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Chapter 1

Processes, Filtrations, Martingales

1.1 Foundations

Most of this chapter can be found in the first chapter of the monograph [KS91] or in [RY94].

Definition 1.1. Let (Ω,F) and (E, E) be measurable spaces and I a (non-empty) index set. A
collection X = (Xt)t∈I of measurable maps from (Ω,F) to (E, E) is called (E-valued) process. If
– in addition – a probability measure is specified on (Ω,F), then we call X a stochastic process.

Notation 1.2. If (E, d) is a metric space (or, more generally, E is a topological space), then
we denote its Borel-σ-algebra (i.e. the smallest σ-algebra containing all open subsets of E) by
B(E). Unless we say something different, we always assume that subsets of Rd are equipped
with the Euclidean metric. Sometimes we write B[a, b] instead of B([a, b]) etc.

Notation 1.3. Let (E, E) be a measurable space. EI denotes the smallest σ-algebra on EI such
that for each i ∈ I the projection map πi : EI → E defined as πi(x) := xi, x ∈ EI is measurable.
EI is called product σ-algebra.

The following proposition is easy to prove.

Proposition 1.4. Let (Xt)t∈I be an (E, E)-valued process. Let X : (Ω,F)→ (EI , EI) be defined
by X(ω)(t) := Xt(ω). Then X is measurable.

Remark 1.5. If I is uncountable then the σ-algebra EI is rather crude. Subsets of EI which
are not determined by countably many i ∈ I are never in EI . For example {f ∈ R[0,1] :
sups∈[0,1] f(s) ≤ 1} /∈ B[0,1], no matter which σ-algebra B on R we choose.

Definition 1.6. Let X be an (E, E)-valued stochastic process on (Ω,F ,P). Then PX := PX−1

is called the distibution or the law of X. We often write L(X) instead of PX.

Remark 1.7. Note that PX is a probability measure on (EI , EI).

Definition 1.8. Let X and Y be two stochastic processes on (Ω,F ,P) with the same index set
I and the same target space (E, E).

a) X and Y are called modifications if for all t ∈ I we have P({ω : Xt(ω) = Yt(ω)}) = 1.

b) X and Y are called indistinguishable (or equivalent) if P({ω : Xt(ω) = Yt(ω) for all t ∈
I}) = 1.

1



2 Wahrscheinlichkeitstheorie III

Remark 1.9. a) Strictly speaking, the previous definition should be written more carefully.
It is possible that for processes X and Y the set {ω : Xt(ω) = Yt(ω)} is not in F (when
the space (E, E) is a bit pathological – we will provide an example in class). Therefore the
phrase “we have ...” in part a) should be replaced by “the set {ω : Xt(ω) = Yt(ω)} contains
a set F ∈ F such that P(F ) = 1”. A similar remark applies to part b). As an example,
take I = {0}, (Ω,F) = (E, E) := ({a, b}, {∅, E}), X(a) = a,X(b) = b, Y (a) = Y (b) = a.
Then {ω : X(ω) = Y (ω)} = {a} which is not in F .

b) If X and Y are modifications then PX = PY.

c) If X and Y are indistinguishable then they are modifications.

d) If X and Y are modifications and I is countable (i.e. finite or countably infinite) then they
are indistinguishable.

Example 1.10. Ω = [0, 1],F = B[0, 1],P = λ|[0,1], I = [0, 1] (where λ|[0,1] is Lebesgue measure
on the Borel σ-Algebra B[0, 1] on [0, 1]).

Xt(ω) :=

{
1, t = ω
0, t 6= ω

Yt(ω) ≡ 0.

Then X and Y are modifications but not indistinguishable.

Definition 1.11. If (Ω,F ,P) is a probability space, then a set A ∈ F is called P-negligible if
P(A) = 0.

1.2 Filtrations and stopping times

In this section we consider stochastic processes and filtrations indexed by the interval [0,∞).
We could formulate these concepts for more general totally or even partially ordered index sets
but we prefer not to be too general. All (stochastic) processes are assumed to have index set
I = [0,∞) unless we explicitly say something different. Note that we will usually write X instead
of X (and similarly for other letters denoting (stochastic) processes).

Definition 1.12. An (E, E)-valued process X on (Ω,F) is called measurable if, for every A ∈ E ,
we have X−1(A) ∈ B[0,∞)⊗F (where X−1(A) := {(t, ω) ∈ [0,∞)× Ω : Xt(ω) ∈ A}).

Definition 1.13. Let (Ω,F) be a measurable space. F = (Ft)t≥0 is called a filtration (on (Ω,F))
if for each t ∈ [0,∞), Ft is a sub-σ−algebra of F such that Fs ⊆ Ft whenever 0 ≤ s ≤ t < ∞.
In this case, (Ω,F ,F) is called a filtered measurable space (FMS). If, moreover, (Ω,F ,P) is a
probability space, then (Ω,F ,F,P) is called a filtered probability space (FPS). We define F∞ as
the smallest σ-algebra which contains all Ft.

Definition 1.14. An (E, E)-valued process X on the FMS (Ω,F ,F) is called adapted (or F-
adapted) if for each t ≥ 0, Xt is (Ft, E)-measurable. The filtration Ft := σ(Xs, s ≤ t) is called
the natural filtration of X or the filtration generated by X.

Definition 1.15. If (Ω,F ,F) is a FMS, then we define

F+
s := Fs+ :=

⋂
t>s

Ft, s ≥ 0 and F+ := (Fs+)s≥0.
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It is easy to check that F+ is also a filtration and that (F+)+ = F+.

Definition 1.16. If (Ω,F ,F) is a FMS such that F = F+, then F is called right continuous.

The following assumption about a filtration is common in stochastic analysis but not so
common in the theory of Markov processes.

Definition 1.17. A filtered probability space (Ω,F ,F,P) is said to satisfy the usual conditions
(or to be normal) if the following hold:

(i) F0 contains all P-negligible sets in F ,

(ii) F = F+, i.e. F is right continuous.

Remark 1.18. Some authors require in addition that the space (Ω,F ,P) is complete, i.e. that
each subset of a P-negligible set belongs to F . Here we follow [KS91] who do not require
completeness.

Definition 1.19. Let (Ω,F ,F) be a FMS. A map τ : Ω → [0,∞] is called a weak F-stopping
time or optional time, if for all t ≥ 0 we have {ω ∈ Ω : τ(ω) ≤ t} ∈ F+

t . τ is called a strict
F-stopping time or just F-stopping time if for all t ≥ 0 we have {ω ∈ Ω : τ(ω) ≤ t} ∈ Ft. The
specification “F” is often omitted when the choice of the filtration is clear from the context.

Remark 1.20. A strict F-stopping time is a weak F-stopping time and a weak F-stopping time
is the same as an F+-stopping time. If the filtration F is right continuous, then a weak F-stopping
time is automatically an F-stopping time.

Proposition 1.21. Let (Ω,F ,F) be a FMS and τ : Ω → [0,∞] a map. The following are
equivalent:

(i) τ is a weak stopping time

(ii) {ω : τ(ω) < t} ∈ Ft for all t ≥ 0.

Proof. (i) ⇒ (ii): Let τ be a weak stopping time and t ≥ 0. Then

{τ < t} =
⋃
n∈N

{
τ ≤ t− 1

n

}
∈ Ft.

(ii) ⇒ (i): Let τ satisfy (ii) and t ≥ 0. Then

{τ ≤ t} =
⋂
n∈N

{
τ < t+

1

n

}
∈ F+

t .

Example 1.22. Let Ω = {a, b}, F = 2Ω equipped with the uniform measure P. Define Xt(a) :=
t and Xt(b) = −t for t ≥ 0. Let F be the filtration generated by X, i.e. F0 = {∅,Ω}, Ft = 2Ω

for t > 0. Then τ(ω) := inf{t ≥ 0 : Xt(ω) > 0} is clearly an optional time but not a stopping
time. Note that F is not right continuous.
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Warning 1.23. For each stopping time τ on a FMS (Ω,F ,F) we have for all t ≥ 0

{τ = t} = {τ ≤ t} \ {τ < t} ∈ Ft (1.2.1)

by the previous proposition, but the converse is not true, i.e. a map τ : Ω → [0,∞] satisfying
(1.2.1) for every t ≥ 0 is not necessarily a stopping time – not even a weak one. As an example,
take (Ω,F ,P) := ([0, 1],B[0, 1], λ|[0,1]) and define Xt(ω) = 1 if t = ω and Xt(ω) = 0 otherwise.
Let F be the filtration generated byX, i.e. Ft := σ({ω}, ω ≤ t). Then τ(ω) := inf{s : Xs(ω) = 1}
is not a stopping time (not even a weak one) since {τ < t} is not in Ft for any t ∈ (0, 1) but
{τ = t} ∈ Ft.

Definition 1.24. Let (Ω,F ,F) be a FMS and τ : Ω→ [0,∞] a map.

Fτ := {A ∈ F∞ : A ∩ {τ ≤ t} ∈ Ft for all t ≥ 0},
F+
τ := {A ∈ F∞ : A ∩ {τ ≤ t} ∈ F+

t for all t ≥ 0}.

The proof of the following lemma is very easy and is left to the reader.

Lemma 1.25. Let (Ω,F ,F) be a FMS and τ : Ω→ [0,∞] an F-stopping time.

a) Fτ is a σ-algebra.

b) If τ ≡ s ∈ [0,∞], then Fτ = Fs.

c) τ is Fτ -measurable.

d) If 0 ≤ σ ≤ τ , then Fσ ⊆ Fτ (even if σ is not a stopping time).

e) If (σn)n∈N is a sequence of stopping times, then so is σ̄ := supn σn and σ := infn σn is a
weak stopping time.

f) If σ is another stopping time then Fσ∧τ = Fσ ∩ Fτ .

Remark 1.26. If τ is a weak stopping time then Fτ need not be a σ-algebra since it does not
necessarily contain the set Ω. In fact Fτ is a σ-algebra if and only if τ is a strict stopping time.

Next, we want to investigate under which conditions first entrance times of a process X are
stopping times.

Definition 1.27. Let X be an (E, E)-valued process on a FMS (Ω,F ,F) and G ⊆ E. Then the
maps SG resp. TG from Ω to [0,∞] defined as

SG(ω) : = inf{t > 0 : Xt(ω) ∈ G}
TG(ω) : = inf{t ≥ 0 : Xt(ω) ∈ G}

are called hitting time resp. debut time of X in G.

Proposition 1.28. Let (E, d) be a metric space with Borel σ-algebra E and let X be an E-valued
adapted process.

a) If G ⊆ E is open and X has right (or left) continuous paths, then TG and SG are weak
stopping times.
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b) If G ⊆ E is closed and X has continuous paths, then TG is a strict stopping time.

Proof. a) Let t > 0. Then

{TG < t} =
⋃

0≤s<t
{Xs ∈ G} =

⋃
s∈[0,t)∩Q

{Xs ∈ G} ∈ Ft,

and analogously for SG, where we used the facts that G is open and the continuity as-
sumption in the second equality.

b) For n ∈ N, let Gn := {x ∈ E : d(x,G) < 1
n}. Then Gn is open for each n and TGn < TG

on {TG ∈ (0,∞)}. To see this, observe that the fact that G is closed and X is right
continuous implies XTG ∈ G on the set {TG < ∞} and left continuity of X then shows
that TGn < TG on {TG ∈ (0,∞)}. The sequence TGn is clearly increasing and therefore
converges to some T (ω) ≤ TG(ω). Using again continuity of X we see that T (ω) = TG(ω)
for all ω ∈ Ω. From this it follows that {TG ≤ t} = ∩∞n=1{TGn < t} ∈ Ft by part a) since
Gn is open.

We will see later in Theorem 1.37 that under slight additional assumptions on the filtration
we get a much better result.

Definition 1.29. Let (Ω,F ,F) be a FMS.

a) The family

{A ⊂ [0,∞)× Ω : A ∩ ([0, t]× Ω) ∈ B[0, t]⊗Ft for all t ≥ 0}

is called the progressive σ-algebra.

b) An (E, E)-valued process X is called progressive or progressively measurable if X : [0,∞)×
Ω→ E is measurable with respect to the progressive σ-algebra.

Remark 1.30. Note that the progressive σ-algebra is a σ-algebra. Further note that a progres-
sive set A satisfies A ∈ B[0,∞)⊗F∞ and that a progressive processX is adapted and measurable.
On the other hand an adapted and measurable process X is not necessarily progressive. We will
provide an example at the end of this section (Example 1.38).

Proposition 1.31. If X is an (E, E)-valued progressive process on a FMS (Ω,F ,F) and T is a
stopping time. Then

a) XT is FT -measurable, i.e. for B ∈ E we have {ω : T (ω) <∞ and XT (ω)(ω) ∈ B} ∈ FT .

b) The process (XT∧t)t≥0 is progressive.

Proof. a) Fix t ∈ [0,∞). Then the map ϕ : Ω→ [0, t]×Ω defined as ϕ(ω) := (T (ω) ∧ t, ω) is
(Ft,B[0, t]⊗Ft)-measurable since for 0 ≤ a ≤ t and A ∈ Ft we have

ϕ−1([a, t]×A) = A ∩ {ω : T (ω) ≥ a} ∈ Ft

and the sets [a, t]×A of this form generate B[0, t]⊗Ft.
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Therefore, for B ∈ E ,

{T <∞, XT ∈ B} ∩ {T ≤ t} = {XT∧t ∈ B} ∩ {T ≤ t} = {X ◦ ϕ ∈ B} ∩ {T ≤ t} ∈ Ft

and
{T <∞, XT ∈ B} = ∪∞n=1{T ≤ n,XT ∈ B} ∈ F∞.

b) The proof of this part is similar.

In the proof of the following proposition we will need the following lemma.

Lemma 1.32. If (E, d) is a metric space with Borel-σ-algebra E and Xn : (Ω̃, F̃) → (E, E),
n ∈ N are measurable and limn→∞Xn(ω) = X(ω) for all ω ∈ Ω̃, then X is also measurable.

Proof. Let A ⊆ E be closed and An := {x ∈ E : d(x,A) < 1
n}. Then An is open and

X−1(A) =
∞⋂
n=1

∞⋃
k=1

∞⋂
m=k

X−1
m (An) ∈ F̃ .

Remark 1.33. The previous lemma does not hold on arbitrary topological spaces E – even
if E is compact Hausdorff! For example, if I = [0, 1] carries the usual topology and E := II

is equipped with the product topology (which is compact and Hausdorff), then there exists a
sequence of continuous (and hence measurable) Xn : I → E which converge pointwise to a map
X which is not measurable! The reader is invited to check this and/or to construct a different
counterexample.

Proposition 1.34. If X is a right (or left) continuous adapted process on a FMS (Ω,F ,F)
taking values in a metric space (E, d) with Borel σ-algebra E, then X is progressive.

Proof. Assume that X is right continuous and adapted. Fix t ≥ 0. For n ∈ N define

Xn
s :=

{
X k+1

2n
t, s ∈

[
k

2n t,
k+1
2n t

)
, 0 ≤ k < 2n

Xt s = t.

For any B ∈ E we have

{(s, ω) ∈ [0, t]× Ω : Xn
s (ω) ∈ B}

=
⋃

0≤k<2n

([ k
2n
t,
k + 1

2n
t
)
×
{
X k+1

2n
t(ω) ∈ B

})
∪ ({t} × {Xt(ω) ∈ B}) ∈ B[0, t]⊗Ft,

so Xn is progressive. Further, limn→∞X
n
s (ω) = Xs(ω) for every ω ∈ Ω and s ∈ [0, t] by right

continuity. The result follows using Lemma 1.32. The result for left continuous processes follows
similarly. In this case we define

Xn
s :=

{
X k

2n
t, s ∈

(
k

2n t,
k+1
2n t

]
, 0 ≤ k < 2n

X0 s = 0.

The rest of the proof is as in the right continuous case.
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Definition 1.35. Let (Ω,F) be a measurable space and µ ∈ M1(Ω). We denote by Fµ the
completion of F with respect to µ, i.e. the smallest σ-algebra which contains F and all subsets
of µ-negligible sets in F . Then Fu := ∩µ∈M1(Ω,F)Fµ is called the universal completion of F .

We state the following important and deep projection theorem. For a proof, see e.g. [He79]
or [DM78].

Theorem 1.36. Let (Ω,F) be a measurable space and let R be the Borel-σ-algebra of a Polish
(i.e. complete separable metric) space R. If A ∈ R⊗F , then

prΩ(A) ∈ Fu,

where prΩ(A) := {ω ∈ Ω : ∃s ∈ R : (s, ω) ∈ A} is the projection of A onto Ω.

Theorem 1.37. Let (Ω,F ,F) be a FMS such that Ft = Fut for each t ≥ 0. Let X be (E, E)-
valued progressive and let A ∈ E. Then both SA and TA are weak stopping times.

Proof. For each t > 0 we have to show that {SA < t} and {TA < t} are in Ft. To show this for
TA define

At := {(s, ω) : 0 ≤ s < t, Xs(ω) ∈ A} =
⋃
n∈N

{
(s, ω) : 0 ≤ s ≤ t− 1

n
, Xs(ω) ∈ A

}
,

which is in B[0, t]⊗Ft. Therefore,

{TA < t} = prΩ(At) ∈ Ft

by Theorem 1.36. The proof for SA is similar: just consider

Ãt := {(s, ω) : 0 < s < t, Xs(ω) ∈ A} = At − {(0, ω) : w ∈ Ω}

which is also in B[0, t]⊗Ft.

Now we provide an example of an adapted and measurable process which is not progressive.

Example 1.38. Let (Ω,F) = ([0, 1],L), where L denotes the σ-algebra of Lebesgue sets in [0, 1]
which – by definition – is the completion of B[0, 1] with respect to Lebesgue measure. Let L0

be the σ-algebra on [0, 1] containing all sets in L which have Lebesgue measure 0 or 1. Define
Ft := L0 for all t ≥ 0. Define the set A ⊂ [0,∞) × Ω by A = {(x, x) : x ∈ [0, 1/2]}. Then
A ∈ B[0,∞)⊗F but for each t > 0, A∩ ([0, t]×Ω) /∈ B[0, t]⊗Ft (otherwise the projection of the
intersection onto Ω would be in F by Theorem 1.36 which is however not the case). Therefore
the indicator of A is measurable and (check!) adapted but not progressive.

1.3 Martingales

We will assume that the reader is familiar with discrete time martingales.

Definition 1.39. Let (Ω,F ,F,P) be a FPS. A real-valued stochastic process M = (Mt)t≥0 is
called an F-martingale (resp. F-submartingale resp. F-supermartingale) if

(i) (Mt)t≥0 is adapted.
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(ii) E|Mt| <∞ for each t ≥ 0.

(iii) For each 0 ≤ s ≤ t <∞ we have

E(Mt|Fs) = Ms a.s.

(resp. ≥
resp. ≤)

Example 1.40. Let (Ω,F ,F,P) be a FPS. An F-adapted real-valued process B is called an
F-Brownian motion if

(i) P(B0 = 0) = 1

(ii) For every 0 ≤ s < t <∞, Bt −Bs is independent of Fs.

(iii) For every 0 ≤ s < t <∞, L(Bt −Bs) = N (0, t− s).

(iv) B has continuous paths.

Note that a Brownian motion as defined in Wahrscheinlichkeitstheorie II (hereafter abbreviated
WT2) is an F-Brownian motion with respect to the filtration generated by B. Any F-Brownian
motion is an F-martingale (even if it only satisfies (i)-(iii) and not (iv)): for 0 ≤ s < t <∞ we
have (almost surely)

E(Bt|Fs) = E(Bt −Bs +Bs|Fs) = E(Bt −Bs|Fs) + E(Bs|Fs) = 0 +Bs = Bs.

Further, the process Mt := B2
t − t, t ≥ 0 is a martingale, since for 0 ≤ s ≤ t <∞, we have

E(Mt|Fs) = E
(
(Bt −Bs +Bs)

2|Fs
)
− t = E(Bt −Bs)2 +B2

s + 2BsE(Bt −Bs)− t = Ms.

Another example, the compensated Poisson process N , will be introduced in class.

The following theorem (which is essentially the same as Theorem 3.8 in [KS91]) states some
fundamental results for right continuous submartingales which were shown for discrete time
submartingales in WT2. We will answer the question whether (and if so in which sense) every
submartingale admits a right continuous modification afterwards.

For a function f : [0,∞) → R and a finite subset F ⊂ [0,∞) and −∞ < a < b < ∞ we let
UF (a, b; f) be the number of upcrossings of f restricted to F of the interval [a, b] as defined in
WT2. For a general subset I ⊆ [0,∞), we define

UI(a, b; f) := sup{UF (a, b; f); F ⊂ I, F finite}.

Theorem 1.41. Let X be a submartingale on (Ω,F ,F,P) with right continuous paths and let
[s, u] ⊂ [0,∞). For real numbers a < b, λ > 0 and p > 1 we have

(i) Maximal inequality:
λP
{

sup
s≤t≤u

Xt ≥ λ
}
≤ E(X+

u ).

(ii) Upcrossing inequality:

EU[s,u](a, b;X(ω)) ≤ E(X+
u ) + |a|
b− a
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(iii) Doob’s Lp-inequality: if – in addition – X is nonnegative, then

E
(

sup
s≤t≤u

Xt

)p
≤
( p

p− 1

)p
E(Xp

u).

Proof. (i) Let F be a finite subset of [s, u] ∩Q which contains s and u. From WT2 we know
that for any µ > 0 we have

µP
{

sup
t∈F

Xt > µ
}
≤ E(X+

u ). (1.3.1)

Take an increasing sequence Fn of such sets whose union equals G := ([s, u] ∩Q) ∪ {s, u}.
The continuity of P implies that (1.3.1) holds true if F is replaced by G. Further, by right
continuity of X the same estimate holds if G is replaced by [s, u]. The claim follows if we
apply this to µ := λ− 1

n and let n→∞.

(ii) For any finite subset F ⊂ [s, u] containing u, the inequality

EUF (a, b;X(ω)) ≤ E(X+
u ) + |a|
b− a

was proved in WT2. Defining Fn and G as in part (i) and using right continuity of X the
claim follows.

(iii) Again this follows from the corresponding discrete time result as in parts (i) and (ii).

Obviously the statements of the previous theorem remain true if only almost all paths of X
are right continuous.

Next, we state and prove the submartingale convergence theorem.

Theorem 1.42. Let X be a right continuous F-submartingale and assume that supt≥0 E(X+
t ) <

∞. Then X∞(ω) := limt→∞Xt(ω) exists for almost all ω ∈ Ω and E|X∞| <∞.

Proof. The proof is as in the discrete time case using the upcrossing inequality in Theorem 1.41
(ii).

Now we state the optional sampling theorem.

Theorem 1.43 (Optional Sampling). Let X be a right continuous F-submartingale which can
be extended to a submartingale on [0,∞] (i.e. there exists some F∞-measurable integrable X∞
such that Xt ≤ E(X∞|Ft) a.s.). Let S ≤ T be F-stopping times. Then

E(XT |FS) ≥ XS and E(XT |F+
S ) ≥ XS a.s.

In the martingale case the first and last inequalities are replaced by equalities.

Proof. Consider the random times

Sn(ω) :=

{
k

2n , if S(ω) ∈
[
k−1
2n ,

k
2n

)
, k ∈ {1, ..., n2n},

∞ if S(ω) ≥ n,
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and analogously for Tn. Both Sn and Tn are decreasing sequences of stopping times and converge
to T resp. S for each ω ∈ Ω. The discrete time optional sampling theorem tells us that for each
n ∈ N

E(XTn |FSn) ≥ XSn ,

i.e. for each A ∈ FSn (and hence for each A ∈ F+
S since Sn > S on the set {S < ∞} implies

F+
S ⊆ FSn) ∫

A
XTn dP ≥

∫
A
XSn dP. (1.3.2)

By right continuity of X the integrands converge to XT resp. XS . If we were allowed to inter-
change the limit n→∞ and the integral on both sides of (1.3.2), then the result would follow.
A sufficient condition for the interchange to be legal is that the families XTn resp. XSn are
uniformly integrable (see WT2). This property is indeed true. For a proof see [KS91], Theorem
1.3.22 using Problem 3.11 the solution of which is given on page 41.

The following result shows that the right continuity assumption of the filtration is in some
sense without loss of generality.

Corollary 1.44. A right continuous F-submartingale X is also an F+-submartingale and a right
continuous F-martingale X is also an F+-martingale.

Proof. It is clear that X is F+-adapted. To prove the (sub-)martingale property, let 0 ≤ s <
t <∞ and apply the previous theorem to S = s and T = t (note that the previous theorem can
be applied even if X cannot be extended to a submartingale on [0,∞]; why?).

Finally, we state a result about the existence of a right continuous modification without
proof. The proof can for example be found in [KS91].

Theorem 1.45. Let X be an F-submartingale and assume that F is right continuous. If the
function t 7→ EXt is right continuous, then X has a right continuous modification X which is
also an F-submartingale and for which almost all paths have a finite left limit at every point
t > 0.

Example 1.46. Here is an example of an F-martingale which does not have a right continuous
modification (and for which therefore F is not right continuous): let Ω = {a, b} (equipped with
the σ-algebra F containing all subsets of Ω) and let P be the uniform measure on (Ω,F). Define
Xt(ω) = 0 for ω ∈ Ω and t ∈ [0, 1], and Xt(a) = 1 and Xt(b) = −1 for t > 1. Let F be the
filtration generated by X. Clearly, X is a martingale and X does not admit a right continuous
modification. Note that F is not right continuous and that X is not an F+-martingale.

1.4 Semimartingales, Quadratic Variation

For the rest of this chapter and the next chapter on stochastic integration, we will only consider
martingales (or semimartingales) with continuous paths. Throughout this section, (Ω,F ,F,P)
is a given FPS.

Definition 1.47. • The class of all real-valued adapted stochastic processes with non-
decreasing continuous paths is denoted by A+.
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• The class of all real-valued adapted stochastic processes X with continuous paths of locally
bounded variation is denoted by A. Recall that X has paths of locally bounded variation
if

Vt(ω) := sup
∆

∑
i

|Xti∧t(ω)−Xti−1∧t(ω)| <∞

holds for all t ≥ 0 and all ω ∈ Ω, where the supremum is taken over all finite subsets
∆ = {t0, ..., tn}.

We call V the variation process of X.

Remark 1.48. X ∈ A implies V ∈ A+.

Lemma 1.49. X ∈ A iff there exist S, W ∈ A+ such that Xt(ω) = St(ω)−Wt(ω) for all ω ∈ Ω.

Proof. If X ∈ A, then St := 1
2(Vt +Xt) and Wt := 1

2(Vt−Xt) are both in A+ and Xt = St−Wt

holds for all t ≥ 0. The converse is clear.

Definition 1.50. An adapted real-valued stochastic process M = (Mt)t≥0 is called an F-local
martingale, if there exists a sequence of stopping times (τn)n∈N such that τn ↑ ∞ almost surely,
and such that for every n ∈ N

Nn
t := Mt∧τn , t ≥ 0

is a martingale. We denote the family of all local martingales with continuous paths by Mloc

and the family of all M ∈Mloc for which M0(ω) = 0 for all ω ∈ Ω byM0
loc. Further,M denotes

the family of all martingales with continuous paths.

Remark 1.51. Every martingale is a local martingale but the converse is not true. One example
of a continuous local martingale which is not a martingale is Mt := 1/|x+Bt|, where x ∈ R3\{0}
and Bt is 3-dimensional Brownian motion (starting at 0). It is however not so easy to prove
these facts now (only after we have Itô’s formula at our disposal).

The following criterion for a continuous local martingale to be a martingale will be often
used in the sequel.

Proposition 1.52. If M ∈Mloc satisfies E(sups≥0 |Ms|) <∞, then M ∈M.

Proof. Let τn, n ∈ N and Nn be defined as in Definition 1.50. Then for each t ≥ 0, limn→∞N
n
t =

Mt almost surely and in L1 (the latter by dominated convergence since E(sups≥0 |Ms|) < ∞).
Hence, for 0 ≤ s ≤ t <∞,

E(Mt|Fs) = lim
n→∞

E(Nn
t |Fs) = lim

n→∞
Nn
s = Ms,

and the claim follows.

Remark 1.53. The assumptions of the previous proposition are in particular satisfied when
M ∈ Mloc is bounded in (t, ω). There exist however examples of Lp-bounded M ∈ Mloc (for
arbitrarily large p) which are not in M. Observe however that the condition in the previous
proposition can be weakened to “E(supt≥s≥0 |Ms|) <∞ for each t ≥ 0”.

The following concept of a semimartingale is fundamental in stochastic analysis. Semi-
martingales will turn out to be exactly the right class of stochastic integrators.
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Definition 1.54. A stochastic process X of the form Xt = Mt +At with M ∈Mloc and A ∈ A
is called a (continuous) semimartingale. We denote the family of all continuous semimartingales
by S.

The following theorem is very important. Its proof largely follows [Re13].

Theorem 1.55.
M0

loc ∩ A = {0}.

In particular, the decomposition of X ∈ S in the previous definition is unique if we require in
addition that M0 = 0.

Proof. Let X ∈ M0
loc ∩ A and let Vt, t ≥ 0 be the associated variation process. Let us first

assume that – in addition – there exist C1, C2 > 0 such that

|Xt(ω)| ≤ C1, Vt(ω) ≤ C2

for all t ≥ 0 and all ω ∈ Ω. Let ε > 0, T0 := 0 and

Ti+1 := inf{t ≥ Ti : |Xt −XTi | ≥ ε}, i ∈ N.

Fix t > 0 and define Si := Ti ∧ t (these are stopping times). Then, for n ∈ N,

E(X2
Sn) = E

( n−1∑
i=0

(
X2
Si+1
−X2

Si

))
= E

( n−1∑
i=0

(
XSi+1 −XSi

)2)
+ 2E

( n−1∑
i=0

XSi

(
XSi+1 −XSi

))
= E

( n−1∑
i=0

(
XSi+1 −XSi

)2) ≤ εE( n−1∑
i=0

∣∣XSi+1 −XSi

∣∣) ≤ εEVt ≤ εC2,

where we used the fact that X ∈ M (by Proposition 1.52) and therefore the second term after
the second equality sign is zero by the optional sampling theorem. Therefore, since Tn → ∞
almost surely, we get – using dominated convergence –

EX2
t ≤ C2ε

for all t > 0 and all ε > 0 which implies X ≡ 0 almost surely.

For the general case, let τn be as in Definition 1.50 and define

T̃n : = inf{s ≥ 0 : |Xs| ≥ n}
T̂n : = inf{s ≥ 0 : Vs ≥ n}
Ťn : = inf{τn, T̃n, T̂n}.

Then, for each n ∈ N, the process t 7→ Xt∧Ťn satisfies the assumptions of the first case with

C1 = C2 = n which implies Xt∧Ťn = 0 for all t ≥ 0 almost surely. Since Ťn →∞ almost surely,
the assertion follows.

Remark 1.56. In the previous theorem, the assumption that the involved processes have con-
tinuous paths is important. If we replace continuous by right continuous in all definitions of this
section, then the uniqueness of the decomposition does no longer hold in general: As an example
consider the Poisson process Nt which can be decomposed as Nt = (Nt− t) + t and Nt = 0 +Nt.
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Definition 1.57. Let D be the family of all ∆ = {0 = t0 < t1 < ...} such that tn → ∞. For a
stochastic process X and ∆ ∈ D, we define

T∆
t (X) :=

k−1∑
i=0

(
Xti+1 −Xti

)2
+
(
Xt −Xtk

)2
, t ≥ 0

where k is such that tk ≤ t < tk+1. We say that X has finite quadratic variation if there exists
a process 〈X,X〉 such that for each t ≥ 0, T∆

t converges in probability to 〈X,X〉t as |∆| → 0,
where |∆| := sup{tn+1 − tn, n ∈ N0}. We also write 〈X〉t instead of 〈X,X〉t.

Remark 1.58. Recall that for Brownian motion B we showed that B2
t − t is a martingale.

It therefore follows from the next theorem (or rather Theorem 1.62) that 〈B,B〉t = t almost
surely. We emphasize however that nevertheless for almost every ω ∈ Ω we can find a sequence

∆n(ω) ⊂ D for which |∆n(ω)| → 0 such that T
∆n(ω)
t (B(ω)) → ∞. Even for a deterministic

sequence (∆n)n∈N it may happen that lim supn→∞ T
∆n
t (B(ω)) =∞ almost surely.

Theorem 1.59. Let M ∈ M0
loc be bounded in (t, ω) (and hence M ∈ M). Then M has

finite quadratic variation and 〈M,M〉 is the unique process in A+ vanishing at zero such that
t 7→M2

t − 〈M,M〉t is a martingale.

Proof. The proof is largely taken from [RY94] (or [Re13]). Uniqueness follows immediately from
Theorem 1.55.

Now we show existence of such a process. For ∆ ∈ D and ti ≤ s ≤ ti+1 we have

E
(
(Mti+1 −Mti)

2|Fs
)

= E
(
(Mti+1 −Ms)

2|Fs
)

+ (Ms −Mti)
2.

Therefore, for 0 ≤ s < t <∞,

E
(
T∆
t (M)|Fs

)
= T∆

s (M) + E
(
(Mt −Ms)

2|Fs
)

= T∆
s (M)−M2

s + E
(
M2
t |Fs

)
,

so t 7→M2
t − T∆

t (M) is a continuous martingale. T∆
t (M) is not yet our claimed process since it

is in general not nondecreasing.

We want to show that T∆
t (M) converges in probability as |∆| → 0. Fix a > 0. Let ∆, ∆′ ∈ D

and denote the union of both subdivisions by ∆∆′. Then Xt := T∆
t (M)− T∆′

t (M) is inM and
bounded on [0, t]× Ω for each t ≥ 0 and therefore

t 7→ X2
t − T∆∆′

t (X)

is in M and vanishes at 0. In particular, we have E
(
(T∆
a (M) − T∆′

a (M))2
)

= E
(
X2
a

)
=

E
(
T∆∆′
a (X)

)
. We want to show that

E
(
X2
a

)
→ 0 as |∆|+ |∆′| → 0. (1.4.1)

Assume for a moment that (1.4.1) has been shown (for each a > 0) – we refer the reader to [RY94]
or [Re13] for the proof. Since L2(Ω,F ,P) is complete, there exists a random variable 〈M,M〉a
such that lim|∆|→0 T

∆
a (M) = 〈M,M〉a in L2. All that remains to be shown is that the process

t 7→ 〈M,M〉t has a modification in A+ which vanishes at 0 and that t 7→ M2
t − 〈M,M〉t is a

martingale. Doob’s L2-inequality shows that for each fixed a > 0 the processes T∆
s (M)−〈M,M〉s
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converge to zero even uniformly on [0, a] in L2 (i.e. the supremum converges to 0 in L2) and
therefore the limit has a continuous modification. It is also easy to see by approximation that
we have 〈M,M〉0 = 0 almost surely and that the process is nondecreasing. Being the limit of
adapted processes it also has a modification which is adapted. Finally, the martingale property
follows since L2-limits of martingales are martingales.

We aim at generalizing the previous theorem to arbitrary M ∈ Mloc. To do that we need
the following lemma.

Lemma 1.60. For M as in the previous theorem and a stopping time T define MT
t := Mt∧T .

We have

〈MT ,MT 〉t = 〈M,M〉t∧T .

Proof. By the optional sampling theorem and Theorem 1.59, the process t 7→M2
T∧t−〈M,M〉t∧T

is a martingale. The claim of the lemma now follow using the uniqueness statement in Theorem
1.59.

Definition 1.61. If Xn and Y are real-valued stochastic processes (indexed by [0,∞)), then
we write limn→∞X

n = Y ucp, if for each T > 0, we have that sup0≤s≤T |Xn
s − Ys| converges to

0 in probability as n→∞ (ucp stands for uniformly on compact sets in probability).

Theorem 1.62. Let M ∈M0
loc. There exists a unique process 〈M,M〉 ∈ A+ which vanishes at

0 such that

M2 − 〈M,M〉 ∈ Mloc.

Further, 〈M,M〉 = lim|∆|→0 T
∆(M) ucp.

Proof. Uniqueness follows from Theorem 1.55. Define Tn := inf{t ≥ 0 : |Mt| = n} and Mn :=
MTn . Then Mn is a bounded continuous martingale. By Theorem 1.59, there exists a process
〈Mn,Mn〉 such that (

Mn
)2 − 〈Mn,Mn〉

is a martingale. For m ≤ n, we have (Mn)Tm = Mm and therefore, by Lemma 1.60,

〈Mn,Mn〉t∧Tm = 〈Mm,Mm〉t.

For fixed t ≥ 0 and on the set {ω : Tm(ω) ≥ t} we define

〈M,M〉t := 〈Mm,Mm〉t.

Note that 〈M,M〉 is well-defined and equals limn→∞〈Mn,Mn〉. Further, since
(
Mn

)2−〈Mn,Mn〉
is a martingale, by taking the limit n→∞, we see that M2 − 〈M,M〉 ∈ Mloc.

To show the second part of the theorem, we fix δ > 0 and t > 0. Defining Tn as above, we
pick some k ∈ N such that

P(Tk < t) ≤ δ.

On the set {s ≤ Tk}, we have

〈M,M〉s = 〈M,M〉s∧Tk = 〈MTk ,MTk〉s.



Version September 4th 2013 15

Therefore, for ε > 0,

P
(

sup
s≤t

∣∣T∆
s (M)− 〈M,M〉s

∣∣ ≥ ε) ≤ δ + P
(

sup
s≤Tk

∣∣T∆
s (M)− 〈M,M〉s

∣∣ ≥ ε, Tk ≥ t)
= δ + P

(
sup
s≤Tk

∣∣T∆
s (MTk)− 〈MTk ,MTk〉s

∣∣ ≥ ε, Tk ≥ t)
≤ δ + P

(
sup
s≤Tk

∣∣T∆
s (MTk)− 〈MTk ,MTk〉s

∣∣ ≥ ε).
Since MTk is a bounded martingale, Theorem 1.59 implies

lim sup
|∆|→0

P
(

sup
s≤t

∣∣T∆
s (M)− 〈M,M〉s

∣∣ ≥ ε) ≤ δ.
Since δ, ε > 0 are arbitrary, the asserted ucp convergence follows.

Next, we define the bracket of two local martingales.

Theorem 1.63. Let M,N ∈ M0
loc. There exists a unique process 〈M,N〉 ∈ A vanishing at 0

such that
M ·N − 〈M,N〉 ∈ Mloc.

Further, we have
lim
|∆|→0

T∆(M,N) = 〈M,N〉 ucp,

where
T∆
s (M,N) :=

∑
(Mti∧s −Mti−1∧s) · (Nti∧s −Nti−1∧s).

Proof. Define

〈M,N〉 :=
1

4

(
〈M +N,M +N〉 − 〈M −N,M −N〉

)
.

Since

M ·N =
1

4

(
(M +N)2 − (M −N)2

)
,

we obtain from Theorem 1.62 the fact that M · N − 〈M,N〉 ∈ Mloc. Since 〈M,N〉 is the
difference of two processes in A+ it belongs to A (but not necessarily to A+!). The rest follows
as before.

Proposition 1.64. If X ∈ S has a decomposition X = M + A with M ∈ M0
loc and A ∈ A,

then T∆(X)→ 〈M,M〉 ucp.

Proof. We have

T∆
s (X) =

∑
i

(
Xti∧s −Xti−1∧s

)2
= T∆

s (M) + 2T∆
s (M,A) + T∆

s (A).

Now ∣∣T∆
s (M,A)

∣∣ =
∣∣∑

i

(
Mti∧s −Mti−1∧s

)
·
(
Ati∧s −Ati−1∧s

)∣∣
≤ sup

ti∈∆,ti≤s
|Mti −Mti−1 | ·

∑
i

|Ati∧s −Ati−1∧s| → 0
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since M has continuous paths (in fact the convergence is almost surely uniform on compact
sets). The fact that T∆

s (A) → 0 follows in the same way. The proposition now follows from
Theorem 1.62.

Definition 1.65. Let
H :=

{
M ∈M : sup

t≥0
(E|Mt|2) <∞

}
be the set of all L2-bounded continuous martingales. The meaning of an additional upper index
0 should be clear. (Many authors use the symbol H2 or H2 to denote this space).

Theorem 1.66. 1. If M ∈ H, then M converges to some M∞ almost surely and in L2.

2. H is a real Hilbert space (after forming equivalence classes) if equipped with the norm

‖M‖H := lim
t→∞

E(|Mt|2)1/2 = E(|M∞|2)1/2

3. The following norm on H is equivalent to ‖.‖H:

‖M‖ := E(sup
t≥0
|Mt|2)1/2

4. If M ∈ H0, then 〈M,M〉∞ := limt→∞〈M,M〉t exists almost surely and ‖M‖2H = E〈M,M〉∞.

Proof. 1. This follows from the submartingale convergence theorem (Theorem 1.42) together
with results from WT2 (L2-boundedness of a martingale implies L2-convergence).

2. The second equality follows from L2-convergence. Since L2(Ω,F∞,P) is a Hilbert space, it
only remains to show that H is closed (or complete). To see this pick a Cauchy sequence
Mn in H. Then M∞ := limn→∞M

n
∞ exists in L2. Using Doob’s L2-inequality (Theorem

1.41 (iii)), we see that Mt := E(M∞|Ft) has a continuous modification and is therefore in
H.

3. This follows from E(supt≥0M
2
t ) ≤ 4EM2

∞ ≤ 4E(supt≥0M
2
t ), where the first inequality is

an application of Doob’s L2-inequality (Theorem 1.41 (iii)).

4. We know from Theorem 1.62 that M2
t −〈M,M〉t ∈M0

loc. Let Tn := inf{t ≥ 0 : |Mt| = n}.
Then

EM2
t∧Tn = E〈M,M〉t∧Tn .

Letting n → ∞ and t → ∞, the right hand side converges to E〈M,M〉∞ by mono-
tone convergence. Further EM2

∞ ≤ lim infn,t→∞ EM2
t∧Tn by Fatou’s lemma and EM2

∞ ≥
lim supn,t→∞ EM2

t∧Tn follows from the optional sampling theorem applied to the submartin-
gale M2.



Chapter 2

Stochastic Integrals and Stochastic
Differential Equations

2.1 The stochastic integral

Throughout this section (Ω,F ,F,P) will be a FPS. In addition we assume that the usual condi-
tions introduced earlier hold. We aim at defining the stochastic integral process t 7→

∫ t
0 fs(ω) dSs

for S ∈ S0 and a reasonably large class of integrand processes f . It turns out that this cannot
be done in a pathwise manner. Since each S ∈ S0 can be uniquely decomposed as S = M + A
with M ∈M0

loc and A ∈ A0, we “define”∫ t

0
fs(ω) dSs :=

∫ t

0
fs(ω) dMs +

∫ t

0
fs(ω) dAs.

So far neither of the two integrals on the right hand side has been defined. The second one (a
so called Lebesgue-Stieltjes integral) turns out to be much easier than the first, so we start by
defining the second integral. This can be done pathwise, i.e. for each ω ∈ Ω separately (only
afterwards will we care about measurability properties with respect to ω).

Let A ∈ A0, i.e. A ∈ A and A0 = 0. Think of ω being fixed, so A is just a continuous
function from [0,∞) to R of locally bounded variation. A can be written as At = A+

t − A
−
t ,

where both A+ and A− are continuous, nondecreasing and vanishing at 0, so they correspond
to σ-finite measures µ+ and µ− on (0,∞) via A+

t = µ+(0, t] and A− = µ−(0, t]. This allows us
to define ∫ t

0
fs dAs :=

∫ t

0
fs dµ+(s)−

∫ t

0
fs dµ−(s),

whenever f is measurable with respect to s and the right hand side is well-defined (i.e. is not
of the form ∞−∞ or −∞ − (−∞)). We will in fact assume that f is chosen such that both
integrals are finite. Note that the decomposition of A = A+ − A− is not unique (and even the
integrability of f may depend on the choice of the decomposition), but the value of the left hand
side does not depend on the particular decomposition and there is always a unique minimal
decomposition, i.e. one for which Vt = A+

t +A−t is the variation process (cf. the proof of Lemma
1.49). The integral is then automatically continuous in t (since the measures µ+ and µ− are
atomless). We want to ensure that the integral is also adapted. This property will hold when
f is progressive and – for example – locally bounded for almost every ω ∈ Ω (this is a version

17
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of Fubini’s theorem which says that the integral of a jointly measurable function is measurable
with respect to the remaining variable – it was shown in WT2 in connection with the proof of
Ionesco Tulcea’s theorem).

In the following we will also write f ·A instead of
∫ .

0 fs dAs.

We will now proceed to define the stochastic integral
∫ t

0 fs(ω) dMs. This will be done in
several steps. We first assume that M ∈ H0 and f is simple in the sense of the following
definition. Then we extend to more general f and to general M ∈M0

loc.

Definition 2.1. The stochastic process f : [0,∞) × Ω → R is called a simple process, in short
f ∈ Ls, if there exist ∆ = {0 = t0 < t1 < ...} such that ti →∞ and C <∞ and Fti-measurable
ξi, i = 0, 1, ... such that supn≥0 |ξn(ω)| ≤ C for all ω ∈ Ω and

ft(ω) = ξ0(ω)1l{0}(t) +

∞∑
i=0

ξi(ω)1l(ti,ti+1](t); 0 ≤ t <∞, ω ∈ Ω. (2.1.1)

For M ∈ H0 and f ∈ Ls as in (2.1.1), we define the stochastic integral in an obvious way:

It(f) :=

∫ t

0
fs dMs :=

∞∑
i=0

ξi
(
Mt∧ti+1 −Mt∧ti

)
, 0 ≤ t <∞.

We will also write f ·M instead of I.(f). Note that the value of f0 has no relevance for the
stochastic integral.

Proposition 2.2. For M ∈ H0 and f ∈ Ls we have

i) f ·M ∈ H0.

ii) 〈f ·M〉t =
∫ t

0 f
2
s d〈M〉s.

iii) ‖f ·M‖2H = E
∫∞

0 f2
s d〈M〉s.

Proof. i) f ·M is clearly adapted, has continuous paths, vanishes at 0 and is L2-bounded. To
show the martingale property, take 0 ≤ s < t <∞ and define k, n such that s ∈ [tk−1, tk)
and t ∈ [tn, tn+1). If k ≤ n, Then

(f ·M)t − (f ·M)s =
n−1∑
i=k

ξi
(
Mti+1 −Mti

)
+ ξn

(
Mt −Mtn

)
+ ξk−1

(
Mtk −Ms

)
.

The conditional expectation of the right hand side given Fs is 0. If k = n+ 1, then

E
(
(f ·M)t − (f ·M)s|Fs

)
= ξnE

(
Mt −Ms|Fs) = 0

and therefore the martingale property follows.

ii) Since the right hand side of the claimed equality is in A+ and vanishes at 0, it suffices to
show that

t 7→ (f ·M)2
t −

∫ t

0
f2
s d〈M〉s
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is a martingale. Both summands are integrable. For 0 ≤ s < t < ∞ we have, assuming
without loss of generality that s and t are in the partition, say s = tk and t = tn+1,

E
(
(f ·M)2

t − (f ·M)2
s|Fs

)
= E

((
(f ·M)t − (f ·M)s

)2|Fs)
= E

(( n∑
i=k

ξi(Mti+1 −Mti)
)2|Fs)

= E
( n∑
i=k

ξ2
i (Mti+1 −Mti)

2|Fs
)

= E
( ∫ t

s
f2
r d〈M〉r|Fs

)
,

so the claim follows.

iii) This follows from part ii) and part 4. of Theorem 1.66.

Property iii) of the previous proposition states that I is an isometry from Ls to H0 if Ls is
equipped with the corresponding norm. To formulate this precisely, we introduce the Doleans
measure and various function spaces.

Definition 2.3. Let M ∈ H0. The Doleans measure µM on
(
[0,∞)×Ω, B[0,∞)⊗F

)
is defined

as

µM (A) := E
∫ ∞

0
1lA(s, ω) d〈M〉s.

Note that µM is a finite measure (with total mass E〈M〉∞).

Definition 2.4. Let L̄(M) := L2
(
[0,∞)× Ω, B[0,∞)⊗F , µM

)
.

Note that Ls is a subspace of L̄(M). We will work with several subspaces of L̄(M) below.
As usual, we denote the corresponding spaces of equivalence classes by L(M) etc. We will
always assume that M ∈ H0 is given. Observe that L̄(M) is a Hilbert space. We will denote the
corresponding norm by ‖.‖M . The following corollary is a reformulation of part iii) of Proposition
2.2.

Corollary 2.5. I : Ls → H0 defined above is an isometry (if Ls is equipped with the norm
‖.‖M ).

An isometry from some metric space to a complete metric space can always be extended
uniquely to an isometry on the completion of the first space. Denote the completion of Ls in the
Hilbert space L̄(M) by L∗(M). We can (and will) simply define the stochastic integral It(f) for
f ∈ L∗(M) as the image of the unique extension of I to a (linear) isometry from L∗(M) to H0

which we again denote by I. It is of course of interest to have a more explicit description of the
space L∗(M). We will deal with this question soon. Observe however that it is definitely not true
(in general) that L∗(M) = L̄(M): if L∗∗(M) denotes the closed subspace of L̄(M) consisting of
all progressive processes in L̄(M) (more precisely: consisting of all equivalence classes containing
some progressive process) then L∗∗(M) contains Ls (since left continuous adapted processes are
progressive) and therefore also its completion L∗(M). We point out that it may well happen
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that an equivalence class of L̄(M) contains both progressive and non-progressive processes: just
think of the extreme case in which M ≡ 0 and therefore L̄(M) = {0} (then µM = 0 and all
processes in L̄(M) are equivalent).

One approach to identifying the space L∗(M) is to consider the sub-σ-algebra of B[0,∞)⊗
F which is generated by all processes in Ls. This sub-σ-algebra is called the predictable σ-
algebra. It is contained in the progressive σ-algebra (since each left continuous adapted process
is progressive). It is then not hard to show that any predictable process in L̄(M) can be
approximated by a sequence of processes from Ls with respect to the norm on L̄(M) (or semi-
norm on L̄(M)) – we will show this below – and therefore L∗(M) is precisely the space of
equivalence classes which contain at least one predictable process which is in L(M). Even
though by far not every predictable process is progressive, Lemma 3.2.7 in [KS91] (the proof of
which is neither hard nor short) shows that each equivalence class in L̄(M) which contains a
predictable process also contains a progressive process (i.e. L∗(M) = L∗∗(M)) and in this sense
we have defined the stochastic integral (also called Itô’s integral) for all progressive integrands
in L̄(M).

We point out that if one likes to introduce stochastic integrals with respect to general (right
continuous but not necessarily continuous) semimartingales, then one has to restrict the class
of integrands to predictable ones since then the corresponding equality L∗(M) = L∗∗(M) does
not hold in general.

Definition 2.6. The σ-algebra on (0,∞)×Ω which is generated by all sets of the form (s, t]×A
where 0 ≤ s ≤ t < ∞ and A ∈ Fs is called the predictable σ-algebra. A stochastic process is
called predictable if it is measurable with respect to the σ-algebra of predictable sets.

Proposition 2.7. If for 1 ≤ i ≤ k we have M i ∈ H0 and f is predictable and in each of the
spaces L̄(M i), then there exists a sequence of simple processes fn such that ‖f − fn‖M i → 0 for
all i.

Proof. Define
R := {f bounded predictable: there exist fn as claimed}.

Clearly, R is a linear space which contains the constant process 1l. The family of indicators
of (s, t] × A where 0 ≤ s ≤ t < ∞ and A ∈ Fs belongs to R, is closed under multiplication,
and generates the predictable σ-algebra. The monotone class theorem (see appendix) states
that R is equal to the set of all bounded predictable functions provided we can show that R
is closed with respect to limits of increasing, nonnegative and uniformly bounded elements of
R. To show this, take a sequence of nonegative gn ∈ R such that gn ↑ g and g is bounded (in
(t, ω)). Being the pointwise limit of predictable processes g is also predictable. Further, we have
‖gn − g‖M i → 0 by dominated convergence and it follows from the usual “triangle trick” that
g ∈ R.

To complete the proof, let f be as in the proposition and define f (N) := f1l|f |<N . Then

f (N) is bounded and predictable and hence in R and ‖f − f (N)‖M i → 0 for each i by dominated
convergence. Again the triangle trick shows that the claim in the proposition holds for f .

Before proceeding to the next step of the construction of the Itô integral with respect to a
continuous semimartingale we state a few properties of the integral defined so far. First note
that for general M,N ∈M0

loc, we have for each s < t almost surely

|〈M,N〉t − 〈M,N〉s| ≤
√
〈M〉t − 〈M〉s

√
〈N〉t − 〈N〉s (2.1.2)
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which is just the usual Cauchy-Schwarz inequality which holds true because 〈., .〉 is (almost
surely) bilinear, symmetric and positive semi-definite. This implies for M,N ∈ H0 (using part
4. of Theorem 1.66).

E sup
0≤t<∞

|〈M,N〉t| ≤ ‖M‖H‖N‖H. (2.1.3)

Note that item b) in the following proposition follows directly from the isometry property
of the stochastic integral in case M = N (no matter if f and g agree or not) since an isometry
between Hilbert spaces automatically preserves the inner product.

Proposition 2.8 (Kunita-Watanabe identity and inequality). Let M,N ∈ H0 and f ∈ L∗(M), g ∈
L∗(N). Then

a)
∣∣((fg) · 〈M,N〉)t

∣∣2 ≤ (f2 · 〈M〉
)
t

(
g2 · 〈N〉

)
t

a.s.

b) 〈f ·M, g ·N〉 = (fg) · 〈M,N〉

c) E
∣∣〈f ·M, g ·N〉t

∣∣ ≤√E
(
f2 · 〈M〉

)
t

√
E
(
g2 · 〈N〉

)
t
.

Proof. a) This is easy to show for f, g ∈ Ls (see e.g. [Ku90]) and then for general f, g by
approximation (see e.g. [KS91], Proposition 3.2.14).

b) For f, g ∈ Ls the claim in part b) follows just like part ii) of Proposition 2.2. For general
f ∈ L∗(M), g ∈ L∗(N) approximate by fn, gn ∈ Ls in L∗(M) resp. L∗(N) and use (2.1.3)
and part a) (exercise).

c) This is just a combination of parts a) and b) using the Cauchy Schwarz inequality.

We are now ready for the final step in the construction. For M ∈M0
loc let

Lloc(M) := {f progressive :

∫ t

0
f2
s d〈M〉s <∞ for all t a.s.}.

Definition 2.9. For M ∈ M0
loc and f ∈ Lloc(M) let Sn be a sequence of stopping times such

that Sn → ∞ and t 7→ Mt∧Sn is in H0. Further define Rn := n ∧ inf{t ≥ 0 :
∫ t

0 f
2
s d〈M〉s ≥ n}.

Define Tn := Rn ∧ Sn. Then Tn → ∞ almost surely and the Tn are stopping times such that
Mn
t := Mt∧Tn is in H0 and fnt := ft1lTn≥t is in L∗(Mn). We define

(f ·M)t :=

∫ t

0
fs dMs := (fn ·Mn)t on {Tn(ω) ≥ t}.

We have to make sure that the integral is well-defined. Note that once this has been clarified
the stochastic integral process is again in M0

loc. The fact that the stochastic integral is well-
defined follows from the following proposition (see [KS91], Corollary 3.2.21 for the (easy) proof).

Proposition 2.10. Let M,N ∈ H0 and f ∈ L∗(M), g ∈ L∗(N) and assume that there exists a
stopping time T such that almost surely

ft∧T (ω)(ω) = gt∧T (ω)(ω); Mt∧T (ω)(ω) = Nt∧T (ω)(ω) for all t ≥ 0.

Then, for almost all ω ∈ Ω

(f ·M)t∧T (ω) = (g ·N)t∧T (ω) for all t ≥ 0.
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Roughly speaking, all properties derived for stochastic integrals in case M ∈ H0 and f ∈
L∗(M) which do not involve expected values carry over to the general case (and are easily
proved). Those properties which do involve expected values will generally not carry over.

Our next aim is to formulate and prove Itô’s formula, the chain rule of stochastic calculus. To
do this, we require a few further properties. The following is a kind of Riemann approximation
result.

Theorem 2.11. For each n ∈ N, let ∆n ∈ D such that |∆n| → 0. Let M ∈M0
loc and f adapted

and continuous. Then

lim
n→∞

∞∑
i=0

ftni
(
Mtni+1∧t −Mtni ∧t

)
=

∫ t

0
fs dMs ucp.

Proof. We point out that a continuous adapted process is automatically predictable because it
can be pointwise approximated by simple processes.

First assume that M ∈ H0 and f is in addition bounded. For a given ∆n ∈ D we define
the approximation fn by fnt := fti in case t ∈ (ti, ti+1] (and say fn0 := f0). Then fn ∈ Ls
and ‖f − fn‖M → 0 and therefore the corresponding stochastic integrals converge, so the result
follows in this case. The general case follows by stopping.

We start by proving the following integration by parts formula (or product rule). So far we
have defined the bracket 〈M,N〉 only for M,N ∈ M0

loc but of course it also makes sense for
M,N ∈ S0 (and coincides with the bracket of the local martingale parts). Note that [M,N ] = 0
in case either M or N is in A. If M,N ∈ S but not in S0, then we define both the bracket and
the stochastic integral as the bracket and stochastic integral of M −M0 resp. N −N0.

Proposition 2.12. Let X,Y ∈ S. Then

XtYt −X0Y0 =

∫ t

0
Xs dYs +

∫ t

0
Ys dXs + 〈X,Y 〉t.

Proof. For ∆ ∈ D, we have

XtYt −X0Y0 =

∞∑
k=0

(
Xtnk+1∧t −Xtnk∧t

)(
Ytnk+1∧t − Ytnk∧t

)
+

∞∑
k=0

Ytnk∧t

(
Xtnk+1∧t −Xtnk∧t

)
+

∞∑
k=0

Xtnk∧t

(
Ytnk+1∧t − Ytnk∧t

)
.

Theorem 2.11 shows that the second and last sums converge to the corresponding stochastic
integrals and by results in the first chapter the first sum converges ucp to the bracket.

2.2 Itô’s formula

The following Itô’s formula is the chain rule of stochastic integration.

Theorem 2.13 (Itô’s formula). Let F ∈ C2(Rd) and X = (X1, ..., Xd) such that Xi ∈ S,
i = 1, ..., d. Then F (X1, ..., Xd) ∈ S and

F (Xt) = F (X0) +

d∑
k=1

∫ t

0

∂F

∂xk
(Xs) dXk

s +
1

2

d∑
k,l=1

∫ t

0

∂2F

∂xk∂xl
(Xs) d〈Xk, X l〉s.
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In the proof of Itô’s formula we will need two properties of stochastic integrals which are
also of interest otherwise.

Lemma 2.14. Let M ∈ H0, g ∈ L∗(M) and f ∈ L∗(g ·M). Then fg ∈ L∗(M) and

(fg) ·M = f · (g ·M).

Proof. Let M̃ := g ·M . Then M̃ ∈ H0 and 〈M̃〉 = g2 · 〈M〉 by Proposition 2.8, part ii). Hence,

E
∫ ∞

0
(fsgs)

2 d〈M〉s = E
∫ ∞

0
f2
s d〈M̃〉s <∞,

so fg ∈ L∗(M). Further, for N ∈ H0, we have (using Proposition 2.8, part ii) once more),

〈(fg) ·M,N〉 = 〈(fg) ·M, 1 ·N〉 = (fg) · 〈M,N〉 = f · (g · 〈M,N〉)
= f · 〈g ·M,N〉 = 〈f · (g ·M), N〉,

which implies
〈(fg) ·M − f · (g ·M), N〉 = 0.

Since this holds for each N ∈ H0 we can choose N = (fg) ·M − f · (g ·M) which implies

〈(fg) ·M − f · (g ·M)〉∞ = 0.

Now Theorem 1.66, part 4. shows that ((fg) ·M)t − (f · (g ·M))t = 0 almost surely for all t so
the claim follows.

Remark 2.15. The previous proposition extends to the case of general M ∈ M0
loc and even

M ∈ S0 and integrands f, g for which the stochastic integrals are defined by applying suitable
stopping times.

The following continuity property is good to know.

Lemma 2.16. Let M ∈ M0
loc and f, fn, n ∈ N be in Lloc(M) such that fn → f ucp. Then,

fn ·M → f ·M ucp.

Proof. Without loss of generality we assume that f = 0. Define

Tm := inf{s ≥ 0 : |Ms| ≥ m}; Mm
s := Ms∧Tm ; τm,n := inf{s ≥ 0 :

∫ s

0
|fnu |2 d〈Mm〉u ≥

1

m
}.

Then, for fixed t, δ > 0,

P
(

sup
0≤s≤t

∣∣ ∫ s

0
fnu dMu

∣∣ ≥ δ) ≤ P
(
τm,n ∧ Tm ≤ t

)
+ P

(
sup

0≤s≤t

∣∣ ∫ s∧τm,n∧Tm

0
fnu dMu

∣∣ ≥ δ).
Using – in this order – Chebychev’s inequality, Doob’s L2-inequality and Proposition 2.2 iii),
the last summand can be estimated from above by

P
(

sup
0≤s≤t

∣∣ ∫ s

0
fnu 1l[0,τm,n](u)dMm

u

∣∣ ≥ δ) ≤ 4

δ2
E
(∫ t

0
(fnu 1l[0,τm,n](u))2 d〈Mm〉u

)
≤ 4

δ2m
.

For given ε, δ > 0, we first choose m such that P(Tm ≤ t) ≤ ε/3 and 4
δ2m
≤ ε/3. Then choose

n0 such that for all n ≥ n0, P(τm,n ≤ t) ≤ ε/3. Then we obtain

P
(

sup
0≤s≤t

∣∣ ∫ s

0
fnu dMu

∣∣ ≥ δ) ≤ ε.
The result follows since δ, ε, t > 0 were arbitrary.
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Proof of Theorem 2.13. Obviously, Itô’s formula holds for constant F as well as for F (x) = xk for
some k ∈ {1, ..., d}. Let us next consider the case in which F (x) = xkxl for some k, l ∈ {1, ..., d}.
Then it is straightforward to check that Itô’s formula for F is the same as the product rule
which we established in Proposition 2.12. Further, if Itô’s formula holds for F and G (both in
C2(Rd)), then it clearly holds for each linear combination of F and G, so we already know that
the formula is true for all polynomials of order at most 2. More generally, the following is true:

suppose that the formula holds true for F ∈ C2(Rd) and let G(x) := xiF (x) for some
i ∈ {1, ..., d}. Applying the integration by parts formula to G shows (after some computation,
see e.g. [Re13] or [St13] using Lemma 2.14) that the formula also holds for G. By induction, we
see that the formula holds for all polynomials. To finish the proof, observe that any F ∈ C2(Rd)
can be approximated by polynomials Pn in such a way that for given k ∈ N, Pn and all its
first and second partial derivatives converge to F and its corresponding derivatives uniformly on
[−k, k]d as n → ∞ (this is Weierstraß’ approximation theorem). Using Lemma 2.16 it follows
that Itô’s fomula hold for F ∈ C2(Rd) for all X which almost surely never leave [−k, k]d. For
general X we stop the process X when it threatens to leave [−k, k]d (i.e. when it hits the
boundary of the cube), then for given F ∈ C2(Rd) the formula holds for the stopped process.
Letting k →∞, the assertion follows.

Remark 2.17. Itô’s formula can be generalized in various directions. If, for example F is only
defined and C2 on an open subset G of Rd and X remains in G almost surely for all t, then
the formula remains true as stated (we will need this extension in an example below). If F also
depends on t, then we can regard t as an additional semimartingale and Itô’s formula holds
provided that F is C2 in all variables including t. One can show however that it is sufficient that
F is only C1 with respect to t (observe that all brackets of t and any Xi vanish). One can ask for
the most general condition on F that will guarantee that F (X) is a continuous semimartingale.
In case d = 1 and X Brownian motion it is known that F (X) ∈ S iff F is the difference of
two convex functions (which is true for any C2 function but not for every C1 function), i.e.
(roughly speaking) the generalized first derivative of F is of locally finite variation. In this case
Itô’s formula has to be modified appropriately since second derivatives do not necessarily exist.
This requires the concept of local time which we will not develop in this course, see e.g. [KS91],
p. 214.

Remark 2.18. If B and B̃ are independent F-Brownian motions, then 〈B, B̃〉 = 0. To see this,
we show that BB̃ is a martingale. Let 0 ≤ s < t <∞. Then

E(BtB̃t −BsB̃s|Fs) = E((Bt −Bs)(B̃t − B̃s) +Bs(B̃t − B̃s)|Fs)
= E

(
(Bt −Bs)(B̃t − B̃s)

)
= 0.

Our first application of Itô’s formula is a version of the famous Burkholder-Davis-Gundy
inequality.

Theorem 2.19. For p ≥ 2 there exists a constant Cp such that for any M ∈ M0
loc and any

t ≥ 0 we have
E sup

0≤s≤t
|Ms|p ≤ CpE〈M〉p/2t .

Proof. It suffices to show the statement for bounded M . Since the function x 7→ |x|p is in C2(R)
we can apply Itô’s formula and get

|Mt|p =

∫ t

0
p|Ms|p−1(sgnMs) dMs +

1

2

∫ t

0
p(p− 1)|Ms|p−2 d〈M〉s.
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Consequently,

E|Mt|p =
1

2
p(p− 1)E

∫ t

0
|Ms|p−2 d〈M〉s

≤ 1

2
p(p− 1)E

(
sup

0≤s≤t
|Ms|p−2〈M〉t

)
≤ 1

2
p(p− 1)

(
E sup

0≤s≤t
|Ms|p

)(p−2)/p(
E〈M〉p/2t

)2/p
,

where we used Hölder’s inequality in the last step. Using Doob’s Lp-inequality and rearranging
terms implies the result.

Remark 2.20. The inequality also holds for general p > 0 and in the reverse direction for
appropriate constants but the proofs are more involved (see e.g. [RY94]).

Example 2.21. Assume that B = (B1, ..., Bd) is d-dimensional Brownian motion, i.e. all com-
ponents are independent F-Brownian motions. Let F ∈ C2(Rd,R). Then – using Remark 2.18
– Itô’s formula implies

F (Bt) = F (B0) +
d∑
i=1

∫ t

0

∂F

∂xi
(Bs) dBi

s +
1

2

d∑
i=1

∫ t

0

∂2F

∂x2
i

(Bs) ds

= F (B0) +

d∑
i=1

∫ t

0

∂F

∂xi
(Bs) dBi

s +
1

2

∫ t

0
∆F (Bs) ds.

Note that when ∆F = 0 (in which case F is called harmonic), then t 7→ F (Bt) is a local
martingale. Let us now look at a particular case. Fix z ∈ Rd\{0}, d ≥ 2 and define F (x) := 1

|z+x|
for x 6= −z (|.| denoting the Euclidean norm). It is straightforward to check that ∆F = 0 on
Rd\{−z}. Since Brownian motion B is known not to hit {z} almost surely for any fixed z 6= 0
in dimension d ≥ 2, we see that Mt := F (Bt) is a continuous local martingale in case d ≥ 2. In
case d ≥ 3, M is however not a martingale (which provides us with the first concrete example of
a local martingale which is not a martingale). This follows from the fact that EMt → 0 (which is
easily checked by explicit computation) and the fact that a martingale has a constant expected
value.

2.3 Representation of local martingales

In this section we collect a few useful results without proof. The proofs can be found in any
textbook on stochastic analysis, e.g. [KS91]. We start with Lévy’s characterization of Brownian
motion.

Theorem 2.22. If M ∈ M0
loc is such that 〈M〉t = t for all t ≥ 0, then M is an F-Brownian

motion.

The following result is due to Dambis, Dubins and Schwarz and can also be found in any
textbook on stochastic analysis, e.g. [KS91], p. 174.
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Theorem 2.23. Let M ∈ M0
loc satisfy 〈M〉∞ = ∞ almost surely. Define for each s ∈ [0,∞)

the stopping time

T (s) := inf{t ≥ 0 : 〈M〉t > s}.

Then the process Bs := MT (s) is a standard Brownian motion and Mt = B〈M〉t.

Idea of the proof. The idea is to check that the process B satisfies the assumption of Theorem
2.22 with respect to the filtration Gs := FT (s). The local martingale property of B can be proved
via optional sampling and the fact that 〈B〉t = t is also easy to see. It then remains to show
that B has almost surely continuous paths in order to be able to apply Theorem 2.22.

Remark 2.24. If M ∈ M0
loc does not satisfy 〈M〉∞ = ∞ almost surely then a representation

for M as in Theorem 2.23 may not be possible on the given probability space. If, for example,
Ω consists of a single point and M = 0, then no Brownian motion can be defined on Ω. If
M ∈M0

loc does not satisfy 〈M〉∞ =∞ almost surely, then one can however find a different FPS
on which a continuous local martingale with the same law as M and a Brownian motion B can
be defined such that Mt = B〈M〉t holds for all t ≥ 0.

2.4 Stochastic differential equations

In this section we consider stochastic differential equations of the following kind

dXt = b(Xt) dt+
m∑
k=1

σk(Xt) dW k
t , X0 = x, (2.4.1)

where W k, k = 1, ...,m are independent (given) F-Brownian motions on a FPS (Ω,F ,F,P)
satisfying the usual conditions and x ∈ Rd. We will specify assumptions on the coefficients b
and σk (which map Rd to Rd) below. We will denote the Euclidean norm on Rd by |.| and the
standard inner product on Rd by 〈., .〉 (hoping that the reader will not confuse this with the
bracket of semimartingales).

Definition 2.25. An Rd-valued stochastic process X is called a solution of (2.4.1) if X is
adapted with continuous paths and satisfies the corresponding integral equation

Xt = x+

∫ t

0
b(Xs) ds+

m∑
k=1

∫ t

0
σk(Xs) dW k

s ,

which means in particular that the corresponding integrals are defined. We say that the stochas-
tic differential equation (sde) has a unique solution if any two solutions (with the same initial
value x) are indistinguishable.

In order to have a chance that an sde has a unique strong solution we need both local
regularity properties as well as growth conditions for the coefficients. For given functions σk :
Rd → Rd, k = 1, ...,m we define A : Rd × Rd → Rd×d by

Ai,j(x, y) :=
m∑
k=1

((
σik(x)− σik(y)

)(
σjk(x)− σjk(y)

))
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Note that A(x, y) is a nonnegative definite d× d-matrix with trace

trA(x, y) =

d∑
i=1

m∑
k=1

(
σik(x)− σik(y)

)2
=

m∑
k=1

|σk(x)− σk(y)|2.

Further, we define

aij(x, y) :=
m∑
k=1

σik(x)σjk(y), i, j ∈ {1, ..., d}.

The matrix a(x, y) is generally not nonnegative definite, but a(x, x) is and tr a(x, x) =
∑m

k=1 |σk(x)|2.

In our main result below we assume the following:

Assumption (H)

i) b and σk, k = 1, ...,m are continuous.

ii) For each R > 0 there exists KR such that 2〈b(x) − b(y), x − y〉 + trA(x, y) ≤ KR|x − y|2
for all |x|, |y| ≤ R.

iii) There exists K̄ such that 2〈b(x), x〉+ tr a(x, x) ≤ K̄
(
|x|2 + 1

)
for all x ∈ Rd.

In recent years it has become fashionable to replace the classical Lipschitz hypotheses by
the above monotonicity or one-sided Lipschitz conditions (H). These assumptions are weaker
than the usual Lipschitz assumptions:

Proposition 2.26. Assume that b and σk, k = 1, ...,m are Lipschitz with constant L. Then
(H) holds.

Proof. Clearly, part i) of (H) is satisfied. Further, using the Cauchy-Schwarz inequality,

2〈b(x)− b(y), x− y〉+ trA(x, y) ≤ 2L|x− y|2 + L2m|x− y|2,

so ii) holds. Finally

2〈b(x),x〉+ tr a(x, x) = 2〈b(x)− b(0), x− 0〉+ 2〈b(0), x〉+

m∑
k=1

|σk(x)− σk(0) + σk(0)|2

≤ 2L|x|2 + 2|b(0)||x|+ 2mL2|x|2 + 2

m∑
k=1

|σk(0)|2.

Estimating 2|b(0)||x| ≤ |b(0)|2 + |x|2 we see that iii) follows.

To see that (H) is strictly weaker than Lipschitz continuity consider the following example:
for d = m = 1 take b(x) := −x3 and σ1 = 0. b is certainly not Lipschitz continuous but clearly
satisfies (H) (in fact with K̄ = KR = 0). An example for which b is not even locally Lipschitz
continuous but still satisfies (H) is b(x) = −x1/2 · 1lx≥0.

Theorem 2.27. Assume (H). Then the sde (2.4.1) has a unique solution for each x ∈ Rd.

Before proving the theorem, we formulate both the classical Gronwall inequality as well as
a (not so classical) stochastic Gronwall inequality.
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Proposition 2.28 (Gronwall inequality). Let L ≥ 0 and let g : [0, T ] → [0,∞) be continuous
and h : [0, T ]→ R be integrable with respect to Lebesgue measure on [0, T ] and satisfy

g(t) ≤ h(t) + L

∫ t

0
g(s) ds (2.4.2)

for all 0 ≤ t ≤ T . Then

g(t) ≤ h(t) + L

∫ t

0
h(s)eL(t−s) ds

for all t ∈ [0, T ].

Proof.
d

dt

(
e−Lt

∫ t

0
g(s) ds

)
= e−Lt

(
g(t)− L

∫ t

0
g(s) ds

)
≤ e−Lth(t),

so ∫ t

0
g(s) ds ≤ eLt

∫ t

0
h(s)e−Ls ds

and therefore – using (2.4.2) –

g(t) ≤ h(t) + L

∫ t

0
g(s) ds ≤ h(t) + L

∫ t

0
h(s)eL(t−s) ds.

For the proof of the following stochastic Gronwall lemma we require the following martingale
inequality (which is due to Burkholder).

Proposition 2.29. For each p ∈ (0, 1) and M ∈M0
loc, we have

E
(

sup
t≥0

Mp(t)
)
≤ cpE

(
(− inf

t≥0
M(t))p

)
, (2.4.3)

where cp :=
(

4 ∧ 1
p

)
πp

sin(πp) .

Remark 2.30. It is clear that the previous proposition does not extend to p ≥ 1: consider
the continuous martingale M(t) := W (τ−1 ∧ t) where W is standard Brownian motion and
τx := inf{s ≥ 0 : W (s) = x}. Then the left hand side of (2.4.3) is infinite for each p ≥ 1 while
the right hand side is finite. This example also shows that even though the constant cp is certainly
not optimal, it is at most off from the optimal constant by the factor 4∧(1/p) (which converges to
one as p approaches one). It is also clear that the proposition does not extend to right-continuous
martingales: consider a martingale which is constant except for a single jump at time 1 of height
1 with probability δ and height − δ

1−δ with probability 1−δ where δ ∈ (0, 1). It is straightforward

to check that for an inequality of type (E supt≥0M
p(t))1/p ≤ cp,q(E(− inft≥0M(t))q)1/q to hold

for this class of examples for some finite cp,q, we require that q ≥ 1 irrespective of the value of
p ∈ (0, 1).

Proof of Proposition 2.29. Since M is a continuous local martingale starting at 0 it can be
represented as a time-changed Brownian motion W (on a suitable probability space, by Theorem
2.23 and Remark 2.24). We can and will assume that M converges almost surely (otherwise
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there is nothing to prove), so there exists an almost surely finite stopping time T for W such
that A := sup0≤t≤T W (t) = sup0≤tM(t) and B := − inf0≤t≤T W (t) = − inf0≤tM(t). Let
0 = a0 < a1 < ... be a sequence which converges to ∞ and define

τi := inf{t ≥ 0 : W (t) = −ai}, Yi := sup
τi−1≤t≤τi

W (t), i ∈ N, N := inf{i ∈ N : τi ≥ T}.

The Yi are independent by the strong Markov property of W and for p ∈ (0, 1) and i ∈ N we
have

Γi := E(Yi ∨ 0)p =
ai − ai−1

a1−p
i

∫ ∞
0

1

1 + y1/p
dy =

ai − ai−1

a1−p
i

πp

sin(πp)
.

Therefore,

EAp ≤
∞∑
n=1

E
(

sup{Y1, ..., Yn}p1lN=n

)
≤
∞∑
n=1

n∑
i=1

E
(

(Yi ∨ 0)p1lN=n

)
=

∞∑
i=1

E
(

(Yi ∨ 0)p1lN≥i

)
=

∞∑
i=1

ΓiP{N ≥ i},

where the last equality again follows from the strong Markov property. Inserting the formula
for Γi, choosing the particular values ai = cγi for some c > 0 and γ > 1, and observing that
P{N ≥ i} ≤ P{B ≥ ai−1}, we get

EAp ≤ πp

sin(πp)
cp
(
γp +

(
1− 1

γ

) ∞∑
i=2

γipP{B ≥ cγi−1}
)

=
πp

sin(πp)
cp
(
γp +

(
1− 1

γ

) ∞∑
j=2

P{B ∈ [cγj−1, cγj)}
(γp(j+1) − 1

γp − 1
− 1− γp

))
≤ πp

sin(πp)

(
cpγp +

(
1− 1

γ

) γ2p

γp − 1
EBp − cp

(
1− 1

γ

)( 1

γp − 1
+ 1 + γp

)
P{B ≥ cγ}

)
.

Dropping the last (negative) term, letting c → 0 and observing that the function of γ in front
of EBp converges to 1/p as γ → 1 and that infγ>1 γ

2p/(γp− 1) = 4 we obtain the assertion.

Next, we apply the martingale inequality to prove a stochastic Gronwall lemma. For a
real-valued process denote Y ∗t := sup0≤s≤t Ys.

Proposition 2.31. Let cp be as in Proposition 2.29. Let Z and H be nonnegative, adapted
processes with continuous paths. Let M ∈M0

loc and L ≥ 0. If

Zt ≤ L
∫ t

0
Zs ds+Mt +Ht (2.4.4)

holds for all t ≥ 0, then for p ∈ (0, 1), we have

E sup
0≤s≤t

Zps ≤ (cp + 1) exp{pLt}
(
E(H∗t )p

)
, (2.4.5)

and
EZt ≤ exp{Lt}EH∗t . (2.4.6)
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Proof. Let Nt :=
∫ t

0 exp{−Ls} dMs. Applying the usual Gronwall inequality (Proposition 2.28)
for each fixed ω ∈ Ω to Z and integrating by parts, we obtain

Zt ≤ exp{Lt}(Nt +H∗t ). (2.4.7)

Since Z is nonnegative, we have −Nt ≤ H∗t for all t ≥ 0. Therefore, using Proposition 2.29 and
the inequality (a+ b)p ≤ ap + bp for a, b ≥ 0 and p ∈ [0, 1], we get

E(Z∗t )p ≤ exp{pLt}
(
E(N∗t )p + E(H∗t )p

)
≤ exp{pLt}(cp + 1)

(
E(H∗t )p

)
,

which is (2.4.5). The final statement follows by applying (2.4.7) to τn ∧ t for a sequence of
localizing stopping times τn for N and applying Fatou’s Lemma.

Proof of Theorem 2.27. The basic idea of the proof is taken from [PR07] which in turn is based
on a proof by Krylov. Increasing the number KR if necessary, we can and will assume that
sup|x|≤R |b(x)| ≤ KR for each R > 0. To prove existence of a solution for fixed x ∈ Rd, we

employ an Euler scheme. For n ∈ N, we define the process (φnt )t∈[0,∞) by φn0 := x ∈ Rd and –

for l ∈ N0 and t ∈ ( ln ,
l+1
n ] – by

φnt := φnl
n

+

∫ t

l
n

b(φnl
n

) ds +
m∑
k=1

∫ t

l
n

σk(φ
n
l
n

) dW k
s , (2.4.8)

which is equivalent to

φnt = x +

t∫
0

b(φ̄(n)
s ) ds +

m∑
k=1

t∫
0

σk(φ̄
n
s ) dW k

s , (2.4.9)

for t ∈ [0,∞), where φ̄ns := φnbnsc
n

. Defining pnt := φ̄nt − φnt , we obtain

φnt = x +

t∫
0

b(φns + pns ) ds +
m∑
k=1

t∫
0

σk(φ
n
s + pns ) dW k

s (2.4.10)

for t ∈ [0,∞). Observe that t 7→ φnt is adapted and continuous. Using Itô’s formula, we obtain
for t ≥ 0∣∣∣φnt − φn′t ∣∣∣2 =

t∫
0

2
〈
φns − φn

′
s , b(φ̄

n
s )− b(φ̄n′s )

〉
ds

+

m∑
k=1

t∫
0

2
〈
φns − φn

′
s , σk(φ̄

n
s )− σk(φ̄n

′
s )
〉

dW k
s +

t∫
0

tr(A(φ̄ns , φ̄
n′
s )) ds

=

t∫
0

2
〈
φ̄ns − φ̄n

′
s , b(φ̄

n
s )− b(φ̄n′s )

〉
ds +

∫ t

0
tr(A(φ̄ns , φ̄

n′
s )) ds

+Mn,n′

t +

t∫
0

2
〈
pn
′
s − pns , b(φ̄ns )− b(φ̄n′s )

〉
ds,
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where

Mn,n′

t := 2
m∑
k=1

t∫
0

〈φns − φn
′
s , σk(φ̄

n
s )− σk(φ̄n

′
s )〉dW k

s

is in M0
loc. Let R ∈ N be such that R > 3|x| and define the following stopping times

τn(R) := inf

{
t ≥ 0 : |φnt | ≥

R

3

}
.

Then

|pnt | ≤
2R

3
and |φnt | ≤

R

3
for t ∈ [0, τn(R)] ∩ [0,∞). (2.4.11)

For 0 ≤ s ≤ τn(R) ∧ τn′(R) =: γn,n
′
(R), we have (using |b(y)| ≤ KR for |y| ≤ R)

〈pn′s − pns , b(φ̄ns )− b(φ̄n′s )〉 ≤ 2KR|pn
′
s − pns | ≤ 2KR

(
|pn′s |+ |pns |

)
.

Therefore, for t ≤ γn,n′(R), we get∣∣∣φnt − φn′t ∣∣∣2
≤

t∫
0

(
KR

∣∣∣φ̄ns − φ̄n′s ∣∣∣2 + 2
〈
pn
′
s − pns , b(φ̄ns )− b(φ̄n′s )

〉)
ds+Mn,n′

t

≤
t∫

0

2KR

(∣∣∣φns − φn′s ∣∣∣2 +
∣∣∣pns − pn′s ∣∣∣2)+ 4KR

(∣∣∣pns ∣∣∣+
∣∣∣pn′s ∣∣∣)ds+Mn,n′

t

≤
t∫

0

2KR

∣∣∣φns − φn′s ∣∣∣2 ds+ 4

t∫
0

KR

(∣∣pns ∣∣+
∣∣pn′s ∣∣+

∣∣pns ∣∣2 +
∣∣pn′s ∣∣2)ds+Mn,n′

t .

Now, we apply Proposition 2.31 to the process Zt :=
∣∣φn
t∧γn,n′ (R)

− φn′
t∧γn,n′ (R)

∣∣2. Note that the

assumptions are satisfied with L := 2KR, Mt := Mn,n′

t∧γn,n′ (R)
, and

Ht := Hn,n′

t := 4

t∧γn,n′ (R)∫
0

KR(|pns |+ |pn
′
s |+ |pns |2 + |pn′s |2) ds.

Therefore, for each p ∈ (0, 1) and cp as in Proposition 2.31 we obtain for T > 0

E

[
sup
t∈[0,T ]

∣∣∣φn
t∧γn,n′ (R)

− φn′
t∧γn,n′ (R)

∣∣∣2p] ≤ (cp + 1)e2pKRTE

[
sup
t∈[0,T ]

Hn,n′(t)p

]
= (cp + 1)e2pKRTE

[
Hn,n′(T )p

]
.

(2.4.12)

Now we show the following:

1. For fixed R, sups≥0 E
(
|pns∧τn(R)|+ |p

n
s∧τn(R)|

2
)

converges to 0 as n→∞. Hence

lim
n,n′→∞

E

[
sup
t∈[0,T ]

∣∣∣φn
t∧γn,n′ (R)

− φn′
t∧γn,n′ (R)

∣∣∣2p] = 0.
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2. For every T > 0, we have limR→∞ lim supn→∞ P
(
τn(R) ≤ T

)
= 0.

3. The processes φn converge ucp to a process φ.

4. φ solves the sde.

5. Any two solutions φ and φ̃ of the sde are indistinguishable.

Step 1: For l/n ≤ s < (l + 1)/n, we have

−pns = −φ̄ns + φns = b
(
φnl/n

)(
s− l

n

)
+

m∑
k=1

(
σk
(
φnl/n

)(
W k
s −W k

l/n

))
.

Define LR := maxk sup|y|≤R |σk(y)|. Then, for suitable independent standard normally dis-
tributed random variables N1, ..., Nm, we have

|pns | ≤
KR

n
+ LR

m∑
k=1

|Nk|/
√
n,

in case l
n ≤ τn(R), so the first (and hence the second) part of the claim in Step 1 follows.

Step 2: Applying Itô’s formula and abbreviating

Mn
t := 2

m∑
k=1

∫ t

0
〈φns , σnk (φ̄ns )〉dW k

s ,

we obtain (as above) for t ≤ τn(R), using part iii) of Assumption (H),

|φnt |2 = |x|2 + 2

∫ t

0
〈φns , b(φ̄ns )〉ds+

∫ t

0
tr(a(φ̄ns , φ̄

n
s )) ds+Mn

t

= |x|2 + 2

∫ t

0
〈φ̄ns , b(φ̄ns )〉ds+

∫ t

0
tr(a(φ̄ns , φ̄

n
s )) ds+Mn

t − 2

∫ t

0
〈pns , b(φ̄ns )〉 ds

≤ |x|2 + K̄

∫ t

0

(
|φ̄ns |2 + 1

)
ds+Mn

t + 2KR

∫ t

0
|pns |ds

≤ |x|2 + 2K̄

∫ t

0
|φns |2 ds+Mn

t + 2KR

∫ t

0
|pns | ds+ 2K̄

∫ t

0
|pns |2 ds+ K̄t.

Applying the stochastic Gronwall Lemma 2.31 again we obtain, for p ∈ (0, 1),

E sup
0≤t≤T∧τn(R)

|φnt |2p ≤ (cp + 1)e2K̄pTE
(
|x|2 +KT + 2

∫ T

0
1l[0,τn(R)](s)

(
KR|pns |+ K̄|pns |2

)
ds
)p
.

(2.4.13)
The left hand side of (2.4.13) can be estimated from below by

E sup
0≤t≤T∧τn(R)

|φnt |2p ≥
(R

3

)2p
P
(
τn(R) ≤ T

)
.

Using the result in Step 1, we therefore get

lim sup
n→∞

P
(
τn(R) ≤ T

)
≤
( 3

R

)2p
(cp + 1)e2K̄pTE

(
|x|2 +KT

)p



Version September 4th 2013 33

and the claim in Step 2 follows by letting R tend to infinity.

Step 3: Steps 1 and 2 taken together show that the sequence φnt is Cauchy with respect to ucp
convergence, i.e. for each ε, T > 0

lim
n,n′→∞

P
(

sup
0≤t≤T

|φnt − φn
′
t | ≥ ε

)
= 0.

Since uniform convergence in probability on [0, T ] is metrizable with a complete metric, there
exists some adapted and continuous process φ such that φ is the ucp limit of φn.

Step 4: Recall that φn satisfies the equation

φnt = x+

∫ t

0
b(φ̄ns ) ds+

m∑
k=1

∫ t

0
σk(φ̄

n
s ) dW k

s .

The left hand side of the equation converges to φt ucp by Step 3 and the integral over b(φ̄ns )
converges ucp to the integral of b(φs) since b is continuous and since φ̄ns converges to φs ucp. It
remains to show that the stochastic integrals also converge ucp to the correct limit, but∫ t

0
σk(φ̄

n
s )− σk(φs) dW k

s → 0 ucp

by Lemma 2.16, so φ indeed solves our sde.

Step 5: Assume that φ and ψ both solve the sde with initial condition x. Then, by Itô’s
formula,

|φt − ψt|2 =

∫ t

0
2〈φs − ψs, b(φs)− b(ψs)〉+ tr(A(φs, ψs)) ds+Mt ≤ KR

∫ t

0
|φs − ψs|2 ds+Mt,

for t ≤ τ̃(R) := inf{s ≥ 0 : |φs| ∨ |ψs| ≥ R} for some M ∈ M0
loc. Applying the stochastic

Gronwall lemma shows that φ and ψ agree up to time τ̃(R). Since limR→∞ τ̃(R) = ∞ almost
surely, uniqueness follows and the proof of the theorem is complete.

Only few stochastic differential equations can be solved in closed form. One class of such
examples are linear (or affine) equations. We only consider the case d = 1 (more on this can be
found in Section 5.6 of [KS91]).

Theorem 2.32. The sde

dXt = (aXt + b) dt+
m∑
k=1

(ckXt + dk) dW k
t ; X0 = x ∈ R

has the unique solution

Xt = Zt

(
x+

(
b−

m∑
k=1

ckdk
) ∫ t

0

1

Zu
du+

m∑
k=1

dk

∫ t

0

1

Zu
dW k

u

)
,

where

Zt := exp
{(
a− 1

2

m∑
k=1

c2
k

)
t+

m∑
k=1

ckW
k
t

}
.
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Proof. Uniqueness follows from Theorem 2.27. The fact that the solution formula is correct is
easy to verify using Itô’s formula.

Remark 2.33. We emphasize two interesting special cases in the previous theorem. One is the
case m = 1 and b = d1 = 0. Then

Xt = x exp
{(
a− 1

2
c2

1

)
t+ c1W

1
t

}
which is a so-called geometric Brownian motion which is used as a simple model for the evolution
of the value of an asset in mathematical finance.

Another special case of interest is m = 1 and b = c1 = 0. Then

Xt = exp{at}
(
x+ d1

∫ t

0
exp{−as}dW 1

s

)
.

This process is called Ornstein-Uhlenbeck process. Note that the Ornstein-Uhlenbeck process is
a Gaussian process (as opposed to geometric Brownian motion).

It is natural to ask if the solution of an sde depends continuously upon the initial condition
x ∈ Rd. Since solutions are only uniquely defined up to sets of measure zero and these sets
of measure zero may well depend on x the answer is in general no. We can however change
the question slightly by asking if there exists a continuous modification of the process which
associates to x the solution of the sde with initial condition x. Then the answer is yes at least
under slightly stronger assumptions on the coefficients. This will follow easily from the following
lemma. We denote by ‖.‖ the norm on the space of real d×d matrices which is associated to the
Euclidean norm on Rd (and which equals the largest eigenvalue in case the matrix is non-negative
definite).

Lemma 2.34. Let p ≥ 2 and K ≥ 0. Assume that parts i) and iii) of Assumption (H) hold and
that instead of part ii) we even have

2〈b(x)− b(y), x− y〉+ tr(A(x, y)) + (p− 2)‖A(x, y)‖ ≤ K|x− y|2 (2.4.14)

for all x, y ∈ Rd. Let t 7→ φt(x) be the unique solution of (2.4.1) with initial condition x ∈ Rd.
Then, for every T > 0, x, y ∈ Rd and q ∈ (0, p), we have

E sup
0≤t≤T

|φt(x)− φt(y)|q ≤ (cq/p + 1)|x− y|q exp{KqT/2},

where cr is defined as in Proposition 2.29.

Proof. Fix x 6= y ∈ Rd and define Dt := φt(x)− φt(y) and Zt := |Dt|p. Then, by Itô’s formula,

dZt = p|Dt|p−2〈b(φt(x))− b(φt(y)), Dt〉 dt+ p|Dt|p−2
m∑
k=1

〈Dt, σk(φt(x))− σk(φt(y))〉 dW k
s

+
1

2
p|Dt|p−2tr(A(φt(x), φt(y)) dt+

1

2
p(p− 2)|Dt|p−4〈Dt,A(φt(x), φt(y))Dt〉 dt,

where the last term should be interpreted as zero when Dt = 0 even if p < 4. Using the
assumption in the lemma, we obtain

Zt ≤ |x− y|p +
p

2
K

∫ t

0
Zs ds+Nt,
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for some N ∈M0
loc. Applying Proposition 2.31 we obtain for r ∈ (0, 1)

E sup
0≤t≤T

Zrt ≤ |x− y|pr(cr + 1) exp
{1

2
KprT

}
,

so the assertion follows by choosing r = q/p.

Proposition 2.35. Let all assumptions of Lemma 2.34 hold for some p > d. Then there exists
a modification ϕ of the solution φ which depends continuously upon the initial condition.

Proof. Let q ∈ (d, p). Then Lemma 2.34 and Kolmogorov’s continuity theorem (which is well-
known from WT2! – if not: look at Theorem 5.2 in the appendix) show that φ has a modifi-
cation ϕ (with respect to the spatial variable x) such that x 7→ ϕ(x) is continuous from Rd to
C([0, T ],Rd) with respect to the supremum norm for each T > 0 and each ω ∈ Ω.

Remark 2.36. In fact one can even obtain Hölder regularity of ϕ using Lemma 2.34 and
Kolmogorov’s continuity theorem 5.2.

One may ask whether the solutions of an sde even generate a stochastic flow, i.e. if there
exists a modification ϕ of the solution which is a stochastic flow in the following sense. Note
that a stochastic flow has two time indices: the first stands for the initial time (which we have
assumed to be 0 up to now) and the second one for the final time, so ϕs,t(x)(ω) denotes the
value of the solution at time t which starts at location x at time s. Note that we allow t to be
smaller than s in which case ϕs,t = ϕ−1

t,s and s and/or t may also be negative.

Definition 2.37. A measurable map ϕ : R2 × Rd × Ω → Rd defined on a probability space
(Ω,F ,P) is called a stochastic flow (of homeomorphisms), if

• ϕs,u(ω) = ϕt,u(ω) ◦ ϕs,t(ω) for all s, t, u ∈ R and all ω ∈ Ω.

• ϕs,s(ω) = id|Rd for all s ∈ R and all ω ∈ Ω.

• (s, t, x) 7→ ϕs,t(x)(ω) is continuous for every ω ∈ Ω.

Note that for a stochastic flow ϕ, the map x 7→ ϕs,t(x)(ω) is a homeomorphism of Rd for
each s, t, ω.

We state the following theorem without proof (for the proof of an even more general result,
see [Ku90], p.155ff).

Theorem 2.38. Assume that b and σ1, ..., σm are maps from Rd to Rd satisfying a global Lips-
chitz condition. Then the sde (2.4.1) generates a stochastic flow, i.e. there exists a modification
ϕ of the solution which can be extended to a stochastic flow

Remark 2.39. If part iii) of Assumption (H) is not satisfied (but i) and ii) are), then it is not
hard to show that a unique local solution of (2.4.1) still exists. Roughly speaking this means
that for each initial condition there is a unique solution up to a (possibly finite) stopping time at
which the solution process explodes. A corresponding statement also holds for the flow property:
if we only require that for each R > 0 there exists some KR such that (2.4.14) with K replaced
by KR holds for all |x|, |y| ≤ R, then we still obtain a modification which depends continuously
upon the initial condition up to explosion. We point out that there exist examples without drift
(i.e. b = 0) and bounded and C∞ (but not globally Lipschitz) coefficients σ1, ..., σm for which
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no global flow exists: the assumptions of Theorem 2.27 are satisfied, so a unique (almost surely
non-exploding) solution exists for each initial condition and the solutions are locally continuous
with respect to the initial condition but there exist initial conditions which explode in finite time
(and these may even be dense in Rd). Feel free to ask me for a reference if you are interested.

Theorem 2.40. Assume that X is a solution of the sde

dXt = b(Xt) dt+

m∑
k=1

σk(Xt) dW k
t , X0 = x,

on some FPS where W = (W 1, ...,Wm) is d-dimensional F-standard Brownian motion and
b, σ1, ..., σm : Rd → Rd. Define the operator L from C2(Rd,R) to the space of real-valued
functions on Rd by

(Lf)(x) = 〈b(x),∇f(x)〉+
1

2

d∑
i,j=1

m∑
k=1

σik(x)σjk(x)
∂2f

∂xi∂xj
(x).

Then, for any f ∈ C2(Rd,R),

t 7→ f(Xt)−
∫ t

0

(
Lf
)
(Xs) ds (2.4.15)

is a continuous local martingale.

Proof. This follows easily by applying Ito’s formula to f(Xt).

Remark 2.41. The previous theorem says that X solves the martingale problem associated to
L which by definition means that for any f ∈ C2(Rd,R), the process defined in (2.4.15) is a
(continuous) local martingale. We will see later that the concept of a martingale problem makes
sense in a much wider set-up.



Chapter 3

Lévy Processes

In this short chapter, we provide an introduction to Lévy processes. As before, we fix a FPS
(Ω,F ,F,P).

Definition 3.1. An adapted Rd-valued stochastic process X (with index set [0,∞)) is called
an F-Lévy process, if

(i) X has independent increments, i.e. for each 0 ≤ s ≤ t, Xt −Xs is independent of Fs.

(ii) For every 0 ≤ s ≤ t <∞, L(Xt −Xs) = L(Xt−s).

(iii) X has càdlàg paths, i.e. for all ω ∈ Ω, the map t 7→ Xt(ω) is right continuous and has left
limits.

Remark 3.2. The acronym càdlàg is derived from the French continue à droite, limites à gauche.
Note that (ii) implies that a Lévy process satisfies P(X0 = 0) = 1. Property (ii) (together with
(i)) says that a Lévy process has stationary increments, i.e. the joint law of a finite number of
increments of X remains unchanged if all increments are shifted by the same number h.

Lévy processes have many nice properties. They are semimartingales (this is not obvious)
and Markov processes (which is even less obvious since so far we have not even introduced
Markov processes).

We will now restrict to the case d = 1. Our aim is to classify all Lévy processes and to
establish the semimartingale property. Before doing so, we point out that some authors (e.g.
[Pr92]) replace property (iii) in the definition by the formally weaker requirement that the
process is continuous in probability (i.e. limh→0Xt+h = Xt in probability for all t) and then
prove that there exists a càdlàg modification.

Clearly, an F-Brownian motion is a Lévy process and so is a Poisson process. A rather large
class of Lévy processes is known from the Cramér-Lundberg model in ruin theory: if an insurance
company has to settle i.i.d. claims of sizes U1, U2, .. which arrive according to a Poisson process
Nt with intensity λ which is independent of the claim sizes and if the continuous premium rate
is c > 0, then the net income of the company up to time t is Xt := ct−

∑Nt
i=1 Ui which is a Lévy

process.

An even more general class of Lévy processes is the class of all processes of the form

Xt = bt+ σWt +

Nt∑
i=1

Ui, t ≥ 0, (3.0.1)

37
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where N is a Poisson process of (some) intensity λ > 0, b ∈ R and U1, U2, ... are i.i.d. and
independent of N . Are all Lévy processes of this form? The answer is no! The process X in
(3.0.1) jumps only finitely many times in each bounded interval but a general Lévy process can
have infinitely many jumps in a finite interval. Since X has to be càdlàg most of the jumps have
to be very small however.

We will see that there is a very close link between Lévy processes and infinitely divisible
distributions, so we continue by introducing the latter (without providing full proofs; a good
reference is [Kl06]).

Definition 3.3. A probability measure µ ∈M1(R) is called infinitely divisible if for each n ∈ N
there exists some µn ∈M1(R) such that µ = µ∗nn , where ν∗n is the n-fold convolution of ν. We
say that a real-valued random variable is infinitely divisible if its law L(X) is.

Remark 3.4. Recall that the characteristic function φ of µ ∈M1(R) is defined as

φ(u) =

∫
eiux dµ(x), u ∈ R

and that the characteristic function of a convolution is the product of the characteristic functions.
Therefore µ is infinitely divisible iff for each n ∈ N there exists a characteristic function whose
n-th power is equal to φ.

Example 3.5. The following probability measures are infinitely divisible.

(i) N (m,σ2)

(ii) The Cauchy distribution Caua with density fa(x) = (aπ)−1(1 + (x/a)2)−1, where a > 0 is
a parameter. Its characteristic function is φa(u) = e−a|u| which equals the n-th power of
φa/n(u).

(iii) The Poisson distribution.

The link between Lévy processes and infinitely divisible distributions is the following. Let
X be a Lévy process and let t > 0 and n ∈ N. Then Xt =

∑n
i=1(Xit/n −X(i−1)t/n), so Xt is the

sum of n i.i.d. random variables and therefore (in particular) L(X1) is infinitely divisible. One
can show that conversely, for any infinitely divisible distribution µ, there exists a Lévy process
X such that L(X1) = µ and that the law of X is uniquely determined by µ.

Now we show how to generate the most general Lévy process. A Lévy process is characterized
by a so-called Lévy triplet (b, σ, ν).

Definition 3.6. A Lévy triplet (b, σ, ν) consists of

• b ∈ R

• σ ≥ 0 and

• A measure ν on R\{0} such that
∫
R\{0}

(
1 ∧ x2

)
dν(x) <∞.

The Lévy process associated to a Lévy triplet is of the form Xt = bt+σWt+Jt, where W is
standard one-dimensional Brownian motion and J is a process which is independent of W and
which is defined via the measure ν. To explain how J is defined, we need the definition of a
Poisson random measure associated to ν.
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Definition 3.7. Let ν be as above. A random measure N on [0,∞)× (R\{0}) is called Poisson
measure with intensity ν if

• N([s, t]×A) is Poi((t− s)ν(A))-distibuted for each A ∈ B(R\{0}) such that ν(A) <∞.

• For disjoint measurable subsets B1, ....Bm of [0,∞) × (R\{0}), the random variables
N(B1), ..., N(Bm) are independent.

Given the Poisson measure N associated to ν, we define processes P k, k ∈ N0 as follows:

P 0
t : =

∫
[0,t]×((−∞,−1]∪[1,∞))

xN(ds, dx)

P kt : =

∫
[0,t]×((− 1

k
,− 1

k+1
]∪[ 1

k+1
, 1
k

))
xN(ds, dx), k ∈ N.

Now we define

Xt := bt+ σWt + Jt := bt+ σWt + P 0
t +Mt := bt+ σWt + P 0

t +
∞∑
k=1

Qkt , t ≥ 0

where
Qkt := P kt − EP kt

(
= P kt − tEP k1

)
.

We claim that the infinite sum converges uniformly on compact time intervals in L2 and that M
is a right continuous martingale (with finite second moment). Once we have shown the latter, we
know that X is a semimartingale since P 0 is a process of locally finite variation. Clearly, each of
the processes Qk is a martingale and the variance of Qkt is easily seen to be t

∫
Ak
x2 dν(x) where

Ak := (− 1
k ,−

1
k+1 ] ∪ [ 1

k+1 ,
1
k ). Note that the martingales Qk, k ∈ N are independent and their

variances are summable due to the integrability condition on ν. Using Doob’s L2-inequality, we
see that

∑
Qkt converges uniformly on compact intervals in L2 to a process M which is therefore

both a martingale and has right continuous paths.

One can show (which we will not do) that in this way one obtains every real-valued Lévy
process.

We briefly introduce two important sub-classes of real-valued Lévy processes: subordinators
and stable Lévy processes.

Definition 3.8. A Lévy process with almost surely non-decreasing paths is called subordinator.

The standard Poisson process is the most prominent example of a subordinator.

Remark 3.9. It is not hard to see (and very easy to believe!) that a Lévy process with triplet
(b, σ, ν) is a subordinator if and only if each of the following are true:

• σ = 0

• ν(−∞, 0) = 0

• b ≥
∫

(0,1) x dν(x).

Definition 3.10. A real-valued Lévy process is called stable process of index α ∈ (0, 2] if, for
any c > 0, the processes (Xct)t≥0 and (c1/αXt)t≥0 have the same law.

It can be shown that for α > 2 there cannot exist a stable process of index α. Brownian
motion is a stable process of index 2. For a complete characterization of all stable Lévy processes
we refer the reader to the literature, e.g. [RW94], p77.
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Chapter 4

Markov Processes

4.1 Markov transition functions and Markov processes

Definition 4.1. Let (E, E) and (F,F) be measurable spaces. K : E × F → [0,∞] is called a
kernel (from E to F ) if

(i) x 7→ K(x,B) is E-measurable for every B ∈ F and

(ii) B 7→ K(x,B) is a measure on (F,F) for every x ∈ E.

K is called sub-Markov kernel resp. Markov kernel, if in addition K(x, F ) ≤ 1 resp. K(x, F ) = 1
for all x ∈ E.

In the following, we only consider (sub-)Markov kernels. The following lemma is very useful.

Lemma 4.2. Let K be a sub-Markov kernel from (E, E) to (F,F) and assume that H : (E ×
F, E ⊗ F)→ R is measurable and either bounded or non-negative. Then

ϕ(x) :=

∫
F
H(x, y)K(x,dy)

is E-measurable.

Proof. We only show the claim for bounded H. Define

H := {H : E × F → R|H measurable, bounded s.t. ϕ measurable}.

Clearly, 1l ∈ H (since K is a kernel) and H is a linear space. Let

K := {1lA×B : A ∈ E , B ∈ F}.

Then K is multiplicative, σ(K) = E ⊗ F and K ⊂ H since

x 7→
∫
F

1lA×B(x, y)K(x,dy) = 1lA(x)K(x,B)

is measurable for each A ∈ E , B ∈ F . Now, let f : E × F → R be bounded and measurable
and assume that fn is a sequence of nonnegative functions in H such that fn ↑ f . Then
ϕn(x) :=

∫
F fn(x, y)K(x, dy) converges pointwise to ϕ(x) :=

∫
F f(x, y)K(x,dy) and therefore

ϕ is also measurable. We have thus verified all assumptions in the monotone class theorem (in
the appendix) and therefore H contains every bounded and measurable function, so the claim
follows.

41
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In the following we will denote the space of real-valued bounded and measurable functions
on (E, E) by bE . To each sub-Markov kernel K from (E, E) to (F,F) we can associate a linear
operator T from bF to bE by

(Tf)(x) :=

∫
F
f(y)K(x,dy). (4.1.1)

Note that the measurability of Tf follows from Lemma 4.2. The operator T has the following
properties.

• T is linear.

• T1l ≤ 1l and T1l = 1l if K is a Markov kernel.

• Tf ≥ 0 whenever f ≥ 0.

• If (fn) is a non-decreasing sequence of non-negative functions in bF which converges
pointwise to f ∈ bF , then Tfn → Tf pointwise (i.e. T is σ-continuous).

An operator T : bF → bE is called a (sub-)Markov operator if it satisfies the properties above.
Conversely, given a (sub-)Markov operator T , we can define a (sub-)Markov kernel K as follows:
K(x,B) := (T1lB)(x). Due to this one-to-one correspondence we will often use the same symbol
for a (sub-)Markov kernel and its associated (sub-)Markov operator.

Remark 4.3 (Composition of kernels). If K is a sub-Markov kernel from (E, E) to (F,F) and
L is a sub-Markov kernel from (F,F) to (G,G), then

L ◦K(x,B) :=

∫
F
L(y,B)K(x,dy), x ∈ E, B ∈ G

defines a sub-Markov kernel from (E, E) to (G,G). Note that the composition of kernels corre-
sponds to the composition of the associated operators.

Let (E, E) be a measurable space. As before, we denote the set of probability measures on
(E, E) by M1(E).

Definition 4.4. A family (Pt(x,Γ), t ≥ 0, x ∈ E, Γ ∈ E) is called a (Markov) transition function
on (E, E) if each Pt is a Markov kernel on (E, E) (i.e. from (E, E) to (E, E)) and for each s, t ≥ 0

Pt+s = Pt ◦ Ps.

(Pt) is called normal if, in addition, for each x ∈ E we have {x} ∈ E and P0(x, {x}) = 1.

Note that the associated family of Markov operators forms a semigroup (Pt) of operators on
bE .

Example 4.5. For d ∈ N define

p(t, x, y) := (2πt)−d/2 exp
{
− |y − x|

2

2t

}
, t > 0, x, y ∈ Rd

and

Pt(x,B) :=

∫
B
p(t, x, y) dy, t > 0, x ∈ Rd, B ∈ B(Rd),

and P0(x,B) := 1 if x ∈ B and P0(x,B) := 0 otherwise. Then (Pt) is a normal Markov transition
function known as the Brownian transition function. Note that Pt(x, .) = N (x, t) which is the
law of x+Wt where W is Brownian motion.
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Remark 4.6. Just as in the previous example one can define a Markov transition function
associated to a Lévy process X. Just define Pt(x,B) := P(Xt ∈ B − x).

Definition 4.7. Let (Pt) be a Markov transition function on (E, E) and let H ⊆ bE . (Pt) is
called

a) strongly continuous on H, if for each f ∈ H we have

lim
t↓0
‖Ptf − P0f‖∞ = 0,

b) weakly continuous on H, if for each f ∈ H and x ∈ E we have

lim
t↓0

(Ptf)(x) = (P0f)(x).

Example 4.8. The Brownian semigroup is strongly continuous on the space {f ∈ C(Rd) :
lim|x|→∞ f(x) = 0}. The Brownian semigroup is weakly but not strongly continuous on Cb(Rd),
the space of bounded continuous functions from Rd to R but not even weakly continuous on bRd
(just take f = 1l{0} and x = 0 to see this).

Remark 4.9. If K is a sub-Markov kernel from (E, E) to (F,F), then one can adjoin an element
∂ to F and define F̃ := F ∪ {∂} and F̃ := σ(F, {∂}) and define a unique Markov kernel K̃ from
(E, E) to (F̃ , F̃) satisfying K̃(x,B) = K(x,B) for B ⊆ F (and hence K̃(x, {∂}) = 1−K(x, F )).
If K is a sub-Markov kernel from (F,F) to (F,F) then one can extend K to a unique Markov
kernel K̄ from (F̃ , F̃) to itself by defining K̄(x,B) := K̃(x,B) whenever x ∈ F (and B ∈ F̃) and
K̄(∂,B) = 1 if ∂ ∈ B and 0 otherwise. In the same way, a sub-Markov transition function on
(E, E) (which we did not define but it should be clear how it should be defined) can be extended
to a Markov transition function on (Ẽ, Ẽ). The adjoined state ∂ is often called the coffin state
(for obvious reasons).

Definition 4.10. A tuple

X = (Ω,F ,F, (Xt)t≥0, E, E , (θt)t≥0, (Px)x∈E)

is called a Markov process or a Markov family if

(i) (Ω,F ,F) is a FMS,

(ii) (E, E) is a measurable space,

(iii) (Xt) is adapted,

(iv) θt : Ω→ Ω and θt ◦ θs = θt+s for all s, t ≥ 0,

(v) Xt+h(ω) = Xt(θhω) for all t, h ≥ 0, ω ∈ Ω,

(vi) For each x ∈ E, Px is a probability measure on (Ω,F),

(vii) x 7→ Px
(
Xt ∈ B

)
is E-measurable for each B ∈ E ,

(viii) Px
(
Xt+h ∈ B|Ft

)
= PXt

(
Xh ∈ B

)
, Px-a.s. for all x ∈ E, h ≥ 0, t ≥ 0, B ∈ E .
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X is called normal if, in addition, {x} ∈ E for every x ∈ E and Px(X0 = x) = 1 for every x ∈ E.

In the following, we denote expected values with respect to Px by Ex.

Remark 4.11. Several authors do not include (iv) and (v) in the definition of a Markov process
(and drop θ from the tupel X). This is really a matter of taste. We will formulate our theorems
such that they do not explicitly use θ but when we construct Markov processes explicitly, then
we will check all conditions in the definition including (iv) and (v).

Proposition 4.12. Let X be a Markov process. Then Pt(x,B) := Px(Xt ∈ B), x ∈ E, B ∈ E,
is a Markov transition function. X is normal iff (Pt) is normal.

Proof. It is clear that Pt is a Markov kernel on E for each t ≥ 0. The final claim is also clear.
It remains to show the semigroup property of (Pt). Let s, t ≥ 0, x ∈ E and B ∈ E . Then

Ps+t(x,B) = Px
(
Xs+t ∈ B

)
= Ex1l{Xs+t∈B} = Ex

(
Ex
(
1l{Xs+t∈B}|Fs

))
= Ex

(
Px
(
Xs+t ∈ B|Fs

))
= Ex

(
PXs

(
Xt ∈ B

))
= Ex

(
Pt(Xs, B

))
=

∫
Ω
Pt(Xs, B) dPx =

∫
E
Pt(y,B)Ps(x,dy) = Pt ◦ Ps(x,B),

where we used the Markov property and the transformation formula for integrals.

Remark 4.13. If X is a Markov process with associated transition function (Pt) and f ∈ bE ,
then Exf(Xt) = (Ptf)(x).

Conversely, given a Markov transition function, we can construct an associated Markov
process (under weak assumptions on the state space E). Before doing so, we show that, using
the monotone class theorem, we can formulate the Markov property much more generally.

Lemma 4.14. Let X be a Markov process. Then, for each f ∈ bE, x ∈ E, t, h ≥ 0 we have

Ex
(
f(Xt+h)

∣∣Ft) = EXt(f(Xh)), Px-a.s. (4.1.2)

Proof. Fix t, h ≥ 0 and x ∈ E and denote by H the set of all f for which (4.1.2) holds. Then
H is a linear space which contains all indicators 1lB for B ∈ E by the Markov property. Since
H is closed with respect to nonnegative increasing uniformly bounded sequences, the monotone
class theorem shows that H contains all bounded and measurable functions and the proof is
complete.

Lemma 4.15. Let X be a Markov process with associated transition semigroup (Pt). Then, for
n ≥ 2, x ∈ E, 0 ≤ t1 < t2 < ... < tn and B1, ..., Bn ∈ E we have

Px
(
Xt1 ∈ B1,..., Xtn ∈ Bn

)
=

∫
B1

...

∫
Bn−2

∫
Bn−1

Ptn−tn−1(xn−1, Bn)Ptn−1−tn−2(xn−2,dxn−1)...Pt1(x, dx1)

This function is measurable with respect to x.
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Proof. The measurability of the right hand side follows from Lemma 4.2. Let Ak := {Xt1 ∈
B1, ..., Xtk ∈ Bk}. Using Lemma 4.14, we get

Px
(
An
)

=

∫
An−1

1lBn(Xtn) dPx

=

∫
An−1

Ex
(
1lBn(Xtn)|Ftn−1

)
dPx

=

∫
An−1

EXtn−1

(
1lBn(Xtn−tn−1)

)
dPx

=

∫
An−2

1lBn−1(Xtn−1)EXtn−1

(
1lBn(Xtn−tn−1)

)
dPx

=

∫
An−2

Ex
(
1lBn−1(Xtn−1)EXtn−1

(
1lBn(Xtn−tn−1)

)
|Ftn−2

)
dPx

=

∫
An−2

EXtn−2

(
1lBn−1(Xtn−1−tn−2)EXtn−1

(
1lBn(Xtn−tn−1)

))
dPx

= ...

=

∫
Ω

1lB1(Xt1)EXt1
(
1lB2(Xt2−t1)EXt2

(
1lB3(Xt3−t2)...

))
dPx

= Ex
(
1lB1(Xt1)EXt1

(
1lB2(Xt2−t1)EXt2

(
1lB3(Xt3−t2)...

)))
= Pt1

(
1lB1Pt2−t1

(
1lB2 ...

))
(x),

which is the right hand side of the formula.

Now we generalize the last assertion in the previous Lemma.

Lemma 4.16. Let X be a Markov process and M := σ
(
Xt, t ≥ 0

)
. Then for any Y ∈ bM, the

map x 7→ Ex(Y ) is E-measurable.

Proof. Define

H := {Y ∈ bM : x 7→ Ex(Y ) is measurable}

and

K :=
{

1lB1×...×Bn(Xt1 , ..., Xtn) : n ∈ N, 0 ≤ t1 < ... < tn, B1, ..., Bn ∈ E
}
.

The previous lemma shows that K ⊂ H. The remaining assumptions in the monotone class
theorem are clearly satisfied, so the claim follows.

Remark 4.17. It is generally not true that x 7→ ExY is E-measurable when Y is only assumed
to be in bF .

From now on, we will assume that all transition functions and Markov processes are normal.

Proposition 4.18. Let (Pt) be a Markov transition function of a Polish space (E, E) (i.e.
(E, d) is a separable and complete metric space and E is its Borel-σ-algebra). Then there exists
a Markov process X whose associated Markov transition function is (Pt).
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Proof. The proof is adapted from [He79]. We use the canonical construction: let Ω := E[0,∞),
F = E [0,∞), Xt(ω) := ωt for t ≥ 0, (θtω)s := ωt+s, Ft = σ(Xs, s ≤ t). For given x ∈ E, we
define Px on (Ω,F) by requiring that

Px
(
Xt1 ∈ B1,..., Xtn ∈ Bn

)
(4.1.3)

=

∫
B1

...

∫
Bn−2

∫
Bn−1

Ptn−tn−1(xn−1, Bn)Ptn−1−tn−2(xn−2,dxn−1)...Pt1(x, dx1)

for all n ≥ 2, 0 ≤ t1 < t2 < ... < tn and B1, ..., Bn ∈ E (see Lemma 4.15). Since these sets
form a ∩-stable generator of F there can be at most one such probability measure Px on (Ω,F).
In order to see that there exists at least one such Px, one has to check that (4.1.3) defines
a consistent family of finite dimensional distributions (we will not do this formally). Due to
our assumption that (E, E) is Polish it follows from Kolmogorov’s consistency theorem that
there exists a probability measure Px on (Ω,F) which satisfies (4.1.3). We have now defined all
ingredients of a Markov family and need to check that they satisfy all items in the definition.
This is clear for (i)-(vii). Note that Px

(
Xt ∈ B

)
= Pt(x,B) by construction, so once we have

verified the Markov property (viii) in Definition 4.10, then we have constructed a Markov process
X with associated transition function (Pt).

Fix x ∈ E, s, h ≥ 0 and B ∈ E . We have to show that

Ph(Xs, B) = Px
(
Xs+h ∈ B|Fs

)
, Px-a.s.

Clearly, the left hand side is Fs-measurable, so it remains to show that for each Q ∈ Fs, we have∫
Q
Ph(Xs, B) dPx =

∫
Q

1lB(Xs+h) dPx.

Both sides of the equality define a finite measure on (Ω,Fs). To see that they are equal, it suffices
to show that they agree on a ∩-stable generator of Fs and on the set Ω. As a ∩-stable generator
of Fs we take the family of sets of the form Q := {Xs1 ∈ B1, ..., Xsn ∈ Bn, Xs ∈ Bn+1}, where
n ∈ N0, 0 ≤ s1 < ... < sn < s, and B1, ..., Bn+1 ∈ E . For such a set Q and sn+1 := s, we get

∫
Q
Ph(Xs, B) dPx =

∫
Ω

n+1∏
i=1

1lBi(Xsi)Ph(Xsn+1 , B) dPx

=

∫
En+1

( n+1∏
i=1

1lBi(yi)
)
Ph(yn+1, B)µs1,...,sn+1(dy)

= Px
(
Xs1 ∈ B1, ..., Xsn+1 ∈ Bn+1, Xs+h ∈ B

)
= Px(Q ∩ {Xs+h ∈ B}) =

∫
Q

1lB(Xs+h) dPx,

where we denoted the joint law of (Xs1 , ..., Xsn+1) under Px by µs1,...,sn+1 (which is the image of
Px under the map ω 7→ (Xs1(ω), ..., Xsn+1(ω))) and we used the explicit formula (4.1.3) at the
beginning of the third line.

In view of Lemma 4.15 it is natural to ask if there is a corresponding formula for the joint
law conditioned on Ft. Indeed there is.
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Proposition 4.19. Let X be a Markov process with associated Markov transition semigroup
(Pt). Then, for n ≥ 2, x ∈ E, 0 ≤ t1 < t2 < ... < tn, t ≥ 0, and B1, ..., Bn ∈ E we have

Px
(
Xt+t1 ∈ B1, ..., Xt+tn ∈ Bn|Ft

)
= PXt

(
Xt1 ∈ B1, ..., Xtn ∈ Bn

)
.

Proof. Obviously, the right hand side of the formula in the proposition is Ft-measurable, so it
is enough to prove that for each A ∈ Ft we have∫

A
PXt

(
Xt1 ∈ B1, ..., Xtn ∈ Bn

)
dPx =

∫
A

1lB1

(
Xt+t1

)
...1lBn

(
Xt+tn

)
dPx. (4.1.4)

By Lemma 4.15, the left hand side of (4.1.4) equals

Ex
(

1lA
(
Pt1
(
1lB1Pt2−t1

(
...
)))

(Xt)
)
. (4.1.5)

We can compute the right hand side of (4.1.4) as in the proof of Lemma 4.15 – the only difference
(apart from the shifted times) being the restriction to the set A ∈ Ft. Therefore, the right hand
side of (4.1.4) equals ∫

A
1lB1

(
Xt+t1

)
EXt+t1

(
1lB2 ...

)
dPx

=

∫
A
Ex
(

1lB1

(
Xt+t1

)
EXt+t1

(
1lB2 ...

)∣∣Ft) dPx

=

∫
A
EXt

(
1lB1

(
Xt1

)
EXt1

(
1lB2 ...

))
dPx,

which equals (4.1.5).

The following proposition generalizes the previous one.

Proposition 4.20. Let X be a Markov process with associated Markov transition semigroup
(Pt). Then, for x ∈ E, t ≥ 0, and F ∈ bE [0,∞) we have

Px
(
F (Xt+.)|Ft

)
= PXt

(
F (X.)

)
.

Proof. This is a straightforward application of the monotone class theorem together with Propo-
sition 4.19.

4.2 Strong Markov property

Definition 4.21. Let X be a normal Markov process. X is called a strong Markov process if for
each optional time τ the following is true:

(i) Xτ is F+
τ -measurable, i.e.

{
Xτ ∈ B

}
∩ {τ <∞} ∈ F+

τ for all B ∈ E ,

(ii) Px
(
Xτ+t ∈ B|F+

τ

)
= PXτ

(
Xt ∈ B

)
on {τ <∞}, Px-a.s. for all x ∈ E, t ≥ 0, B ∈ E .

Lemma 4.22. Let X be strong Markov. Then, for f ∈ bE, x ∈ E, t ≥ 0, and optional time τ ,
we have

Ex
(
f(Xτ+t)|F+

τ

)
= EXτ

(
f(Xt)

)
on {τ <∞},Px-a.s.



48 Wahrscheinlichkeitstheorie III

Proof. This follows from a straightforward application of the monotone class theorem as in
Lemma 4.14.

More generally, the following lemma holds.

Lemma 4.23. Let X be strong Markov. Then, for F ∈ bE [0,∞), x ∈ E, and optional time τ , we
have

Ex
(
F (Xτ+.)|F+

τ

)
= EXτ

(
F (X.)

)
on {τ <∞},Px-a.s.

Proof. This follows from a straightforward application of the monotone class theorem as in
Proposition 4.20.

Theorem 4.24 (Blumenthal-0-1 law). Let X be a (normal) strong Markov process. Let Mt :=
σ(Xs, s ≤ t). Then M+

0 is trivial for each Px, i.e. for every A ∈M+
0 and every x ∈ E, we have

Px(A) ∈ {0, 1}.

Proof. Apply Lemma 4.23 to the optional time τ = 0 and F ∈ bE [0,∞). Then, for each x ∈ E,

Ex
(
F (X.)|F+

0

)
= Ex

(
F (X.)

)
, Px-a.s.

and hence

Ex
(
F (X.)|M+

0

)
= Ex

(
F (X.)

)
, Px-a.s.

Let M := σ(X.). By the factorization theorem any real-valued (Ω,M)-measurable map g can
be factorized as g = F (X.) for some real-valued E [0,∞)-measurable map F . In particular, this
holds true for g = 1lA when A ∈M+

0 and then F can also chosen to be bounded. Therefore, for
fixed x ∈ E,

g = 1lA = Ex
(
1lA|M+

0

)
= Ex

(
F (X.)|M+

0

)
= Ex

(
F (X.)

)
, Px-a.s.,

so g = 1lA is Px-a.s. constant, so Px(A) ∈ {0, 1}.

Theorem 4.25. Let X be a normal Markov process with right continuous paths taking values
in a metric space (E, d) (equipped with its Borel-σ algebra E). Assume that its semigroup (Pt)
maps Cb(E) to itself. Then X is strong Markov.

Proof. Fix an optional time τ . By Propositions 1.34 and 1.31 applied to the filtration F+, we
know that Xτ is F+

τ -measurable, so (i) in Definition 4.21 follows. It remains to show (ii) in
Definition 4.21. For n ∈ N define

τn :=

{
k+1
2n , τ ∈

[
k

2n ,
k+1
2n

)
, k = 0, 1, ...

∞, τ =∞.

Note that τn is a stopping time. Let A ∈ F+
τ and x ∈ E. We have to show that∫

A∩{τ<∞}
f(Xτ+t) dPx =

∫
A∩{τ<∞}

EXτ f(Xt) dPx (4.2.1)

and that EXτ f(Xt) is F+
τ -measurable, both for every f ∈ bE (or every indicator function of a

set in E). The last property is true due to property (i) and Lemma 4.2, Remark 4.13 and the
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fact that a composition of measurable maps is measurable. Now we show (4.2.1) for f ∈ Cb(E).
Observe that for A ∈ F+

τ we have

A ∩
{
τn =

k

2n

}
=
(
A ∩

{
τ <

k

2n

})
\
(
A ∩

{
τ <

k − 1

2n

})
∈ Fk/2n .

On the one hand, by right continuity of the paths and using the fact that f is bounded and
continuous, and using the dominated convergence theorem, we get

lim
n→∞

∫
A∩{τ<∞}

f(Xτn+t) dPx =

∫
A∩{τ<∞}

f(Xτ+t) dPx.

Further,∫
A∩{τ<∞}

f(Xτn+t) dPx =

∞∑
k=0

∫
A∩{τn= k

2n
}
f(X k

2n
+t) dPx

=

∞∑
k=0

∫
A∩{τn= k

2n
}
Ex
(
f(X k

2n
+t)|Fk/2n

)
dPx

=
∞∑
k=0

∫
A∩{τn= k

2n
}
EXk/2nf(Xt) dPx

=

∫
A∩{τ<∞}

EXτnf(Xt) dPx =

∫
A∩{τ<∞}

(Ptf)(Xτn) dPx.

Using the property Pt(Cb) ⊆ Cb and right continuity of the paths, we obtain

lim
n→∞

∫
A∩{τ<∞}

(Ptf)(Xτn) dPx =

∫
A∩{τ<∞}

(Ptf)(Xτ ) dPx =

∫
A∩{τ<∞}

EXτ f(Xt) dPx, (4.2.2)

so we have shown (4.2.1) for all f ∈ Cb(E). The general case now follows using the monotone
class theorem. Define

H :=
{
f ∈ bE :

∫
A∩{τ<∞}

f(Xτ+t) dPx =

∫
A∩{τ<∞}

EXτ f(Xt) dPx
}
.

Clearly, H is a linear space which contains the constant function 1l and also the multiplicative
class K := Cb(E) (as we just showed). Further, H is closed with respect to monotone limits.
It is well-known (e.g. from WT2 or Bauer [Ba68]) that for a metric space we always have
σ(Cb(E)) = B(E) and therefore the monotone class theorem implies (4.2.1) and the proof is
complete.

Remark 4.26. Note that we used the fact that E is metric only at the end when we stated
that σ(Cb(E)) = B(E) and when we applied Proposition 1.34. For a general topological space
σ(Cb(E)) = B(E) is not always true. The σ-algebra σ(Cb(E)) which is the same as the σ-algebra
generated by all continuous functions on a topological space is called Baire σ-algebra. It is easy
to see that on each topological space the Baire-σ-algebra is contained in the Borel-σ-algebra but
there are cases where they disagree. The simplest example is the space E = {a, b} in which {a}
is open but {b} is not. Then the Borel-σ-algebra is the same as 2E whereas the Baire-σ-algebra
consists of the set ∅ and E only (since every real-valued continuous function on E is necessarily
constant). Note that the previous theorem remains true if we allow E to be a general topological
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space provided we replace the Borel-σ-algebra by the Baire σ-algebra (and allow X to take values
in an arbitrary topological space). It is not hard to show that Proposition 1.34 (and Lemma
1.32) remain true for arbitrary topological spaces E if B(E) is replaced by the Baire σ-algebra.
The interested reader can find more on Baire σ-algebras in the monograph of Bauer [Ba68].

We now state examples of Markov processes which are not strong Markov.

Example 4.27. Let (Pt) be the Brownian semigroup for d = 1 as defined in Example 4.5 and
X the corresponding canonical Markov process as constructed in the proof of Proposition 4.18.
Define P̃x := Px for x ∈ R\{0} and let P̃0 be the point mass on the function which is identically
0. It is easy to check that X̃ defined like X with the only exception that E[0,∞) is replaced by
Ω = C([0,∞)) and that P̃0 is defined as mentioned is a Markov process: the only item requiring
a proof is the Markov property (viii) which is clear when x = 0, but (viii) is also true when
x 6= 0 because for each t ≥ 0 we have Px

(
Xt = 0

)
= 0. To see that X̃ is not strong Markov,

define τ := inf{s ≥ 0 : Xs = 0}. This is a stopping time which is almost surely finite (for each
P̃x) but for which part (ii) of the definition of a strong Markov process obviously fails (take any
x 6= 0, any t > 0 and, for example, B = {0}). In this example X has right continuous paths
and is therefore progressive (so (i) of the definition of a strong Markov process holds) but the
associated transition semigroup does not map Cb(R) to itself.

Example 4.28. A slightly simpler example of a real-valued Markov process with continuous
paths which is not strong Markov is the following one: let Ω be the set of functions X of the
form = {Xt = a + bt : a, b ∈ R} where a, b ∈ R and Ft := σ(Xs, s ≤ t). For x > 0 let Px
be concentrated on the function x + t, for x < 0 let Px be concentrated on the function x − t,
and let P0 be the probability measure on Ω which puts measure 1/2 on each of the functions
t and −t. We can define a family of shifts θ as in the canonical construction. It is very easy
to see that the tupel X is a Markov process. It is however not strong Markov. One can check
this explicitly but it also follows from the Blumenthal-0-1 law: just observe that M+

0 = F+
0 is

not trivial under P0, since by waiting an infinitesimal amount of time we can see whether the
process starting at 0 moves up or down (both happen with probability 1/2).

It is not hard to construct an example of a real-valued Markov process for which the asso-
ciated semigroup maps Cb(R) to itself but for which the paths are not right continuous and the
strong Markov property does not hold.

Remark 4.29. It is certainly of interest to formulate criteria solely in terms of the Markov
transition function which guarantee that there exists a modification of the corresponding Markov
process which is strong Markov or which has right continuous paths. Such criteria exist (e.g.
[RW94] or [He79] but are usually formulated under the assumption that the state space is locally
compact (meaning that each point has a compact neighborhood) with countable base (LCCB)
which is a somewhat restrictive assumption. In addition, it is often not hard to show the validity
of the assumptions of Theorem 4.25 directly. Certainly, Rd is LCCB but no infinite dimensional
Banach space is LCCB. In comparison, the assumption that a space is Polish is considerably
more general. Every separable Banach space is Polish.

Proposition 4.30. Under the assumptions of Theorem 2.27, the solution process is an Rd-
valued Markov process which satisfies the assumptions of Theorem 4.25 and which is therefore
strong Markov.
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Proof. We do not provide a proof of the Markov property (see e.g. [RW94]). Intuitively it should
be obvious anyway. By definition, the paths of a solution are continuous. We only need to check
that the associated semigroup maps Cb(Rd) to itself. This is true in general but we only show
it under the assumption of Lemma 2.34 with p = 2. Fix t > 0 and x ∈ Rd. For any sequence
xn → x it follows from Lemma 2.34 that the solution φt(xn) converges to φt(x) in L1 and hence
the laws converge weakly meaning that Ef(φt(xn)) converges to Ef(φt(x)) for every f ∈ Cb(Rd)
which is the assertion.

4.3 Hille-Yosida Theory

In this section we introduce resolvents and infinitesimal generators of Markov transition semi-
groups. The goal is to characterize a Markov semigroup by a single operator, the infinitesimal
generator. We will not provide all proofs. Good references which also include the proofs are
[Dy65], [EK86], and [RW94].

Let (Pt) be a normal sub-Markov transition function on a measurable space (E, E). In
addition, we assume that for every B ∈ E , the map (x, t) 7→ Pt(x,B) is E ⊗ B[0,∞)-measurable
(this is not automatically true).

Definition 4.31. For λ > 0, the map Rλ : bE → bE defined as

(
Rλf

)
(x) :=

∫ ∞
0

e−λt
(
Ptf
)
(x) dt (4.3.1)

is called the λ-resolvent associated to (Pt).

Remark 4.32. Rλ is well-defined and measurable by Lemma 4.2 and the fact that (t, x) 7→(
Ptf
)
(x) is measurable for each f ∈ bE by our measurability assumption on (Pt).

Theorem 4.33. Let Rλ be the λ-resolvent associated to (Pt) and f, fn ∈ bE. Then

i) 0 ≤ f ≤ 1l implies λRλf ≤ 1l and |f | ≤ 1l implies |λRλf | ≤ 1l.

ii) Rλ −Rµ + (λ− µ)RλRµ = 0 for any λ, µ > 0 (resolvent identity).

iii) fn ↓ 0 implies Rλfn ↓ 0 (both pointwise).

iv) Pt1l = 1l for all t ≥ 0 implies λRλ1l = 1l.

Proof. i), iii) and iv) are clear. To see ii), assume without loss of generality that µ 6= λ and
compute

(
RλRµf

)
(x) using the definition of Rλ and Rµ and the semigroup property of (Pt).

Next, we introduce an axiomatic approach to resolvents and semigroups and investigate
their relation.

Definition 4.34. Let (B, ‖.‖) be a real Banach space. A family (Rλ)λ>0 of bounded linear
operators on B is called contraction resolvent (CR) if

i) ‖λRλ‖ ≤ 1 for all λ > 0 and

ii) Rλ −Rµ + (λ− µ)RλRµ = 0 for any λ, µ > 0 (resolvent identity).
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A CR (Rλ)λ>0 on B is called strongly continuous contraction resolvent (SCCR), if it also satisfies

iii) limλ→∞ ‖λRλf − f‖ = 0 for all f ∈ B.

Remark 4.35. The family (Rλ) from Definition 4.31 is a contraction resolvent on the Banach
space B = (bE , ‖.‖∞).

Definition 4.36. Let (B, ‖.‖) be a real Banach space. A family (Pt)t≥0 of bounded linear
operators on B is called contraction semigroup (CSG) if

i) ‖Pt‖ ≤ 1 for t ≥ 0 (contraction property)

ii) PsPt = Ps+t for s, t ≥ 0 (semigroup property).

A CSG (Pt)t≥0 on B is called strongly continuous contraction semigroup (SCCSG), if it also
satisfies

iii) limt→0 ‖Ptf − f‖ = 0 for all f ∈ B.

Proposition 4.37. For a SCCSG (Pt), the map t 7→ Ptf is uniformly continuous for each
f ∈ B.

Proof. For t, h ≥ 0 and f ∈ B, we have

‖Pt+hf − Ptf‖ = ‖Pt(Phf − f)‖ ≤ ‖Pt‖‖Phf − f‖ ≤ ‖Phf − f‖ → 0 as h ↓ 0.

We want to define the infinitesimal generator of a CSG.

Definition 4.38. A linear operator G : D(G)→ B is called infinitesimal generator of the CSG
(Pt) on B if

Gf = lim
t↓0

Ptf − f
t

and D(G) consists of all f ∈ B for which the limit exists (with respect to the norm on B).

We will actually construct G differently (and call it A until we know that the two objects
are actually identical).

Fix the Banach space B. Just like at the beginning of the section, we can associate to a
SCCSG (Pt) a SCCR (Rλ) by

Rλf :=

∫ ∞
0

e−λtPtf dt. (4.3.2)

This definition requires some explanation. The integrand is a uniformly continuous B-valued
(not real-valued) function, so we need to say what this means. One can define this integral like
an improper Riemann integral due to the fact that the integrand is continuous and its norm
decays exponentially fast. Further, one can show that

‖Rλf‖ = ‖
∫ ∞

0
e−λtPtf dt‖ ≤

∫ ∞
0

e−λt‖Ptf‖ dt.

(in general, the norm of an integral can be estimated from above by the integral of the norm.) In
particular, ‖λRλ‖ ≤ 1, so i) of Definition 4.34 holds. One can check as in the proof of Theorem
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4.33 that ii) of Definition 4.34 holds as well. To see that (Rλ) is strongly continuous, we argue
as follows:

λRλf − f =

∫ ∞
0

e−t
(
Pt/λf − f

)
dt.

Taking norms on both sides, and using the facts that the norm of an integral can be estimated
from above by the integral of the norm and that (Pt) is strongly continuous, it follows by
dominated convergence that (Rλ) is a SCCR.

It is natural to ask if every SCCR can be represented in a form like (4.3.2). This is the
content of the Hille-Yosida theorem which we will formulate below. Before doing this, we start
with a CR on a Banach space B which is not necessarily strongly continuous and try to find a
large subspace of B on which it is a SCCR.

Remark 4.39. If (Rλ) is a contraction resolvent, then Rλ and Rµ commute due to the resolvent
identity. Further, the resolvent identity implies

Rλ(B) + (λ− µ)RλRµ(B) = Rµ(B),

and therefore Rµ(B) ⊆ Rλ(B). By symmetry and the fact that Rλ and Rµ commute, we also
have Rλ(B) ⊆ Rµ(B), so Rλ(B) = Rµ(B). Therefore

R := Rλ(B)

does not depend on λ > 0. Further, we define

B0 := R,

the closure of R in the Banach space B. Note that B0 is itself a Banach space.

Proposition 4.40. B0 = {f ∈ B : limλ→∞ λRλf = f}.

Proof. First assume that for f ∈ B we have limλ→∞ λRλf = f . Then, for given ε > 0, we find
some λ0 > 0 such that for all λ > λ0, we have ‖f −Rλ(λf)‖ < ε. Therefore, f ∈ R = B0.

Conversely, assume that f ∈ B0 and let ε > 0. There exist g, h ∈ B such that ‖h‖ < ε/3
and f = R1g + h and for λ > 1 we have

‖λRλf − f‖ = ‖λRλ(R1g + h)− (R1g + h)‖ ≤ ‖λRλh‖+ ‖h‖+ ‖λRλR1g −R1g‖

≤ ‖λRλ‖‖h‖+ ‖h‖+
∥∥∥λR1g −Rλg

λ− 1
− (λ− 1)R1g

λ− 1

∥∥∥
≤ 2

3
ε+

1

λ− 1

(
‖λRλg‖+ ‖R1g‖

)
≤ 2

3
ε+

1

λ− 1

(
‖g‖+ ‖R1g‖

)
→ 2

3
ε,

so the assertion follows.

Proposition 4.40 shows that (Rλ) is a SCCR on B0. Now, we forget about the original
Banach space B and start with a SCCR (Rλ) on the Banach space B0 which we henceforth
denote by B. Let

D := Rλ(B)
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be the range of Rλ. By Remark 4.39 D does not depend on λ and D is dense in B. Further,
Rµ : B → D is bijective, since it is onto by definition of D and if Rµf = 0, then the resolvent
identity implies that Rλf = 0 for every λ > 0, whence λRλf = 0 for all λ > 0 which, by strong
continuity, shows that f = 0, so Rµ is one-to-one.

Next, we define an operator A (generally unbounded) from D to B which will turn out to
be equal to the infinitesimal generator G defined above. Note however that so far we do not
even know whether there exists a (SC)CSG associated to (Rλ).

Define the operator Aλ := λ−R−1
λ := λ idB −R−1

λ with D(Aλ) = D, so

Aλ
(
Rλf

)
= λRλf − f.

Then, for µ > 0, using the resolvent identity,

Aλ(Rµf) = Aλ
(
Rλf + (λ− µ)RλRµf

)
= λRλf − f + (λ− µ)

(
λRλRµf −Rµf

)
= λ

(
Rλf + (λ− µ)RλRµf

)
− f − (λ− µ)Rµf

= λRµf − f − (λ− µ)Rµf = µRµf − f,

showing that Aλ does not depend on the choice of λ. Therefore we define A := Aλ with
D(A) = D and we have the formula

Rλ = (λ−A)−1.

Proposition 4.41. The operator A is closed, i.e. if fn is a sequence in D which converges (with
respect to the norm on B) to f ∈ B and for which Afn converges to some g ∈ B, then f ∈ D
and Af = g.

Proof.

R−1
λ fn = (λ−A)fn → λf − g.

Since Rλ is continuous, we see that fn converges to Rλ(λf − g) which must therefore be equal
to f . In particular, f ∈ D and

Af = A
(
Rλ(λf − g)

)
= λRλ(λf − g)− (λf − g) = g.

Theorem 4.42 (Hille-Yosida). Let (Rλ) be a SCCR on B. There exists a unique SCCSG (Pt)
on B such that

Rλf =

∫ ∞
0

e−λtPtf dt

for all f ∈ B and λ > 0.

(Pt) is defined as follows: let Aλ := λ(λRλ − I) and

Pt,λ := exp{tAλ} := e−λt
∞∑
n=1

(λt)n(λRλ)n/n!.

Then

Ptf = lim
λ→∞

Pt,λf, f ∈ B, t ≥ 0.



Version September 4th 2013 55

Let us now state a few results without proof. Observe that iii) states that A is the same as
the infinitesimal generator G defined before.

Proposition 4.43. In the set-up above (with Aλ as in the previous theorem), we have

i) f ∈ D iff g = limλ→∞Aλf exists. In this case Af = g.

ii) Ptf − f =
∫ t

0 (PsA)f ds for all f ∈ D.

iii) Assume f ∈ B. Then f ∈ D iff g = limt↓0
Ptf−f
t exists. In this case Af = g.

iv) (Pt) is uniquely determined by A, i.e. any two SCCSGs with generator (A,D(A)) coincide.

We finish this part by stating a necessary and sufficient criterion for an operator to be the
infinitesimal generator of a SCCSG. The proof can be found in [Dy65].

Theorem 4.44. Let (A,D(A)) be a linear operator on a Banach space B. A is the infinitesimal
generator of a SCCSG (Pt) (i.e.

Af = lim
t↓0

Ptf − f
t

for all f ∈ D(A)

and the existence of

lim
t↓0

Ptf − f
t

implies that f ∈ D(A)) if and only if all of the following conditions hold.

i) D(A) is a dense subspace of B.

ii) R(λ−A) = B for some λ > 0.

iii) ‖λf −Af‖ ≥ λ‖f‖ for all f ∈ D(A), λ > 0 (“A is dissipative”).

Example 4.45. Let (Pt) be the Brownian semigroup defined in Example 4.5 for d = 1. Let
B ⊂ bB(R) be some closed linear subspace, so B is a Banach space. (Pt) may or may not be
strongly continuous on B. We want to identify the generator A (including its domain). The
associated λ-resolvent is

(Rλf)(x) =

∫ ∞
0

e−λt
∫
R
f(y)

1√
2πt

exp
{−(x− y)2

2t

}
dy dt =

∫
R
f(y)

1

γ
e−γ|y−x| dy,

where γ :=
√

2λ (a proof of the last identity can be found in [RW94], p.234). Let us now assume
that B = C0 := C0(R) (the space of continuous functions on R which are 0 at infinity; see
Example 4.8) and let h ∈ D(A) be in the domain of the generator. Since D(A) = D is the range
of Rλ, there exists some f ∈ B such that

h(x) =
(
Rλf

)
(x) =

∫
R
f(y)

1

γ
e−γ|y−x| dy.

Further, for ε 6= 0,

h(x+ ε)− h(x)

ε
=

∫
R
f(y)

1

γ

(e−γ|y−x−ε| − e−γ|y−x|

ε

)
dy →

∫
R
f(y)e−γ|y−x|sgn(y−x) dy = h′(x),
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showing that h ∈ C1(R) ∩ C0. It is a nice exercise to prove that h is even C2 and to show that

h′′(x) =

∫
R
f(y)γe−γ|y−x| dy − 2f(x) = γ2h(x)− 2f(x) = 2λh(x)− 2f(x). (4.3.3)

(To compute h′′(x) as the derivative of h′(x) split the integral into two parts: a neighborhood
of x and the rest.) From (4.3.3) we see that h ∈ C2 ∩ C0 and h′′ ∈ C0. Therefore,

D(A) ⊆ {h ∈ C2 ∩ C0 and h′′ ∈ C0}.

Further, for h ∈ D(A),

−1

2
h′′(x) + λh(x) = f(x) =

(
R−1
λ h

)
(x) = (λ−A)h(x),

so

Ah =
1

2
h′′.

On the other hand, for h ∈ C2 ∩ C0 and h′′ ∈ C0, define h̃ := Rλ
(
− 1

2h
′′ + λh

)
, so h̃ ∈ D and

−1

2
h̃′′ + λh̃ = −1

2
h′′ + λh,

but the equation −1
2 h̄
′′+λh̄ = 0 has only one solution in the class C2 ∩C0, namely 0, so h̃ = h,

so h ∈ D and we have shown that

D(A) = {h ∈ C2 ∩ C0 and h′′ ∈ C0} and Ah =
1

2
h′′ for h ∈ D(A).

Remark 4.46. One can do a similar but somewhat more complicated computation for the d-
dimensional Brownian semigroup. It turns out that for d ≥ 2 the domain is strictly larger than
the one corresponding to the one-dimensional case (see e.g. [Dy65]).

Remark 4.47. Instead of starting with the Brownian semigroup restricted to C0, we could have
started with B = bB(R). Then the space B0 on which the resolvent is strongly continuous is the
space B0 of uniformly continuous functions which is strictly larger than C0 and D also increases.
For details, see [Dy65].

Remark 4.48. If we start with a normal Markov semigroup (Pt) on bE which is not strongly
continuous (but at least measurable in (t, x) so that the resolvent can be defined), then it may
happen that the space B0 on which the restriction of the resolvent (and of the semigroup) is
strongly continuous is so much smaller than bE that it is not possible to reconstruct (Pt) on bE
uniquely from its restriction (or, equivalently, from the generator of the restriction). Fortunately
there are many cases in which this problem does not occur. The following definition provides
such a case (see e.g [RW94], p241).

Definition 4.49. Let E be a locally compact space with countable base (LCCB) (i.e. the space
has a countable base and each x ∈ E has a compact neighborhood). Let C0(E) be the space of
continuous real-valued functions which vanish at infinity (if the space is compact then we define
C0(E) := Cb(E) = C(E)). A strongly continuous sub-Markov semigroup of linear operators
(Pt) on C0(E) is called a Feller-Dynkin semigroup.
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Note that this way we avoid the problems above by assuming that the semigroup is strongly
continuous on a sufficiently large subspace of bE which allows to reconstruct the original semi-
group of sub-Markov kernels on E. Note that this was our approach for the Brownian semigroup.
Let us discuss the example of the Poisson process.

Example 4.50. Let E = N0 (with the metric induced by the usual distance on R). E is
certainly locally compact. The Poisson transition function with rate λ > 0 is given by

Pt(x, {y}) = e−λt(λt)y−x/(y − x)!, t ≥ 0, y ≥ x ≥ 0.

Clearly, the semigroup is Feller-Dynkin. What is its generator A (and what is D(A))? We will
discuss this in class.

Remark 4.51. We will probably look at the following generalization of the previous example
in class. The Poisson process with rate λ is a so-called pure birth process on N0. The birth
rates are all equal to λ i.e. the parameter of the exponential waiting time to move from state
i to state i + 1 is always λ. Instead we can assume that this rate is λi. As long as the λi are
uniformly bounded or at least their inverses are summable nothing spectacular happens. The
corresponding semigroup is still Feller-Dynkin (exercise: prove this in case you missed the proof
in class!). Dramatic things happen however if this summability condition fails. We will see.

The following theorem (and/or some of its corollaries) is often called Dynkin formula.

Theorem 4.52. Let X be an (E, E)-valued progressive Markov process with generator (A,D(A)),
i.e. (A,D(A)) is the generator of the restriction of the associated Markov semigroup (Pt) to a
closed subspace B of bE on which it is strongly continuous. Then, for each f ∈ D(A) and x ∈ E,
the process

Mt := f(Xt)−
∫ t

0
(Af)(Xs) ds (4.3.4)

is a martingale with respect to Px.

Proof. Since Af ∈ bE and X is progressive, the integral in (4.3.4) is well-defined, continuous,
adapted and uniformly bounded on compact time intervals. Further, t 7→ f(Xt) is bounded
and progressive. In particular, M is adapted and integrable. It remains to show the martingale
property. Let t, u ≥ 0. Then, using the Markov property,

Ex
(
Mt+u

∣∣Ft) = Ex
(
f(Xt+u)

∣∣Ft)− Ex
(∫ t+u

0
(Af)(Xs) ds

∣∣Ft)
= EXt

(
f(Xu)

)
− Ex

(∫ t+u

t
(Af)(Xs) ds

∣∣Ft)− ∫ t

0
(Af)(Xs) ds

=
(
Puf

)
(Xt)− Ex

(∫ t+u

t
(Af)(Xs) ds

∣∣Ft)− ∫ t

0
(Af)(Xs) ds

= f(Xt) +

∫ u

0

(
Ps(Af)

)
(Xt) ds− Ex

(∫ t+u

t
(Af)(Xs) ds

∣∣Ft)− ∫ t

0
(Af)(Xs) ds,

where we used Proposition 4.43 ii) in the last step. Using the Markov property again, we get∫ u

0

(
Ps(Af)

)
(Xt) ds =

∫ u

0
EXt

(
(Af)(Xs)

)
ds =

∫ u

0
Ex
(
(Af)(Xt+s)|Ft

)
ds

=

∫ t+u

t
Ex
(
(Af)(Xs)|Ft

)
ds = Ex

(∫ t+u

t
(Af)(Xs) ds

∣∣Ft).
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(Exercise: prove that the last step is legal!) This finishes the proof of the martingale property.

4.4 Invariant measures: existence

Definition 4.53. Let (Pt)t≥0 be a normal Markov transition function on (E, E). A probability
measure µ on (E, E) is called invariant probability measure of (Pt)t≥0 if P ∗t µ = µ for all t ≥ 0,
where P ∗t :M1(E)→M1(E) is defined as (P ∗t ν)(A) =

∫
E Pt(y,A) dν(y) =

∫
E

(
Pt1lA

)
(y) dν(y).

A Markov transition function may or may not admit an invariant probability measure µ
and if it does, then µ may or may not be unique. If there exists a unique invariant probability
measure, then it may or may not be true that for each initial probability measure ν we have
that limt→∞ P∗t ν = µ in some sense, e.g. in total variation or weakly (the latter requires that
we specify a topology on E).

In the rest of this section we will assume that the state space (E, E) is a Polish space with
complete metric ρ and that E is its Borel-σ-algebra. Denote by B(x, δ) the open δ-ball around
x.

Definition 4.54. A normal Markov semigroup on E is called stochastically continuous if

lim
t↓0

Pt(x,B(x, δ)) = 1, for all x ∈ E, δ > 0.

In the following, we denote the space of uniformly continuous and bounded real-valued
functions on E by UCb(E) and the space of bounded real-valued Lipschitz continuous functions
on E by Lipb(E).

Proposition 4.55. The following are equivalent for a normal Markovian semigroup (Pt).

i) (Pt) is stochastically continuous.

ii) limt↓0 Ptf(x) = f(x), for all f ∈ Cb(E), x ∈ E.

iii) limt↓0 Ptf(x) = f(x), for all f ∈ UCb(E), x ∈ E.

iv) limt↓0 Ptf(x) = f(x), for all f ∈ Lipb(E), x ∈ E.

Proof. The proof is adapted from [DZ96], p13. Clearly, ii) implies iii) and iii) implies iv). To
see that i) implies ii), take f ∈ Cb(E), x ∈ E and δ > 0. Then

|Ptf(x)− f(x)| =
∣∣∣ ∫

B(x,δ)

(
f(y)− f(x)

)
Pt(x,dy) +

∫
B(x,δ)c

(
f(y)− f(x)

)
Pt(x, dy)

∣∣∣
≤ sup

y∈B(x,δ)
|f(y)− f(x)|+ 2‖f‖∞(1− Pt(x,B(x, δ))),

so ii) follows by the definition of stochastic continuity and the continuity of f .

Next, we show that iv) implies i). For given x0 ∈ E and δ > 0 define

f(x) :=
1

δ

(
(δ − ρ(x, x0)

)+
, x ∈ E.
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Then f ∈ Lipb(E) and

f(x0)− Ptf(x0) = 1−
∫
E
f(y)Pt(x0,dy)

= 1−
∫
B(x0,δ)

f(y)Pt(x0,dy)

≥ 1− Pt(x0, B(x0, δ)),

so i) follows.

Proposition 4.56. If (Pt) is stochastically continuous, then the map t 7→
(
Ptf
)
(x) is right

continuous for each x ∈ E and f ∈ Cb(E).

Proof. For t ≥ 0 and h > 0 we have

(
Pt+hf

)
(x)−

(
Ptf
)
(x) =

(
Pt
(
Phf − f

))
(x) =

∫
E

(
Phf − f

)
(y)Pt(x,dy)→ 0,

as h ↓ 0, so the claim follows by dominated convergence.

Proposition 4.57. If (Pt) is stochastically continuous, then the map (t, x) 7→
(
Ptf
)
(x) is

measurable for each f ∈ Cb(E).

Proof. This follows from the fact that the function is right continuous in t by the previous lemma
and measurable in x for fixed t (cf. Proposition 1.34).

Definition 4.58. A stochastically continuous transition semigroup (Pt) is called Feller semi-
group if Pt(Cb) ⊆ Cb holds for every t ≥ 0. A Markov process X is called Feller process if its
associated semigroup is Feller.

For a Feller semigroup (Pt) we define

RT (x,B) :=
1

T

∫ T

0
Pt(x,B) dt, x ∈ E, T > 0, B ∈ E .

Note that the integral exists and that RT is a Markov kernel thanks to Proposition 4.57, so we
will define R∗T ν like in Definition 4.53. Observe however that (Rt) is not a Markov semigroup.

We will start by discussing methods to prove the existence of an invariant probability mea-
sure. The following theorem is often useful.

Theorem 4.59 (Krylov-Bogoliubov). Let (Pt) be a Feller semigroup. If for some ν ∈ M1(E)
and some sequence Tn ↑ ∞, R∗Tnν → µ weakly as n → ∞, then µ is an invariant probability
measure of (Pt).

Proof. Fix r > 0 and ϕ ∈ Cb(E). Then Prϕ ∈ Cb(E) and – abbreviating 〈ψ, κ〉 :=
∫
ψ dκ for
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ψ ∈ Cb(E) and a finite measure κ on E –

〈ϕ, P ∗r µ〉 = 〈Prϕ, µ〉 = 〈Prϕ, lim
n→∞

R∗Tnν〉

= lim
n→∞

1

Tn
〈Prϕ,

∫ Tn

0
P ∗s ν ds〉

= lim
n→∞

1

Tn
〈ϕ,
∫ Tn+r

r
P ∗s ν ds〉

= lim
n→∞

( 1

Tn
〈ϕ,
∫ Tn

0
P ∗s ν ds〉+

1

Tn
〈ϕ,
∫ Tn+r

Tn

P ∗s ν ds〉 − 1

Tn
〈ϕ,
∫ r

0
P ∗s ν ds〉

)
= 〈ϕ, µ〉.

Since this holds for all ϕ ∈ Cb(E) it follows that P ∗r µ = µ and the theorem is proved.

Corollary 4.60. If (Pt) is Feller and for some ν ∈ M1(E) and a some sequence Tn ↑ ∞ the
sequence R∗Tnν, n ∈ N is tight, then (Pt) has at least one invariant probability measure.

Proof. Prohorov’s Theorem (which is well-known from WT2!) implies that any tight family of
probability measures on a Polish space contains a weakly convergent subsequence. Therefore
the claim follows from Theorem 4.59.

Note that the previous corollary implies that any Feller transition function on a compact
space E admits at least one invariant probability measure (since in that case M1(E) is tight).
In the non-compact case however, an invariant probability measure µ need not exist.

We first apply the Krylov-Bogoliubov Theorem to Markov processes on Rd which are gener-
ated by stochastic differential equations. We will formulate sufficient conditions for the existence
of an invariant probability measure in terms of a Lyapunov function. In the qualitative theory
of ordinary differential equations, Lyapunov functions are nonnegative functions V on the state
space such that lim|x|→∞ V (x) = ∞ and such that V decreases along solution trajectories out-
side some bounded set K. Therefore solutions have to enter K eventually and therefore the ode
has some kind of stability property. The situation is similar in the stochastic case. Due to the
stochastic nature of the system we cannot expect the solutions to decrease almost surely but
only on average, i.e. V applied to a solution is a supermartingale as long as it stays outside a
compact set K. Let us formulate the precise assumptions.

Theorem 4.61. Consider the stochastic differential equation

dXt = b(Xt) dt+
m∑
k=1

σk(Xt) dW k
t ,

and assume that Assumption (H) from Chapter 2 is satisfied (so existence and uniqueness of a
solution is ensured by Theorem 2.27). Let L be the operator defined in Theorem 2.40, i.e.

(Lf)(x) = 〈b(x),∇f(x)〉+
1

2

d∑
i,j=1

m∑
k=1

σik(x)σjk(x)
∂2f

∂xi∂xj
(x)

for f ∈ C2(Rd). Let (Pt) be the Feller semigroup associated to the solution (see Proposition
4.30).
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Assume that there exists a nonnegative function V ∈ C2(Rd) such that

sup
|x|≥R

LV (x) =: −AR → −∞ as R→∞.

Then (Pt) has at least one invariant probability measure.

Proof. The proof is adapted from [Kh12], p80. Take any x ∈ Rd and let φt(x) be the solution
starting at x. Let τn := inf{t ≥ 0 : |φt(x)| ≥ n} and τn(t) := τn ∧ t. Then, by Theorem 2.40,

EV
(
φτn(t)(x)

)
− V (x) = E

∫ τn(t)

0
LV (φu(x)) du.

We estimate

LV (φu(x)) ≤ −AR1l[R,∞)(φu(x)) + sup
y∈Rd

LV (y),

so

ARE
∫ τn(t)

0
1l[R,∞)(φu(x)) du ≤ c1t+ c2,

where c1 = supy∈Rd LV (y) and c2 = V (x). Since limn→∞ τn(t) = t, we get

1

t

∫ t

0
Pu
(
x,Bc(0, R)

)
du ≤ c1

AR
+

c2

ARt
. (4.4.1)

Since limR→∞AR = ∞, the assumptions of the Krylov-Bogoliubov Theorem hold and hence
there exists an invariant probability measure.

Remark 4.62. Even though the previous theorem does not provide a formula for an invariant
probability measure π, we can actually obtain some of its properties from the proof. If π is any
limit point of the probability measures defined by the left hand side of (4.4.1) (which implies
that π is invariant), then we get

π
(
B(x,R)

c) ≤ c1

AR
.

If the AR go to infinity sufficiently quickly, then we see that π has finite moments.

It is not always easy to find a Lyapunov function. In some cases, the particular Lyapunov
function V (x) = |x|2 works. Here is an example.

Example 4.63. In the set-up of the previous theorem, define V (x) := |x|2 for x ∈ Rd. Then
LV (x) = 2〈x, b(x)〉+tr

(
a(x, x)

)
, so if this function converges to −∞ as |x| → ∞, then an invari-

ant probability measure exists. If, for example, all σk are bounded, then lim|x|→∞〈x, b(x)〉 = −∞
is a sufficient condition for an invariant probability measure to exist.

4.5 Invariant measures: uniqueness

It turns out that coupling is a very efficient method to prove uniqueness of an invariant measure
as well as convergence of the transition probabilities to the invariant probability measure. We
saw that already in the case of Markov chains in WT1 or the course Stochastische Modelle.
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Definition 4.64. Let µ and ν be probability measures on the measurable space (Ω,F). Any
probability measure ξ on (Ω × Ω,F ⊗ F) for which the image of the projection map onto the
first resp. second coordinate equals µ resp. ν is called a coupling of µ and ν.

As before, we denote by

‖µ− ν‖TV := sup
A∈F
|µ(A)− ν(A)|

the total variation distance of µ and ν. It is easy to check that this is a norm on the space of
finite signed measures.

Proposition 4.65. Let (E, E) be a measurable space for which the diagonal ∆ := {(x, x) : x ∈
E} ∈ E ⊗ E (this is automatically true when E is a Polish space). Let µ and ν be probability
measures on (E, E). Then

‖µ− ν‖TV = inf{ξ(∆c)},

where the infimum is taken over all couplings ξ of µ and ν. There exists a coupling ξ0 for which
the infimum is attained (often called optimal coupling).

Proof. Let ξ be a coupling of µ and ν and let (X,Y ) be an E ×E-valued random variable with
law ξ defined on (Ω,F ,P). Then, for A ∈ E ,

µ(A)− ν(A) = P(X ∈ A)− P(Y ∈ A) ≤ P(X ∈ A, Y /∈ A) ≤ P(X 6= Y ) = ξ(∆c)

and therefore ‖µ − ν‖TV ≤ inf{ξ(∆c)}. For the proof that an optimal coupling exists (and its
explicit construction), the reader is referred to the literature.

Now we formulate a criterion in terms of couplings which is sufficient for uniqueness of an
invariant probability measure and which, moreover, guarantees convergence of the transition
probabilities in total variation.

Proposition 4.66. Let (E, E) be a measurable space for which the diagonal ∆ := {(x, x) : x ∈
E} ∈ E ⊗ E and let X be an E-valued Markov process. Assume that for each pair x, y ∈ E,
there exists a probability space (Ω,F ,P) and processes (Xx

t ) and (Xy
t ) whose laws coincide with

that of the Markov process started at x respectively y and which are coupled in such a way that
limt→∞ P(Xx

t = Xy
t ) = 1. If there exists an invariant probability measure π, then it is unique

and for each x ∈ E we have

lim
t→∞
‖P ∗t δx − π‖TV = 0. (4.5.1)

Proof. Note that uniqueness follows from (4.5.1). If π is an invariant probability measure and
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x ∈ E, then

‖π − P ∗t δx‖TV = sup
A∈E
|π(A)− (P ∗t δx)(A)|

= sup
A∈E

∣∣(P ∗t π)(A)− (P ∗t δx)(A)
∣∣

= sup
A∈E

∣∣ ∫
E

(P ∗t δy)(A)π(dy)− (P ∗t δx)(A)
∣∣

= sup
A∈E

∣∣ ∫
E

(P ∗t δy)(A)− (P ∗t δx)(A)π(dy)
∣∣

≤
∫
E

sup
A∈E

∣∣(P ∗t δy)(A)− (P ∗t δx)(A)
∣∣π(dy)

≤
∫
E

sup
A∈E

∣∣P(Xy
t ∈ A

)
− P

(
Xx
t ∈ A

)∣∣π(dy)

≤
∫
E

∣∣P(Xy
t 6= Xx

t

)∣∣π(dy)

so the claim follows using the assumption thanks to the dominated convergence theorem.

We will now formulate a similar proposition which instead of total variation convergence
yields only weak convergence. On the other hand, we do not require that the trajectories starting
at different initial conditions couple in the sense that they become equal but we require only
that they are close with high probability.

Proposition 4.67. Let (E, ρ) be a Polish space and let X be an E-valued Markov process.
Assume that for each pair x, y ∈ E, there exists a probability space (Ω,F ,P) and processes (Xx

t )
and (Xy

t ) whose laws coincide with that of the Markov process started at x respectively y and
which are coupled in such a way that ρ(Xx

t , X
y
t ) converges to 0 in probability as t→∞. If there

exists an invariant probability measure π, then it is unique and for each x ∈ E we have

lim
t→∞

P ∗t δx = π,

where the limit is to be understood in the sense of weak convergence.

Proof. If π is an invariant probability measure, x ∈ E and f ∈ Lipb(E) with Lipschitz constant
L, then ∣∣∣ ∫

E
f(y)π(dy)−

∫
E
f(y)

(
P ∗t δx

)
(dy)

∣∣∣ =
∣∣∣ ∫

E
Ef(Xz

t )π(dz)−
∫
E
Ef(Xx

t )π(dz)
∣∣∣

≤
∫
E
E
∣∣f(Xz

t )− f(Xx
t )
∣∣π(dz)

≤
∫
E
E
(
(Lρ(Xz

t , X
x
t )
)
∧
(
2‖f‖∞

))
π(dz)

so the claim follows using the assumption thanks to the dominated convergence theorem.

Let us apply the previous proposition to the solution of a stochastic differential equation.
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Proposition 4.68. Consider the stochastic differential equation

dXt = b(Xt) dt+
m∑
k=1

σk(Xt) dW k
t ,

and assume that Assumption (H) from Chapter 2 is satisfied (so existence and uniqueness of a
solution is ensured by Theorem 2.27). Assume further that there exists some K < 0 such that

2〈b(x)− b(y), x− y〉+
m∑
k=1

|σk(x)− σk(y)|2 ≤ K|x− y|2

for all x, y ∈ Rd. Then the Markov semigroup associated to the sde has at most one invariant
probability measure π and in that case all transition probabilities converge to π weakly.

Proof. Proceeding as in the proof of Lemma 2.34 with p = 2, denoting the solution starting in
x by Xx

t and abbreviating Zt := |Xx
t −X

y
t |2 for given x, y ∈ Rd, we get for 0 ≤ s ≤ t:

Zt ≤ Zs +K

∫ t

s
Zu du+Nt −Ns,

where N ∈ M0
loc. Note that we cannot apply the (stochastic) Gronwall lemma since K < 0.

Applying a straightforward stopping argument yields

EZt ≤ EZs +K

∫ t

s
EZu du,

from which we easily obtain

EZt ≤ Z0eKt = |x− y|2eKt → 0,

since K < 0, so the assumptions of Proposition 4.67 are satisfied and so the claim follows.

The following example shows that the existence of an asymptotic coupling alone does not
guarantee existence of an invariant probability measure.

Example 4.69. Consider the one-dimensional ode y′ = b(y), where b(y) = e−y for y ≥ 0 and
arbitrary otherwise (but bounded, strictly positive and C∞(R)). If y0 ≥ 0, then yt = log(t+ey0),
t ≥ 0 is the unique solution of the equation, so all solutions (also those starting at negative
values) converge to +∞ as t → ∞. In particular, there does not exist an invariant probability
measure. On the other hand the difference of any pair of solutions with different initial conditions
converges to 0 as t→∞.

Our next aim is to establish the classical criteria for the uniqueness of an invariant proba-
bility measure (i.e. those which do not involve coupling). We essentially follow Chapters 3 and
4 of [DZ96].

Definition 4.70. A Markovian semigroup (Pt) is called

i) t0-regular if all probability measures Pt0(x, .), x ∈ E are mutually equivalent (i.e. mutually
absolutely continuous, i.e. have the same sets of measure 0),
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ii) strong Feller at t0 if Pt0(bE) ⊆ Cb(E),

iii) t0-irreducible if we have Pt0(x,B) > 0 for all x ∈ E and all non-empty open sets B.

Note that ii) and iii) require that we specify a topology on E while i) does not.

Remark 4.71. It follows from the semigroup property that if (Pt) is t0-regular resp. strong
Feller at t0 resp. t0-irreducible, then the same holds for t0 replaced by some s > t0. Note that
the irreducibility concept is rather strong. There exist (many) discrete time Markov chains with
countable state space E which are irreducible (in the sense that for each pair of states i, j ∈ E
there exists some n such that the n-step transition probability from i to j is strictly positive)
but which are not n-irreducible for any n ∈ N, e.g. the simple symmetric random walk.

Example 4.72. The Brownian semigroup (Pt) is t0-regular, strong Feller at t0 and t0-irreducible
for any t0 > 0.

Remark 4.73. We will show below that a stochastically continuous semigroup which is strong
Feller and irreducible has at most one invariant probability measure. We point out, that none
of these two properties (strong Feller and irreducible) alone suffices for this – even if it holds for
every t0 > 0. One example is E = {0, 1} with the identity semigroup, i.e. Pt(i, {i}) = 1 for all
t ≥ 0 and i ∈ {0, 1} which is strong Feller at t0 for each t0 ≥ 0 (since every real-valued function
on E is continuous) but not t0-irreducible for any t0 > 0 and which has more than one invariant
probability measure (in fact every probability measure on E is invariant). It is slightly more
difficult to construct an example of a stochastically continuous semigroup which is irreducible
but not strong Feller and which has more than one invariant probability measure (I will show
an example in class, don’t miss it!).

The following proposition is due to Khasminskii. The proof is adapted from [DZ96].

Proposition 4.74. If the Markov semigroup (Pt) is strong Feller at t0 > 0 and s0-irreducible,
then it is t0 + s0-regular.

Proof. Assume that for some x0 ∈ E and B ∈ E , Pt0+s0(x0, B) > 0. Since

Pt0+s0(x0, B) =

∫
E
Pt0(y,B)Ps0(x0, dy),

it follows that there exists some y0 ∈ E for which
(
Pt01lB

)
(y0) = Pt0(y0, B) > 0. By the strong

Feller property at t0 there exists some r0 > 0 such that Pt0(y,B) > 0 for all y ∈ B(y0, r0).

Consequently, for arbitrary x ∈ E,

Pt0+s0(x,B) =

∫
E
Pt0(y,B)Ps0(x,dy) ≥

∫
B(y0,r0)

Pt0(y,B)Ps0(x, dy) > 0,

since (Pt) is s0-irreducible, so the claim follows.

The following theorem (or a slight modifications of it) is known as Doob’s theorem.

Theorem 4.75. Let (Pt) be a stochastically continuous Markov semigroup with invariant prob-
ability measure π. If (Pt) is t0-regular for some t0 > 0, then π is the unique invariant probability
measure and

lim
t→∞
‖P ∗t δx − π‖TV = 0

for each x ∈ E.
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Proof. For a (not very short) proof, see [DZ96], p.43ff and Remark 4.2.3 in the same reference.
The proofs I have seen so far do not use coupling. On the other hand it should be possible to
find a coupling proof and apply Proposition 4.66 (note added in September 2014: recently such
a proof has been found in a paper by Kulik and Scheutzow). Note however that the coupling
proof will only work under the condition that an invariant probability measure exists (which we
do assume). It is easy to construct examples which are t0-regular and for which the assumptions
of Proposition 4.66 are not satisfied.

Remark 4.76. The readers who are interested in learning more about existence and uniqueness
of invariant measures and convergence of transition probabilities to the invariant measure are
referred to papers and lecture notes of Martin Hairer (Warwick) or the classical monograph of
Meyn and Tweedie.

4.6 Coupling, optimal transportation and Wasserstein distance

Let us add a few comments on the connection between coupling, optimal transportation and the
Wasserstein distance.

The optimal transportation problem was first formulated by the French mathematician Gas-
pard Monge in 1781. In today’s language it can be phrased as follows: given two probability mea-
sures µ and ν on a measurable space (E, E) and a measurable cost function c : E ×E → [0,∞),
find a transport map T : E → E which minimizes the transportation cost∫

E
c(x, T (x)) dµ(x)

subject to the constraint ν = µT−1, i.e. T is the cheapest way to transport goods which are
distributed according to µ (e.g. in factories) to customers which are distributed according to ν.

It is easy to see that an optimal transport may not exist or – even worse – there may not be
any admissible transport at all. A simple example is the case in which µ is a Dirac measure and
ν is not. Therefore it is more natural to allow transportation kernels rather than transportation
maps (i.e. allow that goods from the same factory can be shipped to different customers). So the
modified problem (formulated by the Russian mathematician Kantorovich) is to find a kernel K
on E × E which minimizes ∫

E

(∫
E
c(x, y)K(x,dy)

)
dµ(x),

subject to the constraint that ν(A) =
∫
EK(x,A) dµ(x) for each A ∈ E or to find a coupling ξ

of µ and ν which minimizes ∫
E×E

c(x, y) dξ(x, y). (4.6.1)

Note that at least on nice spaces these two formulations are equivalent: each kernel K as above
defines a coupling ξ := µ ⊗K (this is always true) and conversely, if E is a Polish space, then
each probablity measure ξ on E × E can be disintegrated in the form ξ = µ ⊗ K (cf. WT2:
section on regular conditional probabilities).

Note that if we choose c(x, y) = 1 if x 6= y and c(x, y) = 0 otherwise, then the coupling
ξ which minimizes the integral in (4.6.1) is precisely the one for which the expression equals
the total variation distance of µ and ν. Other choices of cost functions c lead to other distance
measures of probability spaces.
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Definition 4.77. Let (E, ρ) be a separable metric space, p ≥ 1 and define

Mp
1(E) := {µ ∈M1(E) :

∫
E
ρ(x, x0)p dµ(x) <∞ for some x0 ∈ E}.

Wp(µ, ν) :=
(

inf
ξ

∫
E×E

ρ(x, y)p dξ(x, y)
)1/p

is called the p-th Wasserstein distance of µ and ν in Mp
1(E).

Note that the setMp
1(E) is independent of the choice of x0 (by the triangle inequality). The

reason for requiring the space to be separable is only to guarantee that ρ is jointly measurable.

It is not hard to show that on a bounded separable metric space Wp is a metric which induces
weak convergence. On a discrete space with ρ(x, y) = 1 if x 6= y and ρ(x, y) = 0 otherwise, we
see that the first Wasserstein distance equals the total variation distance.
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Chapter 5

Appendix

The following Monotone class theorem (also called Dynkin class theorem) is important. A good
reference is the monograph [Sh88].

Theorem 5.1 (Monotone class theorem). Let K be a multiplicative family of bounded real-
valued functions on a nonempty set S, i.e. f, g ∈ K implies fg ∈ K. Let S := σ(K). If V is a
linear space of real-valued functions on S satisfying

i) 1l ∈ V ,

ii) (fn) ⊂ V, 0 ≤ f1 ≤ ... ↑ f, f bounded, then f ∈ V , and

iii) K ⊆ V ,

then V ⊇ bS, where bS denotes the set of all bounded and measurable function on S.

Proof. Step 1. (according to [Sh88]):

We show that V is automatically closed with respect to uniform convergence:

(fn) ⊂ V, lim
n→∞

fn = f unif. ⇒ f ∈ V.

To see this, let ‖.‖ be the supremum norm on the set of bounded real-valued functions on
S. Switching to a sub-sequence if necessary we can and will assume that the sequence εn :=
‖fn+1 − fn‖ is summable. Let an := εn + εn+1 + ... and gn := fn − an + 2a1. Then gn ∈ V
by i) and the fact that V is a linear space. The sequence (gn) is uniformly bounded and
gn+1 − gn = fn+1 − fn + εn ≥ 0 and g1 = f1 + a1 ≥ 0. Now ii) implies that g := limn→∞ gn ∈ V
and so is f = g − 2a1.

Step 2. (according to [EK86]):

Let f ∈ K and assume that F : R → R is continuous. On each bounded interval, F is
the uniform limit of polynomials and hence F (f) ∈ V due to Step 1. For a ∈ R, f ∈ K
and f (n) := (1 ∧ (f − a) ∨ 0)1/n, n ∈ N. Then f (n) ∈ K and 0 ≤ f (1) ≤ ... ≤ 1l and hence
1{f>a} = limn→∞ f

(n) ∈ K by ii). In the same way, we obtain for each m ∈ N, f1, ..., fm ∈ K
and a1, ..., am ∈ R that 1l{f1>a1,...,fm>am} ∈ K (to see this let f (n) := Πm

i=1(1 ∧ (fi − ai) ∨ 0)1/n

and apply Weierstrass’ approximation theorem to F ∈ C(Rm,R)). The set of all A ⊆ S for
which 1lA ∈ K is a Dynkin class which thus contains the family U of all sets of the form
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{f1 > a1, ..., fm > am} with f1, ..., fm ∈ K which is a ∩-stable generator of S. Therefore
1lA ∈ K for every A ∈ S. Since every bounded and S-measurable function is the uniform limit
of simple S-measurable functions the claim follows again by Step 1.

Here is a version of Kolmogorov’s continuity theorem. Here, |.|1 and |.|∞ denote the l1-norm
resp. the maximum norm on Rd.

Theorem 5.2. Let Θ = [0, 1]d and let Zx, x ∈ Θ be a stochastic process with values in a
separable and complete metric space (E, ρ). Assume that there exist a, b, c > 0 such that for all
x, y ∈ [0, 1]d, we have

E ((ρ(Zx, Zy))
a) ≤ c|x− y|d+b

1 .

Then Z has a continuous modification Z̄. For each κ ∈ (0, b/a), there exists a random variable

S such that E(Sa) ≤ cd2aκ−b

1−2aκ−b
and

sup
{
ρ(Z̄x(ω), Z̄y(ω)) : x, y ∈ [0, 1]d, |x− y|∞ ≤ r

}
≤ 2d

1− 2−κ
S(ω)rκ (5.0.1)

for each r ∈ [0, 1]. In particular, for all u > 0, we have

P

{
sup

x,y∈[0,1]d
ρ(Z̄x, Z̄y) ≥ u

}
≤
(

2d

1− 2−κ

)a cd2aκ−b

1− 2aκ−b
u−a. (5.0.2)

Proof. For n ∈ N define

Dn := {(k1, . . . , kd) · 2−n; k1, . . . kd ∈ {1, . . . , 2n}}
ξn(ω) := max{ρ(Zx(ω), Zy(ω)) : x, y ∈ Dn, |x− y| = 2−n}.

The ξn, n ∈ N are measurable since (E, ρ) is separable. Further,

|{x, y ∈ Dn : |x− y| = 2−n}| ≤ d · 2dn.

Hence, for κ ∈ (0, ba),

E
( ∞∑
n=1

(2κnξn)a
)

=
∞∑
n=1

2κnaE(ξan) ≤
∞∑
n=1

2κnaE

( ∑
(x,y)∈D2

n,|x−y|=2−n
(ρ(Zx(ω), Zy(ω))a

)

≤
∞∑
n=1

2κna · d · 2dn · c · 2−n(d+b) = cd
∞∑
n=1

2−n(b−aκ) = cd2aκ−b

1−2aκ−b
<∞.

Hence, there exists Ω0 ∈ F, P(Ω0) = 1 such that

S(ω) := sup
n≥1

{
2κnξn(ω)

}
<∞ for all ω ∈ Ω0.

Further,

E(Sa) ≤ E

( ∞∑
n=1

(2κnξn)a

)
≤ cd2aκ−b

1− 2aκ−b
.

Let x, y ∈
∞⋃
n=1

Dn be such that |x− y|∞ ≤ r < 2−m, where m ∈ N0. There exists a sequence

x = x1, x2 . . . , xl = y
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in
∞⋃

n=m+1
Dn, such that for each i = 1, . . . l−1 there exists n(i) ≥ m+1 which satisfies xi, xi+1 ∈

Dn(i) and |xi − xi+1| = 2−n(i) and

|{i ∈ {1, . . . , l − 1} : n(i) = k}| ≤ 2d for all k ≥ m+ 1.

For ω ∈ Ω0 and 0 < r < 1 with 2−m−1 ≤ r < 2−m, we get

sup{ρ(Zx(ω), Zy(ω));x, y ∈
∞⋃
n=1

Dn, |x− y|∞ ≤ r}

≤ 2d
∞∑

n=m+1

ξn(ω) ≤ 2dS(ω)
∞∑

n=m+1

2−κn

= 2−κ(m+1) 2d

1− 2−κ
S(ω) ≤ 2d

1− 2−κ
S(ω)rκ,

showing that x 7→ Zx(ω) is uniformly continuous on ∪∞n=1Dn for each ω ∈ Ω0 and can therefore
be extended to a continuous map Z̄(ω) : Θ → E since (E, ρ) is complete. Clearly, Z̄ satisfies
(5.0.1) and – using Chebychev’s inequality – (5.0.2). It remains to show that Z̄ is a modification
of Z. To see this, fix x ∈ Θ and let xm be a sequence in ∪∞n=1Dn which converges to x. Then
Zxm converges to Zx in probability by assumption and to Z̄x almost surely (namely on Ω0) and
hence also in probability. Since limits in probability are unique it follows that Zx = Z̄x almost
surely, so Z̄ is a modification of Z and the theorem is proved.

Remark 5.3. Observe that Kolmogorov’s theorem contains three statements: the existence of
a continuous modification, an upper bound for the modulus of continuity and an upper bound
on the tails of the diameter of the range of the continuous modification. Note that the theorem
states that the continuous modification is automatically almost surely Hölder continuous with
exponent κ. If the index set in Theorem is Rd instead of [0, 1]d, then the statement about the
existence of a κ-Hölder modification remains unchanged but the quantitative estimates do not
necessarily hold.
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