bi)o<i<1 € A| B1] = up,[A] holds P-almost surely for any given Borel
subset A C C(]0,1]).

(3). If F : C([0,1]) — R is a bounded and continuous function (w.r.t. the supremum
norm on C([0, 1])) then the map y — [ F du,, is continuous.

The last statement says that <+ 1, is a continuous function w.r.t. the topology of weak

convergence.
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Proof. By definition, , is a probability measure for any y € R. Moreover, for any
Borel set A C C([0,1]),

P[(Bt)o<t<1 € A| Bi](w) = P[(X;+1tB)) € A|Bi](w)
= PlX,+tBi(w)) € A] = P[(X“) e A] = pp 4]

for P-almost every w by independence of (Xr) and B;. Finally, if F': C([0,1]) — Riis

continuous and bounded then

/quy = E[F((y: + Xi)o<i<1)]

is continuous in y by dominated convergence. L

Finite-dimensional distributions

We now compute the marginals of the Brownian bridge X/

Corollary 8.12. Foranyn € Nand 0 < t; < ... < t, < 1, the distribution of

(X7, ..., X} ) on R" is absolutely continuous with density

_ Pty (07 xl)ptrn (5517 $2) o Pt—tp—1 ('Tnflu xn)plftn (iUna y)
D1 (07 y)

fy(z1, ... xp) . (8.4.2)

Proof. The distribution of (By,, ..., B, , By) is absolutely continuous with density

th1 ----- B, ,B1 (xlv cee s Ty y) =DPu (07 x0>pt2*t1 (xlv x2) C Pty —tna (xnflv xn)plftn (ZCn, y)'

Since the distribution of (X7, ..., X} ) is a regular version of the conditional distribu-
tion of (By,, ..., By,) given By, it is absolutely continuous with the conditional density
f . (01, 01)
Bi ..., Bi,|Bi\Z1, - - =
t1 tn | B1 ) s bn f...fthl ..... Bthl(xl’.”’xnjy)dxl...dajn
= fy(lCl, e ,.I‘n).
O
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In general, any almost surely continuous process on [0, 1] with marginals given by
(8.4.2)) is called a Brownian bridge from O to y in time 1. A Brownian bridge from x
to y in time ¢ is defined correspondingly for any x,y € R and any ¢ > 0. In fact, this
definition of the bridge process in terms of the marginal distributions carries over from
Brownian motion to arbitrary Markov processes with strictly positive transition densi-

ties. In the case of the Brownian bridge, the marginals are again normally distributed:

Theorem 8.13 (Brownian bridge as a Gaussian process). The Brownian bridge from
0 to y in time 1 is the (in distribution unique) continuous Gaussian process (X{)icjo)

with

EX!] =ty and Cov[X/, XY = tAs—ts forany s, t € [0,1]. (8.4.3)

Proof. A continuous Gaussian process is determined uniquely in distribution by its
means and covariances. Therefore, it suffices to show that the bridge X} = B; + (y —
By )t defined above is a continuous Gaussian process such that (8.4.3]) holds. This holds
true: By (8.4.2)), the marginals are normally distributed, and by definition, ¢ — X/ is

almost surely continuous. Moreover,
EX!] = E[B]+E[y—Bi]-t = yt, and
Cov[X}/, X!] = Cov[By, Bs] —t- Cov|By, Bs] — s - Cov[By, By| + ts Var|By]
= tANs—ts—st+1its = tN\Ns—tis.

O

Remark (Covariance as Green function, Cameron-Martin space). The covariances
of the Brownian bridge are given by
t-(1—s) fort<s,
c(t,s) = Cov[X},XY] =
(1—t)-s fort>s.
The function c(t, s) is the Green function of the operator d? /dt? with Dirichlet boundary

conditions on the interval [0, 1]. This is related to the fact that the distribution of the
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Brownian bridge from 0 to 0 can be viewed as a standard normal distribution on the
space of continuous paths w : [0,1] — R with w(0) = w(1) = 0 w.r.t. the Cameron-

Martin inner product
1

(9, M) = /g/(s)h'(s) ds.

The second derivative d?/dt? is the linear operator associated with this quadratic from.

SDE for the Brownian bridge

Our construction of the Brownian bridge by an affine transformation of Brownian mo-

tion has two disadvantages:

e It can not be carried over to more general diffusion processes with possibly non-

linear drift and diffusion coefficients.

e The bridge X/ = B; + t(y — Bj) does not depend on (B;) in an adapted way,

because the terminal value B is required to define X/ for any ¢ > 0.

We will now show how to construct a Brownian bridge from a Brownian motion in an
adapted way. The idea is to consider an SDE w.r.t. the given Brownian motion with a
drift term that forces the solution to end at a given point at time 1. The size of the drift
term will be large if the process is still far away from the given terminal point at a time
close to 1. For simplicity we consider a bridge (X;) from 0 to 0 in time 1. Brownian
bridges with other end points can be constructed similarly. Since the Brownian bridge
is a Gaussian process, we may hope that there is a linear stochastic differential equation

with additive noise that has a Brownian bridge as a solution. We therefore try the Ansatz
dXt — _ﬁtXt dt + dBt, XQ — 0 (844)

with a given continuous deterministic function 5;,0 < ¢ < 1. By variation of constants,

the solution of (8.4.4) is the Gaussian process X;,0 < ¢ < 1, given by

t t
1
X, = h—/hr dB, where h; = exp /55 ds
t
0

0
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The process (X;) is centered and has covariances

tAs

1
Cov[Xy, X4] = /hf dr.
0

hths
Therefore, (X;) is a Brownian bridge if and only if
Cov[Xy, Xs] = t-(1—5) forany t < s,

i.e., if and only if

t

1
o h2dr = hy-(1—s) forany 0 < ¢ < s. (8.4.5)
t
0

The equation (8.4.5]) holds if and only if A, is a constant multiple of 1/1 — ¢, and in this
case ; y
1
= —logh; = -t = —— fort € [0,1].
b = gy logh: he  1-1 O €[0.1]

Summarizing, we have shown:

Theorem 8.14. If (B;) is a Brownian motion then the process (X;) defined by

t

1-1
Xt:/l_TdBr fort €[0,1], X;=0,

0

is a Brownian bridge from 0 to 0 in time 1. It is the unique continuous process solving

the SDE ¥
dX; = —1_ttdt+ dB,  forte|0,1). (8.4.6)

Proof. As shown above, (X);c[0,1) is a continuous centered Gaussian process with the
covariances of the Brownian bridge. Hence its distribution on C'(]0, 1)) coincides with
that of the Brownian bridge from 0 to 0. In particular, this implies Iltlfn% Xy = 0 almost
surely, so the trivial extension from [0, 1) to [0, 1] defined by X; = 0 is a Brownian
bridge. U
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If the Brownian bridge is replaced by a more general conditioned diffusion process,
the Gaussian characterization does not apply. Nevertheless, it can still be shown by
different means (the keyword is “h-transform”) that the bridge process solves an SDE
generalizing (8.4.6), cf. ?? below.

8.5 Stochastic differential equations in R"

We now explain how to generalize our considerations to systems of stochastic differen-
tial equations, or, equivalently, SDE in several dimensions. For the moment, we will not
initiate a systematic study but rather consider some examples. The setup is the follow-
ing: We are given a d-dimensional Brownian motion B; = (B}, ..., B). The compo-
nent processes Bf, 1 < k < d, are independent one-dimensional Brownian motions that
drive the stochastic dynamics. We are looking for a stochastic process X; : 2 — R"

solving an SDE of the form

d
dX, = b(t, X,)dt + Y ow(t, X,) dB. (8.5.1)
k=1
Here n and d may be different, and b, 0y, ...,04 : R, x R™ — R" are time-dependent

continuous vector fields on R™. In matrix notation,
dXt = b(t, Xt) dt + O'(t, Xt) dBt (852)

where o(t, ) = (o1(t, z)oa(t, x) - - - 04(t, x)) is an n X d-matrix.

Existence, uniqueness and stability

Assuming Lipschitz continuity of the coefficients, existence, uniqueness and stability of
strong solutions of the SDE (8.3.2)) can be shown by similar arguments as for ordinary

differential equations.
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Theorem 8.15 (Existence, uniqueness and stability under global Lipschitz condi-
tions). Suppose that b and o satisfy a global Lipschitz condition of the following form:

For any ty € R, there exists a constant L. € R such that
|b(t, ) =b(t, )|+ ||o(t,x)—0o(t,z)|| < L-lz—z| Vte€|0,t], x,z € R". (8.5.3)

Then for any initial value x € R", the SDE (8.3.2) has a unique (up to equivalence)

strong solution (Xy)icjo,00) Sutch that Xo = x P-almost surely.

Furthermore, if (X;) and (X;) are two strong solutions with arbitrary initial conditions,

then for any t € R, there exists a finite constant C(t) such that

E | sup |X, - X,|

s€[0,t]

< Clt)- B |1Xo— Xol?]

The proof of Theorem [§.13]is outlined in the exercises below. In Section 2.1l we will
prove more general results that contain the assertion of the theorem as a special case. In
particular, we will see that existence up to an explosion time and uniqueness of strong

solutions still hold true if one assumes only a local Lipschitz condition.

The key step for proving stability and uniqueness is to control the deviation
g = F {sup | X — )?3\2]
s<t
between two solutions up to time ¢. Existence of strong solutions can then be shown by

a Picard-Lindelof approximation based on a corresponding norm:

Exercise (Proof of stability and uniqueness). Suppose that (X;) and (X,) are strong
solutions of (8.5.2)), and let t, € R. Apply It6’s isometry and Gronwall’s inequality to
show that if (8.3.3]) holds, then there exists a finite constant C' € R such that for any
t S tO?

(50+ / . ds), and (8.5.4)
0

C .
C e g (8.5.5)

IN

&t
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Hence conclude that two strong solutions with the same initial value coincide almost

surely.

Exercise (Existence of strong solutions). Define approximate solutions of (8.3.2)) with

initial value # € R™ inductively by setting X! := z for all ¢, and
t t
XM= ¢ / b(s, XI')ds + / o(s, X?) dBs.
0 0

Let A} := Elsup,, | X" — X|?]. Show that if (8.3.3) holds, then for any ¢, € R,

there exists a finite constant C'(() such that

t
A < C(to)/ A%ds  forany n >0 and ¢ < tg, and
0

tn
A < COfty)" ] A)  forany n € N and t < t,.

Hence conclude that the limit X, = lim,,_,o, X" exists uniformly for s € [0, o] with
probability one, and X is a strong solution of (8.3.2)) with X, = z.

Ito processes driven by several Brownian motions
Any solution to the SDE (8.3.1) is an Itd process pf type
/ Gy ds+ Z / H*aB* (8.5.6)
k=17

with continuous (EB’P) adapted stochastic processes Gy, H!, H?, ..., Hsd. We now

extend the stochastic calculus rules to such Itd processes that are driven by several in-

dependent Brownian motions. Let H and H, be continuous (]—"tB ’P) adapted processes.

Lemma 8.16. If (m,) is a sequence of partitions of R, with mesh(m,) — 0 then for

t
any 1 < k,l < d and a € Ry, the covariation of the 116 integrals t — [ Hy dB¥ and
0

t
t— [ H, d B exists almost surely uniformly for t € [0, a] along a subsequence of (),
0

/HdBk,/ﬁdel /HHdBk 5kl/HH ds.
0 0
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The proof is an extension of the proof of Theorem [8.1(ii), where the assertion has been

derived for k = [ and H = H. The details are left as an exercise.

Similarly to the one-dimensional case, the lemma can be used to compute the covariation
of Itd integrals w.r.t. arbitrary Itd processes. If X, and Y are Itd processes as in (8.3.1)),

and K and L, are adapted and continuous then we obtain

. . t
[/ KdX,/ LdY] = / K,L,d[X,Y],
0 0 t 0

almost surely uniformly for ¢ € [0, u], along an appropriate subsequence of (7).

Multivariate 1to-Doeblin formula

We now assume again that (X;);>¢ is a solution of a stochastic differential equation of
the form (8.3.1). By Lemma[8.16] we can apply Itd’s formula to almost every sample
path ¢ — X;(w):

Theorem 8.17 (It6-Doeblin). Let F € C*?(R, x R™). Then almost surely,

Ft,X,) = F(0,X,)+ / (0"V.F)(s, X,) - dB,

0

t
+/(88—]Z+$F) (s, Xs) ds forallt > 0,
0

where V. denotes the gradient in the space variable, and

n @2 n

(LF)(t,x) = %Z am(t,x)aii

with a(t,x) = o(t,z)o(t,z)" € R™™",
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Proof. If X is a solution to the SDE then

el
= Z/akcrlst[Bk / (s, Xs)
0
where o = 3, oiol, e,
a(s, ) = o(s,x)o(s,z)" € R™™,

Therefore, 1t6’s formula applied to the process (¢, X;) yields

d

OF 92F o
= ? J
dF(t, X) S (LX) At V(LX) - dX + 5 § R I 4 X) d[X, X
, OF
—  (0"V,F)(t, X)-dB + (E + .i”F) (t, X) dt,
forany F € C1?(R,. x R™). O

The It6-Doeblin formula shows that for any F' € C*(R, x R"), the process

MF = F(s,XS)—F(O,XO)—/ <%—f+$F> (t, X,) dt
0

is a local martingale. If 0"V, F is bounded then M*" is a global martingale.

Exercise (Drift and diffusion coefficients). Show that the processes

M; = X;-Xé—/bi(s,Xs)ds, 1<i<n,

0

are local martingales with covariations
(MY M), = a; (s, X,) for any s > 0, P-almost surely.

The vector field b(s, x) is called the drift vector field of the SDE, and the coefficients

a; ;(s, z) are called diffusion coefficients.
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General Ornstein-Uhlenbeck processes

XXX to be included

Example (Stochastic oscillator).

Examples

Example (Physical Brownian motion with external force).

Example (Kalman-Bucy filter).

Example (Heston model for stochastic volatility).
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Chapter 9

Change of measure

9.1 Local and global densities of probability measures

A thorough understanding of absolute continuity and relative densities of probability
measures is crucial at many places in stochastic analysis. Martingale convergence yields
an elegant approach to these issues including a proof of the Radon-Nikodym and the

Lebesgue Decomposition Theorem. We first recall the definition of absolute continuity.

Absolute Continuity

Suppose that P and () are probability measures on a measurable space (€2, .A), and F is

a sub-o-algebra of A.

Definition. (/). The measure () is called absolutely continuous w.r.t. P on the o-
algebra F if and only if Q[A] = 0 for any A € F with P[A] = 0.

(2). The measures () and P are called singular on F if and only if there exists A € F
such that P[A] = 0 and Q[A®] = 0.

286
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We use the notations () < P for absolute continuity of ) w.r.t. P, () ~ P for mutual
absolute continuity, and ()L P for singularity of () and P. The definitions above extend

to signed measures.

Example. The Dirac measure ;5 is obviously singular w.r.t. Lebesgue measure g 1]
on the Borel o-algebra B((0,1]). However, 01/, is absolutely continuous w.r.t. A¢
on each of the o-algebras F,, = o(D,,) generated by the dyadic partitions D,, = {(k -
27" (E+1)27" : 0< k< 2"},and B([0,1)) = o(lU D).

The next lemma clarifies the term “absolute continuity.”

Lemma 9.1. The probability measure () is absolutely continuous w.r.t. P on the o-

algebra F if and only if for any € > 0 there exists 6 > 0 such that for A € F,
PAl <6 = QA <e= (9.1.1)

Proof. The “if” part is obvious. If P[A] = 0 and (9.1.1) holds for each ¢ > 0 with §
depending on ¢ then Q[A] < ¢ for any £ > 0, and hence Q[A] = 0.

To prove the “only if” part, we suppose that there exists € > 0 such that (9.1.1)) does not
hold for any 6 > 0. Then there exists a sequence (A,,) of events in F such that

QA > € and P[A,] < 277
Hence, by the Borel-Cantelli-Lemma,

P[A,, infinitely often] = 0,

whereas
Q[A, infinitely often] = @ [ﬂ U Anl = lim Q U Anl > ¢
n—oo
n m>n m>n
Therefore () is not absolutely continuous w.r.t. P. U

Example (Absolute continuity on R). A probability measure o on a real interval is
absolutely continuous w.r.t. Lebesgue measure if and only if the distribution function
F(t) = u[(—o0, t]] satisfies:
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For any € > 0 there exists > 0 such that foranyn € Nand ay,...,a,,b1,...,b, € R,
Shi—al < = Y |IF(b) - Fla)| < 4, 9.1.2)
i=1 i=1

cf. e.g. [Billingsley: Probability and Measures].

Definition (Absolutely continuous functions). A function F' : (a,b) C R — R is
called absolutely continuous iff (9.1.2) holds.

The Radon-Nikodym Theorem states that absolute continuity is equivalent to the exis-

tence of a relative density.

Theorem 9.2 (Radon-Nikodym). The probability measure () is absolutely continuous
w.r.t. P on the o-algebra F if and only if there exists a non-negative random variable
Z € LYQ, F, P) such that

Q4] = /ZdP forany A € F. (9.1.3)
A

The relative density Z of ) w.r.t. P on F is determined by (9.1.3)) uniquely up to modi-
fication on P-measure zero sets. It is also called the Radon-Nikodym derivative or the
likelihood ratio of () w.r.t. P on F. We use the notation

z =%
P |,

and omit the F when the choice of the o-algebra is clear.

Example (Finitely generated o-algebra). Suppose that the o-algebra F is generated
by finitely many disjoint atoms By, ..., By with Q = |JB;. Then @ is absolutely

continuous w.r.t. P if and only if for any ¢,

P[B] =0 = Q[B]=0.
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In this case, the relative density is given by

:ZQ g

i: P[B;]>0

a7,

From local to global densities

Let (F,,) be a given filtration on (€2, A).

Definition (Local absolutely continuity). The measure Q) is called locally absolutely
continuous w.r.t. P and the filtration (F,,) if and only if () is absolutely continuous w.r.t.

P on the o-algebra F, for each n.

Example (Dyadic partitions). Any probability measure on the unit interval [0, 1] is
locally absolutely continuous w.r.t. Lebesgue measure on the filtration F,, = o(D,,)
generated by the dyadic partitions of the unit interval. The Radon-Nikodym derivative
on F,, is the dyadic difference quotient defined by
di| gy _ M=) 2 k2] P27 F((k—1) 2
dA | £ AM((k=1)-27 k- 27)] 2-n

) 9.1.4)

forx € ((k—1)27" k27™].

o0

Example (Product measures). If ) = ® v and P = ) i are infinite products of
i=1
probability measures v and u, and v is absolutely continuous w.r.t. ;4 with density p,

then () is locally absolutely continuous w.r.t. P on the filtration
Fn = o(Xq,...,X,)

generated by the coordinate maps X;(w) = w;. The local relative density is

P . = EQ(Xi)

However, if v # p, then () is not absolutely continuous w.r.t. P on Fo, = o(X1, X5, .. .),

since by the LLN, n=! >~ I4(X;) converges Q almost surely to v[A] and P-almost
=1

surely to u[A].
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Now suppose that () is locally absolutely continuous w.r.t. P on a filtration (F,,) with

relative densities
_dQ

Zn
dP

Fn
The L! martingale convergence theorem can be applied to study the existence of a global

density on the o-algebra
Fo = o JF).

Let Z,, := limsup Z,.

Theorem 9.3 (Convergence of local densities, Lebesgue decomposition).

(1). The sequence (Z,) of successive relative densities is an (F,)-martingale w.r.t. P.
In particular, (Z,,) converges P-almost surely to Z., and Z, is integrable w.r:t.
P.

(2). The following statements are equivalent:

(a) (Z,) is uniformly integrable w.r.t. P.
(b) Q is absolutely continuous w.r.t. P on F.

(c) QIA] = [ Z dP for any P on F.
A
(3). In general, the decomposition Q) = Q, + Qs holds with

Q.[A4] = /Zoo dP, Qs[4] = Q[AN{Z, = oo}]. (9.1.5)

A

Q. and Q) are positive measure with (), < P and Q) ,1LP.

The decomposition () = (), + () into an absolutely continuous and a singular part is

called the Lebesgue decomposition of the measure () w.r.t. P on the o-algebra F.
Proof. (1). Forn > 0, the density Z, is in £L}(2, F,,, P), and

EplZ,; Al = QA] = Ep|Zys; A]  forany A€ F,.
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Hence Z,, = Ep[Z,.1 | Fu, ie., (Z,) is a martingale w.r.t. P. Since Z,, > 0, the

martingale converges P-almost surely, and the limit is integrable.
(2). (a) = (c): If (Z,,) is uniformly integrable w.r.t. P, then
Zn = EplZ | Ful P-almost surely for any n,
by the L' convergence theorem. Hence for A € F,,,
QA] = Ep[Z,; Al = Ep[Z; Al

This shows that Q[A] = Ep[Z, ; A] holds for any A € |J F,,, and thus for any
Ae Fo=0lUFn).
(c) = (b) is evident.
(b) = (a): If Q < P on F,, then Z, converges also ()-almost surely to a finite
limit Z,. Hence for ng € Nand ¢ > 1,

sup Ep[|Zy]; | Zn| > ¢] = sup Ep[Z,; Z, > ] = sup Q[Z, > (]

< maxQl[Z, > |+ sup Q[Z, > (]

n<ngo n>ng
< maxQ[Z, > ¢ + QZo 2 ¢ — 1] + sup Q[[Zn — Zoo| 2 1].
n<ngo TZZTZO

Given € > 0, the last summand is smaller than /3 for n, sufficiently large, and
the other two summands on the right hand side are smaller than £/3 if ¢ is chosen

sufficiently large depending on ng. Hence (Z,,) is uniformly integrable w.r.t. P.

(3). In general, Q,[A] = FEp|Z ; A] is a positive measure on F, with Q, < @,
since forn > 0 and A € F,,

Qa[A] = Ep[l1]£n1ank7 A] S llIl’llIlewp[Z]g7 A] = Ep[Zn, A] = Q[A]
—00

k—00

by Fatou’s Lemma and the martingale property. It remains to show that
Qu[4] = QAN {Zs < 0}] forany A € F. (9.1.6)

If (9.1.6) holds, then @ = Q, + Q. with Q) defined by (9.1.3)). In particular, Q)
is then singular w.r.t. P, since P[Z., = oo] = 0 and Q,[Z., = oo] = 0, whereas
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(@, 1s absolutely continuous w.r.t. P by definition.
Since @, < @, it suffices to verify (Q.1.6) for A = ). Then

(Q - Qa)[A N {ZOO < OO}] = (Q - Qa)[ZOO < OO] = 07
and therefore
QIAN{Zx <00}] = Qu[AN{Zx < o0}] = Qu[4]

forany A € Fi.
To prove (9.1.6) for A = € we observe that for ¢ € (0, c0),

< limsup Q[Z, < ¢] = limsup Ep|Z, ; Z, < (]

n—oo n—o0

Q [lim sup Z, < c

n—o0

< FEp {limsupZn-I{ZnQ} < EplZy] = Qal9)]

n—oo

by Fatou’s Lemma. As ¢ — 0o, we obtain
QZoe <00 < Q[ = Quf[Ze < 00] < Q[Zs < 9]

and hence (9.1.6) with A = Q. This completes the proof
L

As a first consequence of Theorem we prove the Radon-Nikodym Theorem on a
separable o-algebra A. Let P and () be probability measures on ({2, .4) with Q < P.

Proof of the Radon-Nikodym Theorem for separable o-algebras. We fix a filtration
(F,) consisting of finitely generated o-algebras F,, C A with A = o(|JF,). Since
() is absolutely continuous w.r.t. P, the local densities Z,, = d()/dP|z, on the finitely

generated o-algebras F,, exist, cf. the example above. Hence by Theorem[9.3]

Q4] = /ZoO apP forany A € A.

A

O

The approach above can be generalized to probability measures that are not absolutely

continuous:
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Exercise (Lebesgue decomposition, Lebesgue densities). Let P and () be arbitrary
(not necessarily absolutely continuous) probability measures on (2, .4). A Lebesgue
density of () w.r.t. P is a random variable Z : Q) — [0, co] such that ) = Q, + Qs with

QulA] = /de, QJA] = QIAN{Z = )]  forany A € A
A
The goal of the exercise is to prove that a Lebesgue density exists if the o-algebra A is

separable.

(1). Show that if Z is a Lebesgue density of ) w.r.t. P then 1/7 is a Lebesgue density
of P w.rt. Q. Here 1 /00 := 0 and 1/0 := 0.

From now on suppose that the o-algebra is separable with A = o (| F,,) where (F,,) is

a filtration consisting of o-algebras generated by finitely many atoms.

(1). Write down Lebesgue densities Z,, of () w.r.t. P on each F,,. Show that
Q[Z, =occand Z,,1 < 0] = 0 for any n,

and conclude that (Z,,) is a non-negative supermartingale under P, and (1/7,,) is

a non-negative supermartingale under Q).

(2). Prove that the limit Z,, = lim Z,, exists both P-almost surely and (Q-almost
surely, and P[Z,, < co] = 1 and Q[Z,, > 0] = 1.

(3). Conclude that 7, is a Lebesgue density of P w.r.t. Q) on A, and 1/Z is a
Lebesgue density of @) w.r.t. P on A.

Derivatives of monotone functions

Suppose that 7' : [0,1] — R is a monotone and right-continuous function. After an
appropriate linear transformation we may assume that /" is non decreasing with F'(0) =
0 and F'(1) = 1. Let u denote the probability measure with distribution function F'.
By the example above, the Radon-Nikodym derivative of p w.r.t. Lebesgue measure on
the o-algebra F,, = o(D,,) generated by the n-th dyadic partition of the unit interval
is given by the dyadic difference quotients (9.1.4) of F'. By Theorem we obtain a

version of Lebesgue’s Theorem on derivatives of monotone functions:

University of Bonn 2015/2016



294 CHAPTER 9. CHANGE OF MEASURE

Corollary 9.4 (Lebesgue’s Theorem). Suppose that F' : [0,1] — R is monotone (and

right continuous). Then the dyadic derivative

dp
F'(t) = lim —
W) = lim -

(t)

Fn

exists for almost every t and F' is an integrable function on (0, 1). Furthermore, if F is
absolutely continuous then
F(s) = /F'(t) dt forall s € ]0,1]. (9.1.7)

0

Remark. Right continuity is only a normalization and can be dropped from the assump-
tions. Moreover, the assertion extends to function of finite variation since these can be
represented as the difference of two monotone functions, cf. ?? below. Similarly, (9.1.7)
also holds for absolutely continuous functions that are not monotone. See e.g. [Elstrodt:

MaB- und Integrationstheorie] for details.

Absolute continuity of infinite product measures

Suppose that 2 = X .S;, and
i=1

Q = éui and P = éui
i=1 i=1

are products of probability measures v; and y; defined on measurable spaces (.5;, S;).
We assume that v; and p; are mutually absolutely continuous for every ¢+ € N. Denot-
ing by Xj : 2 — S the evaluation of the k-th coordinate, the product measures are

mutually absolutely continuous on each of the o-algebras
Fo = o(Xy,..., X,), n € N,

with relative densities

P
dQ = Z, and r

dP| . Q|

n

= 1/Z,,
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where
Z, = H—V(XZ) € (0,00) P-almost surely.
i=1 dt;
In particular, (Z,,) is a martingale under P, and (1/7,) is a martingale under (). Let

Foo = 0(X1, X, .. .) denote the product o-algebra.

Theorem 9.5 (Kakutani’s dichotomy). The infinite product measures () and P are
either singular or mutually absolutely continuous with relative density Z.,. More pre-

cisely, the following statements are equivalent:
(1). Q < PonF.

(2). Q~ Pon F.

oo dl/i
(3). A/ du; > 0.
zl;[1f dpu; ,u

4. 3 dylvim) < oo

=1

Here the squared Hellinger distance d2(v;, j1;) of mutually absolutely continuous prob-

ability measures v and . is defined by
2 2
1 dv 1 dp
2 = = \— —1 - = A/ ——1
din 2/( dp )d,u 2/( dv )du
dv [dp
/ \/ dp " / v

Remark. (1). If mutual absolutely continuity holds then the relative densities on F,

are
d P
£ = nh_)nolo Z,  P-almost surely, and 0 = nh_)ngo A -almost surely.

(2). If v and p are absolutely continuous w.r.t. a measure dz then

dyn) = 5 [ (VI@ = Va@) de = 1= [ V@) a.
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Proof. (1) <= (3): Fori € NletY; = 9

independent under both P and ) with Ep[Y;] = 1, and

(X;). Then the random variables Y; are

Z, =Y, Yy Y,

By Theorem[9.3] the measure () is absolutely continuous w.r.t. P if and only if the mar-
tingale (Z,,) is uniformly integrable. To obtain a sharp criterion for uniform integrability
we switch from L to L?, and consider the non-negative martingale

_ Vv VY VYL L - v
Mn - 61 52 Bn with 62 - EP[\/?Z] - / d,ul sz

under the probability measure P. Note that for n € N,

EM] = [[EN/8 =1 / (H@-) .

i=1

If (3) holds then (M,,) is bounded in L?(2, A, P). Therefore, by Doob’s L? inequality,
the supremum of M,, is in £L2(Q2, A, P), i.e.,

El[sup|Z,|] = E[sup M?] < oo.
Thus (Z,,) is uniformly integrable and ) < P on F.

Conversely, if (3) does not hold then
Ly = MJQV . H G; — 0 P-almost surely,
i=1

since M,, converges to a finite limit by the martingale convergence theorem. Therefore,
the absolute continuous part (), vanishes by Theorem (3), i.e., ) is singular w.r.t.
P.

(3) <= (4): Forreals 3; € (0, 1), the condition ] /; > Oisequivalentto ) (1—/;) <
i=1 i=1
oo. For f3; as above, we have

dl/i
1-8 = 1_/“d,ui du; = dj;(vi, ).

(4) = (2): Condition (4) is symmetric in v; and ;. Hence, if (4) holds then both ) < P
and P < Q). ]

(2) = (1) is obvious.
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Example (Gaussian products). Let P = @ N(0,1) and Q@ = & N(a;, 1) where
i=1 i=1

(a;)ien is a sequence of reals. The relative density of the normal distributions v; :=

N(a;, 1) and p := N(0,1) is

dVZ'
@@) =

d

Therefore, by condition (3) in Theorem

exp(—(z — a;)*)/2

exp(—22/2) = exp(a;x — a?/2),

Q<KP < QrP < > a <o
i=1

Hence mutual absolute continuity holds for the infinite products if and only if the se-

quence (a;) is contained in ¢2, and otherwise () and P are singular.

Remark (Relative entropy). (1). In the singular case, the exponential rate of degen-

eration of the relative densities on the o-algebras F,, is related to the relative

dVZ' dl/i dl/i
Hvi | i) = /du~ logd—,u- dp; = /lOgd—;p dv;.

For example in the i.i.d. case p; = p and v; = v, we have

1 l~, d
Eloan = E;log d—:(XZ) — H(v|p) Q-a.s., and

entropies

1 1
——loan = —1og Z7' — H(u|v) P-as.
as n — oo by the Law of Large Numbers.
In general, log Z,, Z H(v;|p;) is amartingale w.r.t. @, and log Z,, +Z H(v;| )

is a martingale w. rt P

(2). The relative entropy is related to the squared Hellinger distance by the inequality

SH | ) > di(v| ),

which follows from the elementary inequality

1
§logafl = —logvx > 1—+x for x > 0.

University of Bonn 2015/2016



298 CHAPTER 9. CHANGE OF MEASURE

9.2 Translations of Wiener measure

We now return to stochastic processes in continuous time. We endow the continuous
path space C([0, 00), R?) with the o-algebra generated by the evolution maps X;(w) =
w(t), and with the filtration

FX = o(X,|s€l0,1]), t>0.
Note that F;X consists of all sets of type
{we C([0,00),RY) : wlpg e} withD € B(C([0,t],RY)).
In many situations one is interested in the distribution on path space of a process

B = B, + h(t)

h(t)

w By + h(t)

t
By

obtained by translating a Brownian motion (B;) by a deterministic function & : [0, c0) —
R?. In particular, it is important to know if the distribution of (B") has a density w.r.t.
the Wiener measure on the o-algebras F;X, and how to compute the densities if they
exist.

Example. (1). Suppose we would like to evaluate the probability that sup |Bs —
s€[0,t]

g(s)| < eforagivent > 0 and a given function g € C(]0, o), R¢) asymptotically
as ¢ N\, 0. One approach is to study the distribution of the translated process
B; — g(t) near 0.
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(2). Similarly, computing the passage probability P[B, > a+bs for some s € [0, t]]
to a line s — a + bs for a one-dimensional Brownian motion is equivalent to

computing the passage probability to the point a for the translated process B, — bt.
(3). A solution to a stochastic differential equation
dY; = dB, +b(t,Y;)dt

is a translation of the Brownian motion B; — By by the stochastic process H; =
t

Yo + [ b(s,Y;) ds. Again, in the simplest case (when b(¢, y) only depends on ),
0

H,; is a deterministic function.

The Cameron-Martin Theorem

Let (B;) denote a continuous Brownian motion with By = 0, and let h € C([0, 00), R?).
The distribution
pn = Po(B+h)™*

of the translated process B!' = B, + h(t) is the image of Wiener measure /i under the

translation map
m, © C([0,00),RY) — C([0,00),RY), 7,(z) = =+ h.

Recall that Wiener measure is a Gaussian measure on the infinite dimensional space

C([0, 00),R%). The next exercise discusses translations of Gaussian measures in R":

Exercise (Translations of normal distributions). Let C' € R"*" be a symmetric non-
negative definite matrix, and let 1 € R™. the image of the normal distribution N (0, C)

under the translation map = +— z + h on R" is the normal distribution N (h, C').

(1). Show that if C'is non-degenerate then N (h, C') ~ N (0, C') with relative density

AN (h, C)

W(SE’) = €(h’x)7%(h’h) for x € Rn, (921)

where (g, h) = (g,C~, h) for g, h € R™.
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(2). Prove that in general, N (h, C') is absolutely continuous w.r.t. N (0, C) if and only

if h is orthogonal to the kernel of C' w.r.t. the Euclidean inner product.

On C(]0,0), R%), we can usually not expect the existence of a global density of the
translated measures j;, w.r.t. j1o. The Cameron-Martin Theorem states that for ¢ > 0, a
relative density on F;* exists if and only if  is contained in the corresponding Cameron-

Martin space:

Theorem 9.6 (Cameron, Martin). For h € C([0,00),R%) and t € R, the translated
measure i, = j1o 7, " is absolutely continuous w.r.t. Wiener measure iy on F;* if and
only if h is an absolutely continuous function on [0, t] with h(0) = 0 and fo P/ (s)|2ds <

o0. In this case, the relative density is given by

t t
= exp (/ R'(s) dX, — %/ |h’(s)|2ds). 9.2.2)
0 0

where fg h'(s) dX is the Ité integral w.r.t. the canonical Brownian motion (X, ).

in
dMO FX

Before giving a rigorous proof let us explain heuristically why the result should be true.
Clearly, absolute continuity does not hold if 4(0) # 0, since then the translated paths do
not start at 0. Now suppose 1(0) = 0, and fix ¢ € (0, 00). Absolute continuity on F;*
means that the distribution yf of (B")y<.<; on C([0,],R?) is absolutely continuous
w.r.t. Wiener measure yf on this space. The measure 1, however, is a kind of infinite

dimensional standard normal distribution w.r.t. the inner product

(@, 9)n = / 2(s) - o/(s) ds

on functions z,y : [0,¢] — RY vanishing at 0, and the translated measure /! is a Gaus-
sian measure with mean h and the same covariances.
Choosing an orthonormal basis (e;);cy W.r.t. the H-inner product (e.g. Schauder func-

tions), we can identify zf and p}, with the product measures @ N(0,1) and ® N(a;, 1)
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respectively where a; = (h,e;)y is the i-th coefficient of h in the basis expansion.

Therefore, 4 should be absolutely continuous w.r.t. y if and only if

oo

_ 2

= E oy < oo,
i=1

i.e., if and only if / is absolutely continuous with &’ € £2(0,t).

Moreover, in analogy to the finite-dimensional case (9.2.1)), we would expect informally

a relative density of the form

dlu‘h( ) _ e(h,x)Hfé(h,h)H = exp (/ h/( ) dS— _/ ‘h/ |2 dS) I
dp

Since yif-almost every path z € C([0,00),R?) is not absolutely continuous, this ex-
pression does not make sense. Nevertheless, using finite dimensional approximations,
we can derive the rigorous expression (9.2.2)) for the relative density where the integral

fot Rz’ ds is replaced by the almost surely well-defined stochastic integral fot h dx -

Proof of Theorem[9.60 We assume t = 1. The proof for other values of ¢ is similar.

Moreover, as explained above, it is enough to consider the case 2(0) = 0.

(1). Local densities: We first compute the relative densities when the paths are only

evaluated at dyadic time points. Fixn € N, let¢; = ¢ - 27", and let

0 = Ty, — Ty

7

i+1

denote the i-th dyadic increment. Then the increments §; B (i = 0,1,...,2"—1)
of the translated Brownian motion are independent random variables with distri-
butions

§:B" = 6;B+ 8;h ~ N(0;h, (6t) - 1), 6t =2""

Consequently, the marginal distribution of (B!, B!

hoy e .
v, B, ..., B, ) is a normal distri-

bution with density w.r.t. Lebesgue measure proportional to

on 1
5:E—6h .
exp< Z | ? ) x=($t1,$t2,---,xt2n)€R2 d
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Since the normalization constant does not depend on h, the joint distribution
of (B!, B}',...,Bl',) is absolutely continuous w.r.t. that of (By,, By, ..., B,.)
with relative density
&;h 1 |&h|
—— S — = — | 5t . 923
on (X5 e 3|0 ) 023
Consequently, jy, is always absolutely continuous w.r.t. 1y on each of the o-
algebras
fn:O'(XZ'.Q—n32.20,1,...,271—1), ’I’LGN,
with relative densities
n—1 on—1 2
0;h 1 oih
Ly = — 5 X — = —| 5t . 924
eXp(ﬁg ot QiZ ot ) 024
(2). Limit of local densities: Suppose that h is absolutely continuous with

1
/ | (t)]* dt < oo.
0

We now identify the limit of the relative densities Z,, as n — oo.
First, we note that

2n—1

D

=0

o;ih
ot

2 1
ot — / \R'(t)|* dt asn — 0o.
0

In fact, the sum on the right hand side coincides with the squared L? norm

/

m_q 5ih
= Z 50 I((i—1)2-n i2-n]

(Dn) =0

2

dt

dh/dt|a(,Dn)

of the dyadic derivative

dh
dt

on the o-algebra generated by the intervals ((i — 1) - 27™,i - 27"]. If h is abso-

— I/ (t) in L*(0, 1) by the L?
a(Dn)

dh
lutely continuous with i’ € L?(0, 1) then pn

martingale convergence theorem.
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Furthermore, by 1t6’s isometry,

2" —1

o;h
1=0 ot

1
56X — / R'(s)dX,  in L*(uo)asn — oo. (9.2.5)
0

Indeed, the sum on the right-hand side is the It6 integral of the step function

dh

7 w.r.t. X, and as remarked above, these step functions converge to A’ in
o(Dn)

L?(0,1). Along a subsequence, the convergence in (9.2.3) holds ji-almost surely,

and hence by (9.2.4),

1

1
1
lim Z, = exp /h'(s) dX, — 5/\h'(s)|2 ds fo-a.s. (9.2.6)
n—o0
0

0

(3). Absolute continuity on Fi*: We still assume ' € L?(0,1). Note that Fj¥ =
o(J F..). Hence for proving that y, is absolutely continuous w.r.t. 1o on F;X with
density given by (9.2.6)), it suffices to show that lim sup Z,, < oo u,-almost surely
(i.e., the singular part in the Lebesgue decomposition of p, w.r.t. yo vanishes).

Since p, = po o Th_l, the process

W, = X, —h(t) is a Brownian motion w.r.t. i,
and by (9.2.3) and (9.2.4),
on_1 on_1 9
o;h 1 o;h
Z, = LW | ot .

Note that the minus sign in front of the second sum has turned into a plus by the
translation! Arguing similarly as above, we see that along a subsequence, (Z,,)

converges [i,-almost surely to a finite limit:

1

1
1
lim Z,, = exp /h’(s) dWS+§/|h'(s)|2 ds fp-a.S.
0 0

Hence pu;, < o with density lim Z,,.
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(4). Singularity on F;*: Conversely, let us suppose now that & is not absolutely con-

tinuous or /' is not in L*(0, 1). Then

n_ 1
on_q 5ih 2 dh12
E ot = — dt — oo as n — 0o.
, o;t dt | p
=0 0 0( )
Since
on_1 2n—1 2 1/2
Z h h
61 . 52X — ( (61 ) (5t> 7
- 0y . ot
1=0 L2(po) 1=0

we can conclude by that
limZ, =0 Ho-almost surely,

i.e., iy 1S singular w.r.t. fig.

In Section [11.5] we will give an alternative proof of the Cameron-Martin Theorem.

Passage times for Brownian motion with constant drift

We now consider a one-dimensional Brownian motion with constant drift /3, i.e., a pro-

CESS

Y; = L%‘+’6ta t Zioa

where B, is a Brownian motion starting at 0 and S € R. We will apply the Cameron-

Martin Theorem to compute the distributions of the first passage times
TY = min{t >0 : Y; = a}, a > 0.

Note that T is also the first passage time to the line t — a — (3t for the Brownian

motion (B;).
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Theorem 9.7. For a > 0 and 3 € R, the restriction of the distribution of TY to (0, 00)

is absolutely continuous with density

a (a — Bt)?
fap(t) = o= exp <_T) :

In particular,

P[TY < o0] = /fa,g(s) ds.
0

Proof. Let h(t) = (ft. By the Cameron-Martin Theorem, the distribution i, of (Y}) is

absolutely continuous w.r.t. Wiener measure on F;* with density
Zy = exp(f- X, — %/2).

Therefore, denoting by 7, = inf{t > 0 : X; = a} the passage time of the canonical

process, we obtain

PITY <t] = ml[T,<t] = E,[Z; T, <t
1
= Euo [ZTa ) Ta S t] = Euo [exp(ﬁa - 562Ta> ) Ta S t]

= /Ot exp(Ba — $%5/2) fr,(s) ds

by the optional sampling theorem. The claim follows by inserting the explicit expression
for fr, derived in Corollary O

9.3 Girsanov transform

We will now extend the results in the previous section[9.2] considerably. To this end, we

will consider locally absolutely continuous changes of measure with local densities of

type
t 1 t
7, = exp (/ G, dX, — —/ \Gs\st),
0 2 Jo
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where (G;) is an adapted process. Recall that the densities in the Cameron-Martin-
Theorem took this form with the deterministic function G5 = h/(s). We start with a
general discussion about changing measure on filtered probability spaces that will be

useful in other contexts as well.

Change of measure on filtered probability spaces

Let (F;) be a filtration on a measurable space (£2,.4), and fix ¢y, € (0, 00). We consider
two probability measures P and ) on ({2, .A) that are mutually absolutely continuous

on the o-algebra F,, with relative density

dP
Z, = — > 0 -almost surely.
to dQ .7'—t0 Q y
Then P and () are also mutually absolutely continuous on each of the o-algebras F;,

t < tg, with Q- and P-almost surely strictly positive relative densities

@ 1

dP
Zt = @ £ = EQ [Zto ‘Ft} and

dPlx, —  Z.
The process (Z;):<y, is a martingale w.r.t. (), and, correspondingly, (1/7;):<¢, is a mar-
tingale w.r.t. P. From now on, we always choose a right continuous version of these

martingales.

Lemma 9.8. 1) Forany 0 < s <t < iy, and for any F;-measurable random vari-
able X : Q) — [0, o0,

EQXZ\|F,|  EqQ|XZ|F|]

Ep[X — _
PX| 7 EqlZ,| Fl] 7.

P-a.s. and Q-a.s. (9.3.1)

2) Suppose that (M;)i<:, is an (F;) adapted right continuous stochastic process.
Then

(i) M is a martingale w.r.t. P < M - Z is a martingale w.r.t. Q),

(it) M is alocal martingale w.r.t. P < M - Z is a local martingale w.r.t. Q).
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Proof. 1) The right hand side of (9.3.1)) is F,-measurable. Moreover, for any A € F,,
EplEQ[XZ|Fi/Zs; A] = EqQ|EQ[XZi|F]; A

= EQ[XZt; A] = EQ[X; A]

2) (i) is a direct consequence of 1). Moreover, by symmetry, it is enough to prove
the implication "<" in (ii). Hence suppose that M - Z is a local ()-martingale with

localizing sequence (7},). We show that M7 is a P-martingale, i.e.,
Ep|[Mnr, ; Al = Ep[Mpr, ; A] forany A€ F,, 0<s <t <t. (9.3.2)
To verify (9.3.2)), we first note that
Ep[Minr, ; AN{T, <s}| = Ep[Msr, ; AN{T, < s}] (9.3.3)

sincet AT, =T, = s AT, on {T,, < s}. Moreover, one verifies from the definition of
the o-algebra F;,r, that for any A € F;, the event AN {T,, > s} is contained in Fyr7,,

and hence in F;,7, . Therefore,
Ep[Minr, ; AN{T, > s} = Eg[Minr, Zint, ; AN{T, > s}] 9.34)
= EQ[MS/\Tn Zs/\Tn ; AN {Tn > S}H = EP[MS/\Tn ; AN {Tn > 8}]
by the martingale property for (M Z)*", the optional sampling theorem, and the fact

that P < @ on F;,r, with relative density Z;a7,. (9.3.2) follows from (9.3.3) and
©.3.4). O

Girsanov’s Theorem

We now return to our original problem of identifying the change of measure induced
by a random translation of the paths of a Brownian motion. Suppose that (X;) is a
Brownian motion in R? with X, = 0 w.r.t. the probability measure () and the filtration
(F), and fix ¢ € [0, 00). Let

t
Lt - / Gs'dXS, tZO,
0
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with G € £2,, (R, R?). Then [L], = [} |G|? ds, and hence

a,loc
t 1 t
Z, = exp(/ GS-dXS——/ |G8|2d5> (9.3.5)
0 2 0

is the exponential of L. In particular, since L is a local martingale w.r.t. (), Z is a non-
negative local martingale, and hence a supermartingale w.r.t. (). It is a ()-martingale for
t <toifand only if Eg[Z;] = 1:

Exercise (Martingale property for exponentials). Let (Z;);c04,) on (£2,.4,Q) be a

non-negative local martingale satisfying Z, = 1.
a) Show that Z is a supermartingale.
b) Prove that Z is a martingale if and only if Eg[Z;)] = 1.

In order to use Z;, for changing the underlying probability measure on F;, we have to
assume the martingale property:

Assumption. (Z;);<¢, is a martingale w.r.t. ().

Theorem below implies that the assumption is satisfied if

t
E {exp (%/ |Gs|2ds)} < o0.
0

If the assumption holds then we can consider a probability measure P on A with

dP
— = 7 -a.s. 9.3.6
dQ ]__to to Q a.s ( )
Note that P and () are mutually absolutely continuous on F; for any ¢ < ¢, with
dP dqQ 1
- - 7 d il - =
a0 7, oM Upls 7

both P- and ()-almost surely. We are now ready to prove one of the most important

results of stochastic analysis:

Stochastic Analysis Andreas Eberle



9.3. GIRSANOV TRANSFORM 309

Theorem 9.9 (Maruyama 1954, Girsanov 1960). Suppose that X is a d-dimensional
Brownian motion w.r.t. Q and (Z;) i<y, is defined by (9.3.3) with G € L%, (R, R?). If

a,loc

EolZ:,] = 1 then the process
t
Bt = Xt — / GS dS, t S to,
0

is a Brownian motion w.r.t. any probability measure P on A satisfying (9.3.06).

Proof. By the extension of Lévy’s characterization of Brownian motion to the multi-
dimensional case, it suffices to show that (B;)i<;, is an R%-valued P-martingale with
[BY, B7]; = 0;;t P-almost surely for any 7,5 € {1,...,d}, cf. Theorem below.
Furthermore, by Lemma [0.8] and since P and () are mutually absolutely continuous
on F;,, this holds true provided (B;Z;);<¢, is an R? valued local martingale under Q,
and [B', B’| = §;;t Q-almost surely. The identity for the covariations holds since (B;)
differs from the ()-Brownian motion (X}) only by a continuous finite variation process.

To show that B - Z is a local ()-martingale, we apply 1t6’s formula: For 1 <1 < d,
d(B'Z) = B'dZ+ZdB' +d[B" 7] 9.3.7)
= BZG-dX+7ZdX'—ZGdt+ ZG' dt,
where we have used that
dB',7Z] = ZG-dB',X] = ZG'dt  Q-almostsurely.

The right-hand side of (9.3.7) is a stochastic integral w.r.t. the (-Brownian motion X,

and hence a local ()-martingale. U

The theorem shows that if X is a Brownian motion w.r.t. ), and Z defined by (9.3.3) is
a (Q-martingale, then X satisfies

dXt == Gt dt + dBt

with a P-Brownian motion B. This can be used to construct weak solutions of stochastic

differential equations by changing the underlying probability measure, see Section[I1.3]
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below. For instance, if we choose G; = b(X;) then the ()-Brownian motion (X;) is a
solution to the SDE
dXt == b(Xt) dt + dBt,

where B is a Brownian motion under the modified probability measure P.

Furthermore, Girsanov’s Theorem generalizes the Cameron-Martin Theorem to non-

deterministic adapted translations
t
Xt(CU) — Xt(CU) —Ht(CU), Ht = / GS dS,
0

of a Brownian motion X.

Remark (Assumptions in Girsanov’s Theorem).

1) Absolute continuity and adaptedness of the “translation process” H; = f(f G, ds are
essential for the assertion of Theorem 9,9

2) The assumption Eg[Z;)] = 1 ensuring that (Z;):<¢, is a ()-martingale is not always
satisfied — a sufficient condition is given in Theorem[0.10 below. If (Z;) is not a martin-
gale w.r.t. () it can still be used to define a positive measure P, with density Z; w.r.t. ()
on each og-algebra F;. However, in this case, P;[€)] < 1. The sub-probability measures

P; correspond to a transformed process with finite life-time.

Novikov’s condition

To verify the assumption in Girsanov’s theorem, we now derive a sufficient condition

for ensuring that the exponential
Z, = exp (L —1/2[L])

of a continuous local (F;) martingale (L) is a martingale. Recall that Z is always a

non-negative local martingale, and hence a supermartingale w.r.t. (F3).

Theorem 9.10 (Novikov 1971). Let to € R.. If Elexp ([L]s,/2)] < 0o then (Zy)i<t, is

an (F;) martingale.
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We only prove the theorem under the slightly more restrictive condition
Elexp(p[L]:/2)] < oo for some p > 1. (9.3.8)

This simplifies the proof considerably, and the condition is sufficient for many applica-

tions. For a proof in the general case and under even weaker assumptions see e.g. [37]].

Proof. Let (T,)nen be alocalizing sequence for the martingale Z. Then (Zia1,, )i>0 is @
martingale for any n. To carry over the martingale property to the process (Z;):c(o,4,)- it
is enough to show that the random variables Z;,7,, n € N, are uniformly integrable for

each fixed t < t. However, for ¢ > 0 and p, q € (1,00) with p~! + ¢~ = 1, we have

E[Zt/\Tn ; Zt/\Tn > C]

-1
= Efexp (L, — 5[Llnr,) exp ("5 [Lhnr,) : Zinz, > ] 9.3.9)
2 -1
< E[exp (th/\Tn — %[L]tATn)] Yp E[exp (q . pT[L]an) i ZinT, 2> C] Ha
< Eesp (GILL) : Zo, =]

2
for any n € N. Here we have used Holder’s inequality and the fact that exp (th/\Tn —

2

%[L]an) is an exponential supermartingale. If exp (g [L]t) is integrable then the right

hand side of (9.3.9) converges to 0 uniformly in n as ¢ — oo, because
PlZir, >0 < ¢ '"ElZig] < ¢! — 0

uniformly in n as ¢ — oo. Hence {Z;nr,, : n € N} is indeed uniformly integrable, and

thus (Z¢)sejo,4] is @ martingale. O

Example (Bounded drifts). If L; = fot G - dX with a Brownian motion (X;) and
an adapted process (G;) that is uniformly bounded on [0, ¢] for any finite ¢ then the
quadratic variation [L]; = fot |G|? ds is also bounded for finite ¢. Hence exp(L — [L])
is an (F;) martingale for ¢ € [0, c0).

Example (Option pricing in continuous time II: Risk-neutral measure). We con-
sider the asset price model in continuous time introduced in the beginning of Chapter 8]

The stock price is modelled by an SDE

dSt = OétSt dt -+ O'tSt dXt, (9310)
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and the interest rate is given by (R;). We assume that (X;) is a Brownian motion and
(ow), (Ry), (04) and (1/0;) are adapted bounded continuous processes, all defined on a

filtered probability space (€2, A, @, (F;)). Then the discounted asset price
t
S; = exp (—/ R, ds) S;
0

dgt = (Oét - Rt>§t dt + O-tgt dXt = O-tgt dBt, (9311)

t
S_RS
Bt = Xt +/ @ dS.
0

Os

satisfies

where

We can apply Girsanov’s Theorem and the Novikov condition to conclude that the pro-
cess (B;) is a Brownian motion under a probability measure P on (£2,.4) with local

densities w.r.t. () on F; given by
t 1 t
Zy = exp (/ Gy dX, — 5/ |G |2 ds) where G; = (R; — ay) /0y
0 0

Therefore, by (9.3.11) and by the assumptions on the coefficients, the process (gt) is a
martingale under (). The measure () can now be used to compute option prices under
a no-arbitrage assumption similarly to the discrete time case considered in Section
above, see Section 0.4

9.4 Ito’s Representation Theorem and Option Pricing

We now prove two basic representation theorems for functionals and martingales that
are adapted w.r.t. the filtration generated by a Brownian motion. Besides their intrin-
sic interest, such representation theorems are relevant e.g. for the theory of financial
markets, and for stochastic filtering. Throughout this section, (B;) denotes a Brownian

motion starting at 0 on a probability space (€2, .4, P), and
Fo = o(Bs:se[0, ), t>0,

is the completed filtration generated by (B;). It is crucial that the filtration does not con-

tain additional information. By the factorization lemma, this implies that /; measurable

Stochastic Analysis Andreas Eberle



9.4. ITO’S REPRESENTATION THEOREM AND OPTION PRICING 313

random variables F' : 2 — R are almost surely functions of the Brownian path (Bj)s<;.

Indeed, we will show that such functions can be represented as stochastic integrals.

Representation theorems for functions and martingales

The first version of [t6’s Representation Theorem states that random variables that are

measurable w.r.t. the o-algebra F; = le " can be represented as stochastic integrals:

Theorem 9.11 (Itd). For any function F' € L?(), Fy, P) there exists a unique process
G € L%(0,1) such that

1
F = E[F]+ / G - dB; P-almost surely. 9.4.1)
0

An immediate consequence of Theorem[9.11lis a corresponding representation for mar-

tingales w.r.t. the Brownian filtration 7, = F>""

Corollary 9.12 (Itd representation for martingales). For any right-continuous L?>-
bounded (F;) martingale (M;).c(01) there exists a unique process G € L2(0,1) such
that .

M, = M, —|—/0 Gs-dBs,  forany t €0,1], P-a.s.

The corollary is of fundamental importance in financial mathematics where it is related
to completeness of financial markets. It also proves the remarkable fact that every
martingale w.r.t. the Brownian filtration has a continuous modification! Of course,

this result can not be true w.r.t. a general filtration.

We first show that the corollary follows from Theorem and then we prove the

theorem:
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Proof of Corollary[Q.12] If (M;)icpo,1) is an L? bounded (F;) martingale then M, €
L£%(Q, Fy, P), and

M, = E[M|F] a.s. forany t € [0,1].
Hence, by Theorem [0.11] there exists a unique process G € L2(0, 1) such that
1 1
M1 = E[Ml] +/ GdB = M0+/ GdB a.s.,
0 0
and thus
t
M, = E[M|F] = M +/ G-dB a.s. forany ¢ € [0, 1].
0

Since both sides in the last equation are almost surely right continuous, the identity

actually holds simultaneously for all ¢ € [0, 1] with probability 1. L

Proof of Theorem[9.11) Uniqueness. Suppose that (9.Z.1)) holds for two processes G, G €

L2(0,1). Then
1 1
/G-dB - /G~dB,
0 0

and hence, by Itd’s isometry,

||G_é||L2(P®>\) = H/(G—CNJ)-dB‘

L3(P)
Hence Gy(w) = G,(w) for almost every (t,w).

Existence. We prove the existence of a representation as in (9.4.1)) in several steps —
starting with “simple” functions F'.
1. Suppose that F' = exp(ip - (B; — B,)) forsome p € R¢and 0 < s < ¢ < 1. By Itd’s

formula,

. 1 . 1 ¢ . 1 .
eXp(Zp-Bt+§lp|2t) = eXp(lp-Bs+§lpl28)+/eXp(Zp-Br+§|pl2T)lp-dBr-

Rearranging terms, we obtain an Itd representation for /' with a bounded adapted inte-

grand G.

2. Now suppose that F' = [] F}, where F}, = exp (ipk (By, — Btk—l)) for somen € N,
k=1
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Prs.-,pn € R4 and 0 < ty < t; < --- < t, < 1. Denoting by G}, the bounded
adapted process in the It representation for Fj, we have

n tet1

F o= ] (E[Fk] +/ Gk-dB).
= t

k=1

We show that the right hand side can be written as the sum of [[,_, E[F}] and a stochas-
tic integral w.r.t. B. For this purpose, it suffices to verify that the product of two stochas-
tic integrals X, = fg G-dBandY, = fot H - dB with bounded adapted processes G and
H is the stochastic integral of a process in L?(0, 1) provided fol Gy - Hy dt = 0. This

holds true, since by the product rule,

1 1 1
Xl)/i - / Xth . dBt + / Y;Gt : dBt + / Gt . Ht dt,
0 0 0

and X H 4 Y G is square-integrable by It0’s isometry.

3. Clearly, an It6 representation also holds for any linear combination of functions as in
Step 2.

4. To prove an Itd representation for arbitrary functions in £2(2, Fy, P), we first note
that the linear combinations of the functions in Step 2 form a dense subspace of the
Hilbert space L*(€2, i, P). Indeed, if ¢ is an element in L?(), F;, P) that is orthogonal

to this subspace then

E{¢Hexp<z'pk-(3tk—3tk_l>> - 0

foranyn € N, py,...,p, € Réand0 <ty <t; <---<t, <1. By Fourier inversion,
this implies
E[¢|U(Btk_Btk—1 1§k§n)] =

o

a.s.

foranyn € Nand 0 < t, < --- < ¢, < 1, and hence ¢ = 0 a.s. by the Martingale
Convergence Theorem.

Now fix an arbitrary function F' € L*(€2, 71, P). Then by Step 3, there exists a sequence
(F,) of functions in L?(2, F;, P) converging to F'in L? that have a representation of

the form )
F, - E[F,] = / G™ .dB (9.4.2)
0
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with processes G™ € L2(0,1). As n — oo,
F,—E[F)] — F—E[F] in L¥P)

Hence, by and 1t0’s isometry, (G™) is a Cauchy sequence in L*(P ® Ao 1))

Denoting by G the limit process, we obtain the representation
1
F—-E[F] = / G-dB
0

by taking the L? limit on both sides of ([@.4.2). O

Application to option pricing

We return to the asset price model considered at the end of Section For simplicity,
we now assume that the coefficients in (9.3.10) and (9.3.11)) are constant:

oy = a € R, o =0 € (0,00), Ri=reR

Then the change of measure is given by the local densities

_ 1 —a\?
Z, = exp (T UO‘Xt -5 <T UO‘) t) , (9.4.3)

and by (9.3.11)), the discounted stock price is proportional to the Itd exponential of o B

where B; = X; + “>*1 is a Brownian motion under the risk-neutral measure (:

S, = Sy -exp(oB; — 0°t/2) (9.4.4)

Now suppose that we want to compute the no-arbitrage price of an option. For example,

let us consider a European call option where the payoff at the final time ¢, is given by
V;fo = (S to K )+
for a positive constant K. By (9.4.4), the discounted payoff

Vi, = (§t0 - e—’“'fOK)+ (9.4.5)
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is an ]-"ZOB’P measurable random variable. Therefore, by Itd’s Representation Theorem
and (@.4.4), there exists a process G € L2(0, to) such that

to to
V., — Ep [f/t} +/ G.dB, = Ep [f@] +/ ®, dS,.
0 0

where @, := G,/(c5,). Hence (®,) is a replicating strategy for the option, i.e., in-
vesting ®,. units in the stock and putting the remaining money on the bank account
yields exactly the payoff for the option at time ¢, provided our initial capital is given by
Ep [IZO] . Since otherwise there would be an arbitrage opportunity by selling the option
and investing the gain by the strategy ®, or conversely, we can conclude that under a

no-arbitrage assumption, the only possible option price at time 0 is given by
~ B o2t /o +
B [70] = B[ (Soermmeon o)

Noting that By, ~ N(0,,) under P, we obtain the Black-Scholes formula for the no-
arbitrage price of a European call option. Notice in particular that the price does not

depend on the usually unknown model parameter « (the mean rate of return).

Application to stochastic filtering

XXX to be included
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Appendix A

Conditional expectations

A.1 Conditioning on discrete random variables

We first consider conditioning on the value of a random variable Y : 2 — S where S is

countable. In this case, we can define the conditional probability measure

B PIANA{Y = z}]
P[A]Y = 7] PY =4 Ae A,
and the conditional expectations
EX;Y =] 1
EFX|Y = = — X QA P
[ ‘ z] P[Y — Z] Y E ‘C ( 7A7 )7

for any z € S with P[Y = z| > 0 in an elementary way. Note that for z € S with
PJY = z] = 0, the conditional probabilities are not defined.

Conditional expectations as random variables

It will turn out to be convenient to consider the conditional probabilities and expecta-
tions not as functions of the outcome z, but as functions of the random variable Y. In

this way, the conditional expectations become random variables:
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Definition (Conditional expectation given a discrete random variable). Ler X
Q — R be a random variable such that E[X~] < oo, and let Y : Q — S be a dis-
crete random variable. The random variable E[X | Y] that is P-almost surely uniquely
defined by

BX|Y] = oY) = 3 g() s
z€8
with
EX|Y=2 ifP[Y=2>0
9(z) =
arbitrary ifPlY =2]=0

is called (a version of the) conditional expectation of X given Y. For an event A € A,

the random variable

P[A|Y] := E[4]|Y]

is called (a version of the) conditional probability of A given Y .

The conditional expectation E[X | Y] and the conditional probability P[A | Y] are again
random variables.They take the values E[X |Y = z] and P[A | Y = z|, respectively,
on the sets {Y = z},z € S with P[Y = z] > 0. On each of the null sets {Y =
z},z € S with P]Y = z] = 0, an arbitrary constant value is assigned to the conditional

expectation. Hence the definition is only almost surely unique.

Characteristic properties of conditional expectations

Let X : 2 — R be a non-negative or integrable random variable on a probability space
(Q, A, P). The following alternative characterisation of the conditional expectation of

X given Y can be verified in an elementary way:

Theorem A.1. A real random variable X > 0 (or X € L) on (0, A, P) is a version
of the conditional expectation E[X | Y] if and only if

() X =g(Y) forafunctiong:S — R, and
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(II) E[X-f(Y)] = E[X-f(Y)] for all non-negative or bounded functions f :
S — R, respectively.

A.2 General conditional expectations

If Y is a real-valued random variable on a probability space (2, .4, P) with continuous
distribution function, then P[Y = z] = 0 for any z € R. Therefore, conditional
probabilities given Y = z can not be defined in the same way as above. Alternatively,

one could try to define conditional probabilities given Y as limits:
PA|Y =2] = }Li{r(l]P[A|z—h§Y§z+h]. (A2.1)
In certain cases this is possible but in general, the existence of the limit is not guaran-

teed.

Instead, the characterization in Theorem [A. 1] is used to provide a definition of condi-
tional expectations given general random variables Y. The conditional probability of a
fixed event A given Y can then be defined almost surely as a special case of a conditional
expectation:

P[A|Y] = FE[14]|Y]. (A.2.2)

Note, however, that in general, the exceptional set will depend on the event A !

The factorization lemma

We first prove an important measure theoretic statement.

Theorem A.2 (Factorization lemma). Suppose that (S, S) is a measurable space and

Y : Q — Sisamap. Then amap X : Q — R is measurable w.rt. o(Y') if and only if

X =f(¥)=foY
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for a S-measurable function f : S — R.

X

Y

(©,0(Y)) — (5,85) — (R, B(R))

Proof. (1). If X = f oY for a measurable function f, then
X'B) = Y YNfUB)) oY) holds for all B € B(R),
as f~1(B) € S. Therefore, X is o(Y )-measurable.

(2). Coversely, we have to show that o(Y')-measurability of X implies that X is a

measurable function of Y. This is done in several steps:

(a) If X = I, is an indicator function of an set A € o(Y), then A = Y }(B)
with B € S, and thus

Xw) = Iyyplw) = IpY(w)) forall w € .

(b) For X =3""  ¢;14, with A; € 0(Y') and ¢; € R we have correspondingly

X = zn: il (Y),
i=1

where wobei B; are sets in S such that A; = Y 1(B;).

(c) For an arbitrary non-negative, o(Y )-measurable map X : Q — R, there
exists a sequence of o(Y")-measurable elementary functions such that X,,
X. By (b), X, = f.(Y) with S-measurable functions f,,. Hence

X = swpX, = swpf(Y) = f(V),

where f = sup f,, is again S-measurable.

(d) For a general o(Y')-measurable map X : Q — R, both X and X~ are

measurable functions of Y, hence X is a measurable function of Y as well.
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O

The factorization lemma can be used to rephrase the characterizing properties (1) und

(II) of conditional expectations in Theorem[A.1]in the following way:
X is a version of E[X | Y] if and only if

(i) X ist o(Y)-messbar,

(ii) E[X; Al = E[X; Al fiiralle Ac o(Y).

The equivalence of (I) und (i) is a consequence of the factorization lemma, and the

equivalence of (II) and (ii) follows by monotone classes, since (ii) states that

E[X-Iz(Y) = E[X-IgY)] holds for all B € S.

Conditional expecations given o-algebras

A remarkable consequence of the characterization of conditional expectations by Con-
ditions (i) and (ii) is that the conditional expectation E[X | Y| depends on the random
variable Y only via the o-algebra o(Y') generated by Y ! If two random variables Y
and Z are functions of each other then o(Y) = 0(Z), and hence the conditional expec-
tations E[X | Y] and E[X | Z] coincide (with probability 1). Therefore it is plausible
to define directly the conditional expectation given a o-Algebra. The o-algebra (e.g.
o(Y), or o(Y1,...,Y,)) then describes the available “information” on which we are

conditioning.

The characterization of conditional expectations by (i) and (ii) can be extended immedi-
ately to the case of general conditional expectations given a o-algebra or given arbitrary
random variables. To this end let X :  — R be a non-negative (or integrable) random

variable on a probability space (€2, A, P).

Definition (Conditional expectation, general). (/). Let F C A be a o-algebra. A
non-negative (or integrable) random variable X : 0 — R is called a version of

the conditional expectation E[X | F| iff:

University of Bonn 2015/2016



554 APPENDIX A. CONDITIONAL EXPECTATIONS

(a) X is F-measurable, and

(b) E[X ; Al=E[X ; A forany A € F.
(2). For arbitrary random variables Y,Y1,Ys, ..., Y, on (Q, A, P) we define

EX|Y] = E[X|oY)],
EX|Y,...Y,] = EX|(h,....Y,)] = EX|oY,....Y)

(3). For an event A € A we define

P[A|F] = E[Is|F], andcorrespondingly P[A|Y] = FE[I4|Y].

Remark. By monotone classes it can be shown that Condition (b) is equivalent to:

(b>) E[X -Z] = E[X -Z] for any non-negative (resp. bounded) F-measurable
Z Q=R

Theorem A.3 (Existence and uniqueness of conditional expectations). Let X > 0 or
X € LY, and let F C A be a o-algebra. Then:

(1). There exists a version of the conditional expectation E[X | F].

(2). Any two versions coincide P-almost surely.

Proof. Existence can be shown as a consequence of the Radon-Nikodym theorem. In
Theorem [A.8] below, we give a different proof of existence that only uses elementary
methods.

For proving uniqueness let X and X be two versions of E[X | F]. Then both X and X

are S -measurable, and
E[X:A = E[X;A  foranyAe€F.

Therefore, X = X P-almost surely. L
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Properties of conditional expectations

Starting form the definition, we now derive several basic properties of conditional ex-

pectations that are used frequently:

Theorem A4. Let X,Y and X,, (n € N) be non-negative or integrable random vari-
ables on (2, A, P), and let F,G C A be o-algebras.

The following assertions hold:

(1).

(2).
(3).
(4).

(5).

(6).

(7).
(8).

Linearity: EDNX +pY | F] = AE[X | Fl+ p E[Y | F]  P-almost surely for
any \, u € R.

Monotonicity: If X > 0 P-almost surely, then E[X | F| > 0 P-almost surely.
If X =Y P-almost surely then E[X | F] = E[Y | F] P-almost surely.
Monotone Convergence: If (X,,) is increasing with X1 > 0, then

Elsup X,, | F] = supE[X, |F] P-almost surely.
Tower Property: If G C F then

EEX|F]|G] = E[X]|g P-almost surely.

In particular,

EEX|Y,Z]|Y] = E[X|Y] P-almost surely.

Taking out what is known: Let Y be F-measurable such thatY - X € L' or > 0.
Then
ElY-X|F] = Y- -E[X|F P-almost surely.

Independence: If X is independent of F then E[X | F| = E[X] P-almost surely.

Let (S,S) and (T, T) be measurable spaces. If Y : Q — S is F-measurable
and X : Q — T is independent of F, then for any product-measurable function
f:S8xT —[0,00) we have

Elf(X,)Y) | Fllw) = E[f(X,Y(w))] fiir P-fast alle w.
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Proof. (1). Aus der Linearitit des Erwartungswertes folgt, dass AE[X | F|+pE[Y | F]
eine Version der bedingten Erwartung E[AX + pY | F] ist.

(2). Sei X eine Version von E[X | F|. Aus X > 0 P-fast sicher folgt wegen {X <
0} € F:

E[X;:X<0 = EX;X<0 > 0,

und damit X > 0 P-fast sicher.
(3). Dies folgt unmittelbar aus (1) und (2).

(4). Ist X,, > 0 und monoton wachsend, dann ist sup F[X,, | F] eine nichtnegative
JF-messbare Zufallsvariable (mit Werten in [0, oo]), und nach dem "‘klassischen

"> Satz von der monotonen Konvergenz gilt:
Elsup E[X,, | F]-Z] = sup E[E[X,, | F]-Z] = sup E[X,,- Z] = E[sup X,,- Z]
fir jede nichtnegative F-messbare Zufallsvariable Z. Also ist sup E[X,, | F]| eine

Version der bedingten Erwartung von sup X,, gegeben F.

(5). Wir zeigen, dass jede Version von E[X |G| auch eine Version von E[E[X | F]|G]
ist, also die Eigenschaften (i) und (ii) aus der Definition der bedingten Erwartung
erfiillt:

(i) E[X |G] ist nach Definition G-messbar.
(ii) Fir A € G giltauch A € F, und somit E[E[X | G]; A] = E[X ; A] =
EIEX [ F]; Al

(6) und (7). Auf dhnliche Weise verifiziert man, dass die Zufallsvariablen, die auf der rechten
Seite der Gleichungen in (6) und (7) stehen, die definierenden Eigenschaften der
bedingten Erwartungen auf der linken Seite erfiillen (Ubung).

(8). Dies folgt aus (6) und (7) in drei Schritten:

(a) Gilt f(z,y) = g(z) - h(y) mit messbaren Funktionen g, h > 0, dann folgt
nach (6) und (7) P-fast sicher:
E[f(X.Y)[F] = Elg(X)-hY)[F] = h(Y)-Elg(X)|F]
= h(Y)- E[g(X)],
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und somit
E[f(X,Y)|Fl(w) = E[g(X)-h(Y(w))] = E[f(X,Y(w))] fiir P-fast alle w.

(b) Um die Behauptung fiir Indikatorfunktionen f(z,y) = Ig(x,y) von pro-

duktmessbaren Mengen B zu zeigen, betrachten wir das Mengensystem
D = {Be€S®T |Behauptung gilt fiir f = Ig}.

D ist ein Dynkinsystem, das nach (a) alle Produkte B = By x Bomit B; € S
und B, € T enthilt. Also gilt auch

D D 0({31XBQ|31€8,BQET}) = 8®T

(c) Fiir beliebige produktmessbare Funktionen f : .S x T" — R, folgt die Be-

hauptung nun durch maBtheoretische Induktion.

O

Remark (Convergence theorems for conditional expectations). The Monotone Con-
vergence Theorem (Property (4)) implies versions of Fatou’s Lemma and of the Domi-
nated Convergence Theorem for conditional expectations. The proofs are similar to the

unconditioned case.

The last property in Theorem[A.4lis often very useful. For independent random variables
X and Y it implies

E[f(X,Y)|Y](w) = E[f(X,Y(w))]  fir P-fastalle w, (A.2.3)

We stress that independence of X and Y ist essential for (A.2.3) to hold true. The
application of (A.2.3) without independence is a common mistake in computations with

conditional expectations.

A.3 Conditional expectation as best L>-approximation

In this section we show that the conditional expectation of a square integrable random
variable X given a o-algebra F can be characterized alternatively as the best approxi-

mation of X in the subspace of F-measurable, square integrable random variables, or,
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equivalently, as the orthogonal projection of X onto this subspace. Besides obvious
applications to non-linear predictions, this point of view is also the basis for a simple

existence proof of conditional expectations

Jensen’s inequality

Jensen’s inequality is valid for conditional expectations as well. Let (2, .4, P) be a
probability space, X € L1(Q, A, P) an integrable random variable, and 7 C A a o-
algebra.

Theorem A.5 (Jensen). If u : R — R is a convex function with u(X) € L' or u > 0,
then
EFu(X)|F] > u(F[X]|F]) P-almost surely.

Proof. Jede konvexe Funktion w ldsst sich als Supremum von abzéhlbar vielen affinen

Funktionen darstellen, d.h. es gibt a,,, b, € R mit

u(z) = sup (a,z+0by) fiir alle z € R.
neN

Zum Beweis betrachtet man die Stiitzgeraden an allen Stellen einer abzihlbaren dichten
Teilmenge von R, siehe z.B. [Williams: Probability with martingales, 6.6]. Wegen der

Monotonie und Linearitit der bedingten Erwartung folgt
EuwX)|F] > FEla,X+b,|F| = a, E[X|F|]+b,
P-fast sicher fiir alle n € N, also auch

Eu(X)|F] > sup(a,-E[X|F]+b,) P-fast sicher.

neN
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Corollary A.6 (LP-contractivity). The map X — FE[X | F| is a contraction on
LP(Q, A, P) foreveryp > 1, i.e.,

E(|E[X|FIIF] < E[X]F]  forany X € L', A, P).

Proof. Nach der Jensenschen Ungleichung gilt:
|[E[X | F|F < E[X|P|F] P-fast sicher.
Die Behauptung folgt durch Bilden des Erwartungswertes. U

The proof of the corollary shows in particular that for a random variable X € LP, the
conditional expectation E[X | F] is contained in £ as well. We now restrict ourselves

to the case p = 2.

Conditional expectation as best L?-prediction value

The space L*(Q2, A, P) = L*(Q2, A, P)/ ~ of equivalence classes of square integrable
random variables is a Hilbert space with inner product (X, YY) = E[XY]. If F C Ais
a sub-o-algebra then L?(Q, F, P) is a closed subspace of L*(), A, P), because limits
of F-measurable random variables are F-measurable as well. For X € £%(Q, A, P),
each version of the conditional expectation E[X | F| is contained in the subspace
L2(Q, F, P) by Jensen’s inequality. Furthermore, the conditional expectation respects
equivalence classes, see Theorem [A.3l Therefore, X — FE[X | F] induces a lin-
ear map from the Hilbert space L?(2, A, P) of equivalence classes onto the subspace
L*(Q, F, P).

Theorem A.7 (Characterization of the conditional expectation as best L? approxi-
mation and as orthogonal projection). ForY € L*(Q, F, P) the following statements

are all equivalent:
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(1). Y is a version of the conditional expectation E[X | F|.
(2). Y is a “best approximation” of X in the subspace L*(Q, F, P), i.e.,

E[(X-Y)?] < E[(X-2)?  foranyZ c L*(Q,F,P).

(3). Y is a version of the orthogonal projection of X onto the subspace
L2, F,P)C L*(,A,P), ie.,

E(X-Y)-Z] = 0  foranyZ € L*(Q, F,P).

/ L2(97~’47 P)

L*(Q, F, P)
Figure A.1: X — E[X | F| as orthogonal projection onto the subspace L*(Q2, F, P).

Proof. (1) <= (3): FurY € L*(Q, F, P) gilt:

Y ist eine Version von E[X | F]

ElY -1, = E[X -1, firalleAec F

E[Y -Z) = E[X-Z] firalle Z € £L*(Q,F,P)
E[(X-Y)-Z] =0 firalle Z € L*(Q, F, P)

11l
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Hierbei zeigt man die zweite Aquivalenz mit den iiblichen Fortsetzungsverfahren

(mafBtheoretische Induktion).

(3) = (2): Sei Y eine Version der orthogonalen Projektion von X auf L?*(2, F, P).
Dann gilt fiir alle Z € £*(Q, F, P):

E[(X -2)’) = E[((X=Y)+(Y —2))
= Bl(X -YP|+E[Y - 2] +2E[(X - Y) (Y - 2)]
€L2(Q,F,P)
> E[(X -Y)?

Hierbei haben wir im letzten Schritt verwendet, dass Y —Z im Unterraum £3(Q), F, P)

enthalten, also orthogonal zu X — Y ist.

(2) = (3): Ist umgekehrt Y eine beste Approximation von X in £2(Q2, F, P) und Z €
L£2(Q, F, P), dann gilt

E[(X -Y)] < E[(X-Y +tZ)?
= E[(X -Y)?|+2tE[(X - Y)Z] +t*E[Z?]

fiiralle t € R, also E[(X — Y) - Z] = 0.
O

The equivalence of (2) and (3) is a well-known functional analytic statement: the best
approximation of a vector in a closed subspace of a Hilbert space is the orthogonal
projection of the vector onto this subspace. The geometric intuition behind this fact is
indicated in Figure [A1l

Theorem [A7] is a justification for the interpretation of the conditional expectation as
a predicion value. For example, by the factorization lemma, F[X | Y] is the best L?-

prediction for X among all functions of type ¢g(Y'), g : R — R measurable.

Existence of conditional expectations

By the characterization of the conditional expectation as the best L?-approximation,

the existence of conditional expectations of square integrable random variables is an
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immediate consequence of the existence of the best approximation of a vector in a closed
subspace of a Hilbert space. By monotone approximation, the existence of conditional

expectations of general non-negative random variables then follows easily.

Theorem A.8 (Existence of conditional expectations). For every random variable
X >0o0r X € LY, A, P), and every c-algebra F C A, there exists a version of the
conditional expectation E[X | F).

Proof. (1). Wir betrachten zunichst den Fall X € £%(Q, A, P). Wie eben bemerkt, ist
der Raum L*(Q), F, P) ein abgeschlossener Unterraum des Hilbertraums L?(), A, P).
Seid = inf{||Z — X||z2 | Z € L?(Q, F, P)} der Abstand von X zu diesem Un-
terraum. Um zu zeigen, dass eine beste Approximation von X in L?(Q, F, P) ex-
istiert, wihlen wir eine Folge (X ,,) aus diesem Unterraum mit || .X,, — X ||z — d.

Mithilfe der Parallelogramm-Identitét folgt fiir n, m € N:

1 X0 — Xnll7e = [1(Xn — X) = (X — X)[|72
= 21X, — X3+ 2 | X — X372 — [|[(Xn — X) + (X — X))
X, +X,, 2
= 2 [ X = X|[F 42 [ X — X[ 4| S - x|
d Crprerfm o2 IE 2 Lo
—d? —5d2 A ~- ~
<d?

und damit
limsup || X, — Xp[7: < 0.

n,Mm—00

Also ist die Minimalfolge (X,,) eine CauchyLfolge in dem vollstindigen Raum
L*(Q, F, P),d.h. es existiert ein Y € L2(Q2, F, P) mit

X, =Yz — 0.
Fir Y gilt
Y =Xz = | lim X, — Xz < liminf||X, - Xz < d,
n—oo n—oo

d.h. Y ist die gesuchte Bestapproximation, und damit eine Version der bedingten
Erwartung E[X | F].
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(2). Fiir eine beliebige nichtnegative Zufallsvariable X auf ({2, A, P) existiert eine
monoton wachsende Folge (X,,) nichtnegativer quadratintegrierbarer Zufallsvari-
ablen mit X = sup X,,. Man verifiziert leicht, dass sup E[X,, | F| eine Version
von E[X | F]ist. !

(3). Entsprechend verifiziert man, dass fiir allgemeine X € £(Q, A, P) durch E[X|F] =
E[X™T | F] — E[X~ | F] eine Version der bedingten Erwartung gegeben ist.

O
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