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Chapter 1

Lévy processes and Poisson point

processes

A widely used class of possible discontinuous driving processes in stochastic differen-
tial equations are Lévy processes. They include Brownian motion, Poisson and com-
pound Poisson processes as special cases. In this chapter, we outline basics from the
theory of Lévy processes, focusing on prototypical examples of Lévy processes and
their construction. For more details we refer to the monographs of Applebaum [5] and
Bertoin [8].

Apart from simple transformations of Brownian motion, Lévy processes do not have
continuous paths. Instead, we will assume that the paths are cadlag (continue a droite,
limites a gauche), i.c., right continuous with left limits. This can always be assured
by choosing an appropriate modification. We now summarize a few notations and facts
about cadlag functions that are frequently used below. If x : I — R is a cadlag function

defined on a real interval 7, and s is a point in I except the left boundary point, then we

denote by
T = limx,_,
el0
the left limit of x at s, and by
Ar, = 45— T



8 CHAPTER 1. LEVY PROCESSES AND POISSON POINT PROCESSES

the size of the jump at s. Note that the function s — z,_ is left continuous with right
limits. Moreover, z is continuous if and only if Az, = 0 for all s. Let D(I) denote the

linear space of all cadlag functions = : [ — R.

Exercise (Cadlag functions). Prove the following statements:

1) If I is a compact interval, then for any function x € D([), the set
{sel:|Axs| > ¢}

is finite for any ¢ > 0. Conclude that any function x € D([0,c0)) has at most
countably many jumps.
2) A cadlag function defined on a compact interval is bounded.

3) A uniform limit of a sequence of cadlag functions is again cadlag .

1.1 Lévy processes

Lévy processes are R%-valued stochastic processes with stationary and independent in-

crements. More generally, let (F;);>o be a filtration on a probability space (€2, .4, P).

Definition. An (F;) Lévy process is an (F;) adapted cadlag stochastic process
X; : Q — R such that wrt. P,

(a) Xsit — X is independent of F for any s, t > 0, and
(b)) Xsy — X ~ X;—Xp forany s, t > 0.

Any Lévy process (X;) is also a Lévy process w.r.t. the filtration (F;X) generated by the
process. Often continuity in probability is assumed instead of cadlag sample paths. It

can then be proven that a cadlag modification exists, cf. [36, Ch.I Thm.30].

Remark (Lévy processes in discrete time are Random Walks). A discrete-time
process (X, )n—01,2,.. With stationary and independent increments is a Random Walk:

Xn = Xo+ >, m; withi.i.d. increments n; = X; — X ;.

Remark (Lévy processes and infinite divisibility). The increments X, ., — X, of a
Lévy process are infinitely divisible random variables, i.e., for any n € N there ex-

ist i.i.d.random variables Y7, ..., Y, such that X, — X, has the same distribution as

Stochastic Analysis Andreas Eberle



1.1. LEVY PROCESSES 9

>_Y;. Indeed, we can simply choose Y; = X, /n — Xsti(t—1)/n- The Lévy-Khinchin
i=1

formula gives a characterization of all distributions of infinitely divisible random vari-
ables, cf.e.g. [5]. The simplest examples of infinitely divisible distributions are normal

and Poisson distributions.

Characteristic exponents

We now restrict ourselves w.l.o.g. to Lévy processes with X, = 0. The distribution of
the sample paths is then uniquely determined by the distributions of the increments X, —
Xo = X, fort > 0. Moreover, by stationarity and independence of the increments we
obtain the following representation for the characteristic functions ¢;(p) = Elexp(ip -
Xy)l:

Theorem 1.1 (Characteristic exponent). If (X;):>o is a Lévy process with Xy = 0
then there exists a continuous function 1) : RY — C with 1(0) = 0 such that

E[eip-Xt] — foranyt > 0andp € R (1.1)

Moreover, if (X,) has finite first or second moments, then 1 is C*, C? respectively, and
P y

0%

= gt Xk XY = ¢
E[X;] itV (0) , Cov[ X}, X|] Ioeom

(0) (1.2)
forany k,l=1,...,dandt > 0.

Proof. Stationarity and independence of the increments implies the identity

Pirs(p) = Elexp(ip - Xiys)] = Elexp(ip - X)] - Elexp(ip - (Xiys — X))
= pi(p) - ¢s(p) (1.3)

for any p € R% and s,t > 0. For a given p € R?, right continuity of the paths and

dominated convergence imply that ¢ — ;(p) is right-continuous. Since

pie(p) = Elexp(ip- (X, — X)),

the function ¢t — ;(p) is also left continuous, and hence continuous. By (1.3) and since

©o(p) = 1, we can now conclude that for each p € RY, there exists 1/(p) € C such that

University of Bonn Summer Semester 2015



10 CHAPTER 1. LEVY PROCESSES AND POISSON POINT PROCESSES

(1.1) holds. Arguing by contradiction we then see that ¢/(0) = 0 and ¢ is continuous,
since otherwise (; would not be continuous for all ¢.

Moreover, if X, is (square) integrable then ¢, is C' (resp. C?), and hence 1) is also
C! (resp. C?). The formulae in (1.2) for the first and second moment now follow by

computing the derivatives w.r.t.p at p = 0 in (1.1). U

The function v is called the characteristic exponent of the Lévy process.

Basic examples
We now consider first examples of continuous and discontinuous Lévy processes.

Example (Brownian motion and Gaussian Lévy processes). A d-dimensional Brow-

nian motion (B;) is by definition a continuous Lévy process with
By — Bs ~ N(0, (t — s)14) forany 0 < s < t.

Moreover, X; = oB; + bt is a Lévy process with normally distributed marginals for
any 0 € R?? and b € RY. Note that these Lévy processes are precisely the driving
processes in SDE considered so far. The characteristic exponent of a Gaussian Lévy

process is given by

1 1
Y(p) = §|0Tp|2—ib-p = §p-ap—ib-p with a = oo’

First examples of discontinuous Lévy processes are Poisson and, more generally, com-

pound Poisson processes.

Example (Poisson processes). The most elementary example of a pure jump Lévy
process in continuous time is the Poisson process. It takes values in {0,1,2,...} and
jumps up one unit each time after an exponentially distributed waiting time. Explicitly,

a Poisson process (IV;);>o with intensity A > 0 is given by
N, = Y Iis,ey = #{neN: S, <t} (1.4)
n=1

where S,, = T1 + Ty + - - - + T,, with independent random variables 7; ~ Exp(\). The

increments NV; — NN, of a Poisson process over disjoint time intervals are independent

Stochastic Analysis Andreas Eberle



1.1. LEVY PROCESSES 11

and Poisson distributed with parameter \(t — s), cf. [13, Satz 10.12]. Note that by (1.4),

the sample paths ¢t — N;(w) are cadlag. In general, any Lévy process with
X, —Xs ~  Poisson (A(t — s)) forany 0 < s <t

is called a Poisson process with intensity A, and can be represented as above. The

characteristic exponent of a Poisson process with intensity A is

Yp) = M1-e?)

The paths of a Poisson process are increasing and hence of finite variation. The com-

pensated Poisson process
M, = N,—E[N] = N,—M
is an (FV) martingale, yielding the semimartingale decomposition
N, = M+ M

with the continuous finite variation part A¢. On the other hand, there is the alternative
trivial semimartingale decomposition Ny = 0 4 V; with vanishing martingale part. This
demonstrates that without an additional regularity condition, the semimartingale decom-
position of discontinuous processes is not unique. A compensated Poisson process is a

Lévy process which has both a continuous and a pure jump part.

Exercise (Martingales of Poisson processes). Prove that the compensated Poisson pro-
cess My = N; — At and the process M? — At are (F}¥) martingales.

Any linear combination of independent Lévy processes is again a Lévy process:

Example (Superpositions of Lévy processes). If (X;) and (X/) are independent Lévy
processes with values in R? and R then aX, + 3X/ is a Lévy process with values in
R™ for any constant matrices v € R"*% and 3 € R"*? . The characteristic exponent of

the superposition is

Yaxsax'(p) = Ux(a’p)+ vy (Bp).

For example, linear combinations of independent Brownian motions and Poisson pro-

cesses are again Lévy processes.

University of Bonn Summer Semester 2015



12 CHAPTER 1. LEVY PROCESSES AND POISSON POINT PROCESSES

Compound Poisson processes

Next we consider general Lévy processes with paths that are constant apart from a finite
number of jumps in finite time. We will see that such processes can be represented
as compound Poisson processes. A compound Poisson process is a continuous time
Random Walk defined by

with a Poisson process (/V;) of intensity A > 0 and with independent identically dis-
tributed random variables n; : © — R? (j € N) that are independent of the Poisson
process as well. The process (X;) is again a pure jump process with jump times that do

not accumulate. It has jumps of size y with intensity
v(dy) = Am(dy),
where 7 denotes the joint distribution of the random variables 7;.

Lemma 1.2. A compound Poisson process is a Lévy process with characteristic expo-

nent
wlp) = [ (=) vidy). (15
Proof. Let0 =ty <t < --- < t,. Then the increments
Ni,
Xy =Xy = Y. m . k=12...n, (1.6)
J=Ng,_,+1

are conditionally independent given the o-algebra generated by the Poisson process

(Ny)i>0. Therefore, for py, ..., p, € R%,

Elexp (i Y pe- (X, — Xi,,) | (N))] = [ Blexp(ip - (X, — X)) | (V)]

k=1 =

= H Qp(pk)Ntk*kaﬂ ,

Stochastic Analysis Andreas Eberle



1.1. LEVY PROCESSES 13

where ¢ denotes the characteristic function of the jump sizes 7;. By taking the expec-
tation on both sides, we see that the increments in (1.6) are independent and stationary,

since the same holds for the Poisson process (/N;). Moreover, by a similar computation,

Elexp(ip - X;)] = E[Elexp(ip - Xo) | (N)]] = E[p(p)™]

e ()F -
—¢ )\tZ ( k') (P(p)k — eAt(go(p) 1)

k=0
for any p € R?, which proves (1.5). O
The paths of a compound Poisson process are of finite variation and cadlag. One can

show that every pure jump Lévy process with finitely many jumps in finite time is a

compound Poisson process , cf. Theorem 1.15 below.

Exercise (Martingales of compound Poisson processes). Show that the following pro-

cesses are martingales:
(@ My=X,—0bt whereb= [yuv(dy) providedm € L!,
(b) |M*> —at  wherea = [|y|* v(dy) provided n, € L.

We have shown that a compound Poisson process with jump intensity measure v(dy) is

a Lévy process with characteristic exponent
vu(p) = / (1—e™w(dy) , peR (1.7)

Since the distribution of a Lévy process on the space D([0, o), R?) of cadlag paths is

uniquely determined by its characteristic exponent, we can prove conversely:

Lemma 1.3. Suppose that v is a finite positive measure on B(R*\ {0} ) with total mass
A = v(R4\ {0}), and (X;) is a Lévy process with X, = 0 and characteristic exponent
Y, defined on a complete probability space (S, A, P). Then there exists a sequence
(n)jen of i.i.d.random variables with distribution \~'v and an independent Poisson

Process (N;) with intensity \ on (€2, A, P) such that almost surely,

Nt
X, = Yoo (1.8)
j=1

University of Bonn Summer Semester 2015



14 CHAPTER 1. LEVY PROCESSES AND POISSON POINT PROCESSES

Proof. Let (7);) be an arbitrary sequence of i.i.d.random variables with distribution
A1y, and let (N;) be an independent Poisson process of intensity v(R? \ {0}), all
defined on a probability space (S~2, A, 15) Then the compound Poisson process X; =
Zj\le 7; is also a Lévy process with )f(vo = 0 and characteristic exponent v,,. Therefore,
the finite dimensional marginals of (X;) and (X}), and hence the distributions of (X})
and ()A(;) on D([0, ), R?) coincide. In particular, almost every path ¢ — X;(w) has
only finitely many jumps in a finite time interval, and is constant inbetween. Now set

So = 0 and let
Sj = inf{s > Sj—l : AXS 7& 0} fOI'j eN

denote the successive jump-times of (X;). Then (S;) is a sequence of non-negative
random variables on (2, A, P) that is almost surely finite and strictly increasing with

lim S; = oo. Defining 7; := AXS]. if S; < oo, n; = 0 otherwise, and
Ny = [{s€(0,f] : AX,#0}| = [{jeN:S;<t}|

as the successive jump sizes and the number of jumps up to time ¢, we conclude that
almost surely, (/V;) is finite, and the representation (1.8) holds. Moreover, for any j € N
and ¢ > 0, n; and N, are measurable functions of the process (X;):>o. Hence the joint
distribution of all these random variables coincides with the joint distribution of the
random variables 7); (j € N) and N, (t > 0), which are the corresponding measurable
functions of the process (X;). We can therefore conclude that (nj)jen is a sequence
of i.i.d.random variables with distributions A"' and (NNV;) is an independent Poisson

process with intensity . U
The lemma motivates the following formal definition of a compound Poisson process:

Definition. Let v be a finite positive measure on R%, and let 1, : R? — C be the
function defined by (1.7).

1) The unique probability measure 7, on B(R?) with characteristic function

/ PV, (dy) = exp(—t,(p) ¥peR

is called the compound Poisson distribution with intensity measure v .

Stochastic Analysis Andreas Eberle



1.1. LEVY PROCESSES 15

2) A Lévy process (X;) on R? with X,y — Xy ~ m, for any s,t > 0 is called a

compound Poisson process with jump intensity measure (Lévy measure) v .

The compound Poisson distribution 7, is the distribution of ZJK:l n; where K is a Pois-
son random variable with parameter A = v(R?) and (7;) is a sequence of i.i.d.random
variables with distribution A\~!v. By conditioning on the value of K , we obtain the

explicit series representation

where ** denotes the k-fold convolution of v.

Examples with infinite jump intensity

The Lévy processes considered so far have only a finite number of jumps in a finite time
interval. However, by considering limits of Lévy processes with finite jump intensity,
one also obtains Lévy processes that have infinitely many jumps in a finite time interval.

We first consider two important classes of examples of such processes:

Example (Inverse Gaussian subordinators). Let (B;);>( be a one-dimensional Brow-

nian motion with By = 0 w.r.t. a right continuous filtration (F;), and let
T, = inf{t>0: B;=s}

denote the first passage time to a level s € R. Then (7%)s>0 is an increasing stochastic
process that is adapted w.r.t. the filtration (F7,)s>0. For any w, s — Ti(w) is the gener-
alized left-continuous inverse of the Brownian path ¢ — B;(w). Moreover, by the strong

Markov property, the process
BY = Bp,-Bn ,t>0,
is a Brownian motion independent of F, for any s > 0, and
Torw = T,+TY  fors,u>0, (1.9)

where 7" = inf {t >0 : éés) = u} is the first passage time to v for the process B,

University of Bonn Summer Semester 2015



16 CHAPTER 1. LEVY PROCESSES AND POISSON POINT PROCESSES

B, B

s+u 4 o

By (1.9), the increment 7, — 7T is independent of Fr,, and, by the reflection principle,

2

u _ u
Teru — Ts ~ Tu ~ \/—2_7T €T 3/2 exp <—%) [(0700) (.T) dx.

Hence (T) is an increasing process with stationary and independent increments. The

process (7%) is left-continuous, but it is not difficult to verify that
L.y = lim Ty = inf {t >0: BY > u}
[

is a cadlag modification, and hence a Lévy process. (T, ) is called “The Lévy sub-
ordinator”, where “subordinator” stands for an increasing Lévy process. We will see
below that subordinators are used for random time transformations (“subordination”) of
other Lévy processes.

More generally, if X; = 0B, + bt is a Gaussian Lévy process with coefficients o > 0,
b € R, then the right inverse

T* = inf{t>0: X, =s} , 5>0,

s

is called an Inverse Gaussian subordinator.

Exercise (Sample paths of Inverse Gaussian processes). Prove that the process (7s)s>0
is increasing and purely discontinuous, i.e., with probability one, (7}) is not continuous

on any non-empty open interval (a, b) C [0, 00).

Stochastic Analysis Andreas Eberle



1.1. LEVY PROCESSES 17

Example (Stable processes). Stable processes are Lévy processes that appear as scaling
limits of Random Walks. Suppose that S,, = Z?Zl n; is a Random Walk in R? with i.i.d.
increments 7);. If the random variables 7); are square-integrable with mean zero then
Donsker’s invariance principle (the “functional central limit theorem’) states that the
diffusively rescaled process (k~1/25 kt] )t>0 converges in distribution to (0 5;);>o Where
(B;) is a Brownian motion in R? and o is a non-negative definite symmetric d x d
matrix. However, the functional central limit theorem does not apply if the increments
7; are not square integrable (“heavy tails”). In this case, one considers limits of rescaled
Random Walks of the form Xt(k) =k1eg k] Where o € (0, 2] is a fixed constant. It is
not difficult to verify that if (Xt(k)) converges in distribution to a limit process (.X;) then

(X:) is a Lévy process that is invariant under the rescaling, i.e.,
kVeX,, ~ X,  foranyk € (0,00)and ¢ > 0. (1.10)

Definition. Ler o € (0, 2]. A Lévy process (X;) satisfying (1.10) is called (strictly)

o-stable.

The reason for the restriction to a € (0,2] is that for « > 2, an «a-stable process
does not exist. This will become clear by the proof of Theorem 1.4 below. There is
a broader class of Lévy processes that is called a-stable in the literature, cf. e.g. [28].
Throughout these notes, by an «-stable process we always mean a strictly a-stable

process as defined above.

For b € R, the deterministic process X; = bt is a 1-stable Lévy process. Moreover,
a Lévy process X in R! is 2-stable if and only if X, = o B, for a Brownian motion
(B;) and a constant o € [0, 00). Characteristic exponents can be applied to classify all

a-stable processes:

Theorem 1.4 (Characterization of stable processes). For o € (0, 2] and a Lévy pro-

cess (X;) in R with Xy = 0 the following statements are equivalent:
(i) (X3) is strictly a-stable.

(ii) Y(cp) = c*P(p) forany c > 0and p € R.

University of Bonn Summer Semester 2015



18 CHAPTER 1. LEVY PROCESSES AND POISSON POINT PROCESSES

(iii) There exists constants o > 0 and 11 € R such that
b(p) = o%p[*(1 +ipsgn(p)).

Proof. (i) < (ii). The process (X;) is strictly a-stable if and only if X .o; ~ c¢X; for
any c,t > 0,1.e., if and only if

p—tler) E[ez‘pcxt} _ E[ez‘pxcat} )

forany ¢, > Oand p € R.

(11) < (éi1). Clearly, Condition (i7) holds if and only if there exist complex numbers

z4 and z_ such that

2ol forp >0,
bp) =
z_|p|* forp <O0.

Moreover, since ¢;(p) = exp(—ti(p)) is a characteristic function of a probability
measure for any ¢ > 0, the characteristic exponent ¢ satisfies 1)(—p) = 1(p) and
R(¢(p)) > 0. Therefore, z_ =z, and R(z,) > 0. O

Example (Symmetric a-stable processes). A Lévy process in R? with characteristic

exponent
vp) = o%pl®

for some 0 > 0 and a € (0, 2] is called a symmetric a-stable process. We will see below
that a symmetric a-stable process is a Markov process with generator —o®(—A)%/2. In

particular, Brownian motion is a symmetric 2-stable process.

1.2 Martingales and Markov property

For Lévy processes, one can identify similar fundamental martingales as for Brownian

motion. Furthermore, every Lévy process is a strong Markov process.
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Martingales of Lévy processes

The notion of a martingale immediately extends to complex or vector valued processes

by a componentwise interpretation. As a consequence of Theorem 1.1 we obtain:

Corollary 1.5. If (X,) is a Lévy process with Xy, = 0 and characteristic exponent ),

then the following processes are martingales:
(i) exp(ip - X; +tb(p))  foranyp € RY,
(ii) My = X; — bt withb=1iV(0), provided X; € L} Vt > 0.

(iii) M]MF — @t with o* = 575-(0) (j,k = 1,....,d), provided X, € L
Vi>0.

Proof. We only prove (ii) and (iii) for d = 1 and leave the remaining assertions as an

exercise to the reader. If d = 1 and (X}) is integrable then for 0 < s < t,
E[Xt - Xs | ‘Fs] = E[Xt - Xs] = Z(t - 5)1/’,(0)

by independence and stationarity of the increments and by (1.2). Hence M, = X; —

ity (0) is a martingale. Furthermore,
M? — M? = (M; + M) (M; — M) = 2M,(M; — M,) + (M, — M,)*.
If (X}) is square integrable then the same holds for (M;), and we obtain
EIM? — M | F.] = B[(M, — M.)* | F.] = Var[M, — M, | F]
= Var[X; — X, | F] = Var[X; — X,| = Var[X;_] = (¢t — s)¥"(0)
Hence M? — t1”(0) is a martingale. O

Note that Corollary 1.5 (i1) shows that an integrable Lévy process is a semimartingale
with martingale part M; and continuous finite variation part bt. The identity (1.1) can be
used to classify all Lévy processes, c.f. e.g. [5]. In particular, we will prove below that
by Corollary 1.5, any continuous Lévy process with X, = 0 is of the type X; = o B, +bt

with a d-dimensional Brownian motion (B;) and constants o € R%*¢ and b € R<.
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Lévy processes as Markov processes

The independence and stationarity of the increments of a Lévy process immediately

implies the Markov property:

Theorem 1.6 (Markov property). A Lévy process (X;, P) is a time-homogeneous

Markov process with translation invariant transition functions
pi(x,B) = (B —1x) = pla+z,a+B) VaecR? (1.11)
where ji; = P o (X, — Xo)™*

Proof. For any s,t > 0 and B € B(R?),

PXop € Bl Fl(w) = PIXs + (Xop — Xo) € Bl F](w)
:P[ s+t T XGB X()]
= P[X, — Xy € B— X,(w)]
= (B — Xy (w))-

O

Remark (Feller property). The transition semigroup of a Lévy process has the Feller
property,ie.,if f : R* — R is a continuous function vanishing at infinity then the same
holds for p; f for any ¢ > 0. Indeed,

(pef)(x /fx+yMNW)

is continuous by dominated convergence, and, similarly, (p;f)(z) — 0 as |z| — oc.

Exercise (Strong Markov property for Lévy processes). Let (X;) be an (F;) Lévy
process, and let 7" be a finite stopping time. Show that Y; = Xp,, — X7 is a process
that is independent of F7-, and X and Y have the same law.

Hint: Consider the sequence of stopping times defined by T,, = (k + 1)27" if k27" <
T < (k4 1)27™. Notice that T,, | T as n — oo. In a first step show that for any m € N
and ty < ty < ... < t,,, any bounded continuous function f on R™, and any A € Fr

we have

E [f(XTn-i-tl = X705 s XDty — XTn)IA] =F [f(th cee >Xtm)] P[A]
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Exercise (A characterization of Poisson processes). Let (X;);>o be a Lévy process
with Xy = 0 a.s. Suppose that the paths of X are piecewise constant, increasing, all

jumps of X are of size 1, and X is not identically 0. Prove that X is a Poisson process.

Hint: Apply the Strong Markov property to the jump times (T});—1 2. of X to conclude
that the random variables U; := T, — T;_1 are i.id. (with Ty := 0). Then, it remains to

show that Uy is an exponential random variable with some parameter \ > ().

The marginals of a Lévy process ((X}):>0, P) are completely determined by the char-
acteristic exponent ¢. In particular, one can obtain the transition semigroup and its in-
finitesimal generator from 1 by Fourier inversion. Let S(R?) denote the Schwartz space
consisting of all functions f € C°°(R?) such that |z|*0 f(x) goes to 0 as |z| — oo for
any k£ € N and derivatives of f of arbitary order o € Zi. Recall that the Fourier

transform maps S(IR?) one-to-one onto S(IRY).
Corollary 1.7 (Transition semigroup and generator of a Lévy process).
(1). Forany f € S(RY) andt > 0,
pf = (e™f)
where f(p) = (2m) %2 [e"®*f(z)dx and §(x) = (2m)"2 [ ¢Pg(p) dp

denote the Fourier transform and the inverse Fourier transform of functions f, g €
L1(RY).

(2). The Schwartz space S(R?) is contained in the domain of the generator L of the
Feller semigroup induced by (p;)1>o on the Banach space C(R?) of continuous
functions vanishing at infinity, and the generator is the pseudo-differential opera-

tor given by

Lf = (=¢f). (1.12)
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Proof. (1). Since (p.f)(z) = E[f(X; + x)], we conclude by Fubini that
(pef)(p ‘%/ T (puf) (2

= (21)7% - E U “vT (X, + 1) do

- B[] o)
— e 0 f(p)

M\Q‘

for any p € R%. The claim follows by the Fourier inversion theorem, noting that
‘e*“/’} <1.

(2). For f € S(R%), f is in S(R?) as well. The Lévy-Khinchin formula that we will
state below gives an explicit representation of all possible Lévy exponents which

shows in particular that ¢)(p) is growing at most polynomially as |p| — oco. Since

efmpf_]? . et _ 1 A
e . . t 1 t s
QT__FQ/,:_;/Q/,(QW_U d5:¥//1pzewdrds,
0 00
we obtain
et f _ f R R
T i <ol 1) e ),

and, therefore,

(pef) () — f(x)

p ~ (=0 f)(@)
= ot [err (G 0i0 - F0) v a0

as ¢t | 0 uniformly in 2. This shows f € Dom(L) and Lf = (=1 f).
O

By the theory of Markov processes, the corollary shows in particular that a Lévy process
(X;, P) solves the martingale problem for the operator (L, S(R?)) defined by (5.14).
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Examples. 1) For a Gaussian Lévy processes as considered above, ¢ (p) = %p-ap—ib- P

where a := oo”. Hence the generator is given by
. 1
Lf = —@f) = V- (V) =b- V], forf e SR
2) For a Poisson process (N;), ¥ (p) = A(1 — €7) implies

(Lh)(x) = A(f(x+1) = (=),

3) For the compensated Poisson process M; = N; — At,

(L)) = AMf(z+1) = f(z) — f(x)).

4) For a symmetric a-stable process with characteristic exponent ¢)(p) = o® - |p|* for

some o > 0 and « € (0, 2], the generator is a fractional power of the Laplacian:

Lf = —(f) = —0® (=A)** f.

We remark that for o > 2, the operator L does not satisfy the positive maximum prin-
ciple. Therefore, in this case L does not generate a transition semigroup of a Markov

process.

1.3 Poisson random measures and Poisson point pro-

cesses

A compensated Poisson process has only finitely many jumps in a finite time interval.
General Lévy jump processes may have a countably infinite number of (small) jumps in
finite time. In the next section, we will construct such processes from their jumps. As
a preparation we will now study Poisson random measures and Poisson point processes
that encode the jumps of Lévy processes. The jump part of a Lévy process can be
recovered from these counting measure valued processes by integration, i.e., summation
of the jump sizes. We start with the observation that the jump times of a Poisson process

form a Poisson random measure on R, .
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The jump times of a Poisson process

For a different point of view on Poisson processes let
ME(S) = {Z dy, @ (y;) finite or countable sequence in S }

denote the set of all counting measures on a set S. A Poisson process (/V;);>o can be

viewed as the distribution function of a random counting measure, i.e., of a random
variable N : QO — MF ([0, 0)).

Definition. Let v be a o-finite measure on a measurable space (S, S). A collection of
random variables N(B), B € S, on a probability space (2, A, P) is called a Poisson

random measure (or spatial Poisson process) of intensity v if and only if

(i) B — N(B)(w) is a counting measure for any w € €0,

(ii) if By,..., B, € S are disjoint then the random variables N(By), ..., N(B,) are

independent,

(iii) N(B) is Poisson distributed with parameter v(B) for any B € S withv(B) < co.

A Poisson random measure /N with finite intensity v can be constructed as the empirical
measure of a Poisson distributed number of independent samples from the normalized
measure v/v(5):.

K

N = Z dx, with X; ~v/v(s)iid., K ~ Poisson(v(S)) independent.

j=1
If the intensity measure v does not have atoms then almost surely, N ({z}) € {0, 1} for
any r € S,and N = )

random measure is often called a Poisson point process, but we will use this terminology

2cA 0, for a random subset A of S. For this reason, a Poisson

differently below.

A real-valued process (/V;):>o is a Poisson process of intensity A > 0 if and only if
t — Ny(w) is the distribution function of a Poisson random measure N (dt)(w) on
B([0,00)) with intensity measure v(dt) = A dt. The Poisson random measure N (dt)
can be interpreted as the derivative of the Poisson process:

N(dt)y= > d.(dt).

s: ANs#£0
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In a stochastic differential equation of type dY; = o(Y;—)dN;, N(dt) is the driving

Poisson noise.

The following assertion about Poisson processes is intuitively clear from the interpre-
tation of a Poisson process as the distribution function of a Poisson random measure.
Compound Poisson processes enable us to give a simple proof of the second part of the

theorem:

Theorem 1.8 (Superpositions and subdivisions of Poisson processes). Let K be a

countable set.

1) Suppose that (Nt(k))tzo, k € K, are independent Poisson processes with intensi-
ties \,,. Then
N o= Y NP>,
keK

is a Poisson process with intensity A = Y A\, provided \ < o0.

2) Conversely, if (N;)i>o is a Poisson process with intensity A > 0, and (C,)nen is
a sequence of i.i.d.random variables C,, : ) — K that is also independent of

(Ny), then the processes

are independent Poisson processes of intensities qy\, where qi, = P[Cy = k.

The subdivision in the second assertion can be thought of as colouring the points in
the support of the corresponding Poisson random measure N (dt) independently with

random colours C};, and decomposing the measure into parts N (*)(dt) of equal colour.

Proof. The first part is rather straightforward, and left as an exercise. For the second
part, we may assume w.l.o.g. that K is finite. Then the process N, : Q — RX defined
by

University of Bonn Summer Semester 2015



26 CHAPTER 1. LEVY PROCESSES AND POISSON POINT PROCESSES

is a compound Poisson process on R¥, and hence a Lévy process. Moreover, by the

proof of Lemma 1.2, the characteristic function of N, fort > 0is given by

E |exp (ip- N)| = exp (Mt(p(p) = 1)), p € RE,

where

©(p) = Elexp(ip-m)| = E

= Z%eim-

keK

exp (Z Zpk[{k}(CH))

keK

Noting that Y _ g, = 1, we obtain

Elexp(ip - N,)] = [ exp(Mtgr(e* — 1)) foranyp € R and t > 0.
keK

The assertion follows, because the right hand side is the characteristic function of a Lévy

process in RX whose components are independent Poisson processes with intensities

The jumps of a Lévy process

We now turn to general Lévy processes. Note first that a Lévy process (X;) has only
countably many jumps, because the paths are cadlag. The jumps can be encoded in the

counting measure-valued stochastic process N; : Q© — MF(R?\ {0}),

N(dy) = ) dax.(dy), >0,
Ag(f;o

or, equivalently, in the random counting measure N : Q@ — M (Ry x (R? )\ {0}))
defined by

N(dtdy) = Z d(s,ax,)(dt dy).

s<t
AXs#0

Stochastic Analysis Andreas Eberle



1.3. POISSON RANDOM MEASURES AND POISSON POINT PROCESSES 27

S

1

P

—o
AX,
1 . °
° ® 3
°
= Y [}

The process (/N;):>o is increasing and adds a Dirac mass at y each time the Lévy pro-
cess has a jump of size y. Since (X;) is a Lévy process, (/V;) also has stationary and

independent increments:
Nyyo(B) — Ny(B) ~ Ny(B)  foranys,t >0 and B € B(R?\ {0}).

Hence for any set B with N;(B) < oo a.s. for all ¢, the integer valued stochastic process
(Ni(B))e>0 is a Lévy process with jumps of size +1. By an exercise in Section 1.1, we
can conclude that (/V;(B)) is a Poisson process. In particular, ¢ — E[/NV;(B)] is a linear

function.
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Definition. The jump intensity measure of a Lévy process (X;) is the o-finite measure
v on the Borel a-algebra B(R? \ {0}) determined by

E[N,(B)] = t-v(B) Vit>0, Bec B[R {0}). (1.13)

It is elementary to verify that for any Lévy process, there is a unique measure v/ satis-
fying (1.13). Moreover, since the paths of a Lévy process are cadlag, the measures V;

and v are finite on {y € R : |y| > ¢} for any € > 0.

Example (Jump intensity of stable processes). The jump intensity measure of strictly
a-stable processes in R! can be easily found by an informal argument. Suppose we
rescale in space and time by y — cy and t — c¢“¢. If the jump intensity is v(dy) =
f(y) dy, then after rescaling we would expect the jump intensity ¢* f(cy)c dy. If scale
invariance holds then both measures should agree, i.e., f(y) o |y|~'~* both for y > 0
and for y < 0 respectively. Therefore, the jump intensity measure of a strictly a-stable

process on R! should be given by

v(dy) = (el () + c-Iap(y)) [y dy (1.14)
with constants ¢, c_ € [0, c0).

If (X,) is a pure jump process with finite jump intensity measure (i.e., finitely many
jumps in a finite time interval) then it can be recovered from (/V;) by adding up the
jump sizes:
XX = Yax. = [yni).
s<t

In the next section, we are conversely going to construct more general Lévy jump pro-
cesses from the measure-valued processes encoding the jumps. As a first step, we are
going to define formally the counting-measure valued processes that we are interested

in.

Poisson point processes

Let (S, S, v) be a o-finite measure space.
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Definition. A collection Ny(B),t > 0, B € S, of random variables on a probability
space (£, A, P) is called a Poisson point process of intensity v if and only if

(i) B — Ny(B)(w) is a counting measure on S for anyt > 0 and w € (2,

(ii) if By,...,B, € S are disjoint then (N¢(B1))i>0, - - -, (INi(By))i>0 are indepen-

dent stochastic processes and
(iii) (Ny(B))i>0 is a Poisson process of intensity v(B) for any B € S with v(B) < oo.

A Poisson point process adds random points with intensity v(dt) dy in each time instant
dt. It is the distribution function of a Poisson random measure N (dt dy) on Rt x S

with intensity measure dt v(dy), i.e.

N(B) = N((0,t] x B) forany¢ > 0and B € S.

The distribution of a Poisson point process is uniquely determined by its intensity mea-

sure: If (V;) and (Nt) are Poisson point processes with intensity v then

(Nu(B1), -, Ni(Bu))izo ~  (N(B1),., (Ni(By))izo
for any finite collection of disjoint sets By,..., B, € &, and, hence, for any finite
collection of measurable arbitrary sets By,..., B, € S.

Applying a measurable map to the points of a Poisson point process yields a new Poisson

point process:
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Exercise (Mapping theorem). Let (S, S) and (7,7 ) be measurable spaces and let
f S — T be a measurable function. Prove that if (V) is a Poisson point process with
intensity measure v then the image measures N, o f~, ¢ > 0, form a Poisson point

process on T with intensity measure v o f~!.

An advantage of Poisson point processes over Lévy processes is that the passage from
finite to infinite intensity (of points or jumps respectively) is not a problem on the level

of Poisson point processes because the resulting sums trivially exist by positivity:
Theorem 1.9 (Construction of Poisson point processes).

1) Suppose that v is a finite measure with total mass A = v(S). Then

is a Poisson point process of intensity v provided the random variables n); are
independent with distribution \"'v, and (K}) is an independent Poisson process

of intensity \.

2) If(Nt(k)), k € N, are independent Poisson point processes on (S, S) with intensity
measures vy, then
ooy

k=1

is a Poisson point process with intensity measure v =Y V.

The statements of the theorem are consequences of the subdivision and superposition

properties of Poisson processes. The proof is left as an exercise.

Conversely, one can show that any Poisson point process with finite intensity measure v
can be almost surely represented as in the first part of Theorem 1.9, where K; = N,(.5).
The proof uses uniqueness in law of the Poisson point process, and is similar to the

proof of Lemma 1.3.
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Construction of compound Poisson processes from PPP

We are going to construct Lévy jump processes from Poisson point processes. Suppose
first that (V;) is a Poisson point process on R? \ {0} with finite intensity measure v.

Then the support of NV, is almost surely finite for any ¢ > 0. Therefore, we can define

Yo = [ uNd) =Yy,
R0} yesupp(Vy)
Theorem 1.10. If v(R? \ {0}) < oo then (X;)i>o is a compound Poisson process with
Jjump intensity v. More generally, for any Poisson point process with finite intensity
measure v on a measurable space (S, S) and for any measurable function f : S — R",

n € N, the process
N = [swNd) ez

is a compound Poisson process with intensity measure v o f 1.

Proof. By Theorem 1.9 and by the uniqueness in law of a Poisson point process with
given intensity measure, we can represent (/N;) almost surely as N; = Eﬁl oy, with
i.i.d.random variables 1; ~ v/v(S) and an independent Poisson process (K;) of inten-
sity (.5). Thus,

Kt

N(f) = /f(y)Nt(dy) = Zf(nj) almost surely.

j=1
Since the random variables f(7;), j € N, are i.i.d. and independent of (/;) with distri-

bution vo f~1, (N;(f)) is a compound Poisson process with this intensity measure. [

As a direct consequence of the theorem and the properties of compound Poisson pro-

cesses derived above, we obtain:

Corollary 1.11 (Martingales of Poisson point processes). Suppose that (N,) is a Pois-
son point process with finite intensity measure v. Then the following processes are mar-
tingales w.r.t.the filtration F¥ = o(Ny(B)|0< s <t, B S):

(i) Ni(f) = N(f) =t [ fdv  forany f € L}(v),
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(i) N(F)Ni(g) —t [ fgdv  forany f,g € L2(v),
(iii) exp (ipNy(f) +t [(1 —€®') dv)  for any measurable f : S — Rand p € R,

Proof. If f isin LP(v) for p = 1, 2 respectively, then

[ el ve i) = [ 1P vidy) < o,
/:cuof /fdy and /xyyo(fg)l(dxdy):/fgdu

Therefore (i) and (ii) (and similarly also (iii)) follow from the corresponding statements

for compound Poisson processes. U

With a different proof and an additional integrability assumption, the assertion of Corol-

lary 1.11 extends to o-finite intensity measures:

Exercise (Expectation values and martingales for Poisson point processes with in-
finite intensity). Let (/V;) be a Poisson point process with o-finite intensity v.

a) By considering first elementary functions, prove that for ¢ > 0, the identity

B [ / f(y)Nxdyﬂ = [ ftay

holds for any measurable function f : S — [0, oc]. Conclude that for f € £'(v),
the integral N,(f) = [ f(y)Ni(dy) exists almost surely and defines a random
variable in L'(2, .A, P).

b) Proceeding similarly as in a), prove the identities

E[N:(f)] = t/fdy forany f € £'(v),
Cov[Ni(f), Ni(g)] = ¢ / fgdv forany f,g € £1(1) N L2(v),
Elexp(ipN(f))] = exp(t/(e”’f 1)dv) forany f € L'(v).

¢) Show that the processes considered in Corollary 1.11 are again martingales pro-
vided f € L(v), f,g € L' (v) N L?(v) respectively.
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If (V) is a Poisson point process with intensity measure v then the signed measure

valued stochastic process
Ni(dy) = Nyddy)—tv(dy) , t>0,

is called a compensated Poisson point process . Note that by Corollary 1.11 and the

exercise,

N(f) = / F(y)Nildy)

is a martingale for any f € L(v),i.e., (N;) is a measure-valued martingale.

1.4 Stochastic integrals w.r.t. Poisson point processes

Let (S,S,v) be a o-finite measure space, and let (F;) be a filtration on a probability
space (€2, A, P). Our main interest is the case S = R?. Suppose that (N;(dy)):>o is an
(F:) Poisson point process on (S, S) with intensity measure v. As usual, we denote by
N, = N,—tv the compensated Poisson point process, and by N (dt dy) and N (dt dy) the
corresponding uncompensated and compensated Poisson random measure on R, x S.
Recall that for A, B € S with v(A) < oo and v(B) < oo, the processes N,(A), N,(B),
and N,(A)N,(B) — tv(AN B) are martingales. Our goal is to define stochastic integrals
of type

(GuN), = / G.(y) N(ds dy), (1.15)
(0,t] xS

(GN), = / G.(y) N(ds dy) (1.16)
(0,t] xS

respectively for predictable processes (w, s,y) — G4(y)(w) defined on 2 x R, x S. In
particular, choosing G4(y)(w) = y, we will obtain Lévy processes with possibly infinite
jump intensity from Poisson point processes. If the measure v is finite and has no atoms,

the process GG,V is defined in an elementary way as

(GoN) = > Gy

(s,y)€supp(N), s<t
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Definition. The predictable o-algebra on () x R, x S is the o-algebra P generated
by all sets of the form A x (s,t] x Bwith(0 < s <t, A€ F,and B € S. A stochastic
process defined on ) x R, x S is called (F) predictable iff it is measurable w.rt. P.

It is not difficult to verify that any adapted left-continuous process is predictable:

Exercise. Prove that P is the o-algebra generated by all processes (w, t,y) — Gi(y)(w)
such that G is F; x S measurable for any ¢ > 0 and ¢ — Gy(y)(w) is left-continuous
forany y € S and w € ().

Example. If (N;) is an (F;) Poisson process then the left limit process G;(y) = N;_ is
predictable, since it is left-continuous. However, G;(y) = N; is not predictable. This
is intuitively convincing since the jumps of a Poisson process can not be “predicted in
advance”. A rigorous proof of the non-predictability, however, is surprisingly difficult
and seems to require some background from the general theory of stochastic processes,
cf.e.g. [7].

Elementary integrands

We denote by £ the vector space consisting of all elementary predictable processes G

of the form
n—1 m
Gi(y)(w) > Zin(@) L) () Iy (9) (1.17)
=0 k=1
withm,n € N,0 <ty <ty <--- <ty By,..., B, € Sdisjoint with v(By) < oo, and

Z; 1 » £ — R bounded and F;,-measurable. For G’ € &, the stochastic integral G,V is
a well-defined Lebesgue integral given by

I
—

n

(GeN)y = Zik (Nigprnt(Br) = Nioat(By)) (1.18)

k=1

m

I
=)

7

Notice that the summands vanish for ¢; > t and that G, N is an (F;) adapted process
with cadlag paths.

Stochastic integrals w.r.t. Poisson point processes have properties reminiscent of those

known from Itd integrals based on Brownian motion:
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Lemma 1.12 (Elementary properties of stochastic integrals w.r.t. PPP). Ler G € £.

Then the following assertions hold:

1) Foranyt > 0,

BlG.V)] = B| /(o,ﬂsts<y> dsvid)|

2) The process G N defined by

@M= [ Nasdy) — [ adsvia)

(0,t] xS

is a square integrable (F,) martingale with (G4N ) = 0.

3) Foranyt > 0, G.N satisfies the Itd isometry
Bl - B[ Guwrasvtan].
(0,¢]xS

4) The process (GoN)? — f(o,t}xs G.(y)*ds v(dy) is an (F;) martingale.

Proof. 1) Since the processes (IV;(By)) are Poisson processes with intensities v(By),

we obtain by conditioning on F;:

E[(GN)] = 3 E[Zi (Nuyini(Be) = Nu(By)]

= E [/(MXS Gs(y)ds V(dy)} :

2) The process G.N is bounded and hence square integrable. Moreover, it is a martin-
gale, since by 1), forany 0 < s < tand A € F,,

E[(GuN) — (GuN)w A] = E /M Suar(yﬂ(s,ﬂmN(drdw}

- E / I4Go(y) Isq(r)dr V(dy)}
LJ (0,t] xS
— B / G, (y) drv(dy) —/ G (y) drv(dy); A}
(0,¢e]xS (0,s]x 8

- E /( s Gi(y)ds V(dy)}
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3) We have (G.N)t = sz Zik Ai]v(Bk), where
AZN(BK‘> = Ntiﬂ/\t(Bk) - Nti/\t(Bk)

are increments of independent compensated Poisson point processes. Noticing that the
summands vanish if ¢; > ¢, we obtain
E [(G.N)f] =Y E [Zi,ijJAiN(Bk)AjN(Bl)]
irji kil
- 2> Y E [ZikajJAiN(Bk) E[AjN(Bl)mj]}
kl i<j

+3Y N E [ZMZ“ E[AN(By,)A;N(By) |Fti]}

kl 1

= ;;E[Zikmt] v(By) = E M

Gy(y)* ds V(dy)} :
0,t] xS

Here we have used that the coefficients Z; ;, are F;, measurable, and the increments
Ai]v(Bk) are independent of F;, with covariance E[AiN(Bk)AiN(BZ)] = S (Br)Ajt.

4) now follows similarly as 2), and is left as an exercise to the reader. ]

Lebesgue integrals

If the integrand G,(y) is non-negative, then the integrals (1.15) and (1.16) are well-
defined Lebesgue integrals for every w. By Lemma 1.12 and monotone convergence,

the identity
BlGM] = B[ [ G dsvian) (1.19)
(0,t] xS
holds for any predictable G > 0.

Now let u € (0,00], and suppose that G : 2 x (0,u) x S — R is predictable and
integrable w.r.t. the product measure P ® \(g,,) ® v. Then by (1.19),

5| fo,u}xs'Gs(y)'N(dey)] - 5| /(O’U]XS|GS<y>|dsu<dy>] < oo

Hence the processes G N and G, N are almost surely finite on [0, u|, and, correspond-
ingly GoN = GFN — G, N is almost surely well-defined as a Lebesgue integral, and it
satisfies the identity (1.19).
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Theorem 1.13. Suppose that G € L' (P ® \o,u) @) is predictable. Then the following

assertions hold:
1) G N is an (F}') adapted stochastic process satisfying (1.19).
2) The compensated process G.N isan (FF) martingale.

3) The sample paths t — (G4N ), are cadlag with almost surely finite variation

VO (GLN) < / G (y)] N(ds dy).
(0,¢] xS

Proof. 1) extends by a monotone class argument from elementary predictable G to gen-
eral non-negative predictable (¢, and hence also to integrable predictable G.

2) can be verified similarly as in the proof of Lemma 1.12.

3) We may assume w.l.o.g. G > 0, otherwise we consider GJ N and G, N separately.

Then, by the Monotone Convergence Theorem,

(G.N)t+8 - (G.N)t = / Gs(y) N(dS dy) — 07 and
(t,t+e]x S

(GeN); — (GeN)j—e — " SGs(y) N(ds dy)

as ¢ | 0. This shows that the paths are cadlag. Moreover, for any partition 7 of [0, u],

STHGN)y = (GN) | = Y

remw rem

< / Gy(y)| N(ds dy) < oo as.
(0,u] xS

/ G.y) N(ds dy)
(r,r']x S

O

Remark (Watanabe characterization). It can be shown that a counting measure val-
ued process (NNV;) is an (F;) Poisson point process if and only if (1.19) holds for any

non-negative predictable process G
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Ito integrals w.r.t. compensated Poisson point processes

Suppose that (w, s,y) — Gs(y)(w) is a predictable process in L*(P ® () @ v) for
some u € (0, oc]. If G is not integrable w.r.t. the product measure, then the integral G, N
does not exist in general. Nevertheless, under the square integrability assumption, the
integral GoN wirt. the compensated Poisson point process exists as a square integrable
martingale. Note that square integrability does not imply integrability if the intensity

measure v is not finite.
To define the stochastic integral G.N for square integrable integrands GG we use the Itd
isometry. Let

M5([0,u]) = {M e M*([0,4]) | t+— M(w) cadlag for any w € Q}

denote the space of all square-integrable cadlag martingales w.r.t.the completed filtra-
tion (F/). Recall that the L? maximal inequality
9 \2
E[ swp M7 < <ﬁ) E[|M, [
te[0,u]
holds for any right-continuous martingale in M?([0, u]). Since a uniform limit of cadlag
functions is again cadlag, this implies that the space M2 ([0, u]) of equivalence classes

of indistinguishable martingales in M?([0, u]) is a closed subspace of the Hilbert space
M?(]0, u]) w.r.t.the norm

1Moy = ElIM)
Lemma 1.12, 3), shows that for elementary predictable processes G,

|GeNlae2oy = Gllr2porg.om)- (1.20)

On the other hand, it can be shown that any predictable process G € L?(P ® Ag,,) @ V')
is a limit w.r.t. the L*(P® 9., ®) norm of a sequence (G*)) consisting of elementary
predictable processes. Hence isometric extension of the linear map G — GoN can be
used to define G,N € M3(0,u) for any predictable G € L*(P ® Aoy ® v) in such a
way that

G(k,)ﬁ — G.Kf in M? whenever G*) — G in L2
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Theorem 1.14 (It6 isometry and stochastic integrals w.r.t. compensated PPP).
Suppose that u € (0,00|. Then there is a unique linear isometry G G N from
L*(Q x (0,u) x S,P,P®\X®v) to M2([0,u]) such that GN is given by (1.18) for
any elementary predictable process G of the form (1.17).

Proof. As pointed out above, by (1.20), the stochastic integral extends isometrically to
the closure £ of the subspace of elementary predictable processes in the Hilbert space
L2922 x (0,u) x S,P, P ® A ® v). It only remains to show that any square integrable
predictable process G is contained in £, i.e., G is an L? limit of elementary predictable
processes. This holds by dominated convergence for bounded left-continuous processes,
and by a monotone class argument or a direct approximation for general bounded pre-
dictable processes, and hence also for predictable processes in L2. The details are left
to the reader. U

The definition of stochastic integrals w.r.t. compensated Poisson point processes can be
extended to locally square integrable predictable processes G by localization — we refer
to [5] for details.

Example (Deterministic integrands). If H,(y)(w) = h(y) for some function h €
L£2(S, S, v) then

(HN), = / Wy) Nidy) = Nh),

ie.,HNisa Lévy martingale with jump intensity measure v o h™1.

1.5 Lévy processes with infinite jump intensity

In this section, we are going to construct general Lévy processes from Poisson point
processes and Brownian motion. Afterwards, we will consider several important classes

of Lévy jump processes with infinite jump intensity.
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Construction from Poisson point processes

Let v(dy) be a positive measure on R? \ {0} such that [(1 A |y|?) v(dy) < oo, i.e.,

v(ly >e) < oo foranye >0, and (1.21)

/ lyPv(dy) < oo. (1.22)
ly|<1

Note that the condition (1.21) is necessary for the existence of a Lévy process with jump
intensity v. Indeed, if (1.21) would be violated for some € > 0 then a corresponding
Lévy process should have infinitely many jumps of size greater than ¢ in finite time.
This contradicts the cadlag property of the paths. The square integrability condition
(1.22) controls the intensity of small jumps. It is crucial for the construction of a Lévy
process with jump intensity v given below, and actually it turns out to be also necessary

for the existence of a corresponding Lévy process.

In order to construct the Lévy process, let Ny(dy),t > 0, be a Poisson point process
with intensity measure v defined on a probability space (€2, A, P), and let N,(dy) :=
Ni(dy) — tv(dy) denote the compensated process. For a measure 1 and a measurable
set A, we denote by

p(B) = u(BNA)

the part of the measure on the set A, i.e., u(dy) = La(y)u(dy). The following decom-

position property is immediate from the definition of a Poisson point process:

Remark (Decomposition of Poisson point processes). If A, B € B(R?\ {0}) are
disjoint sets then (N/');>o and (N7);>¢ are independent Poisson point processes with

intensity measures v, v® respectively.

If AN B.(y) = () for some ¢ > 0 then the measure v* has finite total mass v*(R?) =
v(A) by (1.21). Therefore,

XA - / yNldy) = [y (ay)

is a compound Poisson process with intensity measure v, and characteristic exponent

Yxa(p) = /A(l—exp(my))l/(dy)-
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On the other hand, if [, |y|* v(dy) < oo then
M = / yNi(dy) = /y N (dy)

A

is a square integrable martingale. If both conditions are satisfied simultaneously then
MY = XA — t/ yv(dy).
A
In particular, in this case M is a Lévy process with characteristic exponent
Yna(p) = / (1 —exp(ip-y) +ip-y) v(dy).
A

By (1.21) and (1.22), we are able to construct a Lévy process with jump intensity mea-

sure v that is given by

S LR ) (123)
ly|>r ly|<r
for any r € (0, 00). Indeed, let
X] = / y Ny(dy) :/ Y Igjy >y N(dsdy), and (1.24)
ly|>r (0,t] xR
MET = / y N, (dy). (1.25)
e<ly|<r

for e, € [0,00) with € < 7. As a consequence of the It6 isometry for Poisson point

processes, we obtain:

Theorem 1.15 (Existence of Lévy processes with infinite jump intensity). Let v be a
positive measure on R \ {0} satisfying [(1 A |y|?) v(dy) < .

1) For any r > 0, (X]) is a compound Poisson process with intensity measure
V' (dy) = Lyysry v(dy).

2) The process (Mt0 ") is a Lévy martingale with characteristic exponent

Ue(p) = (1—ePY4ip-y)v(dy) VpeRL (1.26)
ly|<r
Moreover, for any u € (0, 00),

E[sup |Mf”—Mf”|2} - 0 aselO. (1.27)

0<t<u
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3) The Lévy processes (M;"") and (X) are independent, and )?{ = X7+ M is

a Lévy process with characteristic exponent
U(p) = / (1—e?Y+ip-ylgy<n) v(dy)  VpeR (1.28)

Proof. 1) is a consequence of Theorem 1.10.

2) By (1.22), the stochastic integral (M) is a square integrable martingale on [0, u]

for any u € (0, 00). Moreover, by the It6 isometry,

127 = M e oagy = 1M areoay = /0 /IyIQI{mgs} v(dy)dt — 0

as ¢ | 0. By Theorem 1.10, (M;"") is a compensated compound Poisson process with

intensity /{.|y/<,} ¥(dy) and characteristic exponent
Vo) = [ =iy vdy)
e<|y|<r

As e | 0, 1. ,.(p) converges to 1, (p) since 1 — e +ip - y = O(|y|?). Hence the limit
martingale Mf " = lim Mtl/ ™" also has independent and stationary increments, and

n—oo
characteristic function

Elexp(ip- M{™)] = lim Elexp(ip - M™")] = exp(—teh,(p)).

n—oo
3) Since Iyy<,y Nie(dy) and Iy~ Ni(dy) are independent Poisson point processes,
the Lévy processes (M") and (X7) are also independent. Hence X7 = M?" + X7 isa
Lévy process with characteristic exponent

5 0) = (p) + / (1 - €7Y) (dy).

ly|>r

O

Remark. All the partially compensated processes (X7), r € (0,00), are Lévy pro-
cesses with jump intensity v. Actually, these processes differ only by a finite drift term,

since forany 0 < ¢ < r,

X; = X[ +bt, where b :/ y v(dy).
e<ly|<r
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A totally uncompensated Lévy process
Xy = lim y Ny(dy)

does exist only under additional assumptions on the jump intensity measure:

Corollary 1.16 (Existence of uncompensated Lévy jump processes). Suppose that
J@ A Jyl) v(dy) < oo, or that v is symmetric (i.e., v(B) = v(—B) for any B €
B[R4\ {0})) and [(1 A |y|*) v(dy) < oc. Then there exists a Lévy process (X;) with

characteristic exponent

¢v(p) = lim (1—e?) v(dy) VpeR? (1.29)
S0 S ly|>e
such that
E [sup |Xt—Xf|2} — 0 asel0. (1.30)
0<t<u

Proof. For 0 < ¢ < r, we have

X; = X] + M + t/ y v(dy).
e<|y|<r
As e | 0, M*" converges to M in M?([0,u]) for any finite u. Moreover, under the

assumption imposed on v, the integral on the right hand side converges to bt where

b = lim y v(dy).
0 Se<lyl<r
Therefore, (X;) converges to a process (X;) in the sense of (1.30) as ¢ | 0. The
limit process is again a Lévy process, and, by dominated convergence, the characteristic

exponent is given by (1.29). O

Remark (Lévy processes with finite variation paths). If [(1 A |y|) v(dy) < oo then
the process X; = [y Ny(dy) is defined as a Lebesgue integral. As remarked above, in

that case the paths of (X;) are almost surely of finite variation:

V) < [Ny < oo as
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The Lévy-It6 decomposition

We have constructed Lévy processes corresponding to a given jump intensity measure
v under adequate integrability conditions as limits of compound Poisson processes or
partially compensated compound Poisson processes, respectively. Remarkably, it turns
out that by taking linear combinations of these Lévy jump processes and Gaussian Lévy
processes, we obtain all Lévy processes. This is the content of the Lévy-Ité6 decompo-
sition theorem that we will now state before considering in more detail some important

classes of Lévy processes.

Already the classical Lévy-Khinchin formula for infinity divisible random variables (see
Corollary 1.18 below) shows that any Lévy process on R can be characterized by three
quantities: a non-negative definite symmetric matrix a € R%¢, a vector b € R?, and a

o-finite measure v on B(R?¢ \ {0}) such that

/(1 AlyP) v(dy) < oo : (1.31)

Note that (1.31) holds if and only if v is finite on complements of balls around 0, and
f|y‘ < [y]? v(dy) < oo. The Lévy-Itd decomposition gives an explicit representation of

a Lévy process with characteristics (a, b, v/).

Let o € R witha = oo”, let (B;) be a d-dimensional Brownian motion, and let (V;)
be an independent Poisson point process with intensity measure v. We define a Lévy

process (X;) by setting

Xt:UBt+bt+/

ly[>1

y Ni(dy) + / y (Ne(dy) — tv(dy))- (1.32)

ly|<1

The first two summands are the diffusion part and the drift of a Gaussian Lévy process,
the third summand is a pure jump process with jumps of size greater than 1, and the last
summand represents small jumps compensated by drift. As a sum of independent Lévy

processes, the process (X;) is a Lévy process with characteristic exponent

vp) = Qp-ap—zb-p+/ (1—ePY+ip-y Iy<ny) v(dy).  (1.33)
R4\ {0}

We have thus proved the first part of the following theorem:
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Theorem 1.17 (Lévy-Ito decomposition).
1) The expression (1.32) defines a Lévy process with characteristic exponent ).
2) Conversely, any Lévy process (X;) can be decomposed as in (1.32) with the Pois-

son point process

Noo= ) AX, >0, (1.34)

s<t
AX#0

an independent Brownian motion (By), a matrix o € R4, a vector b € R%, and

a o-finite measure v on R?\ {0} satisfying (1.31).

We will not prove the second part of the theorem here. The principal way to proceed
is to define (/V;) via (1.31), and to consider the difference of (X;) and the integrals
w.r.t.(IV;) on the right hand side of (1.32). One can show that the difference is a con-
tinuous Lévy process which can then be identified as a Gaussian Lévy process by the
Lévy characterization, cf. Section 2.1 below. Carrying out the details of this argument,

however, is still a lot of work. A detailed proof is given in [5].

As abyproduct of the Lévy-Itd decomposition, one recovers the classical Lévy-Khinchin
formula for the characteristic functions of infinitely divisible random variables, which

can also be derived directly by an analytic argument.

Corollary 1.18 (Lévy-Khinchin formula). For a function 1) : R® — C the following

statements are all equivalent:
(i) W is the characteristic exponent of a Lévy process.
(ii) exp(—1)) is the characteristic function of an infinitely divisible random variable.

(iii) 1) satisfies (1.33) with a non-negative definite symmetric matrix a € R¥>?, q
vector b € R, and a measure v on B(R?\ {0}) such that [ (1A |y|?) v(dy) < oo.

Proof. (ii1)=-(1) holds by the first part of Theorem 1.17.
(i)=-(ii): If (X;) is a Lévy process with characteristic exponent ¢) then X; — Xj is an
infinitely divisible random variable with characteristic function exp(—1).

(i1)=-(ii1) is the content of the classical Lévy-Khinchin theorem, see e.g. [17]. 0]
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We are now going to consider several important subclasses of Lévy processes. The class

of Gaussian Lévy processes of type
Xt = O'Bt + bt

with o € R?4 b € R?, and a d-dimensional Brownian motion (3;) has already been
introduced before. The Lévy-Itd decomposition states in particular that these are the

only Lévy processes with continuous paths!

Subordinators

A subordinator is by definition a non-decreasing real-valued Lévy process. The name
comes from the fact that subordinators are used to change the time-parametrization of a
Lévy process, cf.below. Of course, the deterministic processes X; = bt with b > 0 are
subordinators. Furthermore, any compound Poisson process with non-negative jumps
is a subordinator. To obtain more interesting examples, we assume that v is a positive

measure on (0, co) with

/(o )(1/\y)l/(dy) < 0.

Then a Poisson point process (/N;) with intensity measure v satisfies almost surely
supp(Ny)  C  [0,00) for any ¢ > 0.

Hence the integrals
Xt = /?/ Nt(d?/) ) t Z 07

define a non-negative Lévy process with X, = 0. By stationarity, all increments of (.X;)
are almost surely non-negative, i.e., (X;) is increasing. In particular, the sample paths

are (almost surely) of finite variation.

Example (Gamma process). The Gamma distributions form a convolution semigroup

of probability measures on (0, 00), i.e.,

C(r, ) «T'(s,A) = T(r+s,A) for any 7, s, A > 0.
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Therefore, for any a, A > 0 there exists an increasing Lévy process (I';):>o with incre-

ment distributions
Lyps =Ty~ T(at, \) for any s,t > 0.

Computation of the Laplace transform yields

Elexp(—ul})] = (1+§)at — exp (—t/ooo(1 — e gy~ le M dy) (1.35)

for every u > 0, cf.e.g. [28, Lemma 1.7]. Since I'; > 0, both sides in (1.35) have a
unique analytic extension to {u € C : R(u) > 0}. Therefore, we can replace u by —ip

in (1.35) to conclude that the characteristic exponent of (I';) is

w(p) - /000(1 - eipy) V(dy), where l/(dy) = ay_le_)‘y dy.

Hence the Gamma process is a non-decreasing pure jump process with jump intensity

measure v.

Example (Inverse Gaussian processes). An explicit computation of the characteristic
function shows that the Lévy subordinator (75) is a pure jump Lévy process with Lévy

measure
v(dy) = (2n) 2y 2 Lo (y) da.

More generally, if X; = 0B, + bt is a Gaussian Lévy process with coefficients o > 0,
b € R, then the right inverse

T = inf{t>0: X,=s} , s>0,

S

is a Lévy jump process with jump intensity

vidy) = (27?)*1/2y*3/2exp(—bzy/Q)[(O,oo)(y) dy.

Remark (Finite variation Lévy jump processes on R1).
Suppose that (1V;) is a Poisson point process on R \ {0} with jump intensity measure v
satisfying [(1 A |y|) v(dy) < co. Then the decomposition N; = N> + N> into
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the independent restrictions of (IV;) to R, R_ respectively induces a corresponding

decomposition
X = X{ + X, sz/y N dy) Xt\:/y N0 (dy),

of the associated Lévy jump process X; = [y N;(dy) into a subordinator X/ and a
decreasing Lévy process Xt\. In particular, we see once more that (X;) has almost

surely paths of finite variation.

An important property of subordinators is that they can be used for random time trans-

formations of Lévy processes:

Exercise (Time change by subordinators). Suppose that (X;) is a Lévy process with

Laplace exponent nx : R, — R, i.e.,
Elexp(—aX:)] = exp(—tnx(«)) forany a > 0.

Prove that if (7}) is an independent subordinator with Laplace exponent 77 then the
time-changed process

Xy = Xp, , 520,
is again a Lévy process with Laplace exponent
np) = nr(x(p)
The characteristic exponent can be obtained from this identity by analytic continuation.

Example (Subordinated Lévy processes). Let (B;) be a Brownian motion.
1) If (IVy) is an independent Poisson process with parameter A > 0 then (By,) is a

compensated Poisson process with Lévy measure
v(dy) = A2m)"Zexp(—y?/2) dy.
2) If (I';) is an independent Gamma process then for o, b € R the process

Xt = O'Bl‘t + th
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is called a Variance Gamma process. It is a Lévy process with characteristic
exponent ¢(p) = [(1 — V) v(dy), where

v(dy) = ey (€M o0 (y) + eI 0)(y)) dy

with constants ¢, \, x > 0. In particular, a Variance Gamma process satisfies
Xy = Fgl) — FEQ) with two independent Gamma processes. Thus the increments of
(X:) have exponential tails. Variance Gamma processes have been introduced and
applied to option pricing by Madan and Seneta [31] as an alternative to Brownian
motion taking into account longer tails and allowing for a wider modeling of
skewness and kurtosis.

3) Normal Inverse Gaussian (NIG) processes are time changes of Brownian mo-
tions with drift by inverse Gaussian subordinators [6]. Their increments over unit
time intervals have a normal inverse Gaussian distribution, which has slower de-
caying tails than a normal distribution. NIG processes are applied in statistical

modelling in finance and turbulence.

Stable processes

We have noted in (1.14) that the jump intensity measure of a strictly a-stable process in
R! is given by

vidy) = (erloo0)(y) + e Toon)(®)) Iyl " dy (1.36)
with constants ¢, ,c_ € [0, 00). Note that for any o € (0, 2), the measure v is finite on
R\ (—1,1),and f[—lal} ly|>v(dy) < oc.
We will prove now that if « € (0,1) U (1,2) then for each choice of the constants ¢,
and c_, there is a strictly a-stable process with Lévy measure (1.36). For @ = 1 this

is only true if ¢, = c_, whereas a non-symmetric 1-stable process is given by X; = bt

with b € R\ {0}. To define the corresponding «-stable processes, let

X; = / y N(dy)
R\[—¢,¢]

where (IV;) is a Poisson point process with intensity measure v. Setting || X||, =

Elsup,, | X:|*]"/?, an application of Theorem 1.15 yields:
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Corollary 1.19 (Construction of a-stable processes). Let v be the probability measure
on R\ {0} defined by (1.36) with c,,c_ € [0,00).

1) If ¢, = c_ then there exists a symmetric a-stable process X with characteristic
exponent Y(p) = |p|*, v = [(1—cosy) v(dy) € R, such that || X'/"—X]||, —
0 for any u € (0, 00).

2) If a € (0,1) then [(1 A |y|) v(dy) < oo, and X; = [y Ny(dy) is an a-stable
@ z=[(1-¢eY)v(dy) €C.

process with characteristic exponent 1 (p) = z |p

3) For o = 1 and b € R, the deterministic process X, = bt is a-stable with charac-

teristic exponent 1) (p) = —ibp.

4) Finally, if o € (1,2) then [(ly| A |y|*) v(dy) < oo, and the compensated process
Xi= [y Nt(dy) is an «-stable martingale with characteristic exponent 1(p) =

Z-p|Y 2= [(1— e +iy) v(dy).

Proof. By Theorem 1.15 it is sufficient to prove convergence of the characteristic expo-

nents

Glp) = / (1— ™) u(dy) = [pl° / (1— &) v(da),
R\[—¢,¢] R\[—ep,ep)

L) = / (1— ™ 4 ipy) vidy) = |p]" / (1— ¢ + i) v(de)
R\[—¢,¢] R\ [—ep,ep]

to ¥ (p), ¥ (p) respectively as € | 0. This is easily verified in cases 1), 2) and 4) by
noting that 1 — ¢ + 1 — e @ = 2(1 — cosz) = O(2?), 1 — e = O(|z|), and
1 — e + iz = O(|x]?). O

Notice that although the characteristic exponents in the non-symmetric cases 2), 3) and
4) above take a similar form (but with different constants), the processes are actually
very different. In particular, for o > 1, a strictly a-stable process is always a limit of

compensated compound Poisson processes and hence a martingale!

Example (a-stable subordinators vs. a-stable martingales). For c. = 0 and o €

(0,1), the a-stable process with jump intensity v is increasing, i.e., it is an a-stable

Stochastic Analysis Andreas Eberle



1.5. LEVY PROCESSES WITH INFINITE JUMP INTENSITY 51

subordinator. For c. = 0 and o € (1,2) this is not the case since the jumps are
“compensated by an infinite drift”. The graphics below show simulations of samples
from a-stable processes for c. = 0 and o« = 3/2, & = 1/2 respectively. For a € (0, 2),
a symmetric a-stable process has the same law as (1/2Br,) where (B;) is a Brownian

motion and (77) is an independent «/2-stable subordinator.
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Chapter 2
Transformations of SDE

Let U C R" be an open set. We consider a stochastic differential equation of the form
dXt = b(t, Xt) dt + O'(t, Xt) dBt (21)

with a d-dimensional Brownian motion (B;) and measurable coefficients b : [0, 00) X
U — R"and o : [0,00) x U — R™4, In applications one is often not interested in the
random variables X; : {2 — R themselves but only in their joint distribution. In that
case, it is usually irrelevant w.r.t. which Brownian motion (B;) the SDE (2.1) is satisfied.
Therefore, we can “solve” the SDE in a very different way: Instead of constructing the
solution from a given Brownian motion, we first construct a stochastic process (X;, P)
by different types of transformations or approximations, and then we verify that the
process satisfies (2.1) w.r.t. some Brownian motion (B;) that is usually defined through
(2.1).

Definition (Weak and strong solutions). A (weak) solution of the stochastic differen-
tial equation (2.1) is given by
(i) a “setup” consisting of a probability space (2, A, P), a filtration (F;)i>0 on
(2, A) and an R%-valued (F;) Brownian motion (By)i>o on (2, A, P),

(ii) a continuous (F;) adapted stochastic process (X;)i<s where S is an (F;) stopping
time such that b(-, X) € £}, ([0,5),R"), o(-, X) € £2,.([0,5),R"™9), and

a,loc a,loc

t t
X; = Xy —|—/ b(s, Xs) ds +/ o(s,Xs)dBs  foranyt <S a.s.
0 0

52



53

It is called a strong solution w.rt. the given setup if and only if (X,) is adapted w.r.t. the

filtration (0’ (]:tB o XO) ) >0 generated by the Brownian motion and the initial condition.

Here L7 ,,.([0,5), R") consists of all R valued processes (w,t) + H;(w) defined for
t < S(w) such that there exists an increasing sequence of (F;) stopping times 7, T S
and (F,) adapted processes (H\™),s0 in £9(P ® A0,00)) With H, = H™ forany t < T,
and n € N. Note that the concept of a weak solution of an SDE is not related to the

analytic concept of a weak solution of a PDE !

Remark. A solution (X;):>¢ is a strong solution up to S = oo w.rt. a given setup if
and only if there exists a measurable map F' : Ry xR"x C'(R;,R?) — R", (¢, 7, y) —
F(x0,y), such that the process (F});>o is adapted w.r.t. the filtration B(R™) ® B;, B; =
oly—y(s):0<s<t),and

X, = F(XoB) forany ¢t >0
holds almost surely. Hence strong solutions are (almost surely) functions of the given
Brownian motion and the initial value!

There are SDE that have weak but no strong solutions. An example is given in Section
2.1. The definition of weak and strong solutions can be generalized to other types of

SDE including in particular functional equations of the form

dXt = bt(X) dt+0t(X) dBt
where (b;) and (o;) are (B;) adapted stochastic processes defined on C'(R ., R"), as well
as SDE driven by Poisson point processes, cf. Chapter 4.

Different types of transformations of a stochastic process (X;, P) are useful for con-

structing weak solutions. These include:

e Random time changes: (X;)i>0 — (X1, )a>0 Where (7,),>0 is an increasing stochas-

tic process on R, such that 7, is a stopping time for any a > 0.

e Transformations of the paths in space: These include for example coordinate changes
(X:) = (v(X¢)), random translations (X;) — (X;+ H;) where (H,) is another adapted

process, and, more generally, a transformation that maps (X}) to the strong solution (V)
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54 CHAPTER 2. TRANSFORMATIONS OF SDE

of an SDE driven by (X}).

e Change of measure: Here the random variables X are kept fixed but the underlying
probability measure P is replaced by a new measure P such that both measures are mu-
tually absolutely continuous on each of the o-algebras F;, ¢t € R, (but usually not on
Foo)-

In Sections 2.2, 2.3 and 2.4, we study these transformations as well as relations between
them. For identifying the transformed processes, the Lévy characterizations in Section
2.1 play a crucial r6le. Section 2.5 contains an application to large deviations on Wiener
space, and, more generally, random perturbations of dynamical systems. Section 3.2 fo-
cusses on Stratonovich differential equations. As the Stratonovich integral satisfies the
usual chain rule, these are adequate for studying stochastic processes on Riemannian
manifolds. Stratonovich calculus also leads to a tranformation of an SDE in terms of
the flow of a corresponding ODE that is useful for example in the one-dimensional case.
The concluding Section 3.4 considers numerical approximation schemes for solutions

of stochastic differential equations.

2.1 Lévy characterizations and martingale problems

Let (2, A, P, (F;)) be a given filtered probability space. We first note that Lévy pro-

cesses can be characterized by their exponential martingales:

Lemma 2.1. Let i) : R? — C be a given function. An (F;) adapted cadlag process
X; : Q — R is an (F;) Lévy process with characteristic exponent ) if and only if the

complex-valued processes
z? = exp (ip- X¢ + t(p)) . t>0,
are (F;) martingales, or, equivalently, local (F,) martingales for any p € R,

Proof. By Corollary 1.5, the processes Z” are martingales if X is a Lévy process with

characteristic exponent 1. Conversely, suppose that Z” is a local martingale for any
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p € R®. Then, since these processes are uniformly bounded on finite time intervals,

they are martingales. Hence for 0 < s < t and p € R¢,

E[exp (ip (X — Xs)) ’.7'—3} = exp(—(t — s)¥(p)),
which implies that X; — X is independent of F, with characteristic function equal to
exp(—(t — $)v). O

Exercise (Characterization of Poisson point processes). Let (S, S, ) be a o-finite
measure space. Suppose that (N;);>o on (§2, A, P) is an (F;) adapted process taking
values in the space M (S) consisting of all counting measures on S. Prove that the
following statements are equivalent:

(i) (Ny) is a Poisson point processes with intensity measure v.

(ii) For any function f € £'(S,S,v), the real valued process

is a compound Poisson process with jump intensity measure o f~1.

(iii) For any function f € £(S, S, ), the complex valued process

MY = expGN(f) 4 t(f), >0, o(f) = /(1—eif)dy,

is a local (F;) martingale.
Show that the statements are also equivalent if only elementary functions f € L'(S, S, v)

are considered.

Lévy’s characterization of Brownian motion

By Lemma 2.1, an R¢valued process (X;) is a Brownian motion if and only if the
processes exp (z’p - Xy + tlp)?/ 2) are local martingales for all p € R?. This can be
applied to prove the remarkable fact that any continuous R? valued martingale with the

right covariations is a Brownian motion:

Theorem 2.2 (P. Lévy 1948). Suppose that M*, ... M? are continuous local (F;) mar-

tingales with
[ME MY, = ot P-as. forany t > 0.

Then M = (M*, ..., M%) is a d-dimensional Brownian motion.
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56 CHAPTER 2. TRANSFORMATIONS OF SDE

The following proof is due to Kunita and Watanabe (1967):

Proof. Fix p € R? and let ®; := exp(ip - M;). By It&’s formula,

d
) 1
dad, = ip®-dM,; — 5 Z D prpy d[Mka Ml]t

k=1

1
= ip Py dM, — 5P Ip|? dt.

Since the first term on the right hand side is a local martingale increment, the product
rule shows that the process ®; - exp(|p|® t/2) is a local martingale. Hence by Lemma

2.1, M is a Brownian motion. O
Lévy’s characterization of Brownian motion has a lot of remarkable direct consequences.

Example (Random orthogonal transformations). Suppose that X; : 2 — R" is a
solution of an SDE

dXt = Ot dBt, X(] = Xy, (22)

w.rt. a d-dimensional Brownian motion (B;), a product-measurable adapted process
(t,w) = Oy(w) taking values in R"*¢, and an initial vale zo € R". We verify that X is

an n-dimensional Brownian motion provided
Oiw) Oy(w)" = 1, forany ¢t >0, almost surely. (2.3)

Indeed, by (2.2) and (2.3), the components

d t
X, = x3+2/ OF dBt
k=10
are continuous local martingales with covariations
XLX = ) / O* O d[B*,B'] = / dorokdt = byt
k,l k

Applications include infinitesimal random rotations (n = d) and random orthogonal

projections (n < d). The next example is a special application.
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Example (Bessel process). We derive an SDE for the radial component R; = |B;| of
Brownian motion in R?. The function 7(x) = |z| is smooth on R \ {0} with Vr(z) =
e.(z), and Ar(x) = (d — 1) - |z|~! where e.(z) = x/|x|. Applying Itd’s formula to
functions r. € C®(R?), e > 0, with r.(z) = r(z) for |x| > ¢ yields

dR;, = e.(B;)-dB; + °R,

dt forany ¢t < Tj
where 7 is the first hitting time of 0 for (B;). By the last example, the process
t
W, = / e, (Bs) - dBg, t >0,
0

is a one-dimensional Brownian motion defined for all times (the value of e, at 0 being

irrelevant for the stochastic integral). Hence (B;) is a weak solution of the SDE

d—1
2R,

dr, = dW, + dt 2.4)

up to the first hitting time of 0. The equation (2.4) makes sense for any particular d € R
and is called the Bessel equation. Much more on Bessel processes can be found in
Revuz and Yor [37] and other works by M. Yor.

Exercise (Exit times and ruin probabilities for Bessel and compound Poisson pro-

cesses). a) Let (X;) be a solution of the Bessel equation

d—1
dXt = — 2Xt dt + dBt, XOZZEQ,

where (B;):> is a standard Brownian motion and d is a real constant.

i) Find a non-constant function v : R — R such that u(X}) is a local martingale up

to the first hitting time of 0.
ii) Compute the ruin probabilities P[T, < T}] for a,b € R, with z € [a,b] .
iii) Proceeding similarly, determine the mean exit time F[7T'], where " = min{T,, T} }.

b) Now let (X});>¢ be a compound Poisson process with X, = 0 and jump intensity

measure v = N(m, 1), m > 0.
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i) Determine A\ € R such that exp(A\X}) is a local martingale up to 7j.

ii) Prove that for a < 0,

P[T, < oo] = lim P[T, < T, < exp(ma/2).

b—o0

Why is it not as easy as above to compute the ruin probability P[T,, < T}] exactly ?

The next application of Lévy’s characterization of Brownian motion shows that there

are SDE that have weak but no strong solutions.

Example (Tanaka’s example. Weak vs. strong solutions). Consider the one dimen-
sional SDE

dXt = Sgn(Xt) dBt (25)
+1 for x >0,

where (B;) is a Brownian motion and sgn(z) := . Note the unusual
-1 for <0

convention sgn(0) = 1 that is used below. We prove the following statements:

1) X is a weak solution of (2.5) on (2, A, P, (F)) if and only if X is an (F;) Brown-
ian motion. In particular, a weak solution exists and its law is uniquely determined

by the law of the initial value X.

2) If X is a weak solution w.rt. a setup (2, A, P, (F;), (B;)) then for any ¢t > 0,

B, — By is measurable w.r.t. the o-algebra F, ¥ = o(|X,|:s < ).
3) There is no strong solution to (2.5) with initial condition Xy = 0.

4) Pathwise uniqueness does not hold: If X is a solution to (2.5) with X, = 0 then

— X solves the same equation with the same Brownian motion.

The proof of 1) is again a consequence of the first example above: If X is a weak
solution then X is a Brownian motion by Lévy’s characterization. Conversely, if X is

an (F;) Brownian motion then the process

t
B, = /sgn(Xs)dXs
0
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is a Brownian motion as well, and

t t
/ sen(X,) dB, = / sen(X,)?dX, = X, — Xo,
0 0
i.e., X is a weak solution to (2.5).

For proving 2) , we approximate r(x) = |z| by symmetric and concave functions 7. €
C>(R) satisfying r.(z) = |z| for || > e. Then the associative law, the It isometry,

and It6’s formula imply

¢ ¢
B,— By = / sgn(X,) dX, = liﬂ[)l i (Xs) dX
0 1 Jo
= lim (r.(Xy) — r-(Xo) — —/ r!(X,) ds)

, LN
=l (D)~ re(Xal) — 5 [ 20D )

with almost sure convergence along a subsequence ¢, | 0.

Finally by 2), if X would be a strong solution w.r.t. a Brownian motion B then X,
would also be measurable w.r.t. the o-algebra generated by F; and E‘X"P. This leads
to a contradiction as one can verify that the event { X; > 0} is not measurable w.r.t. this

o-algebra for a Brownian motion (X3).

Martingale problem for It6 diffusions
Next we consider a solution of a stochastic differential equation
dXt = b(t, Xt) dt + O'(t, Xt) dBt, XQ = Xy, (26)

defined on a filtered probability space (€2, A, P, (F;)). We assume that (B;) is an (F;)
Brownian motion taking values in R%, b, 04, ...,04 : RT x R® — R" are measurable
and locally bounded (i.e., bounded on [0, ] x K forany ¢ > 0 and any compact set K C
R?) time-dependent vector fields, and o (¢, 7) = (o1 (¢, ) - - - 54(t, 2)) is the n x d matrix
with column vectors o;(¢, ). A solution of (2.6) is a continuous (F}’) semimartingale

(X;) satisfying

t d t
Xy = o +/ b(s, Xs) ds + Z/ or(s, X) dB* Vt>0 as.  (2.7)
0 1 70
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If X is a solution then

XX o= Y [/o—k s, X) dB* /Jlj(s,X) dBlL

k,l

Z/ ol ol)(s,X)d[B* B = /taij(s,Xs)ds

0
where @ =Y, a,iai, ie.,
a(s,r) = o(s,x)o(s, )T € R™™.
Therefore, 1t6’s formula applied to the process (¢, X;) yields

62

i O

OF d
dF(t,X) = —(t,X)dt+V,F(t,X) dX += Za

5 (t, X) d[X*, X7]

i,j=1

= (0'V.F)(t,X)-dB + (%—ZZ + EF) (t, X) dt,

forany F' € C?(R, x R™), where

(LF)(t0) = %Z +szw ).

We have thus derived the It6-Doeblin formula

t t
F(t,X,) - F(0,X,) = /(UTVF)(S,XS)-dBSJr/ (%—f+m)(s,x8) ds
0 0
23)

The formula provides a semimartingale decomposition for F'(¢, X;). It establishes a con-

nection between the stochastic differential equation (2.6) and partial differential equa-

tions involving the operator L.

Example (Exit distributions and boundary value problems). Suppose that F' &
C?*(Ry x R™) is a classical solution of the p.d.e.

8—€(t,x)+(£F)(t,x) = —g(t,x) Vt>0,ze€U

on an open subset U C R™ with boundary values

F(t,z) = o(t,x) Vt>0,xedU.
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Then by (2.8), the process
t
M, = F(t, X)) +/ g(s, Xs) ds
0

is a local martingale. If F' and g are bounded on [0, ] x U, then the process M7 stopped
at the first exit time 7" = inf {¢ > 0 : X, ¢ U} is a martingale. Hence, if 7" is almost

surely finite then

Elo(T, X7)] + E[/OTg(s, Xs) ds} = F(0,x0).

This can be used, for example, to compute exit distributions (for ¢ = 0) and mean exit

times (for ¢ = 0, g = 1) analytically or numerically.

Similarly as in the example, the Feynman-Kac-formula and other connections between
Brownian motion and the Laplace operator carry over to Ito diffusions and their gen-
erator L in a straightforward way. Of course, the resulting partial differential equation
usually can not be solved analytically, but there is a wide range of well-established
numerical methods for linear PDE available for explicit computations of expectation

values.

Exercise (Feynman-Kac formula for Ité diffusions). Fix ¢ € (0,00), and suppose
that ¢ : R” — Rand V : [0,¢] x R®™ — [0, 00) are continuous functions. Show that if
u € C?((0,t] x R") N C([0,¢] x R™) is a bounded solution of the heat equation

%(s,x) = (Lu)(s,x) = V(s,z)u(s,x) for s € (0,t], x € R",
u(0,2) = ¢(z),

then « has the stochastic representation

u(t,z) = E, [¢(Xt) exp (- /0 t V(t—s,Xs)dsﬂ .

Hint: Consider the time reversal U(s,x) = u(t — s,x) of uw on [0,t]. Show first that
M, := exp(—A,)u(r, X,) is a local martingale if A, := [ V(s, X,)ds.
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Often, the solution of an SDE is only defined up to some explosion time ¢ where it
diverges or exits a given domain. By localization, we can apply the results above in this

case as well. Indeed, suppose that U C R™ is an open set, and let
U, = {x€U: |z|]<kand dist(z,U°) > 1/k}, keN.

Then U = |J Uy. Let T}, denote the first exit time of (X;) from Uy. A solution (X}) of
the SDE (2.6) up to the explosion time ¢ = sup 7} is a process (Xt)te[07<)u{0} such that
forevery k € N, T}, < ¢ almost surely on {¢ € (0, 00)}, and the stopped process X * is
a semimartingale satisfying (2.7) for ¢ < Tj. By applying It6’s formula to the stopped

processes, we obtain:

Theorem 2.3 (Martingale problem for It6 diffusions). If X; : QO — U is a solution of
(2.6) up to the explosion time C, then for any F € C?*(R, x U) and xy € U, the process

L OF
M, = F(t,X —/ — + LF)(s,X,)ds, t<C(,
e e [ (S ver)e)

is a local martingale up to the explosion time (, and the stopped processes M+, k € N,

are localizing martingales.

Proof. We can choose functions F}, € C#([0,a] xU), k € N,a > 0, such that F},(¢,x) =
F(t,z) fort € [0,a] and z in a neighbourhood of U. Then for ¢t < a,

b OF
MtTk = ]\415/\T,C = Fk(tv Xt/\Tk) - / (a—: + EFk) (S7 XS/\Tk) ds.
0

By (2.8), the right hand side is a bounded martingale. U

Lévy characterization of weak solutions

Lévy’s characterization of Brownian motion can be extended to solutions of stochastic

differential equations of type

driven by a d-dimensional Brownian motion (B;). As a consequence, one can show

that a process is a weak solution of (2.9) if and only if it solves the corresponding
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martingale problem. As above, we assume that the coefficients b : R, x R? — R and

o : R, x R? — R?*? are measurable and locally bounded, and we set

2 d

d
1 . o A 9
— — ] i
£ 2Z,ijla (t’x)axiaxj + § V(L) o (2.10)

where a(t, ) = o(t,z)o(t, z)T.

Theorem 2.4 (Weak solutions and the martingale problem). If the matrix o(t, ) is

1

invertible for any t and x, and (t,x) — o(t,z)"" is a locally bounded function on

R, x RY, then the following statements are equivalent:
(i) (X) is a weak solution of (2.9) on the setup (0, A, P, (F;), (By)).

(ii) The processes M} := X} — X — fot bi(s, X,) ds, 1 < i < d, are continuous local

(FF) martingales with covariations

t
M, M), = / a’(s, X,) ds P-a.s. forany t > 0. (2.11)
0

(iii) The processes M) .= f(X,) — f(Xo) — [S(Lf)(s,X,) ds, f € C*(RY), are

continuous local (F}') martingales.

(iv) The processes Mt[f] = f(t,Xy) — f(0,Xo) — fo ( + Lf)(s, X;) ds,

[ € C*(Ry x RY), are continuous local (FF) martingales.

Proof. (1)=(iv) is a consequence of the It6-Doeblin formula, cf. Theorem 2.3 above.
(iv)=-(ii1) trivially holds.
(iii)=-(ii) follows by choosing for f polynomials of degree > 2. Indeed, for f(z) = 27,

we obtain £f = b’, hence
t
M = X;‘-X,?-/ bi(s, X,)ds = M (2.12)
0

is a local martingale by (iii). Moreover, if f(z) = z'2? then Lf = a” + 2’/ + 27b by

the symmetry of a, and hence

t
XiX] - XiX} = th+/ (a” (s, X,) + XLV (s, X,) + X1 b'(s, X,)) ds. (2.13)
0
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On the other hand, by the product rule and (2.12),
X;X) - XiXg = / X.dX] +/ X dX: 4+ [ X', X7, (2.14)
0 0
t
— N+ / (X7 (s, X.) + X (s, X,)) ds + [XF, X7,
0
with a continuous local martingale N. Comparing (2.13) and (2.14) we obtain
(MY M), = (XN X, = / a’(s, Xs) ds
0

since a continuous local martingale of finite variation is constant.

(i1)=() 1is a consequence of Lévy’s characterization of Brownian motion: If (ii) holds
then
dXt - th -+ b(t, Xt) dt = O'(t, Xt) dBt -+ b(t, Xt) dt

where M, = (M}, ..., M{) and B, := fot o(s, X,)~! dM, are continuous local martin-
gales with values in R? because o~ is locally bounded. To identify B as a Brownian

motion it suffices to note that
t
[B* B, = /O > (o5t o) (s, X,) d[M*, M)
1,J
t

_ /(ala(al)T)kl (5, X.)ds = Gt

0

forany k.l =1,...,dby (2.11). ]

Remark (Degenerate case). If o(¢,z) is degenerate then a corresponding assertion
still holds. However, in this case the Brownian motion (B;) only exists on an extension
of the probability space (€2, .4, P, (F;)). The reason is that in the degenerate case, the
Brownian motion can not be recovered directly from the solution (X;) as in the proof

above, see [38] for details.

The martingale problem formulation of weak solutions is powerful in many respects:
It is stable under weak convergence and therefore well suited for approximation argu-
ments, it carries over to more general state spaces (including for example Riemannian

manifolds, Banach spaces, spaces of measures), and, of course, it provides a direct link
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to the theory of Markov processes. Do not miss to have a look at the classics by Stroock
and Varadhan [40] and by Ethier and Kurtz [16] for much more on the martingale prob-

lem and its applications to Markov processes.

2.2 Random time change

Random time change is already central to the work of Doeblin from 1940 that has been
discovered only recently [3]. Independently, Dambis and Dubins-Schwarz have devel-
oped a theory of random time changes for semimartingales in the 1960s [25], [37]. In
this section we study random time changes with a focus on applications to SDE, in par-

ticular, but not exclusively, in dimension one.

Throughout this section we fix a right-continuous filtration (F;) such that 7, = F¥
for any ¢t > 0. Right-continuity is required to ensure that the time transformation is

given by (F;) stopping times.

Continuous local martingales as time-changed Brownian motions

Let (M;);>0 be a continuous local (F;) martingale w.r.t. the underlying probability mea-
sure P such that My = 0. Our aim is to show that M, can be represented as By, with
a one-dimensional Brownian motion (B, ). For this purpose, we consider the random
time substitution a — T, where T,, = inf {u : [M], > a}is the first passage time to the

level u. Note that a — T, is the right inverse of the quadratic variation ¢ — [M];, i.e.,
My, = a on {1, < oo}, and,
T, = inf{u:[M],>[M]} = sup{u:[M], = [M];}
by continuity of [M]. If [M] is strictly increasing then 7" = [M]~!. By right-continuity
of (F:), T, is an (F;) stopping time for any a > 0.
Theorem 2.5 (Dambis, Dubins-Schwarz). If M is a continuous local (F;) martingale
with [M]., = oo almost surely then the time-changed process B, := Mr,, a > 0, is an

(Fr,) Brownian motion, and

M; = By, foranyt >0, almost surely. (2.15)
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The proof is again based on Lévy’s characterization.

Proof. 1) We first note that By, = M; almost surely. Indeed, by definition, By, =
MT[

[t, Tian,]. This holds true since the quadratic variation [M] is constant on this

a,- 1t remains to verify that M is almost surely constant on the interval

interval, cf. the exercise below.

2) Next, we verify that B, = My, is almost surely continuous. Right-continuity

holds since M and T are both right-continuous. To prove left-continuity note that

fora > 0,
imMp, . = Mg, for any a > 0
el0
by continuity of M. It remains to show My, = My, almost surely. This again

holds true by the exercise below, because 7, and 7, are stopping times, and
Mlr.. = Im[Mlr,, = lme—¢) = o = [Mr

by continuity of [M].

3) We now show that (B, ) is a square-integrable (Fr, ) martingale. Since the random
variables T, are (F;) stopping times, (B, ) is (Fr, ) adapted. Moreover, for any a,

the stopped process M/* = Mt 1s a continuous local martingale with
E[M"™.] = E[Mlr] = a < oo
Hence M7 is in M? ([0, oc]), and
EB)] = E[M;] = E[(MX)? =a forany a>0.
This shows that (B,) is square-integrable, and, moreover,
E[Bu.|Fr.] = E[Mg|Fr] = My = B, forany 0 <r <a
by the Optional Sampling Theorem applied to M=,

Finally, we note that [B], = (B), = a almost surely. Indeed, by the Optional Sampling
Theorem applied to the martingale (M7+)? — [M7=], we have

E|B, = B\Fr| = E[M;p, —Mg|Fr]
=  E[M]g, — Mg, |Fr,] = a—r for 0<r<a.
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Hence B? — a is a martingale, and thus by continuity, [B], = (B), = a almost surely.

We have shown that (B,) is a continuous square-integrable (Fr, ) martingale with

[B], = a almost surely. Hence B is a Brownian motion by Lévy’s characterization. []

Remark. The assumption [M],, = oo in Theorem 2.5 ensures 7, < oo almost surely.
If the assumption is violated then M can still be represented in the form (2.15) with a
Brownian motion 5. However, in this case, B is only defined on an extended probability

space and can not be obtained as a time-change of M for all times, cf. e.g. [37].

Exercise. Let M be a continuous local (F;) martingale, and let S and T be (F;) stop-
ping times such that S < T'. Prove that if [M]gs = [M]r < oo almost surely, then M
is almost surely constant on the stochastic interval [S, T']. Use this fact to complete the

missing step in the proof above.

We now consider several applications of Theorem 2.5. Let (W;);>o be a Brownian

motion with values in R? w.r.t. the underlying probability measure P.

Time-change representations of stochastic integrals

By Theorem 2.5 and the remark below the theorem, stochastic integrals w.r.t. Brownian
motions are time-changed Brownian motions. For any integrand G € L2, (R}, RY),

there exists a one-dimensional Brownian motion B, possibly defined on an enlarged

probability space, such that almost surely,
t
/ G, -dW, = Bft‘G 2 ds forany t > 0.
0 o

Example (Gaussian martingales). If GG is a deterministic function then the stochastic
integral is a Gaussian process that is obtained from the Brownian motion 5 by a deter-

ministic time substitution. This case has already been studied in Section 8.3 in [14].

Doeblin [3] has developed a stochastic calculus based on time substitutions instead of

1td integrals. For example, an SDE in R! of type

t t
X, - X, = /a(s,xs) dWs+/ b(s, X.) ds
0 0
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can be rephrased in the form

t
Xt_XO — Bfgo’(S,XS)Q d3+/ b(S,XS) dS
0
with a Brownian motion B. The one-dimensional It6-Doeblin formula then takes the
form
t af
f(t, Xt) - f(07X0) = Bj(;f 0(5,Xs)2 f'(s,Xs)2 ds + . % + Ef (S,XS) ds

with £f = 1 o2 f" + bf’.

Time substitution in stochastic differential equations

To see how time substitution can be used to construct weak solutions, we consider at
first an SDE of type
ay, = o¥})dB, (2.16)

in R! where 0 : R — (0, 00) is a strictly positive continuous function. If Y is a weak

solution then by Theorem 2.5 and the remark below,
t
Y, = X4  with At:[Yh::/IUOQQdT (2.17)
0

and a Brownian motion X . Note that A depends on Y, so at first glace (2.17) seems not

to be useful for solving the SDE (2.16). However, the inverse time substitution 7' = A1

satisfies
T 1 B 1 B 1
 AoT o(Y oT)2 o(X)?
and hence
@ 1
T, = / du
o 0 (Xu)

Therefore, we can construct a weak solution Y of (2.16) from a given Brownian motion
X by first computing 7', then the inverse function A = T, and finally setting Y =
X o A. More generally, the following result holds:

Theorem 2.6. Suppose that (X,) on (2, A, P, (F;)) is a weak solution of an SDE of the
form
dX, = o(X,)dB,+bX,)da (2.18)
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with locally bounded measurable coefficients b : R — RY and o : R? — R4 such
that o(x) is invertible for almost all z, and o~ is again locally bounded. Let ¢ : R* —

(0, 00) be a measurable function such that almost surely,
T, = / o(Xy)du < o0 Va € (0,00), and T, =o00. (2.19)
0
Then the time-changed process defined by

Yi = Xy, A = T

)

is a weak solution of the SDE

dy, = (%) (Y})dBtJr(g) (Y;) dt. (2.20)

We only give a sketch of the proof of the theorem:

Proof of 2.6. (Sketch). The process X is a solution of the martingale problem for the

operator £ = 1 3 a;;(x) 5% + b(x) - V where a = 507, ie.,

M = F(X,) - F(X) - / (LF)(X.) du

is a local (F,) martingale for any f € C?. Therefore, the time-changed process
1 .
M{ = F0 - FXa) -~ [ 2P du
0

= V)~ f(Ye) — / (L) (V) A dr

is a local (F4,) martingale. Noting that

v 1 B 1 B 1
’ T'(A,) 0(X4,) o(Y,)’

we see that w.r.t. the filtration (Fj4,), the process Y is a solution of the martingale

problem for the operator

~ 1 a;; 0? b
L = L = = i) - .V.
0 ZZJ: 0 890@695] 0
Since % = % "? this implies that Y is a weak solution of (2.20). 0]
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In particular, the theorem shows that if X is a Brownian motion and condition (2.19)
holds then the time-changed process Y solves the SDE dY = o(Y)~/2 dB.

Example (Non-uniqueness of weak solutions). Consider the one-dimensional SDE
dY, = |Y|*dB, Y, =0, 221)

with a one-dimensional Brownian motion (B;) and « > 0. If @« < 1/2 and z is a
Brownian motion with X = 0 then the time-change T, = [ o(X,) du with o(z) =

|| 2« satisfies

e = B[ [ axgad = [ i
= E[|X1|_20‘]-/Oau_adu <

for any a € (0, 00). Hence (2.19) holds, and therefore the process Y; = X4,, A =T,
is a non-trivial weak solution of (2.21). On the other hand, Y; = 0 is also a weak
solution. Hence for v < 1/2, uniqueness in distribution of weak solutions fails. For
a > 1/2, the theorem is not applicable since Assumption (2.19) is violated. One can

prove that in this case indeed, the trivial solution Y; = 0 is the unique weak solution.

Exercise (Brownian motion on the unit sphere). Let Y; = B;/|B;| where (B;):>o is a

Brownian motion in R", n > 2. Prove that the time-changed process
t

Zo=Yr, T=A" with A, :/ B, 2ds,
0

is a diffusion taking values in the unit sphere S"~! = {z € R" : |z| = 1} with generator

Lf(x) = % (Af(x) - lexjaaif(:pv Ul ; ! leg—xfl(x), re S

One-dimensional SDE

By combining scale and time transformations, one can carry out a rather complete study

of weak solutions for non-degenerate SDE of the form

dXt = O'(Xt) dBt -+ b(Xt) dt, Xo = Xy, (222)
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on a real interval («, ). We assume that the initial value X, is contained in («, ), and
b, o : (a, ) — R are continuous functions such that o(x) > 0 for any = € (a, 3). We
first simplify (2.22) by a coordinate transformation Y; = s(X;) where

s: (a,p) — (5(04)73(5))

is C? and satisfies s'(z) > 0 for all z. The scale function

s(z) = /zexp<—/y jfzgg da:) dy

o Zo

has these properties and satisfies 10%s” + bs’ = 0. Hence by the Itd-Doeblin formula,

the transformed process Y; = s(X;) is a local martingale satisfying
dy; = (08)(Xy) dBy,
i.e., Y is a solution of the equation
ay, = o(Y)dB, Yo = s(zo), (2.23)

where & := (0s') o s71. The SDE (2.23) is the original SDE in “natural scale”. It can
be solved explicitly by a time change. By combining scale transformations and time

change one obtains:
Theorem 2.7. The following statements are equivalent:

(i) The process (X;)i<c on the setup (2, A, P, (F;), (By)) is a weak solution of (2.22)
defined up to a stopping time (.

(ii) The process Y; = s(X}), t < (, on the same setup is a weak solution of (2.23) up

to (.

(iii) The process (Y})KC has a representation of the form Y, = B A,» Where Et is a

one-dimensional Brownian motion satisfying By = s(xq) and A = T~ with

T - /Org(ézL) du,  oly) = 1/5().
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Carrying out the details of the proof is left as an exercise. The measure m(dy) :=
o(y) dy is called the “speed measure” of the process Y although Y is moving faster
if m is small. The generator of Y can be written in the form £ = %%d%’ and the
generator of X is obtained from £ by coordinate transformation. For a much more
detailed discussion of one dimensional diffusions we refer to Section V.7 in [38]. Here
we only note that 2.7 immediately implies existence and uniqueness of a maximal weak

solution of (2.22):

Corollary 2.8. Under the regularity and non-degeneracy conditions on o and b imposed

above there exists a weak solution X of (2.22) defined up to the first exit time
¢ = inf {t >0: lingt € {a, b}}

from the interval (o, ). Moreover, the distribution of any two weak solutions (X;)<¢
and (X;);<¢ on U, C((0,u), R) coincide.

u>0

Remark. We have already seen above that uniqueness may fail if o is degenerate.
For example, the solution of the equationdY; = |Y;|* dB;, Yy = 0, is not unique in
distribution for o € (0,1/2).

Example (Bessel SDE). Suppose that (R;); is a maximal weak solution of the Bessel

equation

2R,
on the interval (o, ) = (0, 00) with initial condition Ry = 7y € (0,00) and the pa-

dR, = dW,+ dt, W ~ BM(R'),

rameter d € R. The ODE Ls = 15" + £’ = 0 for the scale function has a strictly
increasing solution
= r274 for d # 2,
s(r) =
logr for d =2

(More generally, cs + d is a strictly increasing solution for any ¢ > 0 and d € R).
Note that s is one-to-one from the interval (0, co) onto

(0, 00) for d < 2,

(5(0),8(00)) = (—o00,00) for d =2,
(—00,0) for d > 2.
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By applying the scale transformation, we see that

s(ro) — s(a)

s(b) — s(a)

for any a < ry < b, where TX denoted the first passage time to ¢ for the process X . As

PITf<T] = PTG <Ti)] =

a consequence,

1 for d <2,
Pliminf R = 0] = Pl U {mF<mfy] -
@€(0ro) b€ (ro,20) 0 for d>2,
1 for d > 2,
P[limsup R, = 0] = P[ ﬂ U {TbR<Tf}} =
t1¢ be(rog,00) a€(0,ro)
0 for d < 2.

Note that d = 2 is the critical dimension in both cases. Rewriting the SDE in natural

scale yields
ds(R) = o(s(R)dW  with &(y) = (s '(y)).

In the critical case d = 2, s(r) = logr,a(y) = e™¥, and hence o(y) = o(y) 2 = e?.

Thus the speed measure is m(dy) = €% dy, and log R; = §T_1(t), ie.,
R, = exp (ETfl(t)) with T, = / exp (ZEU) du
0

and a one-dimensional Brownian motion B.

2.3 Change of measure

In Section 2.3, 2.4 and 2.5 we study connections between two different ways of trans-

forming a stochastic process (Y, P):

1) Random transformations of the paths: For instance, mapping a Brownian motion

(Y;) to the solution (X;) of s stochastic differential equation of type
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corresponds to a random translation of the paths of (Y;):
t
Xi(w) = Yi(w)+ Hi(w) where H; = / b(X5) ds.
0

2) Change of measure: Replace the underlying probability measure P by a modified
probability measure () such that P and () are mutually absolutely continuous on
F; foranyt € [0,00).

In this section we focus mainly on random transformations of Brownian motions and the
corresponding changes of measure. To understand which kind of results we can expect

in this case, we first look briefly at a simplified situation:

Example (Translated Gaussian random variables in R%). We consider the equation
X = bX)+Y, Y ~ N(0,1;) wrt. P, (2.25)

for random variables X,Y : Q — R? where b : R? — R? is a “predictable” map
in the sense that the i-th component b’(x) depends only on the first i — 1 components
Xt ..., X! of X. The predictability ensures in particular that the transformation
defined by (2.25) is invertible, with X! = Y +b!, X2 = Y2 4+ 0?(X1), X3 = V3 +
BXT,X2), .. X" =Y (XY, X,

A random variable (X, P) is a “weak” solution of the equation (2.25) if and only if Y :=

X — b(X) is standard normally distributed w.rt. P, i.e., if and only if the distribution

P o X~ is absolutely continuous with density

fx(@ = ff(x—b(x))’detw
= (2m) Y2l b@)/2

EF D@2

)

where () denotes the standard normal density in RY. Therefore we can conclude:
(X, P) is a weak solution of (2.25) if and only if X ~ N(0, 1;) w.r.t. the unique proba-
bility measure ) on RY satisfying P < Q with
dP
dQ
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In particular, we see that the law 1:° of a weak solution of (2.25) is uniquely determined,

and y” satisfies

= PoX' <« QoX!' = N(0IL) = u
with relative density
d b
d_zo (z) = ert@-b@P/2

The example can be extended to Gaussian measures on Hilbert spaces and to more
general transformations, leading to the Cameron-Martin Theorem (cf. Theorem 2.17
below) and Ramer’s generalization [1]. Here, we study the more concrete situation
where Y and X are replaced by a Brownian motion and a solution of the SDE (2.24)
respectively. We start with a general discussion about changing measure on filtered

probability spaces that will be useful in other contexts as well.

Change of measure on filtered probability spaces

Let (F;) be a filtration on a measurable space (€2,.4), and fix ¢y € (0, 00). We consider

two probability measures P and ) on (£2,.4) that are mutually absolutely continuous
on the o-algebra F;, with relative density

dpP

Z. =

to dQ

Then P and () are also mutually absolutely continuous on each of the o-algebras F,

0 (2-almost surely.

Fto

t <ty, with )- and P-almost surely strictly positive relative densities
dP dQ 1

7 = _
t dQ

= Eql[Z,|F] and bl = 7

The process (Z;):<y, is a martingale w.r.t. (), and, correspondingly, (1/7;);<¢, is a mar-

Fi

tingale w.r.t. P. From now on, we always choose a cadlag version of these martingales.

Lemma 29. /) Forany(O < s <t < iy, and for any F;-measurable random vari-
able X : Q) — [0, o],

EQ[XZ\|F,|  EQlXZ|F|]

Ep[X| 7 = EolZ|F Z.

P-as. and Q-a.s. (2.27)
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2) Suppose that (My)i<y, is an (F;) adapted cadlag stochastic process. Then

(i) M is a martingale wrt. P < M - Z is a martingale w.r.t. (),

(ii) M is alocal martingalewrt. P < M -Z is alocal martingale w.rt. Q).

Proof. 1) The right hand side of (2.27) is F,-measurable. Moreover, for any A € Fj,

EplEQIXZi|F]/Zs; Al = EQlEQ[XZ|Fy]: A
= EQ[XZt; A] = EQ[X; A]

2) (i) is a direct consequence of 1). Moreover, by symmetry, it is enough to prove
the implication "<=" in (ii). Hence suppose that M - Z is a local ()-martingale with

localizing sequence (7,). We show that M Tn is a P-martingale, i.e.,
Ep|[Mnr, ; Al = Ep[Mgpr, ; A] forany A € F, 0<s <t <t. (2.28)
To verify (2.28), we first note that
Ep[Minr, ; AN{T, <s}| = Ep[Ms, ; An{T, < s} (2.29)

sincet AT, =T, = s AT, on {T,, < s}. Moreover, one verifies from the definition of
the o-algebra F;,r, that for any A € F;,the event AN {T,, > s} is contained in Fy7, ,

and hence in F;,7, . Therefore,

EP[Mt/\Tn ; AN {Tn > S}] = EQ[Mt/\Tn Zt/\Tn ; AN {Tn > S}] (2.30)
= EQ[MS/\Tn Zs/\Tn ; AN {Tn > S}H = EP[MS/\Tn ; AN {Tn > 8}]

by the martingale property for (M Z)™ , the optional sampling theorem, and the fact that
P < Q) on Fi,p, with relative density Z;ap, . (2.28) follows from (2.29) and (2.30). [

If the probability measures P and () are mutually absolutely continuous on the o-algebra

Fi, then the ()-martingale Z; = Z—g of relative densities is actually an exponential
Fi
martingale. Indeed, to obtain a corresponding representation let
1
Ly = ~ dZ,
0 Ls—
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denote the stochastic "logarithm" of Z. Here we are using stochastic calculus for
cadlag semimartingales, cf. Chapter 5 below. This can be avoided if one assumes that
(-almost surely, ¢t — Z; is continuous, i.e., Z; = Z; fort > 0. In any case, the
process (L¢)¢<t, is a well-defined local martingale w.r.t. () since Q-a.s., (Z;) is cadlag

and strictly positive. Moreover, by the associative law,
dz, = Z,_dL, Zy = 1,
so Z; is the stochastic exponential of the local ()-martingale (L;):
z, = &~
In particular, if (Z;) is continuous then

7, = el

Girsanov’s Theorem

We now return to our original problem of identifying the change of measure induced
by a random translation of the paths of a Brownian motion. Suppose that (X;) is a
Brownian motion in R¢ with X, = 0 w.r.t. the probability measure () and the filtration
(F:), and fix ¢y € [0, 00). Let

t
Ly = / Gs ’ dXsa t >0,
0

with G € £2,,. (R4, R?). Then [L], = [, |G,|? ds,and hence

a,loc
t 1 t
Z, = exp(/ GS-dXS——/ |G8|2d5) (2.31)
0 2 0

is the exponential of L. In particular, since L is a local martingale w.r.t. (), Z is a non-
negative local martingale, and hence a supermartingale w.r.t. (). It is a ()-martingale for
t <tpif and only if Eg[Z;] = 1:

Exercise (Martingale property for exponentials). Let (Z;).cjo,] on (€2, A, Q) be a

non-negative local martingale satisfying Z, = 1.
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a) Show that Z is a supermartingale.

b) Prove that Z is a martingale if and only if Eg[Z;)] = 1.

In order to use Z;, for changing the underlying probability measure on F;, we have to

assume the martingale property:
Assumption. (Z;):<;, is a martingale w.r.t. ().

Theorem 2.11 below states that the assumption is satisfied if £ [exp (% [ 1GS? ds)] <
0o. If the assumption holds then we can consider a probability measure P on A with
dP

— A -a.s. 232
dQ ]__to to Q a.s ( )
Note that P and () are mutually absolutely continuous on JF; for any ¢ < ¢y with
dP dQ 1
bl - 7z d < -
Q7 £ aPls 7

both P- and (Q-almost surely. We are now ready to prove one of the most important

results of stochastic analysis:

Theorem 2.10 (Maruyama 1954, Girsanov 1960). Suppose that X is a d-dimensional
Brownian motion w.r.t. Q and (Z;)i<y, is defined by (2.31) with G € L2, (R, ,R9). If

a,loc

Eq[Zy,] = 1 then the process
t
Bt = Xt — / GS dS, t S t(],
0

is a Brownian motion w.r.t. any probability measure P on A satisfying (2.32).

Proof. By Lévy’s characterization, it suffices to show that (B;);<;, is an R%-valued P-
martingale with [B*, B’|, = d;;t P-almostsurely forany, j € {1, ..., d}. Furthermore,
by Lemma 2.9, and since P and () are mutually absolutely continuous on F,, this holds
true provided (B;Z;)<y, is a Q-martingale and [B?, B’] = §;;t Q-almost surely. The
identity for the covariations holds since (B;) differs from the ()-Brownian motion (X})
only by a continuous finite variation process. To show that B - Z is a local ()-martingale,

we apply Itd’s formula: For 1 <1 < d,

d(B'Z) = B'dZ+ZdB' +d[B" 7] (2.33)
= BZG-dX +2ZdX'—ZGdt+ ZG' dt,
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where we have used that
dB',7] = ZG-dB',X] = ZG'dt  Q-almostsurely.

The right-hand side of (2.33) is a stochastic integral w.r.t. the (-Brownian motion X,

and hence a local ()-martingale. U

The theorem shows that if X is a Brownian motion w.r.t. (), and Z defined by (2.31) is
a (Q-martingale, then X satisfies

dXt — Gt dt + dBt

with a P-Brownian motion B. It generalizes the Cameron-Martin Theorem to non-

deterministic adapted translation
t
Xt(CU) — Xt(CU) — Ht(u)), Ht = / GS dS,
0

of a Brownian motion X .

Remark (Assumptions in Girsanov’s Theorem).

1) Absolute continuity and adaptedness of the “translation process” H; = fot G ds are
essential for the assertion of Theorem 2.10.

2) The assumption Eg[Z;,] = 1 ensuring that (Z;);<;, is a ()-martingale is not always
satisfied — a sufficient condition is given in Theorem 2.11 below. If (Z;) is not a martin-
gale w.r.t. () it can still be used to define a positive measure P; with density Z; w.r.t. ()
on each o-algebra F;. However, in this case, P;[)] < 1. The sub-probability measures

P; correspond to a transformed process with finite life-time.

Novikov’s condition

To verify the assumption in Girsanov’s theorem, we now derive a sufficient condition

for ensuring that the exponential
Zt = €xXp (Lt — 1/2 [L]t)

of a continuous local (F;) martingale is a martingale. Recall that Z is always a non-

negative local martingale, and hence a supermartingale w.r.t. (F;).
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Theorem 2.11 (Novikov 1971). Let to € R... If Elexp ([L]s,/2)] < 0o then (Zy)i<y, is

an (F;) martingale.
We only prove the theorem under the slightly more restrictive condition
Elexp(p[L]:/2)] < oo for some p > 1. (2.34)

This simplifies the proof considerably, and the condition is sufficient for many applica-

tions. For a proof in the general case and under even weaker assumptions see e.g. [37].

Proof. Let (T,,)nen be a localizing sequence for the martingale Z. Then (Ziar,, )i>0 IS a
martingale for any n. To carry over the martingale property to the process (Z;):c[o.4,] it
is enough to show that the random variables Z;,1., , n € N, are uniformly integrable for

each fixed ¢ < t,. However, for ¢ > 0 and p, ¢ € (1,00) withp~! + ¢~ = 1, we have

E [Zt/\Tn ; Zt/\Tn > C]

—1
= Efexp (L, = 5[Llnn,) exp (F5=[Lhnn,) § Zina, 2 (2.35)
< E[ p_2 1/p p—1 . 1/q
= €Xp (th/\Tn - 5 [L]t/\Tn)] B [eXp (q : —2 [L]t/\Tn) i Zint, = C}
< Elexp (B[LL) 5 Zing, > ]

2
for any n € N. Here we have used Holder’s inequality and the fact that exp (th/\Tn —

2

E-[L]iat, ) is an exponential supermartingale. If exp (5[L];) is integrable then the right

hand side of (2.35) converges to 0 uniformly in n as ¢ — oo, because
PlZir, >0 < ¢ ElZyr] < ' — 0

uniformly in n as ¢ — oo. Hence {Z;x1, : n € N} is indeed uniformly integrable, and

thus (Z¢):e(ot] is @ martingale. O

Example (Bounded drifts). If L, = fot Gy - dX, with a Brownian motion (X;) and
an adapted process (G;) that is uniformly bounded on [0, ] for any finite ¢ then the
quadratic variation [L], = [; |G,|? ds is also bounded for finite ¢. Hence exp(L — 3[L])
is an (F;) martingale for ¢ € [0, 00).

A more powerful application of Novikov’s criterion is considered in the beginning of

Section 2 4.
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Applications to SDE

The Girsanov transformation can be used to construct weak solutions of stochastic dif-

ferential equations. For example, consider an SDE
dX, = b(t,X,)dt+dB,, Xy = o, B ~ BM(RY), (2.36)

where b : R, x RY — R< is continuous, and o € R is a fixed initial value. If the drift
coefficient is not growing too strongly as |z| — oo, then we can construct a weak solu-
tion of (2.36) from Brownian motion by a change of measure. To this end let (X, () be
an (F;) Brownian motion with Xy = o Q-almost surely, and suppose that the following

assumption is satisfied:

Assumption (A). The process

t 1 t
Zy = exp (/ b(s, Xs) - dXs — 5/ b(s, X,)|? ds) , t>0,
0 0

is a martingale w.r.t. Q).

We will see later that the assumption is always satisfied if b is bounded, or, more gener-
ally, growing at most linearly in z. If (A) holds then E[Z;] = 1 for any ¢ > 0, and, by
Kolmogorov’s extension theorem, there exists a probability measure P on (£2,.4) such

that
dP

dQ
By Girsanov’s Theorem, the process

= 7 (2-almost surely for any ¢ > 0.

t
Bt = Xt —/ b(S,XS) dS, t Z 0,
0

is a Brownian motion w.r.t. P,i.e. (X, P) is a weak solution of the SDE (2.36).

More generally, instead of starting from a Brownian motion, we may start from a solu-
tion (X, @) of an SDE of the form

dXt = B(t, Xt) dt —+ O'(t, Xt) th (237)

where W is an R%-valued Brownian motion w.r.t. the underlying probability measure Q.

We change measure via an exponential martingale of type

t 1 [t
ze = e ([ o xaw— 5 [ s as)
0 0
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where b, 3 : R, x R* — R" and 0 : R, x R" — R"*? are continuous functions.

Corollary 2.12 (Drift transformations for SDE). Suppose that (X, Q) is a weak so-
lution of (2.37). If (Zt)i>0 is a Q-martingale and P < () on F; with relative density Z,
foranyt > 0, then (X, P) is a weak solution of

dX, = (B+ob)(t,X,)dt + o(t,X;)dB,, B ~ BM(RY). (2.38)
Proof. By (2.37), the equation (2.38) holds with
t
B, = W, —/ b(s, Xs) ds.
0

Girsanov’s Theorem implies that B is a Brownian motion w.r.t. P. U

Note that the Girsanov transformation induces a corresponding transformation for the

martingale problem: If (X, ()) solves the martingale problem for the operator

1 0P
_ = ij ) = ogoT 2
L 2;@ =55 t8 V. a=o0 (2.39)

then (X, P) is a solution of the martingale problem for

L = L+ (ob):V = L+b-o"V.

This “Girsanov transformation for martingale problems” carries over to diffusion pro-

cesses with more general state spaces than R".

Doob’s h-transform

The h-transform is a change of measure involving a space-time harmonic function that
applies to general Markov processes. In the case of Itd diffusions, it turns out to be a
special case of the drift transform studied above. Indeed, suppose that 1 € C1?(R, x
R™) is a strictly positive space-time harmonic function for the generator (2.39) of the
It6 diffusion (X, @), normalized such that (0, 0) = 1:

%—Fﬁh = 0, h(0,0) = 1. (2.40)
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Then, by It6’s formula, the process
Zy = h(t,Xy), t>0,

is a positive local ()-martingale satisfying Z; = 1 ()-almost surely. We can therefore
try to change the measure via (Z;). To understand the effect of such a transformation,

we write Z,; in exponential form. By the [t6-Doeblin formula and (2.40),
dZ, = (o'Vh)(t, X;) - dW,.

Hence Z; = exp(L; — [L];) where

t]_ t
L = / —dZz, = / (c'V1ogh)(s, X,) - dW,
0 Zs 0

is the stochastic logarithm of Z. Thus if (Z, () is a martingale, and P < () with local
densities 42| _ = Z, then (X, P) solves the SDE (2.37) with b = 67V log h, ie.,

dQ ’J—'t
dX, = (B+oc"Viogh)(t, X,) dt + o(t, X;) dB,;, B ~ BM(RY) wrt. P. (241)
The proces (X, P) is called the h-transform of (X, Q).
Example. If X; = IV, is a Brownian motion w.r.t. () then

dX, = Vlogh(t,X,)dt+dB;, B ~ BM(RY) wrt. P.

For example, choosing h(t, z) = exp(a -z — 1|a*t), € R?, (X, P) is a Brownian
motion with constant drift «v,1.e., dX; = adt + dB;.

2.4 Path integrals and bridges

One way of thinking about a stochastic process is to interpret it as a probability mea-
sure on path space. This useful point of view will be developed further in this and the

following section. We consider an SDE

dW, = b(W,)dt+dB;, Wy = o, B ~ BM(RY (2.42)
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with initial condition 0 € R? and b € C(R¢,R?). We will show that the solution con-
structed by Girsanov transformation is a Markov process, and we will study its transition
function, as well as the bridge process obtained by conditioning on a given value at a
fixed time.

Let y1, denote the law of Brownian motion starting at o on (€2, V') where Q = C(R, , R¢)

and W;(z) = x; is the canonical Brownian motion on (£2, 14,). Let

¢ t
Z; = exp (/ b(Wy) - dW, — %/ |b(W5)|2d8) : (2.43)
0 0

Note that if b(x) = —V H (x) for a function H € C?(R?) then by Itd’s formula,

1 t
Z, = exp (H(WO) — H(W,) + 5/ (AH — |[VH|?) (W) ds) : (2.44)

0
This shows that Z is more robust w.r.t. variations of (W) if b is a gradient vector field,
because (2.44) does not involve a stochastic integral. This robustness is crucial for

certain applications, see the example below. Similarly as above, we assume:
Assumption (A). The exponential (Z;);>¢ is a martingale w.r.t. 1.

We note that by Novikov’s criterion, the assumption always holds if
b(z)] < - (1+]2]) for some finite constant ¢ > 0 : (2.45)

Exercise (Martingale property for exponentials). Prove that (7;) is a martingale if
(2.45) holds. Hint: Prove first that Elexp [; |b(W;)|*ds] < oo for e > 0 sufficiently
small, and conclude that E[Z.] = 1. Then show by induction that E|Zy.] = 1 for any
k € N.

If (A) holds then by the Kolmogorov extension theorem, there exists a probability mea-
sure 12 on FY such that 4% and 1, are mutually absolutely continuous on each of the
o-algebras F}V, ¢ € [0, 00), with relative densities
dyh
dpo 1 7YY

= Zt Ho-a.S.
Girsanov’s Theorem implies:

Corollary 2.13. Suppose that (A) holds. Then:
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1) The process (W, i) is a weak solution of (2.36).

2) For any t € [0,00), the law of (W, ub) is absolutely continuous w.r.t. Wiener

measure |1, on F}V with relative density Z;.

The first assertion follows since B; = W, — f(f b(Wy) ds is a Brownian motion w.r.t. ,ug,

and the second assertion holds since 2 o W= = 0.

Path integral representation

Corollary 2.13 yields a rigorous path integral representation for the solution (W, 11%) of
the SDE (2.36): If 1" denotes the law of (W,),<; on C([0, ], R?) w.rt. pf then

t t
poi(dz) = exp (/ b(xs) - dxs — %/ b(x,)|? ds) plt(d). (2.46)
0 0

By combining (2.46) with the heuristic path integral representation

1 1/t

0<s<t

of Wiener measure, we obtain the non-rigorous but very intuitive representation

1 1 [t
13 bt / 2 2
“(d. = — —— —b(zs)|*ds | do(d dxg 247
prg (dx) eXP( 2/0\568 (@s)] 8) o(dzy) ] de (247)
0<s<t
of 2. Hence intuitively, the “likely” paths w.r.t. u>! should be those for which the

action functional
1 t
I(x) = —/ }xls—b(xs)’z ds
2 Jo

takes small values, and the “most likely trajectory” should be the solution of the deter-
ministic ODE

T, = b(s,xs)

obtained by setting the noise term in the SDE (2.36) equal to zero. Of course, these
arguments do not hold rigorously, because (x) = oo for pu2*- and p%¢- almost every .
Nevertheless, they provide an extremely valuable guideline to conclusions that can then

be verified rigorously, for instance via (2.46).
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Example (Likelihood ratio test for non-linear filtering). Suppose that we are observ-
ing a noisy signal (z;) taking values in R¢ with 2y = 0. We interpret (;) as a realization
of a stochastic process (X;). We would like to decide if there is only noise, or if the
signal is coming from an object moving with law of motion dx/dt = —V H(x) where
H € C?*(R%). The noise is modelled by the increments of a Brownian motion (white
noise). This is a simplified form of models that are used frequently in nonlinear filtering
(in realistic models often the velocity or the acceleration is assumed to satisfy a similar

equation). In a hypothesis test, the null hypothesis and the alternative would be

HQ . Xt = Bt7
H1 : dXt = b(Xt) dt + ch
where (B;) is a d-dimensional Brownian motion, and b = —V H. In a likelihood ratio

test based on observations up to time ¢, the test statistic would be the likelihood ratio
dpbt /dult which by (2.44) can be represented in the robust form
d ,ub,t
dug’t

The null hypothesis H, would then be rejected if this quantity exceeds some given value

(x) = exp (H(azo) — H(xy) + %/0 (AH — |[VH?)(x,) ds) (2.48)

c for the observed signal z, i.e. , if
1 t
H(xo) — H(zy) + 5/ (AH — |VH|2)(x8) ds > logec. (2.49)
0

Note that the robust representation of the density ensures that the estimation procedure is
quite stable, because the log likelihood ratio in (2.49) is continuous w.r.t. the supremum
norm on C([0, t], R%).

The Markov property

Recall that if (A) holds then there exists a (unique) probability measure ,ug on (€2, ]-"OVX )
such that
pwl[A] = E,[Z; Al  forany t >0 and A€ F)".

Here F, denotes expectation w.r.t. Wiener measure p, with start in . By Girsanov’s
Theorem, the process (W, %) is a weak solution of (2.42). Moreover, we can easily

verify that (W, %) is a Markov process:
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Theorem 2.14 (Markov property). If (A) holds then (W, 1ib) is a time-homogeneous

Markov process with transition function
Pz, C) = W, eCl = EJZ;W,e€C] VCeBRY.

Proof. Let 0 < s < t,and let f : R — R, be a non-negative measurable function.

Then, by the Markov property for Brownian motion,

EJfW)IFY] = Elf(W)Z|F)Z,
= mfwyes ([T aw— 5 [ povra) 2]
= BwlfWiaZid = (o))

to- and p8-almost surely where E° denotes the expectation w.r.t. ub. O

Remark. 1) If b is time-dependent then one verifies in the same way that (W, %) is a
time-inhomogeneous Markov process.
2) It is not always easy to prove that solutions of SDE are Markov processes. If the

solution is not unique then usually, there are solutions that are not Markov processes.

Bridges and heat kernels

We now restrict ourselves to the time-interval [0, 1], i.e., we consider a similar setup
as before with 2 = C([0, 1], R?). Note that F}" is the Borel o-algebra on the Banach
space €2. Our goal is to condition the diffusion process (W, 1) on a given terminal value
Wi = y,y € R More precisely, we will construct a regular version y > u’  of the

conditional distribution p°[-|W; = y] in the following sense:
(i) Foranyy € R?, b is a probability measure on B(Q),and i ,[Wy = y| = 1.

(ii) Disintegration: For any A € B(RQ), the functiony — b [A] is measurable, and
WAL = [ kAo dy).

(iii) The map y — ugy is continuous w.r.t. weak convergence of probability measures.
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Example (Brownian bridge). For b = 0, a regular version y — p,, of the condi-
tional distribution p,[ - [W; = y] w.r.t. Wiener measure 1, can be obtained by linearly
transforming the paths of Brownian motion, cf. Theorem 8.11 in [14]: Under u,, the
process

X! = W, —tW; + ty, 0<t<1,

is independent of W/ with terminal value y, and the law y, , of (X )te[o,l} w.rt. f, 1S
a regular version of y,[ - |[W; = y|. The measure /i, is called “pinned Wiener mea-

sure”.

The construction of a bridge process described in the example only applies for Brown-
ian motion and other Gaussian processes. For more general diffusions, the bridge can
not be constructed from the original process by a linear transformation of the paths. For
perturbations of a Brownian motion by a drift, however, we can apply Girsanov’s The-

orem to construct a bridge measure.

We assume for simplicity again that b is the gradient of a C'? function:
b(r) = —VH(z) with H<cC*R?).
Then the exponential martingale (Z;) takes the form
Zi = exp <H<W0> ~H(W) + 5 / (AH - |vHP).) ds) ,

cf. (2.44). Note that the expression on the right-hand side is defined /i, ,-almost surely
for any y. Therefore, (Z;) can be used for changing the measure w.r.t. the Brownian

bridge.
Theorem 2.15 (Heat kernel and Bridge measure). Suppose that (A) holds. Then:

1) The measure p3(o,dy) is absolutely continuous w.rt. d-dimensional Lebesgue

measure with density
plf(oa y) = pioy) EoylZ].

2) A regular version of 2| - |W, = y] is given by

b _ oploy) epH) (1N e .
phy(dr) = D OPLO o ([ A~ [VHP)02) ds ) (i),
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The theorem yields the existence and a formula for the heat kernel p8 (o, y), as well as a

path integral representation for the bridge measure ug,y:

1
y(dn) oo (5 [ (A VP d5) puylde). @50)
0

Proofof2.15. Let F : Q — R, and ¢ : R — R, be measurable functions. By the

disintegration of Wiener measure into pinned Wiener measures,
ES[F cgW)] = E[FgW)Z] = /Eo,y[le] 9(y) p1(0,y) dy.
Choosing F' = 1, we obtain

/ o) o, dy) = / 9(y) By Z1) pr(0y) dy

for any non-negative measurable function g, which implies 1).

Now, choosing g = 1, we obtain by 1) that

E, |FZ

Ej[F] = /Eo,y[FZl] pi(o,y)dy = / Pey[P 2] pilo,dy)  (251)
Eo,y[Zl]

= / ES[F] pi(o, dy) (2.52)

This proves 2), because W7 =y ugy—a.s., and y — ,ugy is weakly continuous. U

Remark (Non-gradient case). If b is not a gradient then things are more involved be-
cause the expressions for the relative densities Z; involve a stochastic integral. In prin-
ciple, one can proceed similarly as above after making sense of this stochastic integral

for y,,,-almost every path x.

Example (Reversibility in the gradient case). The representation (2.50) immediately
implies the following reversibility property of the diffusion bridge when b is a gradient:
If R:C([0,1],RY) — C([0, 1], RY) denotes the time-reversal defined by (Rx); = x1_4,
then the image ug’y o R~! of the bridge measure from o to y coincides with the bridge
measure MZ,O from y to o. Indeed, this property holds for the Brownian bridge, and the

relative density in (2.50) is invariant under time reversal.
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SDE for diffusion bridges

An important application of the h-transform is the interpretation of diffusion bridges by
a change of measure w.r.t. the law of the unconditioned diffusion process (W, u%) on
C([0, 1], R?) satisfying

dW, = dB,+bW,)dt, W, = o,

with an R%-valued Brownian motion 3. We assume that the transition density (¢, z, y) +
p2(x,y) is smooth for ¢ > 0 and bounded for ¢ > ¢ for any ¢ > 0. Then for y € R,

p2(-,y) satisfies the Kolmogorov backward equation

9
api’(-,y) = L'}(.y) forany t >0,

where £° = LA + b - V is the corresponding generator. Hence
2

ht,z) = pl_(zy)/pioy), t <1,

is a space-time harmonic function with h(0,0) = 1. Since h is bounded for t < 1 — ¢
for any ¢ > 0, the process h(t, W;) is a martingale under 4 for t < 1. Now let ugvy be
the measure on C([0, 1], R?) that is absolutely continuous w.r.t. u> on F}V with relative
density h(t, W) for any ¢t < 1. Then the marginal distributions of the process (W;);<1

under %, pib | respectively are

Wiy oo s Wa) ~ 0} (0, 20)ph, _y (21, 2) - - -pfk_tk_l(:pk_l, ) A (dx) wart. pb,

b b b b
N ptl(O, 561)pt2_t1(£1717372)";)ptk_tk,_l(ﬂfk17$k)p1_tk(5€k,y) )\k(d:c) WL ng.
pi(o,y) ’

This shows that y — ugy coincides with the regular version of the conditional distribu-
tion of p’ given W1, ie., ,uf;y is the bridge measure from o to y. Hence, by Corollary

2.12, we have shown:

Theorem 2.16 (SDE for diffusion bridges). The diffusion bridge (W, 1ib ) is a weak
solution of the SDE

dW, = dB; + b(W,)dt + (Vlegpt ,(-,y)(W,) dt, t < 1. (2.53)
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Note that the additional drift 3(¢,7) = Vlogp? ,(-,y)(z) is singular as ¢ 1 1. Indeed,
if at a time close to 1 the process is still far away from vy, then a strong drift is required

to force it towards y. On the o-algebra 7", the measures % and s, , are singular.

Remark (Generalized diffusion bridges). @ Theorem 2.16 carries over to bridges
of diffusion processes with non-constant diffusion coefficients . In this case, the
SDE (2.53) is replaced by

AW, = o(W,) dB; + b(W;) dt + (00" Vlogpi_i(-,y)) (W) dt. (2.54)

The last term can be interpreted as a gradient of the logarithmic heat kernel w.r.t. the

Riemannian metric g = (c07)~" induced by the diffusion process.

2.5 Large deviations on path spaces

In this section, we apply Girsanov’s Theorem to study random perturbations of a dy-

namical system of type
dX: = b(X])dt++/edBy, X; = 0, (2.55)

asymptotically as € | 0. We show that on the exponential scale, statements about the
probabilities of rare events suggested by path integral heuristics can be put in a rigorous
form as a large deviation principle on path space. Before, we give a complete proof of

the Cameron-Martin Theorem.

Let Q = Cy([0, 1], RY) endowed with the supremum norm ||w|| = sup {|w(#)| : t € [0,1]},
let 4+ denote Wiener measure on B(€), and let W (w) = w(t).

Translations of Wiener measure
For h € (), we consider the translation operator 7, : {2 — (2,
Th (w) = w + h,

and the translated Wiener measure p, 1= po 7, '
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Theorem 2.17 (Cameron, Martin 1944). Let h € ). Then pu; < p if and only if h is

contained in the Cameron-Martin space
Hey = {he€Q : hisabsolutely contin. with ' € L*([0, 1],Rd)} :

In this case, the relative density of py w.r.t. | is

dpn [ e
- = hy-dWs — — hg|” ds ). 2.56

Proof. “=" is a consequence of Girsanov’s Theorem: For h € H¢y,, the stochastic
integral [ 1 - dW has finite deterministic quadratic variation [ [ &' - dW]; = fol |h/|? ds.

Hence by Novikov’s criterion,
y

t 1 t
Zy = exp(/ h’-dW——/ |n'|? ds)
0 2.Jo

is a martingale w.r.t. Wiener measure p. Girsanov’s Theorem implies that w.r.t. the

measure v = Z; - p, the process (V) is a Brownian motion translated by (h;). Hence

pn = po(W+h)t = voW !l = u

“«<=" To prove the converse implication let i € €2, and suppose that y; < u. Since W
is a Brownian motion w.r.t. £, W — h is a Brownian motion w.r.t. u;,. In particular, it
is a semimartingale. Moreover, 11/ is a semimartingale w.r.t. 1 and hence also w.r.t. y,.
Thus h = W — (W — h) is also a semimartingale w.r.t. 15, Since h is deterministic, this

implies that h has finite variation. We now show:
Claim. The map g — fol g - dh is a continuous linear functional on L2([0, 1], R%).

The claim implies h € H¢). Indeed, by the claim and the Riesz Representation Theo-
rem, there exists a function f € L*([0, 1], R?) such that

1 1
/ g-dh = / g- fds forany g € L*([0, 1], R%).
0 0

Hence h is absolutely continuous with /' = f & L*([0,1],R?). To prove the claim
let (g,,) be a sequence in L2([0,1], RY) with ||g,||zz= — 0. Then by Ito’s isometry,
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[ gn dW — 0in L?*(1t), and hence p- and ju,-almost surely along a subsequence. Thus

also
/gn-dh = /gn~d(W+h)—/gn~dW — 0

p-almost surely along a subsequence. Applying the same argument to a subsequence of
(9n), we see that every subsequence (g, ) has a subsequence (g, such that [ §,-dh — 0.
This shows that [ g, - dh converges to 0 as well. The claim follows, since (g,,) was an

arbitrary null sequence in L2([0, 1], R9). O

A first consequence of the Cameron-Martin Theorem is that the support of Wiener mea-
sure is the whole space 2 = Cy([0, 1], R%):

Corollary 2.18 (Support Theorem). For any h € Q2 and § > 0,
pl{weQ : |lw—"n||<d}] > o

Proof. Since the Cameron-Martin space is dense in {2 w.r.t. the supremum norm, it is
enough to prove the assertion for h € H¢y,. In this case, the Cameron-Martin Theorem

implies
W —hl <o) = walwli<s > o
as p[||[W]| < 0] > 0and p_p < p. m
Remark (Quantitative Support Theorem). More explicitly,
plW=nll<d] = pa[Iwil<d]
1 1 [
= E[exp(—/ o dW — —/ |n'|? ds) ; max |[Ws| <6
0 2 Jo s=l

where the expectation is w.r.t. Wiener measure. This can be used to derive quantitative

estimates.

Schilder’s Theorem

We now study the solution of (2.55) for b = 0, i.e.,

X: = EB, telol]
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with e > 0 and a d-dimensional Brownian motion ( B;). Path integral heuristics suggests

that for h € Heyy,

h
1 P[)(‘5 =~ h] = M[W ~ %} ~ e_I(h/\/g) — e—f(h)/a 9

where [ : Q) — [0, 0o] is the action functional defined by

W'(s)|?ds ifw € Hey,
I(w) _ fo | | CM

+o0 otherwise.

The heuristics can be turned into a rigorous statement asymptotically as € — 0 on the
exponential scale. This is the content of the next two results that together are know as

Schilder’s Theorem:
Theorem 2.19 (Schilder’s large derivation principle, lower bound).

1) Forany h € Hopr and § > 0,

limui)nf elog u[veW € B(h,8)] > —I(h).

2) For any open subset U C (2,

lini%nfglog pvVew eU] > —inf I(w).

welU
Here B(h,0) ={w € Q : ||w — h|| < J} denotes the ball w.r.t. the supremum norm.

Proof. 1) Let ¢ = \/81(h). Then for € > 0 sufficiently small,

u[VEW € B(h,0)] = u[W € B(h/VE,5/VE)]
= N—h/\/E[B(O 5/\/_)}

— E[exp( \/_ h’ dW——/ |n'|? ds) ; (,%)]
exp(—%](h)—%)u[{/o h’-dWSc}ﬂB(O,%)}
%exp <—§](h) — 8I(h)>

v

v

3

Stochastic Analysis Andreas Eberle
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where [ stands for expectation w.r.t. Wiener measure. Here we have used that

1 1 9
u[/ h’-dW>c] < CQE[(/ h’~dW> } = 2(h)/E < 1/4
0 0
by Itd’s isometry and the choice of c.

2) Let U be an open subset of Q2. For h € U N H¢yy, there exists § > 0 such that
B(h,d) C U. Hence by 1),

limiionf elog ulv/eW eU] > —I(h).

Since this lower bound holds for any h € U N Heyy, and since I = coon U \ Heyy, we

can conclude that

o S . .
hr?iénf elog u[\/eW e U] > heUlr?IECM I(h) ul}rgllf] I(w)

O

To prove a corresponding upper bound, we consider linear approximations of the Brow-

nian paths. For n € N let
W = (1= $)Wim + $Wis1/n
whenever t = (k + s)/nfork € {0,1,...,n— 1} and s € [0, 1].
Theorem 2.20 (Schilder’s large deviations principle, upper bound).
1) Foranyn € Nand A > 0,

limsup elog u[l(veEW™) >\ < =\
el0

2) For any closed subset A C (),

limsup elog pu[v/eW € 4] < —inf I(w).
el0 wEA

Proof. 1) Lete > 0and n € N. Then

1 n
I(Vew®™) = §5Zn(Wk/n—W<k—1>/n>2-
k=1
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Since the random variables 7y, := /n - (W}, m—Wa-1 /n) are independent and standard

normally distributed, we obtain
PIVEW) =N = [ Il = 23/e]
< exp(—2Ac/e) [exp( Z|77k| )]

where the expectation on the right hand side is finite for ¢ < 1/2. Hence forany ¢ < 1/2,

limsup elog p[I(veW™) >\ < —2c\.
el0

The assertion now follows as ¢ T 1/2.

2) Now fix a closed set A C Q and A < inf {/(w) : w € A}. To prove the second

assertion it suffices to show

limsup elog p[v/eW € A] < -\ (2.57)
el0

By the Theorem of Arzéla-Ascoli, the set {I < A} is a compact subset of the Banach
space €2. Indeed, by the Cauchy-Schwarz inequality,

lw(t) — ’/ du < VoaVi—s Vs, telo,1]

holds for any w € €2 satisfying /(w) < A. Hence the paths in {/ < A} are equicontinu-
ous, and the Arzéla-Ascoli Theorem applies.

Let 0 denote the distance between the sets A and {/ < A} w.r.t. the supremum norm.
Note that § > 0, because A is closed, {/ < A} is compact, and both sets are disjoint by

the choice of . Hence for £ > 0, we can estimate

plvVew e 4] < M[[(\/EW(”)) > A+ pll[vVeEW — \/EW(n)Hsup > 4].

The assertion (2.57) now follows from

limsup elog u[l(vEW™)>A] < =X, and (2.58)
el0

limsup elog p[||W — W™ || >0/vE] < =\ (2.59)
el0

The bound (2.58) holds by 1) for any n € N. The proof of (2.59) reduces to an estimate
of the supremum of a Brownian bridge on an interval of length 1/n. We leave it as an

exercise to verify that (2.59) holds if n is large enough. L
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Remark (Large deviation principle for Wiener measure). Theorems 2.19 and 2.20
show that

plvew € Al ~ exp ( ! inf [(w))

£ weA
holds on the exponential scale in the sense that a lower bound holds for open sets and
an upper bound holds for closed sets. This is typical for large deviation principles,
see e.g. [10] or [11]. The proofs above based on “exponential tilting” of the underly-
ing Wiener measure (Girsanov transformation) for the lower bound, and an exponential
estimate combined with exponential tightness for the upper bound are typical for the

proofs of many large deviation principles.

Random perturbations of dynamical systems

We now return to our original problem of studying small random perturbations of a

dynamical system

dX; = b(X;)dt++/edBy, X; = 0. (2.60)
This SDE can be solved pathwise:
Lemma 2.21 (Control map). Suppose that b : R — R is Lipschitz continuous. Then:

1) Forany functionw € C([0, 1], RY) there exists a unique functionx € C([0, 1], R?)
such that

o) = /Otb(a:(s))derw(t) vielo1]. 2.61)

The function x is absolutely continuous if and only if w is absolutely continuous,

and in this case,

() = bxt)+w'(t) forae. te|0,1]. (2.62)

2) The control map J : C([0,1],RY) — C([0,1],R?) that maps w to the solution
J(w) =z of (2.61) is continuous.

University of Bonn Summer Semester 2015



98 CHAPTER 2. TRANSFORMATIONS OF SDE

Proof. 1) Existence and uniqueness holds by the classical Picard-Lindelof Theorem.
2) Suppose that z = J(w) and 7 = J(w) are solutions of (2.61) w.r.t. driving paths
w,w € C[0,1],R%). Then for t € [0, 1],

o) =0 = | [ 0o - 0360 ds + VElD) - 300
< [ o)~ 306) ds -+ VEI(Om — 300
where I € R, is a Lipschitz constant for b. Gronwall’s Lemma now implies
o)~ 0] < exp(tD) VEllo —Blluy W€ [0,1],

and hence
||l’ - ZEHsup S eXp(L) \/g ||w - wHSUP'

This shows that the control map 7 is even Lipschitz continuous. L
For £ > 0, the unique solution of the SDE (2.60) on [0, 1] is given by
X¢ = J(V/eB).

Since the control map J is continuous, we can apply Schilder’s Theorem to study the

large deviations of X*® as e | 0:

Theorem 2.22 (Fredlin & Wentzel 1970, 1984). If b is Lipschitz continuous then the

large deviations principle
limiénf elog PIX*e€U] > - in(f] Iy(z)  forany openset U C Q,
[ fAS
limui)nf elog P[IX*e€ Al > - in£ Iy(z)  forany closed set A C Q,
3 xe

holds, where the rate function I, : Q2 — [0, 00| is given by

LM a/(s) — b(x(s))2ds  for = € How,
+00 for xr e Q\HCM

Ib(ZL‘) =
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Proof. For any set A C (2, we have
PX*€eAl = PNeBeJ 'A)] = ulVeW e g '(4)].
If A is open then 7 ~!(A) is open by continuity of 7, and hence

liminf elog P[X°€ A] > — inf I
iminf ¢log P ] = LN (w))

by Theorem 2.19. Similarly, if A is closed then 7 ~!(A) is closed, and hence the corre-

sponding upper bound holds by Theorem 2.20. Thus it only remains to show that

inf [ = f I
elnf @) inf Iy().

To this end we note that w € J'(A) if and only if z = J(w) € A, and in this case

w' = a2’ — b(z). Therefore,

inf I(w) = inf / ' (s)|? ds
weJT ~1(A) weJT ~1(A) OHCM 2
_ . = 2 _
= me;ggmgx( s) — b(z(s))[” ds f I,(z).

O

Remark. The large deviation principle in Theorem 2.22 generalizes to non-Lipschitz
continuous vector fields b and to SDEs with multiplicative noise. However, in this case,
there is no continuous control map that can be used to reduce the statement to Schilder’s

Theorem. Therefore, a different proof is required, cf. e.g. [10].
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Chapter 3
Extensions of 1to calculus

This chapter contains an introduction to some important extensions of Itd calculus and
the type of SDE considered so far. We will consider SDE for jump processes driven
by white and Poisson noise, Stratonovich calculus and Brownian motion on curved
surfaces, stochastic Taylor expansions and numerical methods for SDE, local times and

a singular SDE for reflected Brownian motion, as well as stochastic flows.

We start by recalling a crucial martingale inequality that we will apply frequently to
derive L? estimates for semimartingales. For real-valued cadlag functions x = (x¢):>0
we set

xy = sup|wz for t > 0, and xy = |xol.
s<t

Then the Burkholder-Davis-Gundy inequality states that for any p € (0, 00) there

exist universal constants ¢, C,, € (0, c0) such that the estimates

6 E[MPP) < E(MLY] < Gy E[MEL] G.1)

o0

hold for any continuous local martingale M satisfying M, = 0, cf. [37]. The inequality
shows in particular that for continuous martingales, the H? norm, i.e., the LP norm of
M, is equivalent to E[[M]%.*]"/?. Note that for p = 2, by It6’s isometry and Doob’s
L* maximal inequality, Equation (3.1) holds with ¢, = 1 and C}, = 4. The Burkholder-
Davis-Gundy inequality can thus be used to generalize arguments based on It6’s isome-
try from an L? to an L? setting. This is, for example, important for proving the existence

of a continuous stochastic flow corresponding to an SDE, see Section 3.6 below.
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3.1. SDE WITH JUMPS 101

In these notes, we only prove an easy special case of the Burkholder-Davis-Gundy in-

equality that will be sufficient for our purposes: For any p € [2, c0),

E[(Mp)P]MP < \Je/2p E[[MI*MP (32)

This estimate also holds for cadlag local martingales and is proven in Theorem 5.24.

3.1 SDE with jumps

Let (S,S, ) be a o-finite measure space, and let d,n € N. Suppose that on a proba-
bility space (€2, A, P), we are given an R%-valued Brownian motion (B;) and a Poisson
random measure N (dt dy) over Ry x S with intensity measure A\ ) ® v. Let (F)
denote a complete filtration such that (B;) is an (F;) Brownian motion and N;(B) =

N((0,t] x B) is an (F;) Poisson point process, and let

N(dtdy) = N(dt dy) — Xo,0)(dt) v(dy).

If T is an (F;) stopping time then we call a predictable process (w,t) — G(w) or
(w,t,y) — Gi(y)(w) defined for finite ¢ < T'(w) and y € S locally square integrable
iff there exists an increasing sequence (7,,) of (F;) stopping times with 7" = sup 7,
such that for any n, the trivially extended process Gy Iy<r,) is contained in L2(P ®
A), L2(P ® \ ® v) respectively. For locally square integrable predictable integrands,
the stochastic integrals [; G, dB, and Joaxs Gs(¥) N(ds dy) respectively are local
martingales defined for ¢ € [0, 7).

In this section, we are going to study existence and pathwise uniqueness for solutions

of stochastic differential equations of type

dX; = b(X)dt+ o (X) dBt+/ ¢ (X,y) N(dt dy). (3.3)

yeSs

Here b : R, x D(R,,R") — R", 5 : R, x D(R,,R") — R4 and ¢ : R, x
D(R,,R™) x S — R™ are cadlag functions in the first variable such that b;, o, and ¢;
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102 CHAPTER 3. EXTENSIONS OF ITO CALCULUS

are measurable w.r.t. the o-algebras B; := o(x — x5 : s < t), B, ® S respectively for

any t > 0. We also assume local boundedness of the coefficients, i.e.,

sup. sup sup (|bs(z)] + [los(z)]| + les(z,y)]) < oo (34

s<t zxy<r ye

forany ¢,r € (0,00).

Note that the assumptions imply that b is progressively measurable, and hence b;(z) is
a measurable function of the path (z;)s<; up to time ¢. Therefore, b,(z) is also well-
defined for cadlag paths (z)s<. with finite life-time ¢ provided ¢ > t. Corresponding
statements hold for o, and ¢;. Condition (3.4) implies in particular that the jump sizes are
locally bounded. Locally unbounded jumps could be taken into account by extending
the SDE (3.3) by an additional term consisting of an integral w.r.t. an uncompensated

Poisson point process.
Definition. Suppose that T is an (F) stopping time.

1) A solution of the stochastic differential equation (3.3) for t < T is a cadlag (F;)

adapted stochastic process (X,);<r taking values in R" such that almost surely,

t t
X = Xo+ [ 0 dst [a(X)dBt [ (X Nidsdy) 339
0 0 (0, xS
holds for anyt < T'.

2) A solution (X,);<r is called strong iff it is adapted w.r.t. the completed filtration
F? = o(Xo, FP ’N)P generated by the initial value, the Brownian motion and the

Poisson point process.

For a strong solution, X, is almost surely a measurable function of the initial value X
and the processes (B;)s<: and (Ns)s<; driving the SDE up to time ¢. In Section 2.1, we

saw an example of a solution to an SDE that does not possess this property.

Remark. The stochastic integrals in (3.5) are well-defined strict local martingales.
Indeed, the local boundedness of the coefficients guarantees local square integrabil-

ity of the integrands as well as local boundedness of the jumps for the integral w.r.t.
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N. The process o,(X) is not necessarily predictable, but observing that oy(X (w)) =
0s—(X(w)) for P ® X almost every (w, s), we may define

/ 0,(X) dB, = / o, (X) dB,.

LP Stability

In addition to the assumptions above, we assume from now on that the coefficients in

the SDE (3.3) satisfy a local Lipschitz condition:

Assumption (Al). For any ty € R, and for any open bounded set U C R", there
exists a constant L € R such that the following Lipschitz condition Lip(to, U) holds:

[be(2) = 0e(@)] + [ow(z) — o @] + ez, 0) — cr(T, 0)l[12) < L -sup fzs — 7|

foranyt € [0,to) and z,x € D(R,R™) with x4, 7, € U for s < t,.

We now derive an a priori estimate for solutions of (3.3) that is crucial for studying

existence, uniqueness, and dependence on the initial condition:

Theorem 3.1 (A priori estimate). Fix p € [2,00) and an open set U C R", and let
T be an (F;) stopping time. Suppose that (X;) and ()?t) are solutions of (3.3) taking
values in U fort <'T', and let
& = F [ sup | X —)?s|p} )
S<IANT

If the Lipschitz condition Lip(ty, U) holds then there exists a finite constant C € R,
depending only on p and on the Lipschitz constant L such that for any t < t,

t
g < C- (€0+/ €s ds), and (3.6)
0

e < C-e%e,. (3.7)

Proof. We only prove the assertion for p = 2. For p > 2, the proof can be carried out
in a similar way by relying on Burkholder’s inequality instead of Itd’s isometry.

Clearly, (3.7) follows from (3.6) by Gronwell’s lemma. To prove (3.6), note that

t t
X, = X0+/ bs(X) d5+/ oy (X) st+/ o (X,y) Ndsdy) Vt<T,
0 0 (0,4]xS
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and an analogue equation holds for X. Hence for ¢ < to,

(X =X)iy < 1410+ +1V,  where (3.8)
I - ‘XO - )?0‘,
tAT _
= / 1b5(X) — by(X)] ds,
0
I = sup ’/ (04(X) —04(X))dB,|, and
u<tAT 0
Vo= s | [ (e () - (R (s dy)|
u<tAT
(0,u]xS

The squared L2-norms of the first two expressions are bounded by
E[I’l] = &, and

tAT _ t
BE? < L%E[/ (X—X)ﬁst} < L%/ e, ds.
0 0

Denoting by M, and K, the stochastic integrals in III and IV respectively, Doob’s

inequality and Itd’s isometry imply
EMr) = E[M,7] < A4B[M,]

tAT ~ t
- 4E[/ Has(X)—as(X)H?ds] < 4L2/ e, ds,
0 0

EV?] = EIK5G] < 4E[K,]
tAT _ t
= 4E[/ /|CS_(X, y) — co_ (X, y)|? v(dy) ds} < 4L2/ g5 ds.
0 0
The assertion now follows since by (3.8),
e = B[(X-X)5%] < 4 -E+12+11° 41V
O

The a priori estimate shows in particular that under a global Lipschitz condition, solu-
tions depend continuously on the initial condition in mean square. Moreover, it implies

pathwise uniqueness under a local Lipschitz condition:
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Corollary 3.2 (Pathwise uniqueness). Suppose that Assumption (Al) holds. If (X;)
and ()?t) are strong solutions of (3.1) with Xo = )?0 almost surely then

P[Xt:Xt foranyt} = 1.

Proof. For any open bounded set U C R™ and ¢, € R, the a priori estimate in Theorem
3.1 implies that X and X coincide almost surely on [0, tg A Tyre) where Ty denotes the

first exit time from U. 0]

Existence of strong solutions

To prove existence of strong solutions, we need an additional assumption:

Assumption (A2). Foranyt, € Ry,

sup/|ct(0,y)|2 v(dy) < oo.

t<to

Here 0 denotes the constant path x = 0 in D(R,,R™).
Note that the assumption is always satisfied if ¢ = 0.

Remark (Linear growth condition). If both (A2) and a global Lipschitz condition
Lip(to, R™) hold then there exists a finite constant C'(¢,) such that for any x € D(R,, R"),

sup (@) + @+ [ et vidy) < Clo)- () (9)

t<to

Theorem 3.3 (It6). Let £ : Q0 — R" be a random variable that is independent of the
Brownian motion B and the Poisson random measure N .

1) Suppose that the local Lipschitz condition (Al) and (A2) hold. Then (3.1) has a

strong solution (X;)i<¢ with initial condition X, = ¢ that is defined up to the

explosion time
¢ = supTy, where T, = inf{t>0:|X,| > k}.

2) If, moreover, the global Lipschitz condition Lip(ty, R™) holds for any t, € R,

then ¢ = oo almost surely.
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Proof of 3.3. We first prove existence of a global strong solution (X;):c[0,0c) assuming
(A2) and a global Lipschitz condition Lip(¢o, R™) for any ¢t € R, . The first assertion

will then follow by localization.

For proving global existence we may assume w.l.0.g. that £ is bounded and thus square
integrable. We then construct a sequence (X™) of approximate solutions to (3.1) by a

Picard-Lindelof iteration,i.e.,fort > 0 and n € Z, we define inductively

X; = & (3.10)

t t _
th+1 = §+/ bs(Xn) d5+/ Us(Xn> dBs + / Csf(Xnay) N<d3 dy)
0 0
(0,t] xS

Fix ¢ty € [0,00). We will show below that Assumption (A2) and the global Lipschitz

condition imply that

(i) for any n € N, X" is a square integrable (F}) semimartingale on [0, %] (i.e.,
the sum of a square integrable martingale and an adapted process with square

integrable total variation), and
(ii) there exists a finite constant C'(¢y) such that the mean square deviations
1 2
A} = E[XT X7
of the approximations X™ and X" ! satisfy

t
A< C(to)/ A"ds  forany n >0 and t < t,.
0

Then, by induction,
tn
AP < Clto)" = A7 forany n €N and t <t
n:

In particular, >~ | A}’ < oco. An application of the Borel-Cantelli Lemma now shows
that the limit X, = lim, ., X exists uniformly for s € |0, ¢o] with probability one.
Moreover, X is a fixed point of the Picard-Lindel6f iteration, and hence a solution of
the SDE (3.1). Since ¢, has been chosen arbitrarily, the solution is defined almost surely

on [0, 00), and by construction it is adapted w.r.t. the filtration (F?).
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We now show by induction that Assertion (i) holds. If X™ is a square integrable
(F?) semimartingale on [0, o] then, by the linear growth condition (3.9), the process
1bs(X™))2 + ||os(X™)|]> + [ |es(X™ y)[> v(dy) is integrable w.r.t. the product measure
P & Ao,t)- Therefore, by 1t6’s isometry, the integrals on the right hand side of (3.10)
all define square integrable (F) semimartingales, and thus X" is a square integrable

(F?) semimartingale, too.

Assertion (ii) is a consequence of the global Lipschitz condition. Indeed, by the Cauchy-
Schwarz inequality, Itd’s isometry and Lip(to, R™), there exists a finite constant C'(¢y)
such that

AL = g [(Xn+2 _Xn+1):2i|

< 3tE Uot [bs(X™H) — by(X™)|* ds} +3E Uot oo (X4 — g (X™)||* ds
+3E Uot/}cs(X”“,y) — (X", y)|” v(dy) dS}
< Clto) /OtAZ ds forany n > 0 and t < .

This completes the proof of global existence under a global Lipschitz condition.

Finally, suppose that the coefficients b, 0 and c only satisfy the local Lipschitz condition
(Al). Then for k € Nand t, € R, we can find functions b*, % and c* that are globally
Lipschitz continuous and that agree with b, o and ¢ on paths (z;) taking values in the
ball B(0, k) for t < t,. The solution X *) of the SDE with coefficients b*, 0%, c* is then
a solution of (3.1) up to t A T}, where T}, denotes the first exit time of X *) from B(0, k).
By pathwise uniqueness, the local solutions obtained in this way are consistent. Hence
they can be combined to construct a solution of (3.1) that is defined up to the explosion

time ¢ = sup 7. U

Non-explosion criteria

Theorem 3.3 shows that under a global Lipschitz and linear growth condition on the
coefficients, the solution to (3.1) is defined for all times with probability one. How-

ever, this condition is rather restrictive, and there are much better criteria to prove that
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the explosion time ( is almost surely infinite. Arguably the most generally applicable
non-explosion criteria are those based on stochastic Lyapunov functions. Consider for

example an SDE of type

where b : R” — R™ and ¢ : R” — R™*? are locally Lipschitz continuous, and let

1« 0* T
£ = 32 e@)gas+ba) V. a) = o@o),

ij=1
denote the corresponding generator.
Theorem 3.4 (Lyapunov condition for non-explosion). Suppose that there exists a
function ¢ € C*(R™) such that
(i) o(x) >0 foranyx € R",

(ii) p(x) — o0 as|x| — oo, and

(iii) Lo < A\ for some A € R,..
Then the strong solution of (3.1) with initial value xo € R"™ exists up to ( = oo almost

surely.

Proof. We first remark that by (iii), Z; := exp(—At)@(X;) is a supermartingale up to
the first exit time 7} of the local solution X from a ball B(0, k) C R". Indeed, by the

product rule and the 1t6-Doeblin formula,
dZ = —Xe Mp(X)dt + e Mdp(X) = dM + e (Lo — \p)(X) dt

holds on [0, T;] with a martingale M up to 7.
Now we fix t > 0. Then, by the Optional Stopping Theorem and by Condition (i),

Elp(Xo)] = Elexp(=A(t ATk)) o(Xinz,)]
> Elexp(=At) o(X1,); Ti < 1

> exp(—A) |;gk¢(y) P(T;, <t

¢(wo)

forany k € N. As k — oo, inf |, p(y) — oo by (ii). Therefore,

PlsupT, <t] = lim P[T, <t] =0

k—o0

for any ¢t > 0,1i.e.,( = sup T} = oo almost surely. O
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By applying the theorem with the function p(x) = 1 + |z|? we obtain:
Corollary 3.5. If there exists A € R such that

27 - b(x) +tr(a(z)) < X-(1+]z|*)  foranyx € R"
then ( = oo almost surely.

Note that the condition in the corollary is satisfied if
-b(z) < const.-|z| and tra(x) < const. -|z|?

for sufficiently large + € R", i.e., if the outward component of the drift is growing at

most linearly, and the trace of the diffusion matrix is growing at most quadratically.

3.2 Stratonovich differential equations

Replacing It6 by Statonovich integrals has the advantage that the calculus rules (product
rule, chain rule) take the same form as in classical differential calculus. This is useful
for explicit computations (Doss-Sussman method), for approximating solutions of SDE
by solutions of ordinary differential equations, and in stochastic differential geometry.
For simplicity, we only consider Stratonovich calculus for continuous semimartingales,

cf. [36] for the discontinuous case.

Let X and Y be continuous semimartingales on a filtered probability space (2, A, P, (F;)).

Definition (Fisk-Stratonovich integral). The Stratonovich integral [ X o dY is the

continuous semimartingale defined by
t t 1
/ X,o0dY, = / X, dY, + Q[X,Y]t forany t > 0.
0 0

Note that a Stratonovich integral w.r.t. a martingale is not a local martingale in general.

The Stratonovich integral is a limit of trapezoidal Riemann sum approximations:

Lemma 3.6. If (7,,) is a sequence of partitions of R with mesh(m,) — 0 then

t X+ Xy
/ X,o0dY, = lim E % (Yorr — Ys) in the ucp sense.
0 oo SETn
s<t
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Proof. This follows since fo X dY =ucp-lim) ., X, (Yor — Y) and
(X, Y]y =ucp-lim > _,(Xone — X,)(Yone — Ys) by the results above. O

Ito-Stratonovich formula

For Stratonovich integrals w.r.t. continuous semimartingales, the classical chain rule
holds:

Theorem 3.7. Let X = (X', ..., X) with continuous semimartingales X*. Then for
any function F' € C*(RY),
L [toF
F(X;) — F(X = X,)odX! Vi>0. 3.12
x)-Fxe) = 3 [ e >0 G

Proof. To simplify the proof we assume F' € C3. Under this condition, (3.12) is just a

reformulation of the Itd rule

F(X,) — F(Xo) Z/ oo (X,) dXi+ Z/WW 0 dlxt, X9,
(3.13)

Indeed, applying Itd’s rule to the C? functio

oF
_ j
ox’ (X = Z / 8x’8xﬁ ) dX;

for some continuous finite variation process A. Hence the difference between the

Statonovich integral in (3.12) and the It6 integral in (3 13) is

s[oe00x], = 33 [t .

O

Remark. For the extension of the proof to C? functions F see e.g. [36], where also a

generalization to cadlag semimartingales is considered.
The product rule for Stratonovich integrals is a special case of the chain rule:
Corollary 3.8. For continuous semimartingales X, Y,
XY, —XoYo = tXSodYS+/tYSOdXS Vi>0.
0 0

Exercise (Associative law). Prove an associative law for Stratonovich integrals.
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Stratonovich SDE

Since Stratonovich integrals differ from the corresponding It6 integrals only by the co-
variance term, equations involving Stratonovich integrals can be rewritten as [t6 equa-
tions and vice versa, provided the coefficients are sufficiently regular. We consider a

Stratonovich SDE in R? of the form

d
odX, = b(X)dt+) on(X)odBf, Xy = (3.14)
k=1
with 7y € R", continuous vector fields b, oy, ...,04 € C(R" R"), and an R?-valued
Brownian motion (B;).
Exercise (Stratonovich to Ité conversion). 1) Prove thatforoy, ..., 04 € C'(R",R"),

the Stratonovich SDE (3.14) is equivalent to the It6 SDE

d
dX, = bX)dt+Y on(X)dBf, Xy = (3.15)
k=1

where

- 1

b= b—|—§ZJk~VJk.

k=1

2) Conclude that if b and o1, ...,04 are Lipschitz continuous, then there is a unique

strong solution of (3.14).

Theorem 3.9 (Martingale problem for Stratonovich SDE). Ler b € C'(R",R"™) and
o1,...,04 € C*(R",R"), and suppose that (X;)i>¢ is a solution of (3.14) on a given
setup (0, A, P, (F;), (Bt)). Then for any function F € C3(R™), the process

ME = R0 - FO) - [ (200 ds

J A

B
Il &
—_

is a local (F}") martingale.
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Proof. By the Stratonovich chain rule and by (3.14),

F(Xy) — F(Xy) = /Ot VF(X)-odX

= /Ot(b VE)(X)dt+) /Ot(ak .VF)(X)odB*. (3.16)
k
By applying this formula to o, - VF', we see that
(0 - VF)(X)) = A+ / o, - V(o - VF)(X) dB'
!

with a continuous finite variation process (A;). Hence

/0 t(ak .VF)(X)odB* = /0 t(ak -VF)(X) dB* + [(0}, - VF)(X), B,

t
= local martingale +/ or - V(op - VEF)(X)dt.
0
(3.17)

The assertion now follows by (3.16) and (3.17). L]

The theorem shows that the generator of a diffusion process solving a Stratonovich SDE
is in sum of squares form. In geometric notation, one briefly writes b for the derivative

b - V in the direction of the vector field b. The generator then takes the form
1

Brownian motion on hypersurfaces

One important application of Stratonovich calculus is stochastic differential geometry.
Itd calculus can not be used directly for studying stochastic differential equations on
manifolds, because the classical chain rule is essential for ensuring that solutions stay
on the manifold if the driving vector fields are tangent vectors. Instead, one considers
Stratonovich equations. These are converted to Itd6 form when computing expectation
values. To avoid differential geometric terminology, we only consider Brownian motion
on a hypersurface in R"*!, cf. [38], [20] and [22] for stochastic calculus on more general

Riemannian manifolds.
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Let f € C°°(R™"!) and suppose that ¢ € R is a regular value of f,i.e., Vf(x) # 0 for

any x € f~!(c). Then by the implicit function theorem, the level set

M, = [ = {zeR": f(z)=c}
is a smooth n-dimensional submanifold of R"™!. For example, if f(z) = |z|?and ¢ = 1
then M. is the n-dimensional unit sphere S™.

For x € M,, the vector

V/f(z)
n(z) = e s"
IV f ()]
is the unit normal to M, at x. The tangent space to ). at x is the orthogonal comple-
ment
T,M, = span{n(z)}"
Let P(z) : R*™! — T, M. denote the orthogonal projection onto the tangent space w.r.t.

the Euclidean metric, i.e.,

Px)v = wv—v-n(x)n(z), veR".
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Fork € {1,...,n+ 1}, we set Py(x) = P(x)e.

Definition. A Brownian motion on the hypersurface M. with initial value xo € M, is
a solution (X3) of the Stratonovich SDE

n+1
odX, = P(X;)odB, = > Pi(X)odBf, X, =z, (3.18)
k=1

with respect to a Brownian motion (B;) on R" .

We now assume for simplicity that M, is compact. Then, since c is a regular value of
f, the vector fields P, are smooth with bounded derivatives of all orders in a neigh-
bourhood U of M, in R™"!. Therefore, there exists a unique strong solution of the SDE
(3.18) in R™*! that is defined up to the first exit time from U. Indeed, this solution stays

on the submanifold M, for all times:

Theorem 3.10. If X is a solution of (3.18) with xq € M, then almost surely, X, € M.
foranyt > 0.

The proof is very simple, but it relies on the classical chain rule in an essential way:

Proof. We have to show that f(X,) is constant. This is an immediate consequence of

the Stratonovich formula:
t n+1 t
F06) =500 = [ Vi) edx, = Y- [ VA0 Px 0 dBE = 0
0 1 /0

since Py (z) is orthogonal to V f(x) for any z. O

Although we have defined Brownian motion on the Riemannian manifold ). in a non-
intrinsic way, one can verify that it actually is an intrinsic object and does not depend on
the embedding of M, into R"*! that we have used. We only convince ourselves that the
corresponding generator is an intrinsic object. By Theorem 3.9, the Brownian motion
(X:) constructed above is a solution of the martingale problem for the operator

n+1 n+1

_ 1 _ 1 2
L = 5;(Pk-V)Pk-V = 2;Pk.

From differential geometry it is well-known that this operator is 1Ay, where A, de-

notes the (intrinsic) Laplace-Beltrami operator on /..
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Exercise (Ito SDE for Brownian motion on M). Prove that the SDE (3.18) can be

written in It6 form as

1
dXt = P(Xt) dBt — 5/{,(Xt)n(Xt) dt

where x(z) = X divn(x) is the mean curvature of M, at .

T on

Doss-Sussmann method

Stratonovich calculus can also be used to obtain explicit solutions for stochastic differ-
ential equations in R that are driven by a one-dimensional Brownian motion (B;). We
consider the SDE

(@) dXt = b(Xt) dt + O'(Xt) @) dBt, XO = a, (319)

where a € R", b : R® — R" is Lipschitz continuous and o : R® — R" is C? with
bounded derivatives. Recall that (3.19) is equivalent to the Itd SDE

5 5

1
ax, = (b + 57 VU) (Xy) dt + o(Xy) dBy, Xo. = .a. (3.20)

We first determine an explicit solution in the case b = 0 by the ansatz X; = F(B;)
where F' € C*(R, R"). By the Stratonovich rule,

odX; = F'(B)odB, = o(F(B))odB;
provided F'is a solution of the ordinary differential equation
F'(s) = o(F(s)). (3.21)
Hence a solution of (3.19) with initial condition X, = a is given by
Xy = F(Ba)

where (s,z) — F\(s,x) is the flow of the vector field o, i.e., F'(-,a) is the unique
solution of (3.21) with initial condition a.

Recall from the theory of ordinary differential equations that the flow of a vector field o
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as above defines a diffeomorphism a — F'(s, a) for any s € R. To obtain a solution of

(3.19) in the general case, we try the “variation of constants” ansatz
Xt — F(Bt, Ct) (322)

with a continuous semimartingale (C;) satisfying Cy = a. In other words: we make a
time-dependent coordinate transformation in the SDE that is determined by the flow F'

and the driving Brownian path (B;). By applying the chain rule to (3.22), we obtain

oF oF
OdXt = g(Bt, Ct) 9] dBt + %(Bt, Ct) o dCt
oF
= O'(Xt) o) dBt -+ %(Bta Ct) 9} dCt

where 25 (s, -) denotes the Jacobi matrix of the diffeomorphism F'(s, ). Hence (X;) is
a solution of the SDE (3.19) provided (C}) is almost surely absolutely continuous with
derivative

d OF

%Ct = %(Bt,Ct)‘lb(F(Bt,Ct)). (3.23)

For every given w, the equation (3.23) is an ordinary differential equation for C;(w)
which has a unique solution. Working out these arguments in detail yields the following

result:

Theorem 3.11 (Doss 1977, Sussmann 1978). Suppose that b : R" — R" is Lipschitz
continuous and o : R™ — R" is C? with bounded derivatives. Then the flow F of the
vector field o is well-defined, F(s,-) is a C? diffeomorphism for any s € R, and the
equation (3.23) has a unique pathwise solution (C})>o satisfying Co = a. Moreover,
the process X; = F(By, C}) is the unique strong solution of the equation (3.19), (3.20)

respectively.

We refer to [25] for a detailed proof.

Exercise (Computing explicit solutions). Solve the following It6 stochastic differen-

tial equations explicitly:

1
X, = §Xtdt+\/1+Xt2 dB,, X, = 0, (3.24)
dX, = X,(1+X?)dt+ (1+ X}?)dB,, X, = 1. (3.25)

Do the solutions explode in finite time?
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Exercise (Variation of constants). We consider nonlinear stochastic differential equa-

tions of the form
dXt = f(t, Xt) dt + C(t)Xt dBt, XO =X,

where f : Rt x R — R and ¢ : Rt — R are continuous (deterministic) functions.

Proceed as follows :
a) Find an explicit solution Z; of the equation with f = 0.
b) To solve the equation in the general case, use the Ansatz
Xy = Cy-Zy .

Show that the SDE gets the form

%iw) = [t Zi(w) - Ci(w))/Zi(w) 5 Co = (3.26)

Note that for each w € (2, this is a deterministic differential equation for the

function ¢t — C}(w). We can therefore solve (3.26) with w as a parameter to find
Ct (W)

c) Apply this method to solve the stochastic differential equation

1
dXt:ydt—FOéXtdBt, XOI.T>O,
t

where « is constant.

d) Apply the method to study the solution of the stochastic differential equation
dXt:ngt+OéXtdBt7 X0:$>0,

where « and +y are constants. For which values of v do we get explosion?

Wong Zakai approximations of SDE

A natural way to approximate the solution of an SDE driven by a Brownian motion is

to replace the Brownian motion by a smooth approximation. The resulting equation can

University of Bonn Summer Semester 2015



118 CHAPTER 3. EXTENSIONS OF ITO CALCULUS

then be solved pathwise as an ordinary differential equation. It turns out that the limit
of this type of approximations as the driving smoothed processes converge to Brownian

motion will usually solve the corresponding Stratonovich equation.

Suppose that (B;);>o is a Brownian motion in R? with By = 0. For notational conve-
nience we define B; := 0 for ¢ < 0. We approximate B by the smooth processes

t2
Bk .= B * @1, we(t) = (27?5)_1/26Xp(—2—6).

Other smooth approximations could be used as well, cf. [25] and [23]. Let X (k) denote

the unique solution to the ordinary differential equation

d d
%Xt(k) = b(Xt(k))+a(Xt(k))%B§k), X =a (3.27)

with coefficients b : R® — R" and o : R" — R"*9,
Theorem 3.12 (Wong, Zakai 1965). Suppose that b is C* with bounded derivatives and

o is C? with bounded derivatives. Then almost surely as k — oo,
Xt(k) — Xy uniformly on compact intervals,
where (X,) is the unique solution of the Stratonovich equation
odX; = b(Xy)dt+o(X;)odBy, Xy = a.

If the driving Brownian motion is one-dimensional, there is a simple proof based on
the Doss-Sussman representation of solutions. This shows that X*) and X can be
represented in the form X" = F (ng), C’t(k)) and X; = F(By, C;) with the flow F
of the same vector field o, and the processes C*) and C' solving (3.23) w.rt. B,
B respectively. Therefore, it is not difficult to verify that almost surely, X*) — X
uniformly on compact time intervals, cf. [25]. The proof in the more interesting general
case is much more involved, cf. e.g. Ikeda & Watanabe [23, Ch. VI, Thm. 7.2].

3.3 Stochastic Taylor expansions

In the next section we will study numerical schemes for It6 stochastic differential equa-

tions of type
d
dX; = b(X))dt + Y on(X,) dBf (3.28)
k=1

Stochastic Analysis Andreas Eberle



3.3. STOCHASTIC TAYLOR EXPANSIONS 119

in RY, N € N. A key tool for deriving and analyzing such schemes are stochastic

Taylor expansions that are introduced in this section.

We will assume throughout the next two sections that the coefficients b, 01, ..., 0, are
C* vector fields on RY, and B = (B!, ..., B%) is a d-dimensional Brownian motion.

Below, it will be convenient to set
B? = t.

A solution of (3.28) satisfies

t+h d t+h
Xevn = Xi + / b(X,)ds + Z/ or(X,) dB* (3.29)
t k—1 t

for any ¢, h > 0. By approximating b(X;) and o, (X) in (3.29) by b(X;) and o4 (X;) re-
spectively, we obtain an Euler approximation of the solution with step size h. Similarly,
higher order numerical schemes can be obtained by approximating b(X;) and oy (X;)

by stochastic Taylor approximations.

Ito-Taylor expansions

Suppose that X is a solution of (3.28), and let f € C°°(R"). Then the It6-Doeblin

formula for f(X) on the interval [¢, ¢ + h] can be written in the compact form

d t+h
fXin) = 100 + Y [ (Caf)(X,) B! (3:30)
k=01t
for any ¢, h > 0,where BY =t,a = oo,
N
1 XL
= - LY .
Lof : lea ooy 0 VE  and (3.31)
Lyf = op-Vf, fork=1,...,d. (3.32)

By iterating this formula, we obtain It6-Taylor expansions for f(X). For example, a

first iteration yields

P = 100+ 3@ [ asie Y [ [ eanon stas

d
k=0 k,1=0

University of Bonn Summer Semester 2015



120 CHAPTER 3. EXTENSIONS OF ITO CALCULUS

The first two terms on the right hand side constitute a first order Taylor expansion for
f(X) in terms of the processes B*, k = 0, 1,...,d, and the iterated Itd integral in the
third term is the corresponding remainder. Similarly, we obtain higher order expansions
in terms of iterated Itd integrals where the remainders are given by higher order iterated
integrals, cf. Theorem 3.14 below. The next lemma yields L? bounds on the remainder

terms:

Lemma 3.13. Suppose that G : 2 x (t,t + h) — R is an adapted process in L*(P ®
)\(t,t-i-h)) . Then

t+h s1 Sn—1 2
( / / e / Gy, dBE - dB¥ dBj;)
t t t

foranyn € Nand k = (ky,...,k,) € {0,1,...,d}", where

thrm(k)
E

< sup F [Gg]

nl setirh)

m(k) == {1 <i<n:k =0}
denotes the number of integrations w.r.t. dt.

Proof. By It6’s isometry and the Cauchy-Schwarz inequality,

t+h 27 t+h
E </ G, dBf) < / E[GZ] ds for any k # 0, and
t t

t+h 2] t+h
( | e ds) <[ ple)as
t t

By iteratively applying these estimates we see that the second moment of the iterated

E

integral in the assertion is bounded from above by

t+h S1 Sn—1
Bm(k) / / . / E[Gzn] ds, ---dsyds;.
t t t

The lemma can be applied to control the strong convergence order of stochastic Taylor

O

expansions. For k € N we denote by CF(R) the space of all C* functions with bounded
derivatives up to order k. Notice that we do not assume that the functions in C} are
bounded.
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Definition (Stochastic convergence order). Suppose that A;,, h > 0, and A are ran-

dom variables, and let o« > 0.

1) Ay, converges to A with strong L? order « iff

/2

E[|A, — AP] O(h).

2) Ay converges to A with weak order « iff

E[f(A)] — E[f(A)] = O(h*)  forany f € C)7DI(R).

Notice that convergence with strong order « requires that the random variables are de-
fined on a common probability space. For convergence with weak order « this is not

necessary. If A; converges to A with strong order o then we also write
A, = A+ O(h%).

Examples. 1) If B is a Brownian motion then B, converges to B; almost surely as

h { 0. By the law of the iterated logarithm, the pathwise convergence order is

Biin — B, = O(ht?*loglogh™Y) almost surely.
On the other hand, the strong L? order is 1/2, and the weak order is 1 since by Kol-
mogorov’s forward equation,

Bl B~ BB = [ BGANBIIs < Ssway

forany f € C?. The exercise below shows that similar statements hold for more general

1t6 diffusions.

2) The n-fold iterated It6 integrals w.r.t. Brownian motion considered in Lemma 3.13

have strong order (n + m)/2 where m is the number of time integrals.

Exercise (Order of Convergence for It6 diffusions). Let (X;);>¢ be an N-dimensional
stochastic process satisfying the SDE (3.28) where b, o, : RN — RN k=1,...,d, are
bounded continuous functions, and B is a d-dimensional Brownian motion. Prove that
ash ] 0,
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1) X, converges to X; with strong L? order 1/2.
2) X, converges to X,; with weak order 1.

Theorem 3.14 (It6-Taylor expansion with remainder of order «). Suppose that o« =
j/2 for some j € N. If X is a solution of (3.28) with coefficients b, o4, ...,04 €
C’bLZO‘J (RN, RN) then the following expansions hold for any f € CbLmHJ (RN):

FXn) = > Y (Lol L f) (X)X (3.33)
n<2a k:n+m(k)<2a
t+h
/ / / Gy, dB - dBM dBM + O(h®),
E[f(Xun) = Y E(Ly]) ]— + O(h®). (334)

n<a

Proof. Tteration of the It6-Doeblin formula (3.30) shows that (3.33) holds with a re-

mainder term that is a sum of iterated integrals of the form

t+h s1 Sn—1
/ / / (LiLr s+ Ly f) (Xs,) dBE - - dBr 4B
t t t

with k = (kq, ..., k) satisfying n +m(k) > 2accand n — 1 + m(ky, ..., kn1) < 20
By Lemma 3.13, these iterated integrals are of strong L? order (n + m(k))/2. Hence

the full remainder term is of the order O(h®).

Equation (3.34) follows easily by iterating the Kolmogorov forward equation

E[f(Xem) = ELF(X)] + / E[(Lof)(X.)] ds.

Alternatively, it can be derived from (3.33) by noting that all iterated integrals involving

at least one integration w.r.t. a Brownian motion have mean zero. L

Remark (Computation of iterated It6 integrals). Iterated Itd integrals involving only
a single one dimensional Brownian motion B can be computed explicitly from the

Brownian increments. Indeed,

t+h s1 Sn—1
/ / / dBs, ---dBy, dBs, = hy(h, By, — By)/nl,
t t t
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where h,, denotes the n-th Hermite polynomial, cf. (5.57). In the multi-dimensional
case, however, the iterated It0 integrals can not be represented in closed form as func-
tions of Brownian increments. Therefore, in higher order numerical schemes, these

integrals have to be approximated separately. For example, the second iterated It6 inte-

h s h
I = / / dBFdB. = / B¥dB!
0 0 0

of two components of a d dimensional Brownian motion satisfies I} + I'* = BFB!.

gral

Hence the symmetric part can be computed easily. However, the antisymmetric part
ItY — I'* is the Lévy area process of the two dimensional Brownian motion (B*, B!).
The Lévy area can not be computed explicitly from the increments if k£ # [. Controlling

the Lévy area is crucial for a pathwise stochastic integration theory, cf. [18,19,29].

Exercise (Lévy Area). If ¢(t) = (z(t),y(t)) is a smooth curve in R? with ¢(0) = 0,
then

A0 = [ v ds = [ray- [y

describes the area that is covered by the secant from the origin to ¢(s) in the interval
[0, t]. Analogously, for a two-dimensional Brownian motion B; = (X, Y;) with By = 0,

one defines the Lévy Area

t t
Ay = /XSdYS — / Y,dX.
0 0

1) Let a(t), 3(t) be C'-functions, p € R, and

Vi, = ipA;, — @ (X?+Y2) + B(@1).

Show using Itd’s formula, that €' is a local martingale provided o (t) = «(t)? — p?

and 5'(t) = a(t).
2) Let ty € [0,00). The solutions of the ordinary differential equations for v and 3
with a(ty) = S(tg) = 0 are
a(t) = p-tanh(p-(to — 1)),
pB(t) = —logcosh(p- (to —1)).
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Conclude that
1

Ayl _
Bleio] = cosh(pt)

VpeR.

3) Show that the distribution of A; is absolutely continuous with density

1

fa(z) = m-

3.4 Numerical schemes for SDE

Let X be a solution of the SDE

d
dX, = b(X,)dt + > o(X,) dBf (3.35)
k=1

where we impose the same assumptions on the coefficients as in the last section. By
applying the Itd6-Doeblin formula to o, (X,) and taking into account all terms up to

strong order O(h'), we obtain the 1td-Taylor expansion

d
Xipn =X = W(X)h + Y ow(X,) (B, — B (3.36)
k=1

d t+h s
+ Y (01 Voy) (Xt)/ / dBLdBY + O (h¥?).
t t

k=1

Here the first term on the right hand side has strong L? order O(h), the second term
O(h*/?), and the third term O(h). Taking into account only the first two terms leads to
the Euler-Maruyama scheme with step size h, whereas taking into account all terms up

to order O(h) yields the Milstein scheme:

e Euler-Maruyama scheme with step size h
d
X = X0 = b(X[)Vh 4+ Y on(X]) (Bl — BY)  (t=0,h,2h,3h,..)
k=1

e Milstein scheme with step size h

d t+h s
Xh=XE = WX e - () (BB + Y (o Vo) (X1 [ [ aBlaB!
t t

k=1 k=1
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The Euler and Milstein scheme provide approximations to the solution of the SDE
(3.35) that are defined for integer multiples ¢ of the step size h. For a single approxi-
mation step, the strong order of accuracy is O(h) for Euler and O(h?*/?) for Milstein.
To analyse the total approximation error it is convenient to extend the definition of the
approximation schemes to all £ > 0 by considering the delay stochastic differential

equations

dX! = b(X])ds + Y ox(X[,,)dBE, (3.37)
k

dX! = b(X[y)ds + ) <o—k(X{th)+(a,vak)(x[;“) /L dB,{) dBY (3.38)
k,l

sln
respectively, where

|s]n == max{t € hZ:t < s}

denotes the next discretization time below s. Notice that indeed, the Euler and Milstein
scheme with step size h are obtained by evaluating the solutions of (3.37) and (3.38)
respectively att = kh with k € Z ..

Strong convergence order

Fix a € RY, let X be a solution of (3.28) with initial condition X, = a, and let X" be
a corresponding Euler or Milstein approximation satisfying (3.37), (3.38) respectively

with initial condition X' = a.
Theorem 3.15 (Strong order for Euler and Milstein scheme). Lez t € [0, 00).

1) Suppose that the coefficients b and oy, are bounded and Lipschitz continuous. Then
the Euler-Maruyama approximation on the time interval [0, t| has strong L* order

1/2 in the following sense:

sup‘Xf—Xs} = O(h'/?).

s<t

2) If, moreover, the coefficients b and o}, are C? with bounded derivatives then the

Milstein approximation on the time interval [0, t] has strong L? order 1, i.e.,

| X} = Xi| = O(h).
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A corresponding uniform in time estimate for the Milstein approximation also holds but
the proof is too long for these notes. The assumptions on the coefficients in the theorem
are not optimal and can be weakened, see e.g. Milstein and Tretyakov [33]. However,
it is well-known that even in the deterministic case a local Lipschitz condition is not
sufficient to guarantee convergence of the Euler approximations. The iterated integral
in the Milstein scheme can be approximated by a Fourier expansion in such a way that
the strong order O(h) still holds, cf. Kloeden and Platen [26,33]XXX

Proof. For notational simplicity, we only prove the theorem in the one-dimensional
case. The proof in higher dimensions is analogous. The basic idea is to write down an

SDE for the approximation error X — X"

1) By (3.37) and since X! = X, the difference of the Euler approximation and the

solution of the SDE satisfies the equation
t

XX, = /O (b(X],,) — b(Xy)) ds + /0 (o(X[.),) — 0(X,)) dB,.

This enables us to estimate the mean square error

gh=F [sup}Xf —Xsﬂ .

s<t

By the Cauchy-Schwarz inequality and by Doob’s L? inequality,

o< Qt/OtE [}b(xfﬂh) —b(XS)}2] ds + 8/OtE [}a(xfgjh) —U(Xs)ﬂ ds
< (2t—|—8).L2./tE Xy, = X[] ds (3.39)

t
< (4t +16)- L2 (/ ehds + Cth),
0

where ¢t — C} is an increasing real-valued function, and L is a joint Lipschitz constant

for b and o. Here, we have used that by the triangle inequality,
B(|xty, - X.[7] < 28X, - x| + 2B {|x) - X[
and the first term representing the additional error by the time discretization on the

interval [|s|p, | s]n + h] is of order O(h) uniformly on finite time intervals by a similar

argument as in Theorem 3.14. By (3.39) and Gronwall’s inequality, we conclude that

gl < (4t +16)L>C; - exp ((4t + 16)L%t) - h,
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and hence \/&} = O(v/h) for any t € (0, 00). This proves the assertion for the Euler

scheme.

2) To prove the assertion for the Milstein scheme we have to argue more carefully. We

will show that
el = sup E [’Xf — XSH

s<t

1s of order O(h2). Notice that now the supremum is in front of the expectation, i.e., we
are considering a weaker error than for the Euler scheme. We first derive an equation
(and not just an estimate as above) for the mean square error. By (3.38), the difference

of the Milstein approximation and the solution of the SDE satisfies
t
X, — X! = / (b(X,) —b(X],,)) ds (3.40)
0

T / (0(X.) — o (XL, ) — (00')(XP, )(By — By)) dBs.

By Itd’s formula, we obtain
t
X, — X'? = 2/ (X — XM d(X - X" + [X - X",
Ot t t
— 2/ (X, — XM plds + 2/ (X, — XM aldB, + / |l ds
0 0 0

where S = b(X,) —b(X[,},) and of = 0(X,) —o(X],,) — (00') (X[}, )(Bs — Bys,,)
are the integrands in (3.40). The assumptions on the coefficients guarantee that the

stochastic integral is a martingale. Therefore, we obtain

t t
EX:— X/ = 2/ E[(X,— X" Bt ds + / E [|a2] ds. (3.41)
0 0

We will now show that the integrands on the right side of (3.41) can be bounded by a
constant times " + h2. The assertion then follows similarly as above by Gronwall’s
inequality.

In order to bound E[|a’|?] we decompose o = o, + ol | where

ag,l = 0<X3> - O-<X\_5Jh) - (UUI> (X\_SJ}L)(BS - B\_SJh)
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is an additional error introduced in the current step, and

gy = (X)) —o(X[y),) + ((00)(Xsp,) = (00) (X)) (Bs — Blsy,)

is an error carried over from previous steps. By the error estimate in the It6-Taylor

expansion, o is of strong order O(h) uniformly in s, i.e.,
Ellal "] < Cih? for some finite constant C'.
Furthermore, since B, — B, is independent of F| @ 1o
Ellafoff] < 201+ WI2 E [| Xy, — X1y, [F] < 201+ BL2EE,
and hence
Ella™?] < Oy (h? +eh) for some finite constant Cs. (3.42)

It remains to prove an analogue bound for F[(X, — X") 8"]. Similarly as above, we

decompose 3 = (I + ' where
Blo=b(Xs,) —b(X]y,) and Bl =b(X,) = b(X|,,).
By the Cauchy-Schwarz inequality and the Lipschitz continuity of b,
Bl(X, - XI) o) < () E[18t17])* < Len. (3.43)
Moreover, there is a finite constant C3 such that

E[(X), — X[,) 84 = E[(X), — X[,) B [b(X.) = b(X s, FP]]
< Gy (M) < Cy(nP+ ), (3.44)

Here we have used that by Kolmogorov’s equation,

E [b(Xs) = b(X(5,)|F] = / E [(Lob)(X,)|FF] dr, (3.45)
Lsln
and Lyb is bounded by the assumptions on b and o.
Finally, let Z"" := (X, — X") — (X |5}, — Xﬁjh). By (3.40),
zh = Brdr + / o'dB,,  and
LsIn Ls)n
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S S

E[|Z!] < 2h/ E[|BI?] dr + 2/ E[|al?] dr < Cyh(R*+€D).
L5 Lsln

Here we have used the decomposition 3 = 20 + 5?,1 and (3.42). Hence
E[Z!M ] < 1202 |[b(Xs) = (X s )|, £ Csh(B*+eN? < 205 (B + D).
By combining this estimate with (3.44) and (3.4), we eventually obtain

E[(X,— XM B < Cg (W + &) for some finite constant C. (3.46)

O

Weak convergence order

We will now prove under appropriate assumptions on the coefficients that the Euler

scheme has weak convergence order h'. Let

N
1 O
_ ij_Z )
Lr =5 Zla 0

hj=

+b-Vf

denote the generator of the diffusion process (X;). We assume that the coefficients
b,o1,...,04 are in C3(RY RY). It can be shown that under these conditions, for f &

C3(RY), the Kolmogorov backward equation

0

S (ta) = (Cu)ta),  u0.7) = f(@) (3:47)
has a unique classical solution u : [0, 00) x RV — R such that u(t, -) € C3(RY) for any
t > 0, cf. XXX. Moreover, if (X;) is the unique strong solution of (3.28) with Xy = a,

then by Itd’s formula,
E[f(Xy)] = u(t, a).

Theorem 3.16 (Weak order one for Euler scheme). Suppose that b,01,...,0, €
C3 (RN, RY), and let (X;) and (X]") denote the unique solution of (3.28) with Xy = a

and its Euler approximation, respectively. Then

E[f(X[)] = E[f(X)] = O(h)  foranyt>0and f € C{(RY).
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Proof. Fix t > 0. The key idea (that is common with many other proofs) is to consider
the “interpolation”
Ay = u(t —s, XM for s € [0,1].

Notice that A; = u(0, X*) = f(X[') and Ay = u(t,a) = E[f(X})], whence
BIf (X)) = E[f(X))] = E[A; — Ao]. (3.48)

We can now bound the weak error by applying 1t6’s formula. Indeed, by (3.37) and
(3.47) we obtain

t
A — Ay = Mt+/ [—g—?(t—s,)(f)—i—(ﬁ';u)(t—s,ngs) ds
0

= M, + /0 [(Llu)(t — s, X{,) — (Lu)(t — s, X])] ds.

Here M, is a martingale, Y., := (Y;)scp0,4, and

—_

N 2f
(L8 ) (wo) = 5 Z i) giggr E) T 0@, ) - Vi (a)

is the generator at time ¢ of the delay equation (3.37) satisfied by the Euler scheme.
Note that L}'(xo,) is similar to £(z;) but the coefficients are evaluated at x|, instead

of x;. Taking expectations we conclude
BlA -~ A = [ B[l s, X8~ (Lu)(t -, X0 do.
0
Thus the proof is complete if we can show that there is a finite constant C' such that
|(Lhu)(t — s, X)) — (Lu)(t —s,X])| < Ch forse[0,t]and h € (0,1]. (3.49)

This is not difficult to verify by the assumptions on the coefficients. For instance, let us

assume for simplicity that d = 1 and b = 0, and let a = 0. Then
|(Lou)(t = s, Xoo) — (Lu)(t — 5, X7)|

B [(a(xX) — a(X[y,)) u'(t — s, X1

% B [E [a(X0) = a(X g IFE,] w'(t = s, XT,)]|

[ [(a(X2) — a(XPy,)) (40— s, X0) — (= 5, XPy,)]|

IN

IN
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Since " is bounded, the first summand on the right hand side is of order O(h), cp.
(3.45). By the Cauchy-Schwarz inequality, the second summand is also of order O(h).

Hence (3.49) is satisfied in this case. The proof in the general case is similar. [
Remark (Generalizations).

1) The Euler scheme is given by
AX! = b(XM h + o(X!) AB,, AB,independent ~ N(0,hly), t € hZ,.

It can be shown that weak order one still holds if the A B, are replaced by arbitrary
1.i.d. random variables with mean zero, covariance hl;, and third moments of
order O(h?), cf. [26].

2) The Milstein scheme also has weak order h', so it does not improve on Euler
w.r.t. weak convergence order. Higher weak order schemes are due to Milstein

and Talay, see e.g. [33].

3.5 Local time

The occupation time of a Borel set U C R by a one-dimensional Brownian motion (B;)

is given by
t
LV = / Iy (By) ds.
0

Brownian local time is an occupation time density for Brownian motion that is infor-

mally given by
t
“LY = / 04(Bs)ds”
0

for any a € R. It is a non-decreasing stochastic process satisfying

LY = /Lgda.
U

We will now apply stochastic integration theory for general predictable integrands to
define the local time process (L¢):>o for a € R rigorously for Brownian motion, and,

more generally, for continuous semimartingales.

University of Bonn Summer Semester 2015



132 CHAPTER 3. EXTENSIONS OF ITO CALCULUS

Local time of continuous semimartingales

Let (X;) be a continuous semimartingale on a filtered probability space. Note that by

It6’s formula,

P = %) = [ pxax. + 5 [ e di.

Informally, if X is a Brownian motion then the last integral on the right hand side
should coincide with L{ if f” = §,. A convex function with second derivative 9, is
f(xz) = (z — a)*. Noting that the left derivative of f is given by f_ = I, this

motivates the following definition:

Definition. For a continuous semimartingale X and a € R, the process L defined by
¢ 1
(Xt — a,)+ — (XO — a,)+ — / I(a,oo)(XS) dXS + 5[/?
0
is called the local time of X at a.

Remark. 1) By approximating the indicator function by continuous functions it can be

easily verified that the process /(4,.0)(X;) is predictable and integrable w.r.t. X.

2) Alternatively, we could have defined local time at a by the identity

t
1~
(Xt — a)+ — (XO — a)+ — / I[a,oo)(Xs) dXS + 5[/?
0

involving the right derivative /|, ) instead of the left derivative [, ). Note that

t
L — L = /0 I (X,) dX,.

This difference vanishes almost surely if X is a Brownian motion, or, more generally,
a continuous local martingale. For semimartingales, however, the processes L* and Le
may disagree, cf. the example below Lemma 3.17. The choice of L* in the definition
of local time is then just a standard convention that is consistent with the convention of

considering left derivatives of convex functions.

Lemma 3.17 (Properties of local time, Tanaka formulae).
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1) Suppose that ¢, : R — [0,00), n € N, is a sequence of continuous functions with
[ n=1and p,(x) =0for x & (a,a+ 1/n). Then
t

Lta = ucp— lim @n(Xs) d[X]s
0

n—oo

In particular, the process (L{ )= is non-decreasing and continuous.

2) The process L* grows only when X = a, i.e.,

t
/ Itx,zaydly = 0 foranyt > 0.
0

3) The following identities hold:

t
1
(Xi—a)" — (Xo—a)t = /O looo)(X,) X, + 5LE, (3.50)
' 1

(X, —a) — (Xo—a)~ — _/0 Iewa(X) dX, + 518 G5
t

| Xy —al —|Xo—a|] = / sgn (X —a)dXs + L, (3.52)

0

where sgn(z) := +1 for x > 0, and sgn(z) := —1 for x < 0.

Remark. Note that we set sgn(0) := —1. This is related to our convention of using left
derivatives as sgn(x) is the left derivative of |z|. There are analogue Tanaka formulae
for L with the intervals (a, c0) and (—oo, a] replaced by [a, o0) and (—oc0, a), and the

sign function defined by sgn(z) := +1 for z > 0 and sgn(z) := —1 for x < 0.

Proof. 1) Forn € Nlet f,(z) := [* [Y ,(2)dzdy. Then the function f, is C*
with f/ = ¢,,. By It6’s formula,

1

FX) = 1050 = [ fx)ax, = 5 [, 65y

As n — o0, f;(X,) converges pointwise to I(, «)(X,). Hence

t t
/OfV’L(Xs)dXs —>/OI(Q7OO)(XS)dXS

in the ucp-sense by the Dominated Convergence Theorem 5.34. Moreover,

fo(Xy) = fu(Xo) = (X —a)™ = (Xo—a)".
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The first assertion now follows from (3.53).

2) By 1), the measures ¢, (X;) d[X]; on R, converge weakly to the measure dL¢ with
distribution function L®. Hence by the Portemanteau Theorem, and since ¢,,(x) = 0 for
x ¢ (a,a+1/n),

n—o0

t t
/0 I{|Xs_a‘>5} dLg S liminf/o I{|Xs—a|>a} (pn(XS) d[X]S =0

for any ¢ > 0. The second assertion of the lemma now follows by the Monotone

Convergence Theorem as ¢ | 0.

3) The first Tanaka formula (3.50) holds by definition of L*. Moreover, subtracting
(3.51) from (3.50) yields

(X, —a) — (Xo—a) = /Otdxs,

which is a valid equation. Therefore, the formulae (3.51) and (3.50) are equivalent.
Finally, (3.52) follows by adding (3.50) and (3.51). ]

Remark. In the proof above it is essential that the Dirac sequence (i,,) approximates
04 from the right. If X is a continuous martingale then the assertion 1) of the lemma
also holds under the assumption that ¢,, vanishes on the complement of the interval
(a—1/n,a+1/n). For semimartingales however, approximating ¢, from the left would

lead to an approximation of the process L, which in general may differ from L.

Exercise (Brownian local time). Show that the local time of a Brownian motion B in

a € R is given by
e—0 25

1 t
L} = ucp— lim—/ I(4—cate)(Bs) ds.
0

Example (Reflected Brownian motion). Suppose that X; = | B;| where (B;) is a one-
dimensional Brownian motion starting at 0. By Tanaka’s formula (3.52), X is a semi-

martingale with decomposition

X, = W, + L (3.54)
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where L, is the local time at 0 of the Brownian motion B and W, := fot sgn(B;) dBs.
By Lévy’s characterization, the martingale 11 is also a Brownian motion, cf. Theorem
2.2. We now compute the local time L;X of X at 0. By (3.51) and Lemma 3.17, 2),

1 t
§LtX = X, —XJ+/ I(—0)(X5) dX (3.55)
0

t t t
- /0 Iy (Bs) dW, + /O Ioy(Bs)dL, = /0 dL, = L,  as.,

i.e., LX = 2L,. Here we have used that 'r o (Bs) dW vanishes almost surely by It6’s
t o 1{0} y by

isometry, as both W and B are Brownian motions. Notice that on the other hand,
t
—L¥ = X7 - X, + / Iwn(Xs)dX, =0 as,
0

so the processes L~ and LX do not coincide. By (3.54) and (3.55), the process X solves
the singular SDE
1
dX; = dW; + 3 dL;

driven by the Brownian motion W. This justifies thinking of X as Brownian motion

reflected at .
The identity (3.54) can be used to compute the law of Brownian local time:
Exercise (The law of Brownian local time).

a) Prove Skorohod’s Lemma: If (v;);>0 is a real-valued continuous function with
yo = 0 then there exists a unique pair (x, k) of functions on [0, co) such that
i) r=y+k,
(ii) x is non-negative, and
(iii) k is non-decreasing, continuous, vanishing at zero, and the measure dk; is
carried by the set {t : x; = 0}.

The function k is given by k; = sup,,(—ys).

b) Conclude that the local time process (L;) at 0 of a one-dimensional Brownian
motion (B,) starting at 0 and the maximum process S; := sup,., B have the

same law. In particular, L, ~ |B;| for any ¢ > 0.
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¢) More generally, show that the two-dimensional processes (|B|, L) and (S — B, 5)

have the same law.

Notice that the maximum process (S;):>o is the generalized inverse of the Lévy subor-
dinator (7},),>0 introduced in Section 1.1. Thus we have identified Brownian local time

at 0 as the inverse of a Lévy subordinator.

Ito-Tanaka formula

Local time can be used to extend Itd’s formula in dimension one from C? to general

convex functions. Recall that a function f : R — R is convex iff

For a convex function f, the left derivatives

vy g J@) = flz—h)
fo(x) = lim .

exist, the function f” is left-continuous and non-decreasing, and

f() = f(a) = /bf'_(:c)da: for any a,b € R.

The second derivative of f in the distributional sense is the positive measure f” given
by

f"([a,b)) = f-(b) — [ (a) for any a,b € R.
We will prove in Theorem 3.24 below that there is a version (t,a) — L of the local
time process of a continuous semimartingale X such that ¢ — L¢ is continuous and
a — L} is cadlag. If X is a local martingale then L is even jointly continuous in ¢ and

a. From now on, we fix a corresponding version.

Theorem 3.18 (It6-Tanaka formula, Meyer). Suppose that X is a continuous semi-

martingale, and f : R — R is convex. Then

F(X,) — / FLUX,) dX, + = / L f"(da). (3.56)

Stochastic Analysis Andreas Eberle



3.5. LOCAL TIME 137

Proof. We proceed in several steps:
1) Equation (3.56) holds for linear functions f.
2) By localization, we may assume that | X;| < C for a finite constant C'. Then both

sides of (3.56) depend only on the values of f on (—C, (), so we may also assume

w.l.o.g. that f is linear on each of the intervals (—oco, —C/| and [C, 00), i.e.,

supp(f”) € [-C,C].

Moreover, by subtracting a linear function and multiplying f by a constant, we may

even assume that f vanishes on (—oo, C], and f” is a probability measure. Then

xT

Fw=nocw)  ad f@)= [ plecm)ds G5

where = f".

3) Now suppose that ;1 = d, is a Dirac measure. Then f/ = [(4 o) and f(z) = (x—a)™.
Hence Equation (3.56) holds by definition of L*. More generally, by linearity, (3.56)
holds whenever p has finite support, since then y is a convex combination of Dirac
measures.

4) Finally, if 1 is a general probability measure then we approximate p by measures
with finite support. Suppose that Z is a random variable with distribution x, and let
iy, denote the law of Z,, := 27"[2"Z]. By 3), the It6-Tanaka formula holds for the
functions f,(z) := % p,(—o0,y) dy,ie.,

fo(Xe) = fu(Xo) /f o) dX, +;/L§un(da) (3.58)

for any n € N. As n — 00, pi,(—00, Xs) = pu(—00, X;), and hence

/f dX—>/f

in the ucp sense by dominated convergence. Similarly, f,,(X:) — f.(Xo) — f(X:) —
f(Xo). Finally, the right continuity of a — L¢ implies that

/R L pn(da) — /R Ly p(da),

since Z,, converges to Z from above. The It6-Tanaka formula (3.56) for f now follows

from (3.58) as n — oo. [
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Clearly, the It6-Tanaka formula also holds for functions f that are the difference of
two convex functions. If f is C? then by comparing the It6-Tanaka formula and Itd’s
formula, we can identify the integral [ L¢ f”(da) over a as the stochastic time integral
f(f f"(X;)d[X]s. The same remains true whenever the measure f”(da) is absolutely

continuous with density denoted by f”(a):

Corollary 3.19. For any measurable function V : R — [0, 00),

t
/Lg V(a)da = / V(X,) d[X], Vt>0. (3.59)
R 0

Proof. The assertion holds for any continuous function V' : R — [0, 00) as V' can be
represented as the second derivative of a C? function f. The extension to measurable

non-negative functions now follows by a monotone class argument. L

Notice that for V' = Ip, the expression in (3.59) is the occupation time of the set B by

(X¢), measured w.r.t. the quadratic variation d[X];.

3.6 Continuous modifications and stochastic flows

Let Q = Cy(R,,R?) endowed with Wiener measure iy and the canonical Brownian
motion Wy (w) = w(t). We consider the SDE

dX, = b(X)dt+o(X)dW, X, = a, (3.60)

with progressively measurable coefficients b, o : R, x C'(R;,R") — R" R"* respec-

tively satisfying the global Lipschitz condition

b:(x) = be(D)] + [|ow(z) —ou(D)]| < L(z—2); Viaz (3.61)

for some finite constant L € R, as well as

sup (|bs(0)] +[|os(0)]]) < oo Vi (3.62)

s€[0,t]

Then by Itd’s existence and uniqueness theorem, there exists a unique global strong

solution (X/);>o of (3.60) for any initial condition a € R™. Our next goal is to show
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that there is a continuous modification (¢, a) — & of (X;). The proof is based on the
multidimensional version of the Kolmogorov-Centsov continuity criterion for stochastic
processes that is significant in many other contexts as well. Therefore, we start with a
derivation of the Kolmogorov-Centsov criterion from a corresponding regularity result

for deterministic functions.

Continuous modifications of deterministic functions

Let z : [0,1)¢ — E be a bounded measurable function from the d-dimensional unit
cube to a separable Banach space (F, || - ||). In the applications below, E will either be
R™ or C'([0,t], R") endowed with the supremum norm. The average of x = (2)ye[0,1)¢

over a smaller cube @ C [0, 1)¢ is denoted by z:

1
To = T, du = /:Eu du.
Q ]é vol(Q) Jo

Let D, be the collection of all dyadic cubes Q = [, [(k; — 1)27", k;2°") with
ki,....kq € {1,2,...,2"}. Foru € [0,1)¢ and n € N, we denote the unique cube

in D,, containing u by @,(u). Notice that u — x¢, () is the conditional expectation
of x given o(D,,) w.r.t. the uniform distribution on the unit cube. By the martingale

convergence theorem,

z, = lim zg,.)  foralmostevery u € [0,1)%,
n—oo

where the limit is w.r.t. weak convergence if £ is infinite dimensional.

Theorem 3.20 (Besov-Holder embedding). Ler 5 > 2d and q > 1, and suppose that

</ / M =zt dudv)l/q (3.63)
o Sy ([u—v|/vVd)? .

T, = li
F = Jm 2o,

is finite. Then the limit

exists for every u € [0,1)%, and T is a Holder continuous modification of x satisfying

~ 8§ B (8-24)/q
u— Tyl S - . 3.64
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For s = 2% < 1, the constant Bg,, is essentially a Besov norm of order (s, q,q),
q k)

or equivalently, a Sobolev-Slobodecki norm of order (s, q). The assertion of the theo-
rem says that the corresponding Besov space is continuously embedded into the Holder

space of order (5 — 2d)/q, i.e., there is a finite constant C' such that

1Z | tor(8-2d)/a) < € 17| Besov((8-d)/q.0.0)-

Proof. Let e((Q) denote the edge length of a cube (). The key step in the proof is to
show that the inequality

4 ﬁ

Y\ (B—2d)/q 3.6

holds for arbitrary cubes (), Q C (0, 1]% such that Q C Q This inequality is proven by

a chaining argument: Let

Q=Q>Q D - D2Q,=Q

be a decreasing sequence of a subcubes that interpolates between Q and () . We assume
that the edge lengths e, := e(Qy,) satisfy
1 1
Wq——ek/q fork > 1, and ef/q_2e€/q. (3.66)

ek:—}—l - 2

Since vol(Q) = ef and |u — v| < V/dej_, for any u,v € Qj_1, we obtain

][ ][ (xy — ) dudv ][ ][ | Ty — ]| du dv
Qr v Qr_1 Qr Y Qr_1
aa =t )
Ly — Ty - d/q B/q
< // du dv ek/ek e
<Qk Qs (Ju—vl/Va)P ) 1

< 2By, P < 4B, o(Q)F2/a g (B-2k/8,

Hka — TQp_1 H =

In the last two steps, we have used (3.66) and e;,_; > e. Noting that

[e.e]

S 2% = 1/(2°~1) < 1/(alog2),

k=1

Equation (3.65) follows since [|zq — x| < Y70, [|7q, — zq,_, |-
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Next, consider arbitrary dyadic cubes @Q,,(u) and Q,,(v) with u,v € [0,1)¢ and n,m €
N. Then there is a cube Q C [0,1)% such that Q D Q,,(u) U Q,,(v) and

~

e(Q) < Jlu—wv|+27" 27
By (3.65) and the triangle inequality, we obtain

120, w) — Zamw |l < 2@.w — 2ol + |1 — 2@ (3.67)

8 B - —m)\ (B—2d)/q
< —— B - 27427 :
— 10g2 B—Qd B.a (‘u ,U‘ + + )

Choosing v = u in (3.67), we see that the limit 7, = lim,,_,o 7¢, () €xists. Moreover,

for v # u, the estimate (3.64) follows as n, m — oo. [

Remark (Garsia-Rodemich-Rumsey). Theorem 3.20 is a special case of a result by
Garsia, Rodemich and Rumsey where the powers in the definition of Bg , are replaced
by more general increasing functions, cf. e.g. the appendix in [19]. This result allows
to analyze the modulus of continuity more carefully, with important applications to

Gaussian random fields [4].

Continuous modifications of random fields

The Kolmogorov-Centsov continuity criterion for stochastic processes and random fields

is a direct consequence of Theorem 3.20:

Theorem 3.21 (Kolmogorov, Centsov). Suppose that (E.,|| - ||) is a Banach space,
C = HZZI I}, is a product of bounded real intervals I, ...,1; C R,and X, : QQ — FE,
u € C, is an E-valued stochastic process (a random field) indexed by C'. If there exists

constants q, c,e € Ry such that
E[||Xu — XU||q} < clu—v|*E for any u,v € C, (3.68)
then there exists a modification (§,)uec of (Xu)uec such that

E[(sup MY} < oo  forany a€[0,e/q). (3.69)

wtv |U— 0|

In particular, u — &, is almost surely a-Hélder continuous for any o < €/q.
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A direct proof based on a chaining argument can be found in many textbooks, see
e.g. [37, Ch. 1, (2.1)]. Here, we deduce the result as a corollary to the Besov-Holder

embedding theorem:

Proof. By rescaling we may assume w.l.0.g. that C' = [0, 1)¢. For 3 > 0, the assumption
(3.68) implies

q
[// [ = X du dv] < c//|u—v|d+€5dudv (3.70)
|U—U|B cJc
Vd
< const. / pdre=Brd=1 qp.
0

Hence the expectation is finite for 5 < 2d + ¢, and in this case,

/ / ||)|(u — jﬁ“q dudv < o0 almost surely.
Thus by Theorem 3.20, &, = limsup,,_,.. Xo, () defines a modification of (X,) that
is almost surely Holder continuous with parameter (3 — 2d)/q for any 8 < 2d + ¢.
Moreover, the expectation of the ¢g-th power of the Holder norm is bounded by a multiple
of the expectation in (3.70). U

Example (Holder continuity of Brownian motion). Brownian motion satisfies (3.68)
withd = 1 and e = 7 — 1 forany v € (2, 00). Letting 7 tend to oo, we see that almost
every Brownian path is a-Holder continuous for any v < 1/2. This result is sharp in the

sense that almost every Brownian path is not %—Hélder—continuous, cf. [14, Thm. 1.20].

In a similar way, one can study the continuity properties of general Gaussian random
fields, cf. Adler and Taylor [4]. Another very important application of the Besov-Holder
embedding and the resulting bounds for the modulus of continuity are tightness results
for families of stochastic processes or random random fields, see e.g. Stroock and Varad-
han [40]. Here, we consider two different applications that concern the continuity of

stochastic flows and of local times.

Existence of a continuous flow

We now apply the Kolmogorov-Centsov continuity criterion to the solution a (X2)

of the SDE (3.60) as a function of its starting point.
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Theorem 3.22 (Flow of an SDE). Suppose that (3.61) and (3.62) hold.

1) There exists a function £ : R" x Q — C(R,,R"), (a,w) — £*(w) such that

(i) £ = (&)i>0 is a strong solution of (3.60) for any a € R", and
(ii) the map a — £%(w) is continuous w.r.t. uniform convergence on finite time

intervals for any w € ().

2) If o(t,z) = 5(x;) and b(t, z) = b(x,) with Lipschitz continuous functions
5 :R" — R™ qnd b : R™ — R4 then ¢ satisfies the cocycle property

hew) = &WOw)  Vst20, aeR” (3.71)
for po-almost every w, where
O;w) = w(+t) € CO[R,,RY
denotes the shifted path, and the definition of & has been extended by

W) = Elw—w(0)) (3:72)
to paths w € C (R, R?) with starting point w(0) # 0.

Proof. 1) We fix p > d. By the a priori estimate in Theorem 3.1 there exists a finite

constant ¢ € R such that

E[(X*—= X" < c-e’|a—alf forany t >0 and a,a € R", (3.73)

where X“ denotes a version of the strong solution of (3.60) with initial condition a.

Now fix t € R,. We apply the Kolmogorov-Centsov Theorem with £ = C([0, t], R")
endowed with the supremum norm || X ||, = X}. By (3.73), there exists a modification £
of (X%)s<tacrn such that a — (£2)s<; is almost surely a-Holder continuous w.r.t. || - ||
for any o < ?. Clearly, for t; < t5, the almost surely continuous map (s,a) — &
constructed on [0, 1] xR" coincides almost surely with the restriction of the correspond-
ing map on [0, £5] x R™. Hence we can almost surely extend the definition to R, x R”"

in a consistent way.
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2) Fixt > 0 and @ € R". Then p-almost surely, both sides of (3.71) solve the same

SDE as a function of s. Indeed,
t+s __ t+s
o = g+ [ Nepas [ s,
t t
= g [ e [ (e, Ao,
0 0

gioo, = $+/5®%GJMﬁ/a§o@mmw@a
0 0

hold pi-almost surely for any s > 0 where r — W, o0 ©, = W, , is again a Brownian

motion, and (gff 0 6;)(w) := g (6¢(w)). Pathwise uniqueness now implies

§ire = £ 0 9, forany s > 0, almost surely.

Continuity of ¢ then shows that the cocycle property (3.71) holds with probability one

for all s,t and a simultaneously. O

Remark (Extensions). 1) Joint Holder continuity int and a: Since the constant p in the
proof above can be chosen arbitrarily large, the argument yields c-Holder continuity of
a — &% forany a < 1. By applying Kolmogorov’s criterion in dimension n+1, it is also
possible to prove joint Holder continuity in £ and a. In Section 4.1 we will prove that
under a stronger assumption on the coefficients b and o, the flow is even continuously

differentiable in a.

2) SDE with jumps: The first part of Theorem 3.22 extends to solutions of SDE of type
(3.3) driven by a Brownian motion and a Poisson point process. In that case, under a
global Lipschitz condition the same arguments go through if we replace C'([0, ¢], R™) by
the Banach space D([0, t], R™) when applying Kolmogorov’s criterion. Hence in spite

of the jumps, the solution depends continuously on the initial value a !

3) Locally Lipschitz coefficients: By localization, the existence of a continuous flow can
also be shown under local Lipschitz conditions, cf. e.g. [36]. Notice that in this case,

the explosion time depends on the initial value.

Above we have shown the existence of a continuous flow for the SDE (3.60) on the

canonical setup. From this we can obtain strong solutions on other setups:
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Exercise. Show that the unique strong solution of (3.60) w.r.t. an arbitrary driving
Brownian motion B instead of IV is given by X/ (w) = &(B(w)).

Markov property

In the time-homogeneous diffusion case, the Markov property for solutions of the SDE

(3.60) is a direct consequence of the cocycle property:

Corollary 3.23. Suppose that o(t, z) = &(x,) and b(t, ) = b(x,) with Lipschitz contin-
uous functions o : R" — R4 and b:R™ — R". Then (&1)e>0 s a time-homogeneous

(.FtW’P) Markov process with transition function
pi(a,B) = P&} € B, t>0, a€eR™
Proof. Let f : R™ — R be a measurable function. Then for 0 < s <,
Orw) = wt)+ (wlt+-) —wlt)),
and hence, by the cocycle property and by (3.72),
FE) = FEFE (@t +-) —w(®))

for a.e.w. Since w(t+-) —w(t) is a Brownian motion starting at 0 independent of F;""*,

we obtain

E[f( g+t)|}—y/’P} (w) = E[f(ffg(“))] = (psf)(&H(w)) almost surely.
|

Remark. Without pathwise uniqueness, both the cocycle and the Markov property do

not hold in general.

Continuity of local time

The Kolmogorov-Centsov continuity criterion can also be applied to prove the existence

of a jointly continuous version (a,t) — L¢ of the local time of a continuous local
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martingale. More generally, recall that the local time of a continuous semimartingale
X = M + A is defined by the Tanaka formula

1
5.[/? = (XO - a)+ . (Xt - a)+ / ](aoo dM / aoo dA (3 74)
almost surely for any a € R.

Theorem 3.24 (Yor). There exists a version (a,t) — L¢ of the local time process that

is continuous in t and cadlag in a with

t
Ly — L = 2/ Iix,—ay dAs. (3.75)
0
In particular, (a,t) — L} is jointly continuous if M is a continuous local martingale.

Proof. By localization, we may assume that M is a bounded martingale and A has
bounded total variation V! )(A). The map (a,t) — (X; — a)™ is jointly continuous in ¢

and a. Moreover, by dominated convergence,

t
Z;L = / I(a,oo) (Xs) dAs
0
is continuous in ¢ and cadlag in a with
t
zi-2 = - [ L(X)dA.
0

Therefore it is sufficient to prove that

t
Y;a = / I(apo)(Xs)dMs
0

has a version such that the map a — (Y%)s<; from R to C([0, ¢], R™) is continuous for

any t € [0, 00).
Hence fix ¢ > 0 and p > 4. By Burkholder’s inequality,

By =v")"| = E {Sup

s<t

/ Tiop(X)dM
0

p
} (3.76)

p/2

IN

Ci(p) E /0 T (X) d[M]
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holds for any a < b with a finite constant C'; (p). The integral appearing on the right hand
side is an occupation time of the interval (a, b]. To bound this integral, we apply Itd’s
formula with a function f € C* such that f'(z) = (x Ab— a)* and hence [’ = I(, .
Although f is not C?, an approximation of f by smooth functions shows that Itd’s

formula holds for f,i.e.,
/Otfw,b}(X)d[M] = /Otﬂa,b}(x)d[)(]
= =2 () - ) - [ e ax)

< (b—a)*+ 2

[ 0 dM\ b—a V()
0

Here we have used in the last step that | f'| < [0 — a] and |f| < (b — a)?/2. Combining

this estimate with 3.76 and applying Burkholder’s inequality another time, we obtain

([ rxr d[M])p/4] )

< Co(p,t) [b— al?’? (1 + [M]PY)

By =Y £ GO (\b—a\p/2+E

with a finite constant Cy(p,t). The existence of a continuous modification of a

(Y*)s<t now follows from the Kolmogorov-Centsov Theorem. U

S

Remark. 1) The proof shows that for a continuous local martingale, a — (L%)s<; is

a-Holder continuous for any o < 1/2and ¢t € R,.

2) For a continuous semimartingale, Ly~ = ﬁ? by (3.75).
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Chapter 4
Variations of parameters in SDE

In this chapter, we consider variations of parameters in stochastic differential equations.
This leads to a first introduction to basic concepts and results of Malliavin calculus. For
a more thorough introduction to Malliavin calculus we refer to [35], [34], [41], [23], [32]
and [9].

Let 11 denote Wiener measure on the Borel o-algebra B(€2) over the Banach space 2 =
Cs([0, 1], R?) endowed with the supremum norm ||w|| = sup {|w(t)| : t € [0,1]}, and
consider an SDE of type

driven by the canonical Brownian motion W;(w) = w(t). In this chapter, we will be in-
terested in dependence of strong solutions on the initial condition and other parameters.
The existence and uniqueness of strong solutions and of continuous stochastic flows has
already been studied in Sections 3.1 and 3.6. We are now going to prove differentiability
of the solution w.r.t. variations of the initial condition and the coefficients, see Section
4.1. A main goal will be to establish relations between different types of variations of
4.1):

e Variations of the initial condition: z — x(¢)
e Variations of the coefficients: b(x) — b(e,z), o(x) — o(e, x)
e Variations of the driving paths: W, — W, +¢H,, (H,)adapted
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e Variations of the underlying probability measure: p — p® = 2% - p

Section 4.2 introduces the Malliavin gradient which is a derivative of a function on
Wiener space (e.g. the solution of an SDE) w.r.t. variations of the Brownian path. Bis-
mut’s integration by parts formula is an infinitesimal version of the Girsanov Theorem,
which relates these variations to variations of Wiener measure. After a digression to
representation theorems in Section 4.3, Section 4.4 discusses Malliavin derivatives of
solutions of SDE and their connection to variations of the initial condition and the coef-
ficients. As a consequence, we obtain first stability results for SDE from the Bismut in-
tegration by parts formula. Finally, Section 4.5 sketches briefly how Malliavin calculus
can be applied to prove existence and smoothness of densities of solutions of SDE. This
should give a first impression of a powerful technique that eventually leads to impres-

sive results such as Malliavin’s stochastic proof of Hérmander’s theorem, cf. [21], [34].

4.1 Variations of parameters in SDE

We now consider a stochastic differential equation

d
dX; = b(e,X[)dt+ ) ou(e, X{)dWF,  X§ = x(e), (4.2)
k=1

on R" with coefficients and initial condition depending on a parameter ¢ € U, where
U is a convex neighbourhood of 0 in R™, m € N. Here b,04, : U x R® — R" are
functions that are Lipschitz continuous in the second variable, and z : U — R". We
already know that for any ¢ € U, there exists a unique strong solution (X7 );>o of (4.2).
For p € [1, 00) let

. apl/p
X, = B[ sw xi]
te[0,1]

Exercise (Lipschitz dependence on €). Prove that if the maps x, b and o}, are all Lip-
schitz continuous, then € — X* is also Lipschitz continuous w.r.t. || - ||, i.e., there exists

a constant L,, € R, such that

||X€+h_X€||p < Ly Ihl, forany ¢,h € R™ with e,e+h e U.
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We now prove a stronger result under additional regularity assumptions.

Differentation of solutions w.r.t. a parameter

Theorem 4.1. Let p € [2,00), and suppose that x, b and oy, are C* with bounded

derivatives up to order 2. Then the function € — X¢ is differentiable on U w.rit. || -
D

and the differential Y = “— is the unique strong solution of the SDE
0b 0b
dyy = ( o (6 X)) + o <e,Xf>Yf) dt (4.3)

oz
Yo = () 4.4

9
d
Z(M X7) + e X)) aw,

that is obtained by formally differentiating (4.2) w.rt. €.

Here and below 2 e and denote the differential w.r.t. the € and z variable, and z’ de-

notes the (total) d1fferent1a1 of the function x.

Remark. Note that if (X[) is given, then (4.3) is a linear SDE for (Y,°) (with mul-
tiplicative noise). In particular, there is a unique strong solution. The SDE for the
derivative process Y© is particularly simple if o is constant: In that case, (4.3) is a

deterministic ODE with coefficients depending on X°*.

Proof of 4.1. We prove the stronger statement that there is a constant M/, € (0, co) such
that

[XH" = X=—Yen|| < M, A (4.5)

holds for any €, h € R™ with €,e + h € U, where Y* is the unique strong solution of
(4.3). Indeed, by subtracting the equations satisfied by X", X¢ and Y*h, we obtain
fort € [0, 1]:

t d t
|XEth— X7 - VPR < III+/ i derZ’/IdeWk”
0 k=1 Y0

Stochastic Analysis Andreas Eberle



4.1. VARIATIONS OF PARAMETERS IN SDE 151

where
I = z(e+h)—z(e) —2'(e)h,

h
I = ble+h X)) —ble, X°) = ¥ (e, X°) <Y€h> , and

h
M, = op(e +h X)) —opnle, X°) — 0,(e, X9) (Y%) :

Hence by Burkholder’s inequality, there exists a finite constant C), such that

+ d
E[(X*™"— X =Y h);?] < C,- <|I|p +/ B[P+ Z 111, 7] ds> . (4.6)
0 k=1

Since z, b and o}, are C? with bounded derivatives, there exist finite constants Cj, Cyy,

CIII such that

< GlnP, (4.7)
ob

1] < Culh*+ ]8—33(5, X)Xt — X —Y*h)|, (4.8)
0

L] < Culh)?+ }%(5, X9) (X — X* —veh)]. 4.9)

Hence there exist finite constants @,, C’p such that
d ~
B[P +) L) < G (|h*+ E[|X" = X = Y*°h["]),
k=1
and thus, by (4.6) and (4.7),

. t
E[(X*™ — X* —Y*h)"] < GC,lh[*+C,C, / E[(X*™" — X* = Y°h)¥*] ds
0

for any ¢ < 1. The assertion (4.5) now follows by Gronwall’s lemma. U

Derivative flow and stability of stochastic differential equations

We now apply the general result above to variations of the initial condition, i.e., we

consider the flow

d
df = b(E) dt+ Y op(&) AW, & = . (4.10)
k=1
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Assuming that b and o}, (k = 1,...,d) are C? with bounded derivatives, Theorem 4.1

shows that the derivative flow
0
Y = (r) = S
s o= = ()
exists w.rt. || - ||, and (Y;*):> satisfies the SDE

d
AP = VE) Y Ay ol &)Y AW, Y = L (.11
k=1

Note that again, this is a linear SDE for Y if £ is given, and Y is the fundamental solu-
tion of this SDE.

Remark (Flow of diffeomorphisms). One can prove that x — £/ (w) is a diffeomor-
phism on R” for any ¢ and w, cf. [27] or [15].

In the sequel, we will denote the directional derivative of the flow &; in direction v € R”
by Y,

Yoo = Y5 o= Yiu o= 0.
(i) Constant diffusion coefficients. Let us now first assume that d = n and o(z) = I,
for any x € R"™. Then the SDE reads

¢t = b(&%) dt + dW, & =
and the derivative flow solves the ODE
dy®* = b'(&x)Y dt, Yo = 1.

This can be used to study the stability of solutions w.r.t. variations of initial conditions

pathwise:

Theorem 4.2 (Exponential stability I). Suppose that b : R" — R™ is C? with bounded
derivatives, and let
k = sup sup v -V (x)v.
zeR" QI)ﬁEZ

Then foranyt > 0 and z,y,v € R",

0,571 < el and |G -8 < M-yl
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The theorem shows in particular that exponential stability holds if x < 0.

Proof. The derivative Y, = 0, satisfies the ODE

dy, = V()Y,dt.
Hence
dY,)? = 2V,-0()Y,dt < 2x|Y,|*dt,
which implies
\8v§f\2 = |Yf,t|2 < 62“t|v\2, and thus
1
|£f —ff‘ = ’/ amiy 2glfs):chrsy ds < ent‘x_y‘.
0

O

Example (Ornstein-Uhlenbeck process). Let A € R™™". The generalized Ornstein-
Uhlenbeck process solving the SDE

g = A& di+dW,
is exponentially stable if x = sup {v - Av : v € S" !} < 0.

(ii) Non-constant diffusion coefficients. 1If the diffusion coefficients are not constant, the
noise term in the SDE for the derivative flow does not vanish. Therefore, the derivative
flow can not be bounded pathwise. Nevertheless, we can still obtain stability in an L2

sense.

Lemma 4.3. Suppose that b, oy, ...,04 : R® — R" are C? with bounded derivatives.
Then for any t > 0 and x,v € R", the derivative flow Y, = 9,& is in L*(Q, A, P),

and

d xT X X X
%E[|K)7t|2] = QE[Yv,t : K(gt )th]
where
1 d
K() = V@)+5) oi@) oi)
k=1
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Proof. Let V" denote the k-the component of Y,,. The Itd product rule yields
dy,? = 2v,-dY,+> d[y"]
k

D oy ey a2 Y Ve o€ W+ Y oL@Vl dt,
k k

Noting that the stochastic integrals on the right-hand side stopped at
T, =inf{t > 0: |Y, | > n} are martingales, we obtain

tAT,
E[Your?] = [P+ 23[/ Y, K()Y, ds].
0
The assertion follows as n — oc. ]

Theorem 4.4 (Exponential stability II). Suppose that the assumptions in Lemma 4.3
hold, and let

Kk = sup supv- K(x)v. (4.12)
e

Then foranyt > 0 and z,y,v € R",
B0, < e*|v|*, and (4.13)
Bl - &P < eMa -yl (4.14)
Proof. Since K (z) < kI, holds in the form sense for any =, Lemma 4.3 implies
CEIVP < 2mE[Yul)

(4.13) now follows immediately by Gronwell’s lemma, and (4.14) follows from (4.13)

since &7 — &7 = [} 9, & s, O

Remark. (Curvature) The quantity —~ can be viewed as a lower curvature bound
w.r.t. the geometric structure defined by the diffusion process. In particular, exponential
stability w.r.t. the L? norm holds if x < 0, i.e., if the curvature is bounded from below

by a strictly positive constant.
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Consequences for the transition semigroup

We still consider the flow (£7) of the SDE (4.1) with assumptions as in Lemma 4.3 and
Theorem 4 4. Let

m(w,B) = PlgeB), xR, BeBR",

denote the transition function of the diffusion process on R". For two probability mea-

sures /1, v on R™, we define the L? Wasserstein distance

Wolpv) = inf E[|X - Y[
XN;L’,YNI/

as the infimum of the L? distance among all couplings of 1 and v. Here a coupling of
and v is defined as a pair (X, Y") of random variables on a joint probability space with
distributions X ~ g and Y ~ v. Let « be defined as in (4.12).

Corollary 4.5. Foranyt > 0 and x,y € R",

W2(pt('r7')7pt<y7')) < elit|x_y‘.
Proof. The flow defines a coupling between p;(x,- ) and p;(y, - ) for any ¢, z and y:

gtx ~ pt(xa')a gi/ ~ pt(ya)
Therefore,

2 xT
WQ(pt(l’,'),pt(y,')) < E[‘gt _fﬂﬂ

The assertion now follows from Theorem 4 4. U
Exercise (Exponential convergence to equilibrium). Suppose that  is a stationary
distribution for the diffusion process, i.e., iz is a probability measure on B(R") satisfying

ppe = p for every t > 0. Prove that if x < 0 and [ |z|? p(dz) < oo, then for any
z € RY, Wy (pi(x,- ), 1) — 0 exponentially fast with rate « as ¢t — co.

Besides studying convergence to a stationary distribution, the derivative flow is also

useful for computing and controlling derivatives of transtion functions. Let

(0 f) () = / pile.dy) () = ELF(E)]

denote the transition semigroup acting on functions f : R” — R. We still assume the

conditions from Lemma 4.3.
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Exercise (Lipschitz bound). Prove that for any Lipschitz continuous function f :
R™ — R,
Ipeflly < e[Ifllup  VE>0,

where ||f|lLip = sup {|f(z) — f(y)|/|z =yl : 2,y € R"s.t. x # y}.

For continuously differentiable functions f, we even obtain an explicit formula for the

gradient of p, f:

Corollary 4.6 (First Bismut-Elworthy Formula). For any function f € C}(R"™) and
t >0, p.f is differentiable with

v-Vepef = E[V),-Vef] VazveR" (4.15)

Here V.p; [ denotes the gradient evaluated at z. Note that Y;", - V¢ f is the directional

derivative of f in the direction of the derivative flow Y7,

Proof of 4.6. For A € R\ {0},

t x + Av) — t X z+Av x g z+sv
(pef)(z + )\) (pef)(2) _ %E[f(t )_f(gt)] - %/0 E[Yv,t 'Vggv-ksvf] ds.

The assertion now follows since x — &/ and x — Y., are continuous, V f is continuous

and bounded, and the derivative flow is bounded in 2. O

The first Bismut-Elworthy Formula shows that the gradient of p; f can be controlled by
the gradient of f forall ¢ > 0. In Section 4.4, we will see that by applying an integration
by parts on the right hand side of (4.15), for ¢ > 0 it is even possible to control the gra-
dient of p; f in terms of the supremum norm of f, provided a non-degeneracy condition
holds, cf. (??).

4.2 Malliavin gradient and Bismut integration by parts

formula

Let W;(w) = w; denote the canonical Brownian motion on 2 = Cy([0, 1], R¢) endowed
with Wiener measure. In the sequel, we denote Wiener measure by P, expectation

values w.r.t. Wiener measure by F[ - |, and the supremum norm by || - ||.

Stochastic Analysis Andreas Eberle



4.2. MALLIAVIN GRADIENT AND BISMUT INTEGRATION BY PARTS
FORMULA 157

Definition. Let w € (). A function F : Q) — R is called Fréchet differentiable at w iff

there exists a continuous linear functional d,F' : Q) — R such that
|F(w+h) = Fw) = (dF)R)I[ = ollhll)  forany he .

If a function F' is Fréchet differentiable at w then the directional derivatives

OF,  Flw+eh) - Fw)
%(w) = lim = (d,F)(h)

e—0 £

exist for all directions A € (). For applications in stochastic analysis, Fréchet differ-
entiability is often too restrictive, because {2 contains “too many directions”. Indeed,
solutions of SDE are typically not Fréchet differentiable as the following example indi-

cates:

Example. Let F' = fol W dW? where W; = (W}, W2) is a two dimensional Brownian
motion. A formal computation of the derivative of F in a direction h = (h', h?) € Q

yields
oF

1 1
o = /0 hi dW? + /0 W} dh?.
Clearly, this expression is NOT CONTINUOUS in A w.r.t. the supremum norm.

A more suitable space of directions for computing derivatives of stochastic integrals is

the Cameron-Martin space
Hey = {h: 0,1] = R : hy = 0, h abs. contin. with k' € L([0, 1],Rd)]}.

Recall that H¢), is a Hilbert space with inner product

1
(hag)H = / h’:ﬁ ' gzi dta hag € HCM-
0

The map h + ' is an isometry from Hcy, onto L%([0,1],RY). Moreover, Heyy is

continuously embedded into €2, since

1
Bl = sup bl < /\hudt < ()
] 0

te(0,1

for any h € Hg)y by the Cauchy Schwarz inequality.
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As we will consider variations and directional derivatives in directions in H¢y, it is
convenient to think of the Cameron-Martin space as a fangent space to () at a given
path w € 2. We will now define a gradient corresponding to the Cameron-Martin inner
product in two steps: at first for smooth functions F' : {2 — R, and then for functions

that are only weakly differentiable in a sense to be specified.

Gradient and integration by parts for smooth functions

Let C}(Q) denote the linear space consisting of all functions F' : Q — R that are
everywhere Fréchet differentiable with continuous bounded derivative dF' : Q — ',
w — d,F. Here ' denotes the space of continuous linear functionals [ : 2 — R

endowed with the dual norm of the supremum norm, i.e.,
|l = sup{l(h) : h € Q with ||h]] < 1}.
Definition (Malliavin Gradient I). Let F' € C}(R) and w € Q.

1) The H-gradient (D" F)(w) is the unique element in Hcyy satisfying

(D"F)(w), h) = g—i(w) = (d,F)(h)  forany h € Heyy.

H
(4.16)

2) The Malliavin gradient (DF)(w) is the function t — (D;F)(w) in L*([0, 1], RY)
defined by

d
(D, F)(w) = a(DHF)(W)@) forae. t€[0,1]. (4.17)
In other words, D F is the usual gradient of F” w.r.t. the Cameron-Martin inner product,

and (DF)(w) is the element in L*([0, 1], R?) identified with (D" F')(w) by the canoni-
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cal isometry h s h’ between Hcys and L%([0, 1], RY). In particular, for any h € Heyy
and w € Q,

OF H — 4
S @ = (LDIF)W), = #.(DF)w)):e

1
= / K, - (DyF)(w) dt, (4.18)
0

and this identity characterizes D F' completely. The examples given below should help

to clarify the definitions.

Remark.

1) The existence of the [ -gradient is guaranteed by the Riesz Representation The-
orem. Indeed, for w € Q and F' € C}(R), the Fréchet differential d,F is a
continuous linear functional on 2. Since Hgy, is continuously embedded into
2, the restriction to Hc is a continuous linear functional on Hojy w.r.t. the H-
norm. Hence there exists a unique element (D F')(w) in Hcy, such that (4.16)
holds.

2) By definition of the Malliavin gradient,

1
IDYFW)IL = /O|DtF<w>|2dt.

3) Informally, one may think of D, [ as a directional derivative of [ in direction

I (1), because

B d 1 ”
D,F = @DHF@) = /O(DHF)'I&J] = O i 7

Of course, this is a purely heuristic representation, since /(;1) is not even contin-

uous.
Example (Linear functions on Wiener space).

1) Brownian motion: Consider the function F(w) = W¢(w) = w!, where s € (0, 1]
andi € {1,...,d}. Clearly, F' is in C}(€2) and
0

7 d ) 1 % '
%WS = d_{—j (WS + Ehs) }520 = hs = /0 h; c € [(O,s) (t) dt
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for any h € Hgyy. Therefore, by the characterization in (4.18), the Malliavin
gradient of [ is given by

(DW)(w) = e log(t) forevery w € Q) andae. t € (0,1).

Since the function F' : 2 — R is linear, the gradient is deterministic. The H-

gradient is obtained by integrating DWW
) t ) t
DEW! = /DTW; dr = /ei Iosy = (sAt)e.
0 0

2) Wiener integrals: More generally, let

1
F = /gs-dWs
0

where ¢ : [0,1] — R%is a C" function. Integration by parts shows that

1
F = g -W - / g. Wy ds almost surely. (4.19)
0

The function on the right hand side of (4.19) is defined for every w, and it is
Fréchet differentiable. Taking this expression as a pointwise definition for the

stochastic integral F', we obtain

aF 1 1
— = qgi-h —/g;-hsds = /gs-h;ds
oh SR 0

for any h € Hgyy. Therefore, by (4.18),

t
DiFF = g and DfF = /gsds.
0

Theorem 4.7 (Integration by parts, Bismut). Ler F' € C}(Q) and G € L%(Q x
[0,1] = R P ® \). Then

E[/OlDtF-tht} _ E[F/Oth~th] (4.20)
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To recognize (4.20) as an integration by parts identity on Wiener space let H; = |, Ot Gs,ds.
Then .
/ DF-Gydt = (D"F,H), = 0gF.
0

Replacing ' in (4.20) by F' - F with F : Fe C}(92), we obtain the equivalent identity

1
E[F o F] = —E[aHFﬁHE[Fﬁ / Gt-th} 421)
0

by the product rule for the directional derivative.

Proof of Theorem 4.7. The formula (4.21) is an infinitesimal version of Girsanov’s The-

orem. Indeed, suppose first that G is bounded. Then, by Novikov’s criterion,

5 t 81 t )
AR exp(e/o Gs'dWs_?/o |G| ds)

is a martingale for any € € R. Hence for [, = fot G, ds,
E[FW +eH)] = E[F(W)Z].

The equation (4.21) now follows formally by taking the derivative w.rt. ¢ at ¢ = 0.
Rigorously, we have
F(W +eH) - F(W)}
€

Zf—l}

E[ - E [F(W) - (4.22)

As & — 0, the right hand side in (4.22) converges to E[F(W) [ G - dW], since
1 1 1
-(Zi-1) = / Z°G-dW — / G- dW in L*(P).
€ 0 0
Similarly, by the Dominated Convergence Theorem, the left hand side in (4.22) con-
verges to the left hand side in (4.21):
€

EF(F(WHH)_F(W))] - E[ /O (OuF)(W + sH) ds} s B[(0gF)(W)]

as e — 0 since F' € C}(£2). We have shown that (4.21) holds for bounded adapted G.
Moreover, the identity extends to any G € L2(P ® \) because both sides of (4.21) are
continuous in G w.r.t. the L?(P ® \) norm. O

Remark. Adaptedness of G is essential for the validity of the integration by parts
identity.
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Skorokhod integral

The Bismut integration by parts formula shows that the adjoint of the Malliavin gradient

coincides with the Itd integral on adapted processes. Indeed, the Malliavin gradient

D:CH) C LA QA P) — L*(Qx[0,1] = R, AR B, P® ),
F — (DeF)o<i<1,

is a densely defined linear operator from the Hilbert space L?((2, A, P) to the Hilbert
space L2(Q x [0,1] = R4 A®@ B, P ® \). Let

§: Dom(6) C L2 (2 x[0,1] = RL A® B,P®)\) — L*(Q,A P)

denote the adjoint operator (i.e., the divergence operator corresponding to the Malliavin
gradient). By (4.21), any adapted process G € £2(Q2 x [0,1] € R4, A® B, P ® \) is

contained in the domain of §, and
1
0G = / Gy - dW, forany G € Ei.
0

Hence the divergence operator d defines an extension of the Itd integral G — |, 01 Gy-dW,
to not necessarily adapted square integrable processes G' : Q x [0,1] — R<. This

extension is called the Skorokhod integral .

Exercise (Product rule for divergence). Suppose that (G )c[o,1] is adapted and bounded,
and F' € C;(Q). Prove that the process (F' - Gy);e(o,1) is contained in the domain of 4,
and

1
0

Definition of Malliavin gradient I1

So far we have defined the Malliavin gradient only for continuously Fréchet differen-
tiable functions F' on Wiener space. We will now extend the definition to the Sobolev
spaces D', 1 < p < oo, that are defined as closures of C} (Q2) in LP(Q, A, P) w.r.t. the

norm
1
|Flh, = E[FP+]|D"F|E]"".
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In particular, we will be interested in the case p = 2 where
1
IFIE, = E|F?+ / (DuFI? dt).
0

Theorem 4.8 (Closure of the Malliavin gradient).

1) There exists a unique extension of DY to a continuous linear operator

p?. DY — LP(Q— H P)

2) The Bismut integration by parts formula holds for any F € D2,

Proofforp=2. 1) Let I’ € D'? and let (F},),en be a Cauchy sequence w.r.t. the (1,2)
norm of functions in C} (Q2) converging to F' in L?(Q, P). We would like to define

DF .= 1lim D"F, (4.23)

n—o0

w.rt. convergence in the Hilbert space L?*(Q2 — H, P). The non-trivial fact to be
shown is that D I is well-defined by (4.23), i.e., independently of the approximat-

ing sequence. In functional analytic terms, this is the closability of the operator D

To verify closability, we apply the integration by parts identity. Let (F,,) and (F},) be
approximating sequences as above, and let L = lim F}, and L =limF, in L*(Q, P).

We have to show L = L. To this end, it suffices to show
(L—L,h)y = 0 almost surely for any h € H. (4.24)

Hence fix h € H,and let p € CZ(Q). Then by (4.21),

E(L—Lh)u-¢] = lim E[0u(F, ~ F,) -]
= lim {E[(Fn - ﬁn)<p/01 B dW} - E[(Fn - Fn)ah¢] }
~ 0
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since F,, — F,, — 0in L2. As C}(Q) is dense in L%(Q, A, P) we see that (4.24) holds.

2) To extend the Bismut integration by parts formula to functions ' € D2 let (F},) be
an approximating sequence of C} functions w.r.t. the (1,2) norm. Then for any process
G e L?and Hy = fot G, ds, we have

E[/lDtFn~tht] - E[(DHF,L,H)H} - E[Fn/lG.dW].

Clearly, both sides are continuous in F,, w.rt. the (1,2) norm, and hence the identity

extends to F'as n — oo. [l

The next lemma is often useful to verify Malliavin differentiability:

Lemma 4.9. Let F € L*(Q, A, P), and let (F,),en be a sequence of functions in D'

converging to F w.rt. the L? norm. If

sup E[||[DTE,[|%] < oo (4.25)

neN

then F is in D'2, and there exists a subsequence (F,,)en of (Fy,) such that
1
~Y F,, = F  wrtthe(12)norm. (4.26)

The functional analytic proof is based on the theorems of Banach-Alaoglu and Banach-

Saks, cf. e.g. the appendix in [30].

Proof. By (4.25), the sequence (D F,,),cy of gradients is bounded in L*(Q — H; P),
which is a Hilbert space. Therefore, by the Banach-Alaoglu theorem , there exists a
weakly convergent subsequence (D Fy,.);cn. Moreover, by the Banach-Saks Theorem,
there exists a subsequence (D F},.);cx of the first subsequence such that the averages
z Zle DHF,,. are even strongly convergent in L?(€ — H; P). Hence the correspond-
ing averages ; S ¥ | F,, converge in D2, The limit is F since F,,, — F in L? and the

D2 norm is stronger than the L? norm. O
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Product and chain rule

Lemma 4.9 can be used to extend the product and the chain rule to functions in D2,

Theorem 4.10. 1) If F and G are bounded functions in D%? then the product FG is

again in D2, and

D(FG) = FDG+GDF a.s.

2) Letm € Nand FV ... F(™ ¢ DY2 If o : R™ — R is continuously differen-

tiable with bounded derivatives then p(FW, ... F™) is in D2, and
D p(FO, . Fm)y = i 00 () pmy pp,
) ) - axl ) )

Proof. We only prove the product rule, whereas the proof of the chain rule is left as
an exercise. Suppose that (F},) and (G,,) are sequences of C} functions converging to
F and G respectively in DY2. If F' and G are bounded then one can show that the ap-
proximating sequences (F,,) and (G,,) can be chosen uniformly bounded. In particular,

F,G, — FG in L?. By the product rule for the Fréchet differential,

DH(F,G,) F,D"G, +G,D"F,  forany n € N, and (4.27)
ID"(EG)llr < [Fal [IDGlla + |Gl ||D" Eol| -

Thus the sequence (D (F,G,,))nen is bounded in L?(Q — H; P). By Lemma 4.9, we
conclude that F'G is in D2 and

k
1
DH(FG) = I lim EZDH(FMGM)
i=1

k—o0

for an appropriate subsequence. The product rule for F'G now follows by (4.27). 0

4.3 Digression on Representation Theorems

We now prove basic representation theorems for functions and martingales on Wiener

space. The Bismut integration by parts identity can then be applied to obtain a more
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explicit form of the classical 1t6 Representation Theorem. Throughout this section,

Wi(w) = w; denotes the canonical Brownian motion on Wiener space (€2, .4, P), and
Fi = o(W,:sel0,1), t>0,

is the completed filtration generated by (1;).

Itos Representation Theorem

Itd’s Representation Theorem states that functions on Wiener space that are measurable

w.r.t. the Brownian filtration F; = ]-"tW 7 can be represented as stochastic integrals:

Theorem 4.11 (Itd). For any function F € L*(Q, Fy, P) there exists a unique process
G € L2(0,1) such that

1
F = E[F]+ / Gs - dW; P-almost surely. (4.28)
0

An immediate consequence of Theorem 4.11 is a corresponding representation for mar-

tingales w.r.t. the Brownian filtration F, = F;"""":

Corollary 4.12 (It representation for martingales). For any L*-bounded (F;) mar-

tingale (My)iep0,1] there exists a unique process G € L2(0, 1) such that
t
M, = M, +/ Gy - dW, P-a.s. forany t € [0,1].
0

The corollary is of fundamental importance in financial mathematics where it is related
to completeness of financial markets. It also proves the remarkable fact that every mar-
tingale w.r.t. the Brownian filtration has a continuous modification! Of course, this

result can not be true w.r.t. a general filtration.

We first show that the corollary follows from Theorem 4.11, and then we prove the

theorem:

Proof of Corollary 4.12. If (M;)scpo,1) is an L? bounded (F;) martingale then M; €
LQ(Q, .Fl, P), and

M, = E[M|F] as. forany t € [0,1].
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Hence, by Theorem 4.11, there exists a unique process G € L2(0, 1) such that
1 1
M1 = E[Ml] + / G- dW = MO + / G-dW a.s.,
0 0
and thus

t

M, = E[M|F] = MO+/ G-dW a.s. foranyt > 0.
0

O

Proof of Theorem 4.11. Uniqueness. Suppose that (4.28) holds for two processes G, Ge

L?(0,1). Then
1 1
/ G-dW = / G- dW,
0 0

and hence, by It0’s isometry,

I
e

||G_é||L2(P®)\) = H/(G—é)dW‘

L2(P)
Hence G,(w) = G,(w) for almost every (t,w).

Existence. We prove the existence of a representation as in (4.28) in several steps —
starting with “simple” functions F'.
1. Suppose that F' = exp(ip - (W; — W,)) for some p € R?and 0 < s <t < 1. By

1t6’s formula,

: 1 : 1 ! : 1 :
exp(zp~Wt+§\p|2t) = exp(zp-Ws+§|p\25)+/ exp(zp-Wr+§|p\27’)zp~dWr.

S

Rearranging terms, we obtain an Itd representation for /' with a bounded adapted inte-

grand G.

2. Now suppose that F' = ][ Fy where F}, = exp (ipk - (W, — VVtk_l)) for some
k=1
neEN,p,....,pn €ERYand 0 <ty <t; < --- < t, < 1. Denoting by G, the bounded

adapted process in the It representation for £}, we have

n

Fo= H(E[Fk]+/ttkﬂGk-dW).

k=1
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We show that the right hand side can be written as the sum of [[,_, E[F}] and a stochas-
tic integral w.r.t. W. For this purpose, it suffices to verify that the product of two stochas-
tic integrals X, = fot G-dW and Y, = fot H - dW with bounded adapted processes G
and H is the stochastic integral of a process in L2(0, 1) provided fol Gy- H; dt = 0. This

holds true, since by the product rule,

1 1 1
Xy, = /Xth-th+/ Yth~th+/ G, - H, dt,
0 0 0

and X H + Y G is square-integrable by Itd’s isometry.

3. Clearly, an It6 representation also holds for any linear combination of functions as in
Step 2.

4. To prove an Itd representation for arbitrary functions in £%(Q, F;, P), we first note
that the linear combinations of the functions in Step 2 form a dense subspace of the
Hilbert space L*(2, Fy, P). Indeed, if ¢ is an element in L? (€2, F, P) that is orthogonal

to this subspace then

Ele[Texolin - (W, = We )] = 0
k=1
foranyn € N,py,...,p, € Réiand0 <ty <t; <---<t, <1. By Fourier inversion,
this implies

ElploW,, =Wy, :1<k<n)] = 0 a.s.

foranyn € Nand 0 < t, < --- <t, < 1,and hence ¢ = 0 a.s. by the Martingale
Convergence Theorem.

Now fix an arbitrary function F' € L?(Q, F;, P). Then by Step 3, there exists a sequence
(F,) of functions in L*(£2, F;, P) converging to F in L? that have a representation of

the form

1
F, - E[F,] = / G™ . aw (4.29)
0
with processes G™ € L2(0,1). Asn — oo,

F,— E[F,] — F—E[F] in L*P).
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Hence, by (4.29) and 1t0’s isometry, (G(™) is a Cauchy sequence in L*(P ® (1))

Denoting by G the limit process, we obtain the representation
1
F-E[F] - / G- dw
0

by taking the L? limit on both sides of (4.29). U

Clark-Ocone formula
If £ is in D2 then the process G in the 1td representation can be identified explicitly:

Theorem 4.13 (Clark-Ocone). For any F' € D'?,
1
F—E[F] = / G- dW
0

where

G, = E[DJF|F].

Proof. It remains to identify the process G in the Itd representation. We assume w.l.0.g.
that E[F] = 0. Let H € LL([0, 1], R%). Then by Itd’s isometry and the integration by

parts identity,
1 1 1
E[/ G-dW/ HdW] _ E[/ D,F - H, dt
0 0 0

E[/th~tht]
- E[/lE[DtFm]-tht}

for all Setting H; := G; — E[D,F|F;] we obtain

Gi(w) = E[DF|F](w) P\ — ae.

4.4 First applications to stochastic differential equations

4.5 Existence and smoothness of densities
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Chapter 5

Stochastic calculus for semimartingales

with jumps

Our aim in this chapter is to develop a stochastic calculus for functions of finitely many
real-valued stochastic processes Xt(l), X t(Q), o X t(d). In particular, we will make sense

of stochastic differential equations of type

(V) (k)

lmg

with continuous time-dependent vector fields o4, ...,04 : Ry X R® — R". The sample
paths of the driving processes (Xt(k)) and of the solution (Y;) may be discontinuous, but
we will always assume that they are cadlag, i.e., right-continuous with left limits. In
most relevant cases this can be assured by choosing an appropriate modification. For
example, a martingale or a Lévy process w.r.t.a right-continuous complete filtration
always has a cadlag modification, cf. [37, Ch.IL, §2] and [36, Ch.I Thm.30].

An adequate class of stochastic processes for which a stochastic calculus can be devel-
oped are semimartingales, i.e., sums of local martingales and adapted finite variation
processes with cadlag trajectories. To understand why this is a reasonable class of pro-

cesses to consider, we first briefly review the discrete time case.
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Semimartingales in discrete time

If (Fn),—0.1... is a discrete-time filtration on a probability space (2, A, P) then any

(F.) adapted integrable stochastic process (X,,) has a unique Doob decomposition
X, = Xo+ M, + A — A> (5.1)

into an (F,,) martingale (1/,,) and non-decreasing predictable processes (A7) and (A,>)
such that M, = AO/ = A(}‘ = 0, cf. [14, Thm. 2.4]. The decomposition is determined
by choosing

Mn - Mnfl = Xn - anl - E[Xn - anl | Fn71]7

Al — A7 = EB[X,— Xy | Fad]™, and Ax—AX| = E[X, — X, 1 | Fui]™.

In particular, (X,,) is a sub- or supermartingale if and only if A = 0 for any n, or

A7 = 0 for any n, respectively. The discrete stochastic integral
(GeX)n = D Gr(Xp—Xi)
k=1

of a bounded predictable process (G,) w.r.t.(X,) is again a martingale if (X,,) is a
martingale, and an increasing (decreasing) process if G, > 0 for any n, and (X,,)
is increasing (respectively decreasing). For a bounded adapted process (H,,), we can

define correspondingly the integral

(H_oX), = ZHk—l (Xg — Xp—1)

of the predictable process H_ = (Hj_1)geny Wr.t. X.

The Taylor expansion of a function F' € C?*(R) yields a primitive version of the 116

formula in discrete time. Indeed, notice that for k£ € N,
1
F(Xk) - F(Xk—l) = / F/(Xk—l + SAXk) ds AXk
0

1 s
= F/(kal) AXk + / / F//<Xk,1 —|—7’AXk) drds (AXk)Z
0 0
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where AXy := X, — X;,_1. By summing over £k, we obtain
n 1 s

F(X,) = F(Xo) + (F'(X)-oX), + ) / / F"(X_q +rAXy) drds (AXy)?.
1 70 Jo

1t6’s formula for a semimartingale (X;) in continuous time will be derived in Theorem
5.22 below. It can be rephrased in a way similar to the formula above, where the last term
on the right-hand side is replaced by an integral w.r.t. the quadratic variation process
[X]; of X, cf. (XXX).

Semimartingales in continuous time

In continuous time, it is no longer true that any adapted process can be decomposed
into a local martingale and an adapted process of finite variation (i.e., the sum of an
increasing and a decreasing process). A counterexample is given by fractional Brownian
motion, cf. Section 2.3 below. On the other hand, a large class of relevant processes has

a corresponding decomposition.

Definition. Letr (F);>¢ be a filtration. A real-valued (F;)-adapted stochastic process
(Xt)e>0 on a probability space (), A, P) is called an (F;) semimartingale if and only

if it has a decomposition
Xe = Xo+ M+ A, t >0, (5.2)

into a strict local (F;)-martingale (M,) with cadlag paths, and an (JF;)-adapted process
(Ay) with cadlag finite-variation paths such that My = Ay = 0.

Here a strict local martingale is a process that can be localized by martingales with uni-
formly bounded jumps, see Section 2.2 for the precise definition. Any continuous local
martingale is strict. In general, it can be shown that if the filtration is right continuous
and complete then any local martingale can be decomposed into a strict local martingale
and an adapted finite variation process (“Fundamental Theorem of Local Martingales”,
cf. [36]). Therefore, the notion of a semimartingale defined above is not changed if the
word “strict” is dropped in the definition. Since the non-trivial proof of the Fundamental
Theorem of Local Martingales is not included in these notes, we nevertheless stick to

the definition above.
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Remark. (Assumptions on path regularity). Requiring (A;) to be cadlag is just a
standard convention ensuring in particular that ¢t — A;(w) is the distribution function of
a signed measure. The existence of right and left limits holds for any monotone function,
and, therefore, for any function of finite variation. Similarly, every local martingale

w.r.t.a right-continuous complete filtration has a cadlag modification.

Without additional conditions on ( A;), the semimartingale decomposition in (5.2) is not
unique, see the example below. Uniqueness holds if, in addition, (A4;) is assumed to be
predictable, cf. [7,36]. Under the extra assumption that (A;) is continuous, uniqueness

is a consequence of Corollary 5.15 below.

Example (Semimartingale decompositions of a Poisson process). An (F;) Poisson

process ([V;) with intensity A has the semimartingale decompositions

Ny = Ni+ M = 0+ N,
into a martingale and an adapted finite variation process. Only in the first decomposi-

tion, the finite variation process is predictable and continuous respectively.

The following examples show that semimartingales form a sufficiently rich class of

stochastic processes.

Example (Stochastic integrals). Let (B;) and (1V;) be a d-dimensional (F;) Brownian
motion and an (F;) Poisson point process on a o-finite measure space (S, S, v) respec-

tively. Then any process of the form

t t
X, = / H,-dB.+ / () N(ds dy) + / K. ds+ / L.(y)N(ds dy) (5.3)
0 (0,t] xS 0 (0,t] xS

is a semimartingale provided the integrands H, G, K, L are predictable, H and G are
(locally) square integrable wrt. P ® A\, P ® A ® v respectively, and K and L are
(locally) integrable w.r.t. these measures. In particular, by the Lévy-It6 decomposition,
every Lévy process is a semimartingale. Similarly, the components of solutions of SDE
driven by Brownian motions and Poisson point processes are semimartingales. More
generally, Itd’s formula yields an explicit semimartingale decomposition of f (¢, X;) for
an arbitrary function f € C? (R, x R"™) and (X;) as above, cf. Section 5.4 below.
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Example (Functions of Markov processes). If (X;) is a time-homogeneous (F;)
Markov process on a probability space (€2, A, P), and f is a function in the domain

of the generator £, then f(X,) is a semimartingale with decomposition

t

f(X;) = local martingale + / (Lf)(Xs) ds, (54)
0
cf.e.g. [12] or [16]. Indeed, it is possible to define the generator £ of a Markov process

through a solution to a martingale problem as in (5.4).

Many results for continuous martingales carry over to the cadlag case. However, there

are some important differences and pitfalls to be noted:

Exercise (Cadlag processes).
1) A stopping time is called predictable iff there exists an increasing sequence (75,)
of stopping times such that 7,, < 7 on {T" > 0} and T" = sup Ty . Show that for

a cadlag stochastic process (X;);>o, the first hitting time
Ty = inf{t>0: X, € A}

of a closed set A C R is not predictable in general.

2) Prove that for a right continuous (F;) martingale (M;);>o and an (F;) stopping
time 7, the stopped process (M;ar):>0 is again an (F;) martingale.

3) Prove that a cadlag local martingale (/;) can be localized by a sequence (M;ar,, )

of bounded martingales provided the jumps of ()/;) are uniformly bounded, i.e.,
sup {|AM(w)|: t >0, w € Q} < 0.

4) Give an example of a cadlag local martingale that can not be localized by bounded

martingales.

Our next goal is to define the stochastic integral G, X w.r.t. a semimartingale X for
the left limit process G = (H,;_) of an adapted cadlag process H, and to build up a
corresponding stochastic calculus. Before studying integration w.r.t. cadlag martingales
in Section 5.2, we will consider integrals and calculus w.r.t. finite variation processes in

Section 5.1.

Stochastic Analysis Andreas Eberle



5.1. FINITE VARIATION CALCULUS 175

5.1 Finite variation calculus

In this section we extend Stieltjes calculus to cadlag paths of finite variation. The results
are completely deterministic. They will be applied later to the sample paths of the finite

variation part of a semimartingale.

Fix u € (0,00],and let A : [0,u) — R be a right-continuous function of finite variation.
In particular, A is cadlag. We recall that there is a o-finite measure p4 on (0, u) with

distribution function A, i.e.,
pa ((s,t]) = Ay — A forany 0 < s <t < u. (5.5)

The function A has the decomposition

into the pure jump function
A = ) AA, (5.7)
s<t

and the continuous function A¢ = A, — A?. Indeed, the series in (5.7) converges abso-

lutely since

dYaAl < VYA) <oo foranyt € [0,u).

s<t

The measure 14 can be decomposed correspondingly into

N e
where
pas = Y AA-G,
s€(0,u)
AA#£0

is the atomic part, and 4. does not contain atoms. Note that j4c is not necessarily

absolutely continuous!
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Lebesgue-Stieltjes integrals revisited

Let £L.([0,u), na) :== LL.([0,u), |pa|) where |p4] denotes the positive measure with
distribution function V;"’(A). For G € L1 .([0,u), a), the Lebesgue-Stieltjes integral
of H wur.t. A is defined as

/ G,dA, = /GT Tisq(r) pra(dr) for0 <s <t <u.
A crucial observation is that the function
t
I, = / G,dA, = / Gy paldr) , teo,u),
0 (0,1]
18 the distribution function of the measure
pr(dr) = G, pa(dr)

with density G w.r.t. ;4. This has several important consequences:

1) The function [ is again cadlag and of finite variation with

t t
L A N W AT A}
0 0
2) I decomposes into the continuous and pure jump parts
t t
I = /GT daAc | I¢ = /GT dAY = Y G, AA,
0 0 s<t

3) Forany G € Ll (pr)s

t t
/ G.dl, = / G,G, dA,,
0 0

ie.if “dl = G dA” then also “G dI = GG dA”.

Theorem 5.1 (Riemann sum approximations for Lebesgue-Stieltjes integrals). Sup-
pose that H : [0,u) — R is a cadlag function. Then for any a € [0,u) and for any

sequence () of partitions with mesh(m,) — 0,

t
lim E Hy(Agpny — Ag) = / H,_ dA, uniformly fort € [0, al.
n—oo

SETn 0

s<t
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Remark. If (A;) is continuous then

t t
/ HS, dAs == / Hs dA87
0 0

because fot AH, dA, = ngt AHAA, = 0 for any cadlag function H. In general,

however, the limit of the Riemann sums in Theorem 5.1 takes the modified form

t t
/HS_ dA, = /H dAS+)  H, AA,.
0 0

s<t

Proof. Forn € Nandt > 0,

> H(Awn—A4,) = Z/ H,dA, = Hi,,dA,
(s,s' At (0,¢]

SETn SETn
s<t s<t
where ||, := max{s € m, : s <r} is the next partition point strictly below r. As

n — 00, ||, — r from below, and thus H |, |, — H,_. Since the cadlag function H is

uniformly bounded on the compact interval [0, a], we obtain

t t
/ Hy,y, dA, — / H,_ dA,
0 0

as n — oo by dominated convergence. U

sup
t<a

< /( By, = He] lpal(@) 0
0,a

Product rule

The covariation [H, A] of two functions H, A : [0,u) — R w.rt.a sequence (m,) of

partitions with mesh(7,) — 0 is defined by

[H,Al, = lim > (Hopn — Ho)(Agp — As), (5.8)
oo SETn
s<t

provided the limit exists. For finite variation functions, [H, A] can be represented as a

countable sum over the common jumps of H and A:

Lemma 5.2. If H and A are cadlag and A has finite variation then the covariation

exists and is independently of (,,) given by

[H A, = > AHAA,

0<s<t
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Proof. We again represent the sums as integrals:

t
S (o= H) (Ao = A) = [ (Hi = Hy,) dA,
0

SETY
s<t

with |r], as above, and [r], := min{s € 7, : s >r}. Asn — oo, Hpq,nt — H|r),

converges to {, — H,_, and hence the integral on the right hand side converges to

t
/ (H,— H,_)dA, = Y AHAA,
0

r<t
by dominated convergence. L
Remark. 1) If H or A is continuous then [H, A] = 0.

2) In general, the proof above shows that

t t
/ H,dA, = / H,_ dA,+[H, A,
0 0

i.e., [H, A] is the difference between limits of right and left Riemann sums.

Theorem 5.3 (Integration by parts, product rule). Suppose that H, A : [0,u) — R

are right continuous functions of finite variation. Then

t t
H,A, — HyAy = / H,_ dA, + / A, dH, + [H, A foranyt € [0,u). (5.9)
0 0

In particular, the covariation [H, A| is a cadlag function of finite variation, and for
a < u, the approximations in (5.8) converge uniformly on [0, a] w.r.t.any sequence (m,,)

such that mesh(m,) — 0.

In differential notation, (5.9) reads
d(HA), = H, dA,+ A, dH,+d[H,A],.
As special cases we note that if H and A are continuous then H A is continuous with
d(HA), = H.dA,+ A,.dH,,

and if H and A are pure jump functions (i.e. H° = A° = () then H A is a pure jump

function with

A(HA), = H,_AA, +A,_AH, +AAAH,
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In the latter case, (5.9) implies

H,A; — HoAg = > A(HA),.
r<t
Note that this statement is not completely trivial, as it holds even when the jump times

of H A form a countable dense subset of [0, ¢]!
Since the product rule is crucial but easy to prove, we give two proofs of Theorem 5.3:

Proof 1. For (r,) with mesh(m,) — 0, we have

HtAt - HOAO - Z(Hs’/\tAs’/\t - HSAS)

SETY
s<t

- Z HS(AS’/\t - As) + ZAS(HS’/\t - Hs) + Z(As’/\t - As)(Hs’/\t - Hs)

As n — 00, (5.9) follows by Theorem 5.1 above. Moreover, the convergence of the
covariation is uniform for ¢ € [0, a], a < wu, since this holds true for the Riemann sum
approximations of fot H,_ dA, and fg A,_ dH, by Theorem 5.1. ]
Proof 2. Note that for t € [0, u),

s>r

s<r

(Hi= B~ A0) = [ () palds)
(0,¢]x(0,¢]

is the area of (0,¢] x (0, ¢] w.r.t.the product measure yy ® p14. By dividing the square
(0,t]x (0, t] into the parts {(s,7) | s < r},{(s,7) | s > r} and the diagonal {(s,7) | s = r}

we see that this area is given by

t t
/ N / N / _ / (A, — Ag) dH, + / (H, — Ho) dA,+ Y AH,AA,,
s<r s>r s=r 0 0

s<t

The assertion follows by rearranging terms in the resulting equation. (]
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Chain rule

The chain rule can be deduced from the product rule by iteration and approximation of

C* functions by polynomials:

Theorem 5.4 (Change of variables, chain rule, It6 formula for finite variation func-
tions). Suppose that A : [0,u) — R is right continuous with finite variation, and let
F € CY(R). Then for any t € [0,u),

F(A) = F(Ay) = /Ot F'(As) dA,+ ) (F(A) = F(A,-) = F'(A)AA),

(5.10)

or, equivalently,

FA) - Fld) = [P Y (R - FA). D

0 s<t

If A is continuous then F'(A) is also continuous, and (5.10) reduces to the standard

chain rule

F(A) - F(4,) = /OtF%As)dAs.

If A is a pure jump function then the theorem shows that F'(A) is also a pure jump

function (this is again not completely obvious!) with
F(A) = F(A) = ) (F(A) = F(A).

Remark. Note that by Taylor’s theorem, the sum in (5.10) converges absolutely when-
ever ng(AAS)2 < 00. This observation will be crucial for the extension to Itd’s

formula for processes with finite quadratic variation, cf. Theorem 5.22 below.

Proof of Theorem 2.4. Let A denote the linear space consisting of all functions I’ €
C!(R) satisfying (5.10). Clearly the constant function 1 and the identity F'(t) = ¢ are in
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A. We now prove that A is an algebra: Let F, G € A. Then by the integration by parts
identity and by (5.11),

(FG)(A)=(FG)(Ao)

- [(Ftacyaca. + [ G ana, + Y ara.a6(0).

= /t(F(As)G’(As) +G(A ) F'(As-)) dAS

+ > (F(AL)AG(A), + G(A )AF(A)s + AF(A),AG(A),)

s<t
t
= [ (FOY () di T ((FG)AL) - (FG)(AL)
0 s<t

forany ¢t € [0,u),i.e., F'G is in A.
Since A is an algebra containing 1 and ¢, it contains all polynomials. Moreover, if F
is an arbitrary C! function then there exists a sequence (p,) of polynomials such that
pn — F and p), — F’ uniformly on the bounded set {A; | s < t}. Since (5.11) holds
for the polynomials p,,, it also holds for F'. U

Exponentials of finite variation functions

Let A : [0,00) — R be a right continuous finite variation function. The exponen-
tial of A is defined as the right-continuous finite variation function (Z;);>¢ solving the
equation

dz, = Z,_dA, Zy=1 ie.,

t
Zy, = 1 +/ Ze_ dA, forany t > 0. (5.12)
0

If A is continuous then Z; = exp(A;) solves (5.12) by the chain rule. On the other hand,
if A is piecewise constant with finitely many jumps then Z; = [[,,(1 + AA;) solves
(5.12), since

Z, = Zo+Y AZ, = 1+ Z,AA, = 1+/ Z,_ dA;.
(0.1

s<t s<t

In general, we obtain:
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Theorem 5.5. The unique cadlag function solving (5.12) is

Z, = exp(4y)-[J(1+ A4, (5.13)

s<t

where the product converges for any t > 0.

Proof. 1) We first show convergence of the product

P = H(1+AA3)-

s<t

Recall that since A is cadlag, there are only finitely many jumps with |[AA,| > 1/2.

Therefore, we can decompose

P,o= exp| Y log(l+AA) |- J[ 1+a44) (5.14)
s<t s<t
|AAS[<1/2 |AAL>1/2

in the sense that the product P, converges if and only if the series converges. The series
converges indeed absolutely for A with finite variation, since log(1 -+ x) can be bounded
by a constant times |x| for |x| < 1/2. The limit .S; of the series defines a pure jump
function with variation Vt(l)(S ) < const. - v, (A) forany t > 0.

2) Equation for P,: The chain and product rule now imply by (5.14) that ¢ — P, is also

a finite variation pure jump function. Therefore,

t
P, = R+Y AP, = 1+Y P AA = 1 +/ P,_dAY, vt >0,
s<t s<t 0

(5.15)
i.e., P is the exponential of the pure jump part AY = > < AA,.

3) Equation for Z;: Since Z; = exp(A§) P, and exp(A€) is continuous, the product rule
and (5.15) imply

t t
Zi—1 = /eA‘é dP8+/ P,_ e dAC
0 0

t t
= / et P, d(AT+ A%), = / Z,_ dA,.
0 0
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4) Uniqueness: Suppose that Z is another cadlag solution of (5.12), and let X, :=
Ly — Zt. Then X solves the equation

t
Xy = /XS_dAS Vt>0
0
with zero initial condition. Therefore,

t
X, < /\Xs|dvt < MV, vt
0

where V; := 1, (A) is the variation of A and M, := sup,, | X,|. Iterating the estimate
yields

t
ST T A (N T
0

by the chain rule, and

M, [t M,
X, < = [ vrav, < Lyt v >0,neN. (5.16)
Dy ° (n+1)"

Note that the correction terms in the chain rule are non-negative since V; > 0 and
[V]; > 0 forall t. As n — oo, the right hand side in (5.16) converges to 0 since M/; and
V; are finite. Hence X; = 0 for each ¢ > 0. [

From now on we will denote the unique exponential of (4;) by (/).

Remark (Taylor expansion). By iterating the equation (5.12) for the exponential, we

obtain the convergent Taylor series expansion

g4 — 1 4 Z/ / / AL dA, dA, + R,
k=1 (07t] (0731) (O,Sn—l)

where the remainder term can be estimated by
RV < MV (n 1)L

If A is continuous then the iterated integrals can be evaluated explicitly:

// / dAg dA, - dAs, = (A — Ag)" /KL
(0,t] / (0,s1) (0,8—1)
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If A is increasing but not necessarily continuous then the right hand side still is an upper

bound for the iterated integral.

We now derive a formula for £-£P where A and B are right-continuous finite variation

functions. By the product rule and the exponential equation,

t t
EAEF -1 = /O EN dEP + /O EP dE} +) T AELAEP

s<t

t
= / ELEP A(A+ B),+ > ELEP AANB,

0 s<t

t
= /Sféffd(A+B+[A,B])s
0

for any t > 0. This shows that in general, EAEP # €45,

Theorem 5.6. If A, B : [0,00) — R are right continuous with finite variation then

gAgB _ 5A+B+[A,B}.

Proof. The left hand side solves the defining equation for the exponential on the right

hand side. O
In particular, choosing B = — A, we obtain:
1 —A+[A]
i = E

Example (Geometric Poisson process). A geometric Poisson process with parameters

A > 0and o, € R is defined as a solution of a stochastic differential equation of type
dSt = O'St_ dNt + OéSt dt (517)

w.r.t.a Poisson process (/V;) with intensity A\. Geometric Poisson processes are relevant
for financial models, cf.e.g. [39]. The equation (5.17) can be interpreted pathwise as

the Stieltjes integral equation

t t
Sy = So—l—a/ SrdquLa/ S,dr , t>0.
0 0
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Defining A; = o N; + at, (5.17) can be rewritten as the exponential equation
dSt - St, dAt 5
which has the unique solution

S o= So-&' = Sy [[+0AN) = Sp-e(1+40)M
s<t
Note that for o > —1, a solution (.S;) with positive initial value Sy is positive for all ¢,
whereas in general the solution may also take negative values. If « = —\o then (A;)
is a martingale. We will show below that this implies that (.S;) is a local martingale.

Indeed, it is a true martingale which for S, = 1 takes the form
Sy = (14 U)Nte*’\”t

Corresponding exponential martingales occur as “likelihood ratio” when the intensity

of a Poisson process is modified, cf. Chapter 2 below.

Example (Exponential martingales for compound Poisson processes). For com-
pound Poisson processes, we could proceed as in the last example. To obtain a different

point of view, we go in the converse direction: Let

K

Xy = Z 7j
j=1
be a compound Poisson process on R? with jump intensity measure v = Ay where \ €
(0, 00) and y is a probability measure on R%\{0}. Hence the n; are i.i.d.~ p,and (K;) is
an independent Poisson process with intensity \. Suppose that we would like to change
the jump intensity measure to an absolutely continuous measure v(dy) = o(y)v(dy)
with relative density o € L£(v), and let A = »(R?\ {0}). Intuitively, we could expect
that the change of the jump intensity is achieved by changing the underlying probability

measure P on F;X with relative density (“likelihood ratio”)

K ~
Z = AV Jem) = Y]] eaX,).
j=1 s<t

AX#0
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In Chapter 2, as an application of Girsanov’s Theorem, we will prove rigorously that
this heuristics is indeed correct. For the moment, we identify (Z;) as an exponential

martingale. Indeed, Z; = 5{4 with

A = A=Nt+ D (e(AX) —1)
A z0
= —(A=Mt+ /(Q(y) — 1) N(dy). (5.18)

Here N, = Zf:tl o, denotes the corresponding Poisson point process with intensity
measure v. Note that (A;) is a martingale, since it is a compensated compound Poisson

process
Ay = /(Q(y) —1) Nt(dy) . where N, := N, — tv.

By the results in the next section, we can then conclude that the exponential (7;) is a

local martingale. We can write down the SDE

t
Zy = 1+/ZSdAS (5.19)
0

in the equivalent form

Z = 1+ / Zy (oly) — 1) N(ds dy) (5.20)
(

0,t] xR

where N(ds dy) := N(ds dy) — ds v(dy) is the random measure on RT x R with
N((0,8] x B) = Ny(B) forany t > 0 and B € B(R?). In differential notation, (5.20) is

an SDE driven by the compensated Poisson point process (Nt):

iz = [ 7 (o)~ 1) Nidedy).

Example (Stochastic calculus for finite Markov chains). Functions of continuous
time Markov chains on finite sets are semimartingales with finite variation paths. There-
fore, we can apply the tools of finite variation calculus. Our treatment follows Rogers
& Williams [38] where more details and applications can be found.

Suppose that (X;) on (€2, A, P) is a continuous-time, time-homogeneous Markov pro-

cess with values in a finite set S and cadlag paths. We denote the transition matrices by
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p: and the generator (Q-matrix) by £ = (L(a,b))spes. Thus £ = limy ot~ (p; — 1),
ie., fora # b, L(a,d) is the jump rate from a to b, and L(a,a) = — 3, L£(a,b) is

the total (negative) intensity for jumping away from a. In particular,

(Lf)a) = D L(abf) = > L{ab)(f(b)— f(a))

bes beS,b#a

for any real-valued function f = (f(a))ses on S. It is a standard fact that ((X3), P)

solves the martingale problem for L, i.e., the process

t
MT = f(x,) - / (LX) ds , t>0, (5.21)
0
is an (F;X) martingale for any f : S — R. Indeed, this is a direct consequence of the
Markov property and the Kolmogorov forward equation, which imply
t
B - M FY) = B - S(X) ~ [ (e () dr | 7
t
= () = S~ [ LX) ds =0
for any 0 < s < t. In particular, choosing f = Iy for b € S, we see that
t
M = Ig(Xy) — / L(X,,b)ds (5.22)
0
is a martingale, and, in differential notation,
dlgy(Xy) = L(Xy,b)dt+dM,. (5.23)
Next, we note that by the results in the next section, the stochastic integrals
t
N&t = / Iy (X, ) dMP | >0,
0

are martingales for any a, b € S. Explicitly, for any a # b,

NEP =Y Ty (Xen) (Tovy (X My (Xo) = Ty (X sy (X))

s<t

t
—/ [{a}(Xs) ﬁ(Xs,b) ds s i.e.,
0
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NFP = g L(a,b) LY (5.24)

where " = |{s <t : X,_ = a, X, = b} | is the number of jumps from a to b until

time ¢, and
t
Ly = /Ia(Xs)ds
0

is the amount of time spent at a before time ¢ (“local time at a”). In the form of an
SDE,

dJ = L(a,b) dLE +dN™ forany a # b. (5.25)

More generally, for any function g : S x S — R, the process

Nt[g] = Z g(a, b)N&™
a,besS

is a martingale. If g(a, b) = 0 for a = b then by (5.24),

t
NI = Y (Xl X)) - / (Lg")(Xs, X,) ds (5.26)
s<t 0
Finally, the exponentials of these martingales are again local martingales. For example,

we find that
N = (14 )% exp(—aL(a,b)L})

is an exponential martingale for any o € R and a, b € S. These exponential martingales

appear again as likelihood ratios when changing the jump rates of the Markov chains.

Exercise (Change of measure for finite Markov chains). Let (X;) on (2, A4, P, (F3))
be a continuous time Markov chain with finite state space S and generator (Q-matrix)
L. ie.,

t

M = (X)) = F(Xo) — / (CF)(X,) ds

0
is a martingale w.r.t. P for each function f : S — R. We assume L(a,b) > 0 for a # b.
Let

g(a,b) == L(a,b)/L(a,b) —1 fora #b, g(a,a) = 0,

where £ is another Q-matrix.
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1) LetA(a) =>_,,, L(a,b) = —L(a, a) and X(a) = —E(a, a) denote the total jump
intensities at a. We define a “likelihood quotient” for the trajectories of Markov

chains with generators Land £ by Z; = g; /¢ where

&= oo (- [ea) I Eex),

s<t: Xs_#Xs

and (; is defined correspondingly. Prove that (Z;) is the exponential of (Nt[g} ), and
conclude that (Z;) is a martingale with E[Z;] = 1 for any ¢.
2) Let P denote a probability measure on 4 that is absolutely continuous w.r.t. P on

Fi with relative density Z; for every ¢ > 0. Show that forany f : S — R,

t
WY = ) - 500 - [(EDK ds

0
is a martingale w.r.t. P. Hence under the new probability measure P, (X;) is a

Markov chain with generator L.

Hint: You may assume without proof that (ZE[f }) is a local martingale w.r.t. P if
and only if(Zt]\/thm) is a local martingale w.r.t. P. A proof of this fact is given in
Section 3.3.

5.2 Stochastic integration for semimartingales

Throughout this section we fix a probability space (€2, A, P) with filtration (F;):>o. We
now define the stochastic integral of the left limit of an adapted cadlag process w.r.t.a
semimartingale in several steps. The key step is the first, where we prove the existence
for the integral [ H,_ dM; of a bounded adapted cadlag process H w.rt.a bounded

martingale M.

Integrals with respect to bounded martingales

Suppose that M = (M;)s> is a uniformly bounded cadlag (/) martingale, and H =
(Hy)¢>0 is a uniformly bounded cadlag (F/") adapted process. In particular, the left limit
process

H_ = (H tf)tzo
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is left continuous with right limits and (F/") adapted. For a partition 7 of R, we con-

sider the elementary processes

Hf = > H.I,w(t), and Hf = > H I,(1).
sem SET

The process H™ is again cadlag and adapted, and the left limit ™ is left continuous and

(hence) predictable . We consider the Riemann sum approximations

Ir = Y H(Myyn — M)

sem
s<t

to the integral f(f H,_ dM; to be defined. Note that if we define the stochastic integral

of an elementary process in the obvious way then

t
Ir = / HT_ dM,
0

We remark that a straightforward pathwise approach for the existence of the limit of

I™(w) as mesh(m) — 0 is doomed to fail, if the sample paths are not of finite variation:

Exercise. Let w € Q and ¢ € (0, c0), and suppose that (,) is a sequence of partitions

of R, with mesh(m,) — 0. Prove that if 236721; hs(Mgpi(w) — Mg(w)) converges for
s<

every deterministic continuous function h : [0,¢] — R then Vt(l)(M (w)) < oo (Hint:

Apply the Banach-Steinhaus theorem from functional analysis).

The assertion of the exercise is just a restatement of the standard fact that the dual space
of C([0, t]) consists of measures with finite total variation. There are approaches to ex-
tend the pathwise approach by restricting the class of integrands further or by assuming
extra information on the relation of the paths of the integrand and the integrator (Young
integrals, rough paths theory, cf. [29], [19]). Here, following the standard development
of stochastic calculus, we also restrict the class of integrands further (to predictable pro-
cesses), but at the same time, we give up the pathwise approach. Instead, we consider

stochastic modes of convergence.

For H and M as above, the process I™ is again a bounded cadlag (/) martingale as

is easily verified. Therefore, it seems natural to study convergence of the Riemann sum

Stochastic Analysis Andreas Eberle



5.2. STOCHASTIC INTEGRATION FOR SEMIMARTINGALES 191

approximations in the space M3([0,a]) of equivalence classes of cadlag L?-bounded
(FF) martingales defined up to a finite time a. The following fundamental theorem

settles this question completely:

Theorem 5.7 (Convergence of Riemann sum approximations to stochastic inte-
grals). Let a € (0,00) and let M and H be as defined above. Then for every v > 0

there exists a constant A > 0 such that
™ = IR < 7 (5.27)
holds for any partitions m and 7 of R with mesh(7r) < A and mesh(7) < A.

The constant A in the theorem depends on M, H and a. The proof of the theorem for
discontinuous processes is not easy, but it is worth the effort. For continuous processes,
the proof simplifies considerably. The theorem can be avoided if one assumes exis-
tence of the quadratic variation of M. However, proving the existence of the quadratic
variation requires the same kind of arguments as in the proof below (cf. [16]), or, alter-

natively, a lengthy discussion of general semimartingale theory (cf. [38]).

Proof of Theorem 5.7. Let C' € (0, 00) be a common uniform upper bound for the pro-
cesses (H,;) and (M,;). To prove the estimate in (5.27), we assume w.l.o.g.that both
partitions 7 and 7 contain the end point a, and 7 is a refinement of 7. If this is not
the case, we may first consider a common refinement and then estimate by the triangle

inequality. Under the additional assumption, we have

I7—1I7 = Y (H,— Hy))(Ms - M,) (5.28)

sem

where from now on, we only sum over partition points less than a, s’ denotes the suc-

cessor of s in the fine partition 7, and

ls] = max{tew :t<s}
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is the next partition point of the rough partition 7 below s. Now fix ¢ > 0. By (5.28),
the martingale property for M, and the adaptedness of /{, we obtain

1710y = BlU7—13)7]
= E[) (H, - H,))*(My — M,)?] (5.29)
sem
<EE[Y (Mg — M)+ QC)1E[Y . > (Mg —M,)]
sem tew SET

7e(e)<s<[t]

where [t] := min{u € T : u > t} is the next partition point of the rough partition, and
7(e) = min{sem s>t |Hys— H >ec}ANJt].

is the first time after ¢ where H deviates substantially from H,. Note that 7; is a random

variable.

The summands on the right hand side of (5.29) are now estimated separately. Since M
is a bounded martingale, we can easily control the first summand:
E[) (My— M) => E[M; - M2 = E[M? - Mg] < C”. (5.30)
The second summand is more difficult to handle. Noting that
B[(My—M)?|F] = EM2-M|F,] on {n<s,

we can rewrite the expectation value as

D E[ DY E[(My— M) | F] (531)

tex  m<s<[t]
= E[E[M}y - M| F.]] =E[> (M4 - M,)*] = B
tew tew
Note that M) — M, # 0 only if 7, < [t],i.e.,if H oscillates more than ¢ in the interval
[t, 7;]. We can therefore use the cadlag property of H and M to control (5.31). Let

D.» = {rel0,d :|H, —H,_|>¢e/2}

denote the (random) set of “large” jumps of H. Since H is cadlag, D/, contains only
finitely many elements. Moreover, for given €, > 0 there exists a random variable

d(w) > 0 such that for u,v € [0, a,
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(i ju—v|<d = |Hy—H,|<e or (u,v]NDpa#0 ,
(i) r€D.p, uw,velr,r+d] = |M,—M,|<E

Here we have used that H is cadlag, D, ; is finite, and M is right continuous.

Let A > 0. By (i) and (ii), the following implication holds on {A < §}:
Tt< I_t_l = |Hﬂ —Ht| > € = [t,Tt]ﬁDE/Q%@ = |Mft] _M’Ft| Sé,

ie., if , < [t] and A < § then the increment of M between 7; and [¢] is small.

Now fix k£ € N and € > 0. Then we can decompose B = B; + B, where

B = E[) (My—M,)"; A<6, |D.pl <k] < ke, (5.32)
temw
B, = E[Y (My—M,)”; A>dor|D.p|> k]
temw
< B[ (M — M,)*? P[A > §or |Djo| > K] (5.33)
temw

< V6C*(P[A > 6]+ P[|D.ps| > K])"?

In the last step we have used the following upper bound for the martingale increments
ne = My — M;

e

E[(Y" )] = E[D_w]+2B>Y i

tew u>t

< 4c?B[Y ) 2B Y n?E[Y 02| F]

u>t

<6C°E[> nj] < 6C°E[M;—-M;] < 6C*
t

This estimate holds by the Optional Sampling Theorem, and since E[>_,_, 02 | 7] <
E[M? — M} | F;] < C? by the orthogonality of martingale increments Mr,,, — Mr,

i

over disjoint time intervals (7}, 7;, ] bounded by stopping times.

We now summarize what we have shown. By (5.29), (5.30) and (5.31),
™ = I 3eqeay < €C°+4C*(Bi+ By) (5.34)

where B and B, are estimated in (5.32) and (5.33). Let v > 0 be given. To bound the
right hand side of (5.34) by v we choose the constants in the following way:
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1. Choose £ > 0 such that C%e? < /4.
2. Choose k € N such that 4v/6 C*P[|D.s| > k] Y2,
3. Choose ¢ > 0 such that 4C%ke? < ~/4, then choose the random variable § de-
pending on € and ¢ such that (i) and (ii) hold.
4. Choose A > 0 such that 4v/6 C’4P[A > 5} 12
Then for this choice of A we finally obtain

< /4.

™ = I 3eqeay < 4

2

whenever mesh(7) < A and 7 is a refinement of 7. O

The theorem proves that the stochastic integral H_,M is well-defined as an M? limit of

the Riemann sum approximations:

Definition (Stochastic integral for left limits of bounded adapted cadlag processes
w.r.t. bounded martingales). For H and M as above, the stochastic integral H_4M is

the unique equivalence class of cadlag (F}) martingales on [0, 00) such that

H,.M][M = lim Hf’;M\[O,a] in M3([0, a])

n—oo

for any a € (0,00) and for any sequence (m,) of partitions of R, with mesh(m,) — 0.

Note that the stochastic integral is defined uniquely only up to cadlag modifications. We
will often denote versions of H_,M by f0° H,_ dM,,but we will not always distinguish
between equivalence classes and their representatives carefully. Many basic properties
of stochastic integrals with left continuous integrands can be derived directly from the

Riemann sum approximations:

Lemma 5.8 (Elementary properties of stochastic integrals). For H and M as above,
the following statements hold.:
1) If t — M, has almost surely finite variation then H_,M coincides almost surely
with the pathwise defined Lebesgue-Stieltjes integral fo. H, dM;,.
2) A(H_M) = H_AM almost surely.
3)If T:Q — [0,00] is a random variable, and H, H, M, M are processes as
above such that H, = H, foranyt < T and M, = ]\Z forany t < T then,
almost surely,

H.WM = H.M on|0,T)
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Proof. The statements follow easily by Riemann sum approximation. Indeed, let (7,,)
be a sequence of partitions of R, such that mesh(7,) — 0. Then almost surely along a

subsequence (7,),

(H_.M)t = nh~>H<}o Z HS(MS’/\t - MS)
s<t
SET

w.r.t.uniform convergence on compact intervals. This proves that H_,M coincides
almost surely with the Stieltjes integral if M has finite variation. Moreover, for ¢ > 0 it
implies

A(H_ M), = 1};1210 Hy, (My —M,_) = H_AM, (5.35)
almost surely, where [t |,, denotes the next partition point of (7,,) below ¢. Since both
H_,M and M are cadlag, (5.35) holds almost surely simultaneously for all ¢ > 0. The

third statement can be proven similarly. U

Localization

We now extend the stochastic integral to local martingales. It turns out that unbounded
jumps can cause substantial difficulties for the localization. Therefore, we restrict our-
selves to local martingales that can be localized by martingales with bounded jumps.

Remark 2 below shows that this is not a substantial restriction.

Suppose that (M, ):> is a cadlag (F;) adapted process, where (F;) is an arbitrary filtra-
tion. For an (F;) stopping time T, the stopped process M7 is defined by

MtT = Mr for any ¢t > 0.

Definition (Local martingale, Strict local martingale). A localizing sequence for M
is a non-decreasing sequence (T,,),en of (F;) stopping times such that sup Ty = o0,
and the stopped process M ™ is an (F;) martingale for each n. The process M is called
a local (F;) martingale iff there exists a localizing sequence. Moreover, M is called a
strict local (F;) martingale iff there exists a localizing sequence (T,,) such that M™

has uniformly bounded jumps for each n, i.e.,

sup{|AM;(w)| : 0<t<T,(w),weN} < oo VnelN
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Remark. 1) Any continuous local martingale is a strict local martingale.

2) In general, any local martingale is the sum of a strict local martingale and a local
martingale of finite variation. This is the content of the “Fundamental Theorem
of Local Martingales”, cf. [36]. The proof of this theorem, however, is not trivial
and is omitted here.

The next example indicates how (local) martingales can be decomposed into strict (lo-

cal) martingales and finite variation processes:

Example (Lévy martingales). Suppose that X; = [y (N;(dy) — tv(dy)) is a compen-
sated Lévy jump process on R with intensity measure v satisfying [(|y|Ay|?) v(dy) <
oo. Then (X;) is a martingale but, in general, not a strict local martingale. However,
we can easily decompose X; = M; + A; where 4, = [y Igy>13 (Ne(dy) — t v(dy))
is a finite variation process, and M; = [ ylj, <1y (Ni(dy) — tv(dy)) is a strict (local)

martingale.
Strict local martingales can be localized by bounded martingales:

Lemma 5.9. M is a strict local martingale if and only if there exists a localizing se-

quence (T},) such that M is a bounded martingale for each n.

Proof. If M™ is a bounded martingale then also the jumps of M?" are uniformly
bounded. To prove the converse implication, suppose that (7},) is a localizing sequence

such that AM™" is uniformly bounded for each n. Then
Sy, = T, Ninf{t>0: |My|>n} , neN,

is a non-decreasing sequence of stopping times with sup S,, = oo, and the stopped

processes M are uniformly bounded, since
|Mirs,| < n+|AMg,| = n+|AM§:| forany ¢t > 0.
O

Definition (Stochastic integrals of left limits of adapted cadlag processes w.r.t. strict

local martingales). Suppose that (M), is a strict local (F}") martingale, and
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(Hy)¢o is cadlag and (FF) adapted. Then the stochastic integral H_M is the unique

equivalence class of local (F}") martingales satisfying
H- M|y = H-M|,, as. (5.36)

whenever T is an (FF) stopping time, H is a bounded cadlag (FF) adapted process
with H|jg ) = H |0,y almost surely, and M is a bounded cadlag (FF') martingale with

M’[QT] = M‘[O,T] almost surely.

You should convince yourself that the integral //_, M is well defined by (5.36) because
of the local dependence of the stochastic integral w.r.t. bounded martingales on /4 and
M (Lemma 5.8, 3). Note that H, and H, only have to agree for ¢ < 7', so we may
choose f[t = Hy; - Iy<ry. This is crucial for the localization. Indeed, we can always
find a localizing sequence (7},) for M such that both H - I;;.1,y and M”" are bounded,
whereas the process H' stopped at an exit time from a bounded domain is not bounded
in general!

Remark (Stochastic integrals of cadlag integrands w.r.t. strict local martingales are
again strict local martingales). This is a consequence of Lemma 5.9 and Lemma
5.8,2: If (T,,) is a localizing sequence for M such that both H™ = H - Ij 7, ) and M ™"

are bounded for every n then
HWM = HYM™  on [0,T],

and, by Lemma 5.8, A(H") M) = H™ AM? is uniformly bounded for each n.

Integration w.r.t. semimartingales

The stochastic integral w.r.t.a semimartingale can now easily be defined via a semi-
martingale decomposition. Indeed, suppose that X is an (F/) semimartingale with
decomposition

Xy = Xo+M+A4 , t>0,

into a strict local (F}") martingale M and an (F[) adapted process A with cadlag finite-
variation paths ¢ — A, (w).
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Definition (Stochastic integrals of left limits of adapted cadlag processes w.r.t. semi-
martingales ). For any (F}) adapted process (Hy);>o with cadlag paths, the stochastic
integral of H w.r.t. X is defined by

H_.X — H_.M+ H—.A7

where M and A are the strict local martingale part and the finite variation part in
a semimartingale decomposition as above, H_,M is the stochastic integral of H_
wrt. M, and (H_JA), = fot H,_ dA, is the pathwise defined Stieltjes integral of H_
wrt. A.

Note that the semimartingale decomposition of X is not unique. Nevertheless, the inte-

gral f/_,X is uniquely defined up to modifications:

Theorem 5.10. Suppose that (7,,) is a sequence of partitions of R with mesh(r,) — 0.
Then for any a € [0, c0),

(H_.X)t = nlggo Z HS(XS’/\t - XS)
SETy,
s<t

w.r.t.uniform convergence for t € [0, a] in probability, and almost surely along a subse-
quence. In particular:
1) The definition of H_4X does not depend on the chosen semimartingale decompo-
sition.
2) The definition does not depend on the choice of a filtration (F;) such that X is an
(FF) semimartingale and H is (F!') adapted.
3) If X is also a semimartingale w.r.t.a probability measure () that is absolutely
continuous w.r.t. P then each version of the integral (H_,X )p defined w.r.t. P is

a version of the integral (H_,X )¢ defined w.r.t.Q.
The proofs of this and the next theorem are left as exercises to the reader.

Theorem 5.11 (Elementary properties of stochastic integrals).
1) Semimartingale decomposition: The integral H_ X is again an (F) semi-
martingale with decomposition H_ X = H_M + H_, A into a strict local mar-

tingale and an adapted finite variation process.
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2) Linearity: The map (H, X) — H_,X is bilinear.
3) Jumps: A(H_,X) = H_AX almost surely.
4) Localization: If T is an (F!') stopping time then

(H-X)' = H_ X" = (H Igr)-.X.

5.3 Quadratic variation and covariation

From now on we fix a probability space (€2,.4, P) with a filtration (F;). The vector
space of (equivalence classes of) strict local (F}) martingales and of (F[) adapted
processes with cadlag finite variation paths are denoted by M,,. and F'V respectively.

Moreover,

S = M. + FV

denotes the vector space of (F}’) semimartingales. If there is no ambiguity, we do not
distinguish carefully between equivalence classes of processes and their representatives.
The stochastic integral induces a bilinear map S x § — S, (H, X ) — H_,X on the
equivalence classes that maps S x My to Mj,c and S x FV to FV.

A suitable notion of convergence on (equivalence classes of) semimartingales is uniform

convergence in probability on compact time intervals:

Definition (ucp-convergence). A sequence of semimartingales X,, € S converges to a

limit X € S uniformly on compact intervals in probability iff

sup | X' — X¢| 50 asmn — oo forany a € R,.
t<a

By Theorem (5.10), for H, X € S and any sequence of partitions with mesh(m,) — 0,
the stochastic integral [ H_ dX is a ucp-limit of predictable Riemann sum approxima-

tions, i.e., of the integrals of the elementary predictable processes H™".
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Covariation and integration by parts

The covariation is a symmetric bilinear map & x & — FV. Instead of going once
more through the Riemann sum approximations, we can use what we have shown for

stochastic integrals and define the covariation by the integration by parts identity

t t
XY - XYy = / X, dY, + / Yoo dX, + [X, Y]
0 0

The approximation by sums is then a direct consequence of Theorem 5.10.
Definition (Covariation of semimartingales). For X,Y € S,
(X, Y] = XY—XOYO—/X_ dY—/Y_ dXx.

Clearly, [X, Y] is again an (F[) adapted cadlag process. Moreover, (X,Y) — [X,Y]

is symmetric and bilinear, and hence the polarization identity

XY = S([(X+Y]-[X]-[Y])

DO | —

holds for any X, Y € S where
X7 = [XX]

denotes the quadratic variation of X. The next corollary shows that [ X, Y] deserves

the name “covariation”:

Corollary 5.12. For any sequence (r,,) of partitions of R, with mesh(m,) — 0,

(X, Y], = uep— lim Y (Xon — X)(Yan — V). (5.37)
nee SET
s<t

In particular, the following statements hold almost surely:
1) [X] is non-decreasing, and [ X, Y| has finite variation.
2) AIX,)Y] = AXAY.
3 (X, = [XT)Y] = [X,YT] = [XT YT
49 XY < (X))

Stochastic Analysis Andreas Eberle



5.3. QUADRATIC VARIATION AND COVARIATION 201

Proof. (5.37) is a direct consequence of Theorem 5.10, and 1) follows from (5.37) and

the polarization identity. 2) follows from Theorem 5.11, which yields

AX,Y] = AXY)—AX_Y) - A(Y_X)
= X_AY +YV_AX + AXAY — X_AY — Y. AX
— AXAY.

3) follows similarly and is left as an exercise and 4) holds by (5.37) and the Cauchy-

Schwarz formula for sums. |

Statements 1) and 2) of the corollary show that [X, Y] is a finite variation process with

decomposition

(XY = [X,Y 4> AXAY, (5.38)

s<t

into a continuous part and a pure jump part.

If Y has finite variation then by Lemma 5.2,

X, Y], = ) AXAY..

s<t
Thus [X, Y]¢ = 0 and if, moreover, X or Y is continuous then [X, Y] = 0.

More generally, if X and Y are semimartingales with decompositions X = M + A,
Y =N+ Binto M, N € My, and A, B € FV then by bilinearity,

(X, Y]® = [M,N]°+[M,B]°+[A N]°+[A, Bl =][M,N].
It remains to study the covariations of the local martingale parts which turn out to be the

key for controlling stochastic integrals effectively.

Quadratic variation and covariation of local martingales

If M is a strict local martingale then by the integration by parts identity, M? — [M] is a

strict local martingale as well. By localization and stopping we can conclude:
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Theorem 5.13. Let M € M, and a € [0,00). Then M € M?3([0,a]) if and only if
My € L£? and [M], € L. In this case, M? — [M]; (0 <t < a) is a martingale, and

IMBppa = E[M]+E[[M]). (5.39)

Proof. We may assume M, = 0; otherwise we consider M = M — Mj. Let (T,) be a
joint localizing sequence for the local martingales M and M? — [M] such that M T is

bounded. Then by optional stopping,
EM.r ] = E[[Mnr] forany t >0 andanyn € N. (5.40)
Since M? is a submartingale, we have

EM}] < liminfE[M},] < E[M] (5.41)

n—oo

by Fatou’s lemma. Moreover, by the Monotone Convergence Theorem,

E[M);] = lim E[[Mir,].

n—o0

Hence by (5.41), we obtain
EM}] = E[M]] foranyt>0.

For t < a, the right-hand side is dominated from above by E [[M],], Therefore, if [M],
is integrable then M is in MZ([0,a]) with M? norm E[[M],]. Moreover, in this case,

the sequence (M7 — [M]inr,). _ is uniformly integrable for each ¢ € [0, a], because,

neN

sup |Mt2 —[M]y|] < sup|M|*+[M], €L,

t<a t<a

Therefore, the martingale property carries over from the stopped processes MEATR —
[M]t/\Tn to MtQ — [M]t [l

Remark. The assertion of Theorem 5.13 also remains valid for a = oo in the sense that
if My is in £2 and [M], = lim;_,oo[M]; is in £ then M extends to a square integrable
martingale (M} )icjo,00) satisfying (5.40) with @ = oo. The existence of the limit M, =

lim,_,~, M, follows in this case from the L? Martingale Convergence Theorem.

The next corollary shows that the M? norms also control the covariations of square

integrable martingales.
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Corollary 5.14. The map (M, N) — [M, N| is symmetric, bilinear and continuous on
M?2([0, a)) in the sense that

Elsup [[M, N][.] < |[M|[arz0.ap [N || ar2(0.0)-

t<a

Proof. By the Cauchy-Schwarz inequality for the covariation (Cor. 5.12,4),

[M,NL] < [MRPINL? < [MIPINL? Vi<a

Applying the Cauchy-Schwarz inequality w.r.t.the L?-inner product yields

1/2 1/2

Efsup[[M,N][] < E[[M]]

t<a

E[[N].] < 1Mo 1N 20,0

by Theorem 5.13. 0

Corollary 5.15. Let M € M,,. and suppose that [M], = 0 almost surely for some

a € [0, 00]. Then almost surely,

M, = M, foranyte€|0,a].
In particular, continuous local martingales of finite variation are almost surely constant.
Proof. By Theorem 5.13, || M — Mo||ar2(o,a) = E[[M]a] = 0. O

The assertion also extends to the case when a is replaced by a stopping time. Combined

with the existence of the quadratic variation, we have now proven:
»Non-constant strict local martingales have non-trivial quadratic variation«
Example (Fractional Brownian motion is not a semimartingale). Fractional Brow-

nian motion with Hurst index H € (0, 1) is defined as the unique continuous Gaussian

process (B/!)>¢ satisfying

E[Bf] = 0 and  Cov[BI Bff] = -+ —|t—s]’")

DO | =

for any s,¢ > 0. It has been introduced by Mandelbrot as an example of a self-similar
process and is used in various applications, cf. [2]. Note that for H = 1/2, the covari-

ance is equal to min(s, ), i.e., BY/? is a standard Brownian motion. In general, one can
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prove that fractional Brownian motion exists for any H € (0, 1), and the sample paths

t— B{{ (w) are almost surely a-Holder continuous if and only if « < H, cf.e.g. [19].

Furthermore,
Vt(l)(BH) = o0 forany ¢ > 0 almostsurely, and
0 if H>1/2,
B") = lm > (BY, B = <t ifH=1/2,
SETR
< 0o if H<1/2 .

Since [BH]; = oo, fractional Brownian motion is not a semimartingale for H < 1/2.
Now suppose that H > 1/2 and assume that there is a decomposition BT = M; + A,

into a continuous local martingale M and a continuous finite variation process A. Then
[M] = [BY] = 0  almostsurely ,

so by Corollary 5.15, M is almost surely constant, i.e., B has finite variation paths.
Since this is a contradiction, we see that also for H > 1/2, B is not a continuous
semimartingale,i.e., the sum of a continuous local martingale and a continuous adapted
finite variation process. It is possible (but beyond the scope of these notes) to prove that
any semimartingale that is continuous is a continuous semimartingale in the sense above
(cf. [36]). Hence for H # 1/2, fractional Brownian motion is not a semimartingale and
classical It6 calculus is not applicable. Rough paths theory provides an alternative way

to develop a calculus w.r.t.the paths of fractional Brownian motion, cf. [19].

The covariation [M, N| of local martingales can be characterized in an alternative way

that is often useful for determining [M, N] explicitly.

Theorem 5.16 (Martingale characterization of covariation). For M, N € M,,., the
covariation [M, N1 is the unique process A € FV such that

(i) MN —A € M, , and

(i) AA = AMAN , Ay=0 almostsurely .

Proof. Since [M, N] = MN — MyNy — f M_ dN — f N_ dM, (i) and (ii) are satisfied
for A = [M, N]. Now suppose that A is another process in FV satisfying (i) and (ii).
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Then A — A is both in M, and in FV, and A(A — A) = 0 almost surely. Hence A — A
is a continuous local martingale of finite variation, and thus A — A= Ay — ﬁo 0

almost surely by Corollary 5.15. U

The covariation of two local martingales M and NV yields a semimartingale decomposi-
tion for M N:
MN = local martingale + [M, N].

However, such a decomposition is not unique. By Corollary 5.15 it is unique if we
assume in addition that the finite variation part A is continuous with Aqg = 0 (which is

not the case for A = [M, N] in general).

Definition. Let M, N € M,,.. If there exists a continuous process A € FV such that
(i) MN — A € M., and
(ii) AA = 0 , Ay = 0 almostsurely,

then (M, N) = A is called the conditional covariance process of M and N .

In general, a conditional covariance process as defined above need not exist. General
martingale theory (Doob-Meyer decomposition) yields the existence under an additional
assumption if continuity is replaced by predictability, cf.e.g. [36]. For applications it is
more important that in many situations the conditional covariance process can be easily

determined explicitly, see the example below.

Corollary 5.17. Let M, N € M.
1) If M is continuous then (M, N) = [M, N| almost surely.
2) In general, if (M, N) exists then it is unique up to modifications.
3) If (M) exists then the assertions of Theorem 5.13 hold true with [M| replaced by

Proof. 1) If M is continuous then [, N| is continuous.
2) Uniqueness follows as in the proof of 5.16.

3)If (T,,) is a joint localizing sequence for M? — [M|] and M? — (M) then, by monotone

convergence,
E[(M)] = lm E[(M)ir,] = lim E[[Mlyr,] = E[[M]]
for any ¢t > 0. The assertions of Theorem 5.13 now follow similarly as above. U
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Examples (Covariations of Lévy processes).
1) Brownian motion: If (B;) is a Brownian motion in R? then the components (BF) are
independent one-dimensional Brownian motions. Therefore, the processes B B! — §,t

are martingales, and hence almost surely,
[B¥,BY, = (B*BY = t-6, forany t>0.
2) Lévy processes without diffusion part: Let

Xy = / Y (Nt(dy) —1 I{Iy\ﬁl}’/(dy)) + bt
R4\ {0}

with b € R?, a o-finite measure v on R? \ {0} satisfying [(|y|* A 1) v(dy) < oo, and a
Poisson point process (V;) of intensity v. Suppose first that supp(v) C {y € R?: |y| > ¢}
for some ¢ > 0. Then the components X* are finite variation processes, and hence

(X5 X = D AXEAXD = / vy Ni(dy). (5.42)

s<t
In general, (5.42) still holds true. Indeed, if X ) is the corresponding Lévy process with
intensity measure 1) (dy) = I, sy v(dy) then || X©* — X¥|| 204y — Oase L 0
forany a € R, and k € {1,...,d}, and hence by Corollary 5.14,
(X X', = uep-lim [XOF XE] = Y AXFAXL

el0
4 s<t

On the other hand, we know that if X is square integrable then M, = X; — itV (0) and
MFM! — ¢ (0) are martingales, and hence

Opi.Opi
0?1
XE XY, = (MF MY, = t- .
A= AR Opi0p,
3) Covariations of Brownian motion and Lévy jump processes: For B and X as above
we have
(B* X"y = [B"X'1 = 0 almost surely for any & and /. (5.43)

Indeed, (5.43) holds true if X' has finite variation paths. The general case then follows
once more by approximating X' by finite variation processes. Note that independence
of B and X has not been assumed! We will see in Section 3.1 that (5.43) implies
that a Brownian motion and a Lévy process without diffusion term defined on the same

probability space are always independent.
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Covariation of stochastic integrals

We now compute the covariation of stochastic integrals. This is not only crucial for
many computations, but it also yields an alternative characterization of stochastic inte-

grals w.r.t.local martingales, cf. Corollary 5.19 below.

Theorem 5.18. Suppose that X and Y are (Fl') semimartingales, and H is (FF)
adapted and cadlag. Then

I / H_dX)Y] = / H_d[X,Y]  almost surely. (5.44)

Proof. 1. We first note that (5.44) holds if X or Y has finite variation paths. If, for
example, X € FV thenalso [ H_ dX € FV, and hence

[/H dX,Y] = Y AH_X)AY = Y H AXAY = /H d[X,Y] .

The same holds if Y € F'V.

2. Now we show that (5.44) holds if X and Y are bounded martingales, and H is
bounded. For this purpose, we fix a partition 7, and we approximate /{_ by the elemen-
tary process H™ =" _ H - I Let

I = HdX = Y H(Xon—X,)

(07t] sem

We can easily verify that

Y] = / H™ d[X,Y] almost surely. (5.45)
Indeed, if (7,) is a sequence of partitions such that = C 7, for any n and mesh(w,,) — 0
then
S Iy —INVen =) = Y He > (Xon— X)) (Yo —Y2).
" O

Since the outer sum has only finitely many non-zero summands, the right hand side
converges as n — oo to

S OH(IX Y]on — [X,Y]) = H™ d[X,Y],

sem (Ovt]
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in the ucp sense, and hence (5.45) holds.
Having verified (5.45) for any fixed partition 7, we choose again a sequence (7,,) of

partitions with mesh(m,) — 0. Then

/H_ dX = lim I™ in M?*([0,a]) foranya € (0,00),

n—oo

and hence, by Corollary 5.14 and (5.45),

[/H_ dX,Y] = ucp-lim[I™Y] = /H_ d[X,Y].

n—oo

3. Now suppose that X and Y are strict local martingales. If 7" is a stopping time such
that X7 and Y7 are bounded martingales, and H I 0,7 1s bounded as well, then by Step
2, Theorem 5.11 and Corollary 5.12,

[/H_ ax,y]" = [(/H_ ax)" YT = [/(H_ Ior) dXT,Y7]
_ /H_ Ioqy dIXT,YT] = (/H_ X, Y))"

Since this holds for all localizing stopping times as above, (5.45) is satisfied as well.

4. Finally, suppose that X and Y are arbitrary semimartingales. Then X = M + A and
Y = N + B with M, N € M, and A, B € FV. The assertion (5.44) now follows by

Steps 1 and 3 and by the bilinearity of stochastic integral and covariation. U
Perhaps the most remarkable consequences of Theorem 5.18 is:

Corollary 5.19 (Kunita-Watanabe characterization of stochastic integrals).
Let M € My, and G = H_with H (F}') adapted and cadlag. Then G4 M is the unique
element in M, satisfying

(i) (GeM)y = 0 , and

(ii) [GeM,N] = G¢M,N] forany N € M.

Proof. By Theorem 5.18, GG, M satisfies (i) and (ii). It remains to prove uniqueness. Let
L € M. such that Ly = 0 and

[L,N] = G.M,N] forany N € M.
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Then [L — G,M, N]| = 0 for any N € M,,.. Choosing N = L — G,M, we conclude
that [L — G,M] = 0. Hence L — G, M is almost surely constant, i.e.,

L— G.M = LO — (G.M)O = 0.
U

Remark. Localization shows that it is sufficient to verify Condition (ii) in the Kunita-

Watanabe characterization for bounded martingales N.

The corollary tells us that in order to identify stochastic integrals w.r.t. local martingales
it is enough to “test” with other (local) martingales via the covariation. This fact can be
used to give an alternative definition of stochastic integrals that applies to general pre-
dictable integrands. Recall that a stochastic process (G;)>o is called (Fy ) predictable
iff the function (w,t) — G;(w) is measurable w.r.t. the o-algebra & on Q x [0, 00)

generated by all (F}") adapted left-continuous processes.

Definition (Stochastic integrals with general predictable integrands).

Let M € M., and suppose that G is an (FT) predictable process satisfying

t
/ G%d[M], < oo almost surely for any t > 0.
0

If there exists a local martingale G, M € M,,. such that conditions (i) and (ii) in Corol-
lary 5.19 hold, then G, M is called the stochastic integral of G w.r.t. M .

Many properties of stochastic integrals can be deduced directly from this definition, see

e.g. Theorem 5.21 below.

The It6 isometry for stochastic integrals w.r.t. martingales

Of course, Theorem 5.18 can also be used to compute the covariation of two stochastic
integrals. In particular, if M is a semimartingale and G = H_ with H cadlag and
adapted then

[G M, GM] = GJM,G.M] = G4[M].
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Corollary 5.20 (Ité isometry for martingales). Suppose that M € M,,.. Then also
(G dM)* - [ G*d[M] € My, and

H/GdM j\ﬂ([o,a]) B E[(/OaGdMﬂ = E[/OQGZd[M]} Va>0, as.

Proof. If M € M,y then GoM € M., and hence (GoM)? —[G, M| € M,,.. Moreover,
by Theorem 5.13,

1GMrzgoay = ElGMl] = E[GIM])].
O

The It6 isometry for martingales states that the M2 ([0, a]) norm of the stochastic integral
[ G dM coincides with the L? (€2 x (0, a], Pj7) norm of the integrand (w, ¢) — Gi(w),

where Py is the measure on €2 X R given by
Pog(dwdt) = P(dw) [M](w)(dt).

This can be used to prove the existence of the stochastic integral for general predictable
integrands G € L?(P;yy)), cf. Section 2.5 below.

5.4 1to calculus for semimartingales

We are now ready to prove the two most important rules of Itd calculus for semimartin-
gales: The so-called “Associative Law” which tells us how to integrate w.r.t. processes

that are stochastic integrals themselves, and the change of variables formula.

Integration w.r.t.stochastic integrals

Suppose that X and Y are semimartingales satisfying dY = G dX for some predictable
integrand G ,ie, Y =Y, = f G dX. We would like to show that we are allowed to
multiply the differential equation formally by another predictable process G, i.e., we
would like to prove that [ G dY = [ GG dX:

dY = GdX — GdY = GGdX

Stochastic Analysis Andreas Eberle



54. ITO CALCULUS FOR SEMIMARTINGALES 211

The covariation characterization of stochastic integrals w.r.t.local martingales can be

used to prove this rule in a simple way.
Theorem 5.21 (“Associative Law”). Let X € S. Then

G (G.X) = (GG)X (5.46)
holds for any processes G = H_ and G = H_ with H and H cadlag and adapted.

Remark. The assertion extends with a similar proof to more general predictable inte-

grands.

Proof. We already know that (5.46) holds for X € F'V. Therefore, and by bilinearity of
the stochastic integral, we may assume X € M,,.. By the Kunita-Watanabe characteri-
zation it then suffices to “test” the identity (5.46) with local martingales. For N € M,

Corollary 5.19 and the associative law for F'V processes imply

[Go(GoX),N] = G.JGX,N] = GoG.[X,N)
= (GGLIX,N] = [(GG).X,N].

Thus (5.46) holds by Corollary 5.19. 0

1to’s formula

We are now going to prove a change of variables formula for discontinuous semi-
martingales. To get an idea how the formula looks like we first briefly consider a
semimartingale X € S with a finite number of jumps in finite time. Suppose that
0 <T) <71, < ... are the jump times, and let 75 = 0. Then on each of the intervals
[Ty_1,Tk), X is continuous. Therefore, by a similar argument as in the proof of It6’s

formula for continuous paths (cf. [14, Thm.6.4]), we could expect that

F(X)) = F(Xo) = ) (F(Xun)~ F(Xu,))

k
= Z ( / F/(Xs—) dXs +% / F//(Xs—) d[X]S> + Z (F(XTk) - F(XTk—))
- /Ot F'(X,_) dX©+ % /Ot F'(X,_) d[X]¢ + ; (F(X,) — F(X,.)) (5.47)
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where X7 = X, — > __, AX, denotes the continuous part of X. However, this formula
does not carry over to the case when the jumps accumulate and the paths are not of finite
variation, since then the series may diverge and the continuous part X “ does not exist in

general. This problem can be overcome by rewriting (5.47) in the equivalent form

P - R0 = [ Peax s [P ax e

+ ) (F(X,) = F(X,0) = FI(X,0) AX,),

s<t

which carries over to general semimartingales.

Theorem 5.22 (It6’s formula for semimartingales). Suppose that X; = (X}, ..., X2)
with semimartingales X', ..., X% € S. Then for every function F' € C*(R?),

F(X,) — F(X,) Z/axz ) dX! + Z/axzaxf ) d[ X7, X

=10, =1 (0 {
OF ‘
+ > (F F(Xo) =) o (X )AXD) (5.49)
5€(0,t] i=1

for anyt > 0, almost surely.

Remark. The existence of the quadratic variations [X ‘], implies the almost sure abso-
lute convergence of the series over s € (0, ¢] on the right hand side of (5.49). Indeed, a

Taylor expansion up to order two shows that

D IF(X,) = F(X,o) - gZ(XS)AXQ <G> IAXP

s<t i=1 s<t 1

S Ct ' Z[Xl]t < o0,

i

where C; = C}(w) is an almost surely finite random constant depending only on the

maximum of the norm of the second derivative of /" on the convex hull of { X : s € [0, ¢]}.

It is possible to prove this general version of Itd’s formula by a Riemann sum approx-
imation, cf. [36]. Here, following [38], we instead derive the “chain rule” once more

from the “product rule”:
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Proof. To keep the argument transparent, we restrict ourselves to the case d = 1. The

generalization to higher dimensions is straightforward. We now proceed in three steps:

1. As in the finite variation case (Theorem 5.4), we first prove that the set A consisting

of all functions F' € C?*(R) satisfying (5.48) is an algebra, i.c.,
FGeA = FGeA.

This is a consequence of the integration by parts formula

PX)GIX) ~ FX)G(X) = [ FOC) a6 + [ o) ar(x)

+ [F(X),G(X)]"+ ) AF(X)AG(X), (550)
(0.1

the associative law, which implies

/ F(X_)dG(X) = / F(X_)G'(X_) dX+% / F(X_)G"(X_) d[X]°

+Y F(X_) (AG(X) — G'(X_)AX), (5.51)
the corresponding identity with /" and G interchanged, and the formula

[F(X),GX)° = [ / F'(X_)dX, / G'(X.) er (5.52)

— (/F’(X_)G'(X_)d[XDC = /(F’G’)(X-)d[X]C

for the continuous part of the covariation. Both (5.51) and (5.52) follow from (5.49) and
the corresponding identity for G. It is straightforward to verify that (5.50), (5.51) and
(5.52) imply the change of variable formula (5.48) for F'G,ie., FG € A. Therefore,
by induction, the formula (5.48) holds for all polynomials F'.

2. In the second step, we prove the formula for arbitrary F' € C? assuming X = M + A
with a bounded martingale M and a bounded process A € FV. In this case, X is

uniformly bounded by a finite constant C'. Therefore, there exists a sequence (p,,) of
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polynomials such that p,, — F, p/, — F’ and p/ — F" uniformly on [—-C, C]. For
t > 0, we obtain

F(X,) - F(Xo) = lim (pu(X) — pa(Xo))

n—oo

t 1 t Xs
_ ggo(/opg<xs_>dxs+§/op< +Z/S_/s_ (2) d= dy)

s<t

t 1 X
— F/X, X - F// "
/O (s)ds+2/0 (X, +Z/ / F"(2) dz dy

w.r.t.convergence in probability. Here we have used an expression of the jump terms in

(5.48) by a Taylor expansion. The convergence in probability holds since X = M + A,

EH/Otp'n( ) dM, — /F’ }

= 5[ [P, >d[M]s} < sup g~ F/2- B[]
0 [(-C.C]

by Itd’s isometry, and
XS 1
’Z/ / — F")(2) dz dy’ < = sup |pl — F"| Z(AXS)2
21 co =

3. Finally, the change of variables formula for general semimartingales X = M + A
with M € M, and A € FV follows by localization. We can find an increasing se-
quence of stopping times (7},) such that sup T}, = oo a.s., M " is a bounded martingale,

and the process AT»~ defined by

A, for t < T,

AT
ATn, for ¢ > Tn
is a bounded process in F'V for any n. It6’s formula then holds for X" := M7Tr 4 AT»~

for every n. Since X™ = X on [0,7},) and T,, ,/* o0 a.s., this implies 1td’s formula for
X. O

Note that the second term on the right hand side of 1t6’s formula (5.49) is a continuous
finite variation process and the third term is a pure jump finite variation process. More-
over, semimartingale decompositions of X, 1 < i < d, yield corresponding decomposi-

tions of the stochastic integrals on the right hand side of (5.49). Therefore, [t6’s formula
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can be applied to derive an explicit semimartingale decomposition of F/(X}, ..., X?)

for any C? function F. This will now be carried out in concrete examples.

Application to Lévy processes

We first apply Itd’s formula to a one-dimensional Lévy process
Xy = zx+oB +bt+ /y Nt(dy) (5.53)

with z,0,b € R, a Brownian motion (B;), and a compensated Poisson point process
N, = N, — tv with intensity measure v. We assume that [ (|y|> A |y|) v(dy) < oo. The
only restriction to the general case is the assumed integrability of |y| at co, which en-
sures in particular that (X}) is integrable. The process (X;) is a semimartingale w.r.t.the

filtration (F;>") generated by the Brownian motion and the Poisson point process.

We now apply Itd’s formula to F/(X,) where F € C*(R). Setting C; = [ y Ny(dy) we

first note that almost surely,

(X, = ’Bl+20[B,CLi+[Cl, = o*t+ > (AX,)

s<t

Therefore, by (5.54),
F(X;) — F(X)

= tF’(X,)dX+1 tF”(X,)d[X]CJr (F(X)— F(X_) - F'(X_)AX)
0 2 0

_ / (0F)(X.) dB. + / t(bF’+%<72F”)(XS) ds + / F(X. )y N(ds dy)
(0,t] xR
s [ ) = O = P )y) Nds dy) (5.54)

(0,t] xR

where N (ds dy) is the Poisson random measure on R, x R corresponding to the Pois-
son point process, and N (ds dy) = N(ds dy) — ds v(dy). Here, we have used a rule for
evaluating a stochastic integral w.r.t.the process C; = [y N,(dy) which is intuitively

clear and can be verified by approximating the integrand by elementary processes. Note
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also that in the second integral on the right hand side we could replace X;_ by X since

almost surely, A X, = 0 for almost all s.

To obtain a semimartingale decomposition from (5.54), we note that the stochastic inte-
grals w.rt. (B;) and w.rt. (N,) are local martingales. By splitting the last integral on the
right hand side of (5.54) into an integral w.r.t. N (ds dy) (i.e., a local martingale) and an

integral w.r.t.the compensator ds v(dy), we have proven:

Corollary 5.23 (Martingale problem for Lévy processes). For any I € C?*(R), the

process

M = R0 - B0~ [ (200 ds
(LP)a) = SoF")@)+ GF)@) + [ (Flo+y) = F@) — Flaly) v(dy),
is a local martingale vanishing at 0. For F € C3(R), M (") is a martingale, and
(LF)@) = lmTB[F(X) - F(X)]

Proof MU is a local martingale by the considerations above and since X,(w) =
( ) for almost all (s,w). For F € CZ, LF is bounded since |F(z + y) — F(z) —

2)y| = O(ly| A |y|?). Hence M is a martingale in this case, and

BP0 -Fo] = E[; [enea] 5 ehw
as t | 0 by right continuity of (LF')(Xy). O

The corollary shows that £ is the infinitesimal generator of the Lévy process. The
martingale problem can be used to extend results on the connection between Brownian
motion and the Laplace operator to general Lévy processes and their generators. For ex-
ample, exit distributions are related to boundary value problems (or rather complement
value problems as L is not a local operator), there is a potential theory for generators of

Lévy processes, the Feynman-Kac formula and its applications carry over, and so on.

Example (Fractional powers of the Laplacian). By Fourier transformation one veri-
fies that the generator of a symmetric a-stable process with characteristic exponent |p|*
is £ = —(—A)*/2. The behaviour of symmetric a-stable processes is therefore closely

linked to the potential theory of these well-studied pseudo-differential operators.
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Exercise (Exit distributions for compound Poisson processes). Let (X;);>( be a com-

pound Poisson process with Xy = 0 and jump intensity measure v = N(m, 1), m > 0.
i) Determine A\ € R such that exp(\X;) is a local martingale.
ii) Prove that for a < 0,
PT, < x] = blirilo PT, <T,)) < exp(ma/2).

Why is it not as easy as for Brownian motion to compute P[T,, < T;] exactly?

Burkholder’s inequality

As another application of It6’s formula, we prove an important inequality for cadlag
local martingales that is used frequently to derive L? estimates for semimartingales. For

real-valued cadlag functions x = (x;);>¢ we set

xy = sg;t)|xs| for t > 0, and xy = |xol.
S

Theorem 5.24 (Burkholder’s inequality). Let p € [2, 00). Then the estimate
E[(Mp]P < BIMBM? (5.55)

holds for any strict local martingale M € M, such that My = 0, and for any stopping
time T : Q — [0, o0, where

p—1

(p—1)/2
vy = (1+L> p/V2 < We/2p.

Remark. The estimate does not depend on the underlying filtered probability space,
the local martingale M, and the stopping time 7'. However, the constant 7, goes to oo

as p — oo.

Notice that for p = 2, Equation (5.55) holds with 7, = 2 by It6’s isometry and Doob’s
L? maximal inequality. Burkholder’s inequality can thus be used to generalize argu-

ments based on Itd’s isometry from an L? to an L? setting.
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Proof. 1) We first assume that 7" = oo and M is a bounded cadlag martingale. Then,
by the Martingale Convergence Theorem, M., = tlgélo M, exists almost surely. Since
the function f(x) = |z|P is C? for p > 2 with ¢"(z) = p(p — 1)|z|P72, Itd’s formula
implies

oo 1 oo
P = [ pnarg [ don;

+ ) (M) — (M) — (M )AM,, ), (5.56)
where the first term is a martingale since ¢’ o M is bounded, in the second term

(M) < plp— (ML),
and the summand in the third term can be estimated by

P(M,) — (M, ) — /(M )AM, < 3 sup(p" o MY(AM,)?

< oo — DML HAM,),

Hence by taking expectation values on both sides of (5.56), we obtain for ¢ satisfying
11 _ 1.
st =L

E(MLY) < o El|Muf
< ¢ 22D gl (s + Y am?)]
< P27 gy Bk

2
by Doob’s inequality, Holder’s inequality, and since [M]¢, + > (AM)? = [M].,. The

inequality (5.55) now follows by noting that ¢’p(p — 1) = ¢*~p?.

2) For T' = oo and a strict local martingale M € M, there exists an increasing
sequence (7T},) of stopping times such that M is a bounded martingale for each n.
Applying Burkholder’s inequality to M yields

B(Mf,)y) = E(MZ™Y] < ApE[M™RP] = of E[ME)
Burkholder’s inequality for M/ now follows as n — oo.

3) Finally, the inequality for an arbitrary stopping time 7' can be derived from that for

T = oo by considering the stopped process M7 . L
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For p > 4, the converse estimate in (3.1) can be derived in a similar way:

Exercise. Prove that for a given p € [4, c0), there exists a global constant ¢, € (1, c0)

such that the inequalities

¢, E[MIEP] < E(ML)] < ¢ B [[M]E7]

with M} = sup,_, | M| hold for any continuous local martingale (M} );c(0,cc)-

The following concentration inequality for martingales is often more powerful than

Burkholder’s inequality:

Exercise. Let M be a continuous local martingale satisfying M, = 0. Show that

2

P supMSZx;[M]tgc} < exp(—x—>
s<t 2c

for any ¢, t,x € [0, 00).

5.5 Stochastic exponentials and change of measure

A change of the underlying probability measure by an exponential martingale can also
be carried out for jump processes. In this section, we first introduce exponentials of gen-
eral semimartingales. After considering absolutely continuous measure transformations
for Poisson point processes, we apply the results to Lévy processes, and we prove a gen-
eral change of measure result for possibly discontinuous semimartingales. Finally, we
provide a counterpart to Lévy’s characterization of Brownian motion for general Lévy

processes.

Exponentials of semimartingales

If X is a continuous semimartingale then by It6’s formula,

1
&Y = exp (Xt - §[X]t>
is the unique solution of the exponential equation
dex = &¥adx, & = 1L
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In particular, £ is a local martingale if X is a local martingale. Moreover, if

1

ho(t,z) = o exp(ax — a’t/2) - (5.57)
denotes the Hermite polynomial of order n and X, = 0 then
H' = h, ([X]t, Xt) (5.58)

solves the SDE
dH" = nH"'dX, H}' =0,

for any n € N, cf. Section 6.4 in [14]. In particular, H" is an iterated It6 integral:

H = nl// /dXsldng"'dXsn-

The formula for the stochastic exponential can be generalized to the discontinuous case:

Theorem 5.25 (Doléans-Dade). Let X € S. Then the unique solution of the exponen-

tial equation

t
Z, = 1 +/ Z, dX,  t>0, (5.59)
0
is given by
1
Z, = exp (Xt . 5[X]g) [ (1+AX,) exp(-AX,). (5.60)
s€(0,t]

Remarks. 1) In the finite variation case, (5.60) can be written as
Z, = exp (X; - %[X]f) [T @ +ax,).
s€(0,t]
In general, however, neither X nor [[(1 + AX) exist.
2) The analogues to the stochastic polynomials /" in the discontinuous case do not
have an equally simply expression as in (5.58) . This is not too surprising: Also for

continuous two-dimensional semimartingales (X, Y;) there is no direct expression for
the iterated integral fo fy dX, dY, = fo (X, — Xg) dY; and for the Lévy area process

//dXdY //deX

in terms of X ,Y and their covariations. If X is a one-dimensional discontinuous semi-
martingale then X and X _ are different processes that have both to be taken into account

when computing iterated integrals of X.
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Proof of Theorem 5.25. The proof is partially similar to the one given above for X €
FV, cf.Theorem 5.5. The key observation is that the product

P = H (1 + AXS) eXp(_AXs)

s€(0,t]

exists and defines a finite variation pure jump process. This follows from the estimate

Z |log(1 + AX,) — AX,| < const.- Z IAX,]* < const.-[X],

0<s<t s<t
[AX|<1/2

which implies that

S = Y (log(l+AX,)—AX,), t>0,

s<t
[AX|<1/2

defines almost surely a finite variation pure jump process. Therefore, (F;) is also a finite

variation pure jump process.

C

Moreover, the process G; = exp (Xt —3[X ]t> satisfies

G = 1+ /G_ dX + Y (AG — G- AX) (5.61)
by It6’s formula. For Z = G P we obtain
AZ = Z. (eAX(l FAX)eAX 1) — 7 AX,
and hence, by integration by parts and (5.61),
Z—-1 = /P_ dG+/G_dP+[G,P]
= /PG dX + Y (P_AG - P_G_AX + G_ AP+ AG AP)

— /ZdX+Z(AZ—ZAX) = /ZdX.

This proves that Z solves the SDE (5.59). Uniqueness of the solution follows from a
general uniqueness result for SDE with Lipschitz continuous coefficients, cf. Section
3.1. O
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Example (Geometric Lévy processes). Consider a Lévy martingale X; = [y ]\th(dy)
where (IV;) is a Poisson point process on R with intensity measure v satisfying [ (Jy| A

ly2) v(dy) < oo, and N, = N, — tv. We derive an SDE for the semimartingale
Zy = exp(oXy+ut), >0,
where o and p are real constants. Since [X]¢ = 0, Itd’s formula yields

Zt—l :O'/Z_dX+M/Z_dS+ZZ_(€UAX_1_O.AX> (562)

(0,4] (0,4] (0.,4]

=0 / Zo_y N(ds dy) + / Zs ds+/ ZS,(e"y —1- ay) N(ds dy).
(0, xR (0,4 (xR

If [ €*¥ v(dy) < oo then (5.62) leads to the semimartingale decomposition

dZ, = Z, dM?+aZ,_dt, Zo=1, (5.63)

M = / (eoy . 1) Ni(dy)

is a square-integrable martingale, and

where

a = u+/(e"y—1—ay) v(dy).

In particular, we see that although (Z;) again solves an SDE driven by the compensated

process (Nt), this SDE can not be written as an SDE driven by the Lévy process (X}).

Change of measure for Poisson point processes

Let (/V;);>0 be a Poisson point process on a o-finite measure space (.5, S, v) that is de-
fined and adapted on a filtered probability space (€2, A, Q, (F;)). Suppose that (w, t,y) —
H,(y)(w) is a predictable process in L3 (Q ® A ® v). Our goal is to change the under-
lying measure () to a new measure P such that w.r.t. P, (IV;);>0 is a point process with

intensity of points in the infinitesimal time interval [¢, ¢ + dt] given by

(14 Hy(y)) dt v(dy).
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Note that in general, this intensity may depend on w in a predictable way. Therefore,
under the new probability measure P, the process (1V;) is not necessarily a Poisson point

process. We define a local exponential martingale by
Z, = &F where L, = (H.N)t. (5.64)

Lemma 5.26. Suppose that inf H > —1, and let G :=log (1 + H). Then fort > 0,

et = eo(f G Nad) [ ()G dsvid)

Proof. The assumption inf H > —1 implies inf AL > —1. Since, moreover, [L]° = 0,

we obtain
gho= P T+ AL)e
= exp (L + (log(1 + AL) - AL))
—  exp (G.Kf n / (G — H) ds y(dy)).

Here we have used that

S (log(1+AL) —AL) = / (log (1 + Ha(y)) — Hy(y)) N(ds dy)

holds, since |log(1 + H,(y)) — Hs(y)| < const. |H(y)|? is integrable on finite time

intervals. |

The exponential Z; = &L is a strictly positive local martingale w.r.t. Q, and hence a
supermartingale. As usual, we fix t; € R, and we assume:

Assumption. (Z;):<;, is a martingale w.rt. Q,ie. Eg[Z;] = 1.

Then there is a probability measure P on F;, such that

dP
dQ | 7,

In the deterministic case H;(y)(w) = h(y), we can prove that w.r.t. P, (/V;) is a Poisson

= 7 for any ¢ < .

point process with changed intensity measure

wdy) = (1+h(y)) v(dy):
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Theorem 5.27 (Change of measure for Poisson point processes). Let (N, Q) be a
Poisson point process with intensity measure v, and let g := log (1+h) where h € L*(v)

satisfies inf h > —1. Suppose that the exponential

Z, = &' — exp(ﬁt(g)+t / (g—h)du) (5.65)

is a martingale w.r.t. (), and assume that P < () on F; with relative density % =7
Fi
for any t > 0. Then the process (N;, P) is a Poisson point process with intensity

nmeasure

dp = (1+h)dv.

Proof. By the Lévy characterization for Poisson point processes (cf. the exercise below

Lemma 2.1) it suffices to show that the process

MY = e (NG (), W) = /O—Wﬂm

is a local martingale w.r.t. P for any elementary function f € L(S,S,v). Further-
more, by Lemma 2.9, M/ is a local martingale w.rt. P if and only if M/1Z is a local
martingale w.r.t. Q. The local martingale property for (M/1Z, Q) can be verified by a

computation based on Itd’s formula. L

Remark (Extension to general measure transformations). The approach in Theo-
rem 5.27 can be extended to the case where the function A(y) is replaced by a general
predictable process H;(y)(w). In that case, one verifies similarly that under a new mea-

sure P with local densities given by (5.64), the process

M = e (i) + [ (= )1+ () )

is a local martingale for any elementary function f € £!(v). This property can be used

as a definition of a point process with predictable intensity (1 + H;(y)) dt v(dy).
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Change of measure for Lévy processes

Since Lévy processes can be constructed from Poisson point processes, a change of
measure for Poisson point processes induces a corresponding transformation for Lévy

processes. Suppose that v is a o-finite measure on R? \ {0} such that

/(\y\ Alyl?) v(dy) < oo, and let
pldy) = (1+h(y)) v(dy).
Recall that if (N, Q) is a Poisson point process with intensity measure v, then
X; = /y Nt(dy), N, = N, —tu,
is a Lévy martingale with Lévy measure v w.r.t. Q).

Corollary 5.28 (Girsanov transformation for Lévy processes). Suppose that h €
L2(v) satisfies inf h > —1 and suph < oo. If P < Q on F; with relative density Z,
forany t > 0, where Z; is given by (5.65), then the process

71& = /'y Nt (dy), Nt = Nt — t,u,

is a Lévy martingale with Lévy measure j w.r.t. P, and

X, = X 4+t / y h(y) v(dy).

Notice that the effect of the measure transformation consists of both the addition of a
drift and a change of the intensity measure of the Lévy martingale. This is different to

the case of Brownian motion where only a drift is added.

Example (Change of measure for compound Poisson processes). Suppose that (X, Q)
is a compound Poisson process with finite jump intensity measure v, and let
N} = ) h(AX,)
s<t
with h as above. Then (X, P) is a compound Poisson process with jump intensity
measure dy = (1 + h) dv provided

apP N(h) —t[hd
ar = & = et TT(1 4+ h(AX)).
dQ | 7, g
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Lévy’s characterization for Brownian motion has an extension to Lévy processes, too:

Theorem 5.29 (Lévy characterization of Lévy processes). Let a € R™4 h € R,
and let v be a o-finite measure on R® \ {0} satisfying [(|y| A y|?) v(dy) < oo. If
XL .., X3 Q — Rare cadlag stochastic processes such that

(i) Mf .= XF -Vt isalocal (F;) martingale for any k € {1,...,d},
(ii) [XF, X)¢=d"t foranyk,lc{1,...,d}, and

(iii) E| > g lp(AXS) r] =v(B)-(t—r) almost surely
forany 0 < r <t and for any B € B(R?\ {0}),

then X; = (X}, ... X2 is a Lévy process with characteristic exponent
1 ; wy 4
V) = gprap—ip-b+ [(L—ePV +ip-y) v(dy). (5.66)

For proving the theorem, we assume without proof that a local martingale is a semi-
martingale even if it is not strict, and that the stochastic integral of a bounded adapted

left-continuous integrand w.r.t. a local martingale is again a local martingale, cf. [36].

Proof of Theorem 5.29. We first remark that (iii) implies
[ZG F(AX,) //Gf v(dy) ds
(5.67)

sE€(r,t]
for any bounded left-continuous adapted process (G, and for any measurable function
f : R4\ {0} — C satisfying |f(y)| < const.- (Jy| A |y|?). This can be verified
by first considering elementary functions of type f(y) = >_¢; Ip,(y) and G4(w) =
S Ai(w) I 45,0 (s) with ¢; € R, B; € B(RY\ {0}),0 <ty <ty < -+ < t,,and 4;

bounded and F;,-measurable.

r}, as. for 0 <r <t

Now fix p € R?, and consider the semimartingale

Zy = explip- Xi+t(p)) = explip- My+t(¢(p) +ip-b)).
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Noting that [M* M']¢ = [X*, X!|¢ = a*'t by (ii), Itd’s formula yields
t t
1
Z, = 1+ / Z_ip-dM + / Z-((p) +ip-b= > pepa*'ydt  (5.68)
0 0 ol
+ Z_ (eip'AX —1—1p- AX).
(0,¢]

By (5.67) and since |e?¥ — 1 —ip-y| < const. - (|y| A|y|?), the series on the right hand

side of (5.68) can be decomposed into a martingale and the finite variation process

t
A = / /Zs— (eP¥ =1 —ip-y) v(dy)ds
0

Therefore, by (5.68) and (5.66), (Z;) is a martingale for any p € R<. The assertion now
follows by Lemma 2.1. U

An interesting consequence of Theorem 5.29 is that a Brownian motion B and a Lévy
process without diffusion part w.r.t. the same filtration are always independent, because
[B*, X!] = 0 for any k, 1.

Exercise (Independence of Brownian motion and Lévy processes). Suppose that
B, :Q — Rtand X, : Q — R? are a Brownian motion and a Lévy process with
characteristic exponent ¢x (p) = —ip - b+ [(1 — ¥ + ip - y) v(dy) defined on the
same filtered probability space (2, A, P, (F;)). Assuming that [(|y|A|y|?) v(dy) < oo,

prove that (B, X;) is a Lévy process on R?*¢ with characteristic exponent

1 ,
V(p.q) = §Iplf@+¢x(q), peRY geRY.

Hence conclude that B and X are independent.

Change of measure for general semimartingales

We conclude this section with a general change of measure theorem for possibly dis-

continuous semimartingales:

Theorem 5.30 (P.A. Meyer). Suppose that the probability measures P and () are equiv-

alent on F; for any t > 0 with relative density g—g = Z;. If M is a local martingale
Fi

w.rt. Q then M — [+ d[Z, M is a local martingale w.r.t. P.
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The theorem shows that w.r.t. P, (M,) is again a semimartingale, and it yields an explicit
semimartingale decomposition for (A, P). For the proof we recall that (Z;) is a local

martingale w.r.t. ) and (1/7;) is a local martingale w.r.t. P.

Proof. The process ZM — [Z, M] is a local martingale w.r.t. . Hence by Lemmy 2.9,
the process M — +[Z, M] is a local martingale w.r.t. P. It remains to show that +[Z, M|
differs from [ d[Z, M] by a local P-martingale. This is a consequence of the Itd
product rule: Indeed,

%[Z,M] = /[Z,M]_d%+/%d[Z,M]+[%JZ’MH-

The first term on the right-hand side is a local ()-martingale, since 1/7 is a ()-martingale.

The remaining two terms add up to [+ d[Z, M], because

1

1
[E,[Z,MH = ZAEA[Z,M].

O

Remark. Note that the process [ % d[Z, M] is not predictable in general. For a pre-
dictable counterpart to Theorem 5.30 cf. e.g. [36].

5.6 General predictable integrands

So far, we have considered stochastic integrals w.r.t. general semimartingales only for
integrands that are left limits of adapted cadlag processes. This is indeed sufficient
for many applications. For some results including in particular convergence theorems
for stochastic integrals, martingale representation theorems and the existence of local
time, stochastic integrals with more general integrands are important. In this section,
we sketch the definition of stochastic integrals w.r.t. not necessarily continuous semi-
martingales for general predictable integrands. For details of the proofs, we refer to
Chapter IV in Protter’s book [36].

Throughout this section, we fix a filtered probability space (2, A, P, (F;)). Recall that
the predictable o-algebra P on ) x (0,00) is generated by all sets A x (s,t] with
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A€ Fsand 0 < s < t, or, equivalently, by all left-continuous (F;) adapted processes
(w,t) — Gi(w). We denote by £ the vector space consisting of all elementary pre-

dictable processes G of the form

n—1

Gt(w) = Z Zi(w)l(ti7ti+l](t)

=0
withn € N,0 <ty <t; <--- < t,,and Z; : 2 — R bounded and F;,-measurable.
For G € &£ and a semimartingale X € S, the stochastic integral G, X defined by

n—1

t
G = [ GudXe = 32 (X Xon)
0

=0
is again a semimartingale. Clearly, if A is a finite variation process then G, A has finite
variation as well.

Now suppose that M € M?(0,00) is a square-integrable martingale. Then G, M €
M3(0, 00), and the Itd isometry

o) 2
1GM gy = E (/0 GdM)]
= E{ /OOGM[M@ = / G* AP (5.69)
0 QxR
holds, where
Poy(dw dt) = P(dw) [M](w)(dt)

is the Doléans measure of the martingale M on §2 x R, . The It6 isometry has been
derived in a more general form in Corollary 5.20, but for elementary processes it can
easily be verified directly (Excercise!).

In many textbooks, the angle bracket process (M) is used instead of [M] to define
stochastic integrals. The next remark shows that this is equivalent for predictable inte-
grands:

Remark ([M] vs. (M)). Let M € M?(0, 00). If the angle-bracket process (M) exists
then the measures Py and Py coincide on predictable sets. Indeed, if C' = A x (s, t]
with A € F, and 0 < s < ¢ then

Pu(C) = E[M]—[M]; Al = E[E[M] - [M]|F]; A
= E[E[(M),— (M),|F]: A] = Pay(O).
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Since the collection of these sets C' is an N-stable generator for the predictable o-

algebra, the measures Py and Py coincide on P.

Example (Doléans measures of Lévy martingales). If M, = X, — E[X;] with a square

integrable Lévy process X; : 2 — R then

where ¢ is the characteristic exponent of X and A ) denotes Lebesgue measure on
R, . Hence the Doléans measure of a general Lévy martingale coincides with the one

for Brownian motion up to a multiplicative constant.

Definition of stochastic integrals w.r.t. semimartingales

We denote by H? the vector space of all semimartingales vanishing at 0 of the form
X = M + A with M € M37(0,00) and A € FV predictable with total variation
va4) = [, |dA| € L*(P). In order to define a norm on the space H?, we as-
sume without proof the following result, cf. e.g. Chapter III in Protter [36]:

Fact. Any predictable local martingale with finite variation paths is almost surely con-

stant.

The result implies that the Doob-Meyer semimartingale decomposition
X = M+A (5.70)

is unique if we assume that M is local martingale and A is a predictable finite variation

process vanishing at 0. Therefore, we obtain a well-defined norm on #? by setting

e ([ |dA|)2

Note that the M? norm is the restriction of the #* norm to the subspace M?(0, 00) C

X3 = MR +[IVOAE = B

H2. As a consequence of (5.69), we obtain:

Corollary 5.31 (Itd isometry for semimartingales). Let X € H? with semimartingale

decomposition as above. Then

|Ge X3z = ||Gllx  forany G € &, where
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2

IG1 = 1C g+ || [ 1112

Hence the stochastic integral J : € — H?, Tx(G) = G.X, has a unique isometric

L2(P)’

. =X . .
extension to the closure £ of € w.rt. the norm || - || x in the space of all predictable

processes in L*(Pyp).

Proof. The semimartingale decomposition X = M + A implies a corresponding de-
composition G¢ X = G, M + G,A for the stochastic integrals. One can verify that
for G € £, G,M is in M3(0,00) and G, A is a predictable finite variation process.
Therefore, and by (5.69),

1GX[fe = 1IGMIfe + IV (Gl = [IG1Ean,y + | [ 161144

2
L2(P)’

O
The Itd isometry yields a definition of the stochastic integral G, X for G € &*. For
G = H_ with H cadlag and adapted, this definition is consistent with the definition
given above since, by Corollary 5.20, the 1t6 isometry also holds for the integrals defined
above, and the isometric extension is unique. The class & of admissible integrands is

already quite large:
Lemma 5.32. & contains all predictable processes G with ||G||x < o0.

Proof. We only mention the main steps of the proof, cf. [36] for details:

1) The approximation of bounded left-continuous processes by elementary predictable
processes W.r.t. || - || x is straightforward by dominated convergence.

2) The approximability of bounded predictable processes by bounded left-continuous
processes w.rt. || - ||x can be shown via the Monotone Class Theorem.

3) For unbounded predictable G with ||G||x < oo, the processes G" := G - Ijg<n},
n € N, are predictable and bounded with ||G" — G||x — 0.

O

Localization

Having defined G, X for X € H? and predictable integrands G with ||G||x < oo, the
next step is again a localization. This localization is slightly different than before, be-

cause there might be unbounded jumps at the localizing stopping times. To overcome
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this difficulty, the process is stopped just before the stopping time 7',1.e., at 7'—. How-
ever, stopping at 7 destroys the martingale property if 7' is not a predictable stopping

time. Therefore, it is essential that we localize semimartingales instead of martingales!

For a semimartingale X and a stopping time 7" we define the stopped process X7~ by

X for t < T,
X7 = Xy fort>T >0,
0 for T'=0.

The definition for 7" = 0 is of course rather arbitrary. It will not be relevant below, since
we are considering sequences (7,) of stopping times with 7}, T oo almost surely. We

state the following result from Chapter IV in [36] without proof.

Fact. If X is a semimartingale with X, = 0 then there exists an increasing sequence
(T,) of stopping times with sup T,, = oo such that X™»~ € H? for any n € N.
Now we are ready to state the definition of stochastic integrals for general predictable

integrands w.r.t. general semimartingales X . By setting G¢ X = Go(X — X;) we may

assume Xg = 0.

Definition. Let X be a semimartingale with X, = 0. A predictable process G is called
integrable w.r.t. X iff there exists an increasing sequence (T,) of stopping times such

that sup T,, = oo a.s., and for any n € N, X™~ € H? and ||G|| x1.- < o0.

If G is integrable w.r.t. X then the stochastic integral G, X is defined by
t t
(GX); = / G,dX, = / Gy dXIn~ forany t €10,T,), n€N.
0 0

Of course, one has to verify that G,X is well-defined. This requires in particular a
locality property for the stochastic integrals that are used in the localization. We do not

carry out the details here, but refer once more to Chapter IV in [36].

Exercise (Sufficient conditions for integrability of predictable processes).
1) Prove that if G is predictable and locally bounded in the sense that GT» is bounded
for a sequence (7;,) of stopping times with 7,, T oo, then G is integrable w.r.t. any

semimartingale X € S.
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2) Suppose that X = M + A is a continuous semimartingale with M € M and
A € FV.. Prove that GG is integrable w.r.t. X if G is predictable and

t t
/ G? d[M]S+/ |G| |[dAs] < o0 a.s. forany ¢ > 0.
0 0

Properties of the stochastic integral

Most of the properties of stochastic integrals can be extended easily to general pre-
dictable integrands by approximation with elementary processes and localization. The
proof of Property (2) below, however, is not trivial. We refer to Chapter IV in [36] for

detailed proofs of the following basic properties:
(1) The map (G, X) — G4X is bilinear.
(2) A(G.X) = GAX almost surely.
(3) (GeX)T = (G Ijpry)e X = G XT.
@) (G X))~ =G XT~.
(5) Go(G.X) = (GG).X.

In all statements, X is a semimartingale, G is a process that is integrable w.r.t. X, T is a
stopping time, and Gisa process such that GG is also integrable w.r.t. X. We state the
formula for the covariation of stochastic integrals separately below, because its proof is

based on the Kunita-Watanabe inequality, which is of independent interest.

Exercise (Kunita-Watanabe inequality). Let XY € S, and let G, H be measurable
processes defined on 2 x (0, 00) (predictability is not required). Prove that for any

a € [0,00] and p, g € [1, oo] with % + % = 1, the following inequalities hold:

/Oa|GHH| dX,Y]| < (/Oagz d[X])m (/Oam d[Y])l/Q, (5.71)
E[/Oa\cuﬂ\ axy)] < H(/ng d[x])m (/Oam d[Y])l/Z‘

Hint: First consider elementary processes G, H.

La

(5.72)

Lp
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Theorem 5.33 (Covariation of stochastic integrals). For any X,Y € S and any pre-
dictable process G that is integrable w.r.t. X,

[/GdX, Y] = /Gd[X, Y] almost surely. (5.73)

Remark. If X and Y are local martingales, and the angle-bracket process (X, V') exists,

then also
</GdX,Y> = /Gd(X, Y) almost surely.

Proof of Theorem 5.33. We only sketch the main steps briefly, cf. [36] for details. Firstly,
one verifies directly that (5.73) holds for X,Y € H? and G € &£. Secondly, for
XY € H? and a predictable process G with ||G||x < oo there exists a sequence
(G™) of elementary predictable processes such that ||G" — G||x — 0, and

[/G”dX,Y] = /G"d[X,Y] forany n € N.
Asn — oo, [G"dX — [ G dX in H? by the Itd isometry for semimartingales, and

[/G” X, Y] N [/de, Y] ucp.

by Corollary 5.14. Moreover,

hence

/G"d[X,Y] — /Gd[X,Y] u.c.p.

by the Kunita-Watanabe inequality. Hence (5.73) holds for GG as well. Finally, by local-
ization, the identity can be extended to general semimartingales X, Y and integrands G

that are integrable w.r.t. X. L

An important motivation for the extension of stochastic integrals to general predictable

integrands is the validity of a Dominated Convergence Theorem:

Theorem 5.34 (Dominated Convergence Theorem for stochastic integrals). Suppose
that X is a semimartingale with decomposition X = M + A as above, and let G",

n € N, and G be predictable processes. If

Gl (w) — Gyw)  forany t >0, almost surely,
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and if there exists a process H that is integrable w.rt. X such that |G"| < H for any
n € N, then
G"X — GX u.cp. as n— oo.

If, in addition to the assumptions above, X is in H? and ||H||x < oo then even
|IG"X — G Xz — 0 as n — 0o.

Proof. We may assume G = 0, otherwise we consider G" — ( instead of G". Now

suppose first that X is in #? and ||H||x < oo. Then

letk = B[ e+ ([ iemaa)] — o

as n — oo by the Dominated Convergence Theorem for Lebesgue integrals. Hence by
the 1t6 isometry,

G"X — 0 in H® asn— oo.

The general case can now be reduced to this case by localization, where 2 convergence

is replaced by the weaker ucp-convergence. U

We finally remark that basic properties of stochastic integrals carry over to integrals
with respect to compensated Poisson point processes. We refer to the monographs by
D.Applebaum [5] for basics, and to Jacod & Shiryaev [24] for a detailed study. We only
state the following extension of the associative law, which has already been used in the

last section:

Exercise (Integration w.r.t. stochastic integrals based on compensated PPP). Sup-
pose that H : 2 x R, x .S — R is predictable and square-integrable w.rt. P ® A ® v,
and G : 2 x R, — R is a bounded predictable process. Show that if

X, - / H,(y) N(ds dy)
(0,¢]xS

then .
/ G.dX, = / G, H,(y) N(ds dy).
0 0,5

Hint: Approximate G by elementary processes.
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