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1 Notations, conventions and known results

Let (M,ω) be a closed symplectic manifold such that ω|π2(M) = 0. Let J be a smooth ω-compatible
almost complex structure on M , meaning that

gJ(ξ, η) := ω(Jξ, η), ∀ξ, η ∈ TxM, ∀x ∈M,

is a Riemannian metric on M . The associated norm is denoted by | · |J . We denote by XH the
Hamiltonian vector field associated to a Hamiltonian H ∈ C∞(M), that is

ω(XH , ·) = dH.

The Hamiltonian action functional on the space of contractible loops C∞contr(T,M) associated to
a Hamiltonian H ∈ C∞(T×M) has the form

AH(x) :=
∫

D
x̄∗(ω) +

∫
T
H(t, x(t)) dt,

where x̄ ∈ C∞(D,M) is such that x̄|∂D = x. The first integral does not depend on the choice of
the extension x̄ of x because ω vanishes on π2(M). The critical points of AH are precisely the
elements of P(H), the set of contractible 1-periodic orbits of XH . By Ascoli-Arzelà theorem,
P(H) is a compact subset of C∞contr(T,M).

The space C∞(R×T,M) is endowed with the C∞loc topology, which is metrizable and complete.
We shall identify C∞(R× T,M) with C∞(R, C∞(T,M)) and we use the notation

u(s) = u(s, ·) ∈ C∞(T,M), ∀s ∈ R.

The additive group R acts on C∞(R× T,M) by translations

(σ, u) 7→ τσu, where (τσu)(s) := u(σ + s).

The L2-negative gradient equation for the functional AH is the Floer equation

∂su+ J(u)
(
∂tu−XH(t, u)

)
= 0. (1)

If u is a solution of (1), then the function s 7→ AH(u(s, ·)) is decreasing and

lim
s→−∞

AH(u(s, ·))− lim
s→+∞

AH(u(s, ·)) = E(u) :=
∫

R×T

∣∣∂su∣∣2J ds dt.
It might also be useful to recall that u is a solution of (1) and d

dsAH(u(s, ·))
∣∣
s=s0

= 0 for some
s0 ∈ R, then u is a trivial cylinder, meaning that u(s, t) = x(t) with x ∈ P(H) (see [HZ94,
Chapter 6, Lemma 2]).

Now let H ∈ C∞(R× T×M) be such that ∂sH has compact support and set

H−(t, x) := H(−s, t, x) and H+(t, x) := H(s, t, x) for s large.
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If u solves the s-dependent Floer equation

∂su+ J(u)
(
∂tu−XH(s, t, u)

)
= 0, (2)

then s 7→ AH(s,·,·)(u(s, ·)) is decreasing for |s| large and, for every s0 < s1,

AH(s0,·,·)(u(s0))− AH(s1,·,·)(u(s1)) =
∫

[s0,s1]×T

∣∣∂su∣∣2J ds dt− ∫
[s0,s1]×T

∂sH(s, t, u(s, t)) ds dt. (3)

It follows that

lim
s→−∞

AH−(u(s, ·))− lim
s→+∞

AH+(u(s, ·)) = E(u)−
∫

R×T
∂sH(s, t, u(s, t)) ds dt.

Set
U (H) := {u ∈ C∞(R× T,M) | u is a solution of (2) with E(u) <∞} .

We recall that a subset U of C∞(R×T,M) is said to be bounded if for every multi-index α ∈ N2,
|α| ≥ 1, there holds

sup
u∈U

|∂α1
s ∂α2

t u|J <∞.

Bounded subsets are relatively compact in the C∞loc topology. The following result is a simple
generalization of [HZ94, Chapter 6, Corollary 1 and Proposition 11]:

Proposition 1.1. Let H ∈ C∞(R×T×M) be such that ∂sH has compact support. Then U (H)
is a bounded closed subset of C∞(R× T,M). Moreover, if u ∈ U (H) then the set

α- lim(u) :=
{

lim
n→∞

τsn
u | sn → −∞ is such that τsn

u converges
}

is a non-empty, compact and connected subset of U (H−) which consists of trivial cylinders of the
form v(s, t) = x(t) for x ∈P(H−).

Given z ∈ R× T, we denote by

evz : C∞(R× T,M)→M, evz(u) := u(z)

the evaluation map at z. Denote by Ȟ∗ the Alexander-Spanier cohomology functor. The following
result is proved by a simple modification of the arguments of [HZ94, Chapter 6, pages 245-249]:

Proposition 1.2. For every z ∈ R× T the homorphism(
evz|U (H)

)∗ : H∗(M) ∼= Ȟ∗(M)→ Ȟ∗(U (H))

which is induced by the map
evz|U (H) : U (H)→M

is injective. In particular, the above map is surjective.

Propositions 1.1 and 1.2 can be applied in particular to Hamiltonians H ∈ C∞(T×M) which
do not depend on s. It is in this generality that they are proved in [HZ94, Chapter 6]. In this case,
U (H) is translation-invariant. Translations define a continuous flow on the metric space U (H)

τ : R×U (H)→ U (H), τ(σ, u) := τσu,

whose equilibrium points are precisely the trivial cylinders u(s, t) = x(t) with x ∈ P(H). The
flow τ is gradient-like with respect to the continuous function

aH : U (H)→ R, a(u) := AH(u(0, ·)),

meaning that
aH
(
τσ′u

)
≤ aH

(
τσu
)
, if σ′ > σ,

and the inequality is strict whenever u is not an equilibrium point of the flow.
We recall the following general fact about gradient-like flows:
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Theorem 1.3. Let U be a compact metric space and let τ be a continuous flow on U which is
gradient-like with respect to the continuous function a : U → R. Then for every α ∈ Ȟ∗(U ),
α 6= 0, the level

c(α, a,U ) := inf
{
λ ∈ R | the image of α by the homorphism Ȟ∗(U )→ Ȟ∗({a < λ}) is non-zero

}
.

is such that there exists an equilibrium point x ∈ U for τ for which a(x) = c(α). Furthermore, τ
has at least

cup-length (U ) + 1

equilibrium points.
needs clarifi-
cationRemark 1.4. In particular,

c(1, a,U ) = min
U

a.

There are also other possible definitions for critical levels which are associated to cohomology
classes (as sup of something). But maybe they can be reduced to these ones by considering −a.

2 The minimal selector

Let H ∈ C∞(T × M) be a Hamiltonian. We would like to define an action selector for the
Hamiltonian H.

The definition. Let K (H) be the set of s-dependent Hamiltonians K ∈ C∞(R×T×M) such
that ∂sK has compact support and K− = H.

Let K ∈ K (H) and assume that ∂sK is supported in [−s0, s0] × T ×M . If u ∈ U (K), then
the function s 7→ AH(u(s)) is decreasing and bounded on (−∞,−s0]. Therefore, the function

a−H : U (K)→ R, a−H(u) := lim
s→−∞

AH(u(s)) = sup
s≤−s0

AH(u(s)),

is well-defined. Being the supremum of a family of continuous functions, the function a−H is lower
semi-continuous. As such, it has a minimum on the compact space U (K).

Definition 2.1. Let H ∈ C∞(T×M) and K ∈ K (H). We set

A−(K) := min
u∈U (K)

a−H(u), A(H) := sup
K∈K (H)

A−(K).

The number A−(K) is a critical value of AH . Indeed, if a−H(u) = A−(K) then every v in the set
α-lim(u) (see Proposition 1.1) is of the form v(s, t) = x(t) with x ∈ P(H) and a−H(u) = AH(x).
Since the set of critical values of AH is closed, also A(H) is a critical value of the same functional.
We refer to the function

A : C∞(T×M)→ R

as to the minimal action selector.

First properties. The first easy properties of the action selector A are:

A(H) = 0, if H ≡ 0, (4)
A(H + c) = A(H) + c, ∀c ∈ R, ∀H ∈ C∞(T×M). (5)

Indeed, the first property follows from the fact that for the Hamiltonian H ≡ 0, P(H) consists
of all the constant loops, which have action zero. The second property follows from the identities
a−H+c = a−H + c and K (H + c) = K (H) + c. Less trivial is the following:

Proposition 2.2 (Monotonicity). If H0, H1 ∈ C∞(T×M) are such that H0 ≥ H1, then A(H0) ≥
A(H1).
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Proof. Fix ε > 0. We shall prove that

sup
K0∈K (H0)

min
U (K0)

a−H0
≥ sup
K1∈K (H1)

min
U (K1)

a−H1
− ε, (6)

and the thesis will follow from the arbitrariness of ε. Proving (6) is equivalent to showing that for
every K1 in K (H1) there exists K0 in K (H0) such that

min
U (K0)

a−H0
≥ min

U (K1)
a−H1
− ε. (7)

Up to a translation, we may assume that

K1(s, t, x) = H1(t, x), ∀s ≤ 0.

Let ϕ ∈ C∞(R) be a real function such that ϕ′ ≥ 0, ϕ(s) = 0 for s ≤ 0 and ϕ(s) = 1 for s ≥ 1.
For λ ∈ R we define Kλ

0 ∈ K (H0) by

Kλ
0 (s, t, x) := ϕ(s− λ)K1(s, t, x) +

(
1− ϕ(s)

)
H0(t, x).

We claim that there exists λ ≤ −1 such that (7) holds with K0 = Kλ
0 . Arguing by contradiction,

we assume that for every λ ≤ −1 there is a uλ in U (Kλ
0 ) such that

a−H0
(uλ) < min

U (K1)
a−H1
− ε. (8)

Let (λn) ⊂ (−∞,−1] be such that λn → −∞. Up to the replacement of (λn) with a subsequence,
we may assume that (uλn

) converges to some u in U (K1).
We fix a number s ≤ 0. If λn ≤ s− 1, then by the action-energy identity (3)

a−H0
(uλn

) ≥ AH0

(
uλn

(λn)
)

= AH1

(
uλn(s)

)
+
∫

[λn,s]×T

∣∣∂suλn

∣∣2
J
ds dt−

∫
[λn,s]×T

ϕ′(s− λn)(H1 −H0)(t, uλn) ds dt

≥ AH1

(
uλn(s)

)
,

where we have used the hypothesis H1 −H0 ≤ 0. By taking the limit for n→∞, we deduce that

lim inf
n→∞

a−H0
(uλn) ≥ AH1

(
u(s)

)
,

and by taking the supremum over all s ≤ 0,

lim inf
n→∞

a−H0
(uλn

) ≥ a−H1
(u).

Together with (8), this implies the chain of inequalities

a−H1
(u) ≤ lim inf

n→∞
a−H0

(uλn) ≤ min
U (K1)

a−H1
− ε,

which is the desired contradiction because u ∈ U (K1).

Remark 2.3. The hypothesis of Proposition 2.2 can be somehow weakened: it is enough to assume
that ∫

T
max
x∈M

(
H1(t, x)−H0(t, x)

)
dt ≤ 0.

Can this be useful? For instance, this implies that the averaging process

H(x) :=
∫

T
H(t, x) dt, ∀x ∈M,

does not change the value of the action selector: A(H) = A(H).
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Monotonicy and property (5) have the following standard consequence:

Proposition 2.4. The action selector A is 1-Lipschitz with respect to the sup-norm on C∞(T×
M): ∣∣A(H1)−A(H0)

∣∣ ≤ ‖H1 −H0‖∞, ∀H0, H1 ∈ C∞(T×M).

Proof. If we apply Proposition 2.2 to the inequalities

H0 − ‖H1 −H0‖∞ ≤ H1 ≤ H0 + ‖H1 −H0‖∞,

we find
A
(
H0 − ‖H1 −H0‖∞

)
≤ A(H1) ≤ A

(
H0 + ‖H1 −H0‖∞

)
.

Together with (5), these inequalities take the form

A(H0)− ‖H1 −H0‖∞ ≤ A(H1) ≤ A(H0) + ‖H1 −H0‖∞,

which is equivalent to the thesis.

Remark 2.5. The strongest version of Proposition 2.2 mentioned in Remark 2.3 implies the finer
estimates∣∣A(H1)−A(H0)

∣∣ ≤ sup
x∈M

∣∣∣∣∫
T

(
H1(t, x)−H0(t, x)

)
dt

∣∣∣∣ ≤ ∫
T

sup
x∈M

∣∣H1(t, x)−H0(t, x)
∣∣ dt.

An equivalent definition. Given K ∈ K (H), consider the set

Uess(K) :=
{
u ∈ C∞(R× T,M) | u = lim

n→∞
τsn

un where sn → −∞ and (un) ⊂ U (K)
}
.

As we show below, Uess(K) is a compact τ -invariant subspace of U (H). It is the space of cylin-
ders in U (H) which are essential with respect to K, in the sense that they survive through the
homotopy K. We shall prove that the minimal action selector A can be expressed as:

A(H) = sup
K∈K (H)

min
Uess(K)

aH . (9)

We begin with the following:

Proposition 2.6. The set Uess(K) is a compact τ -invariant subspace of U (H).

Proof. Let u = lim τsnun be an element of Uess(K). Since v = τsnun solves the equation

∂sv + J(v)
(
∂tv −XτsnK

(s, t, v)
)

= 0,

and τsnK converges to K− = H, u is a solution of the s-independent Floer equation defined by
H. Moreover,

E(u) ≤ lim inf
n→∞

E(τsn
un) = lim inf

n→∞
E(un) ≤ sup

v∈U (K)

E(v) < +∞.

Therefore, Uess(K) is contained in U (H). If σ ∈ R, then

τσu = lim
n→∞

τsn+σun

is in Uess(K), which is then τ -invariant. If

vh = lim
n→∞

τsh
n
uhn, where lim

n→∞
shn = −∞, ∀h ∈ N,

and (vh) converges to v ∈ C∞(R× T,M), a standard diagonal argument implies the existence of
a diverging sequence (nh) ⊂ N such that

lim
h→∞

dist
(
τsh

nh
uhnh

, vh
)

= 0, lim
h→∞

shnh
= −∞,

where dist is a distance on C∞(R×T,M). Therefore τsh
nh
uhnh

converges to v, which hence belongs
to Uess(K). This shows that Uess(K) is a closed subspace of U (H). Since the latter space is
compact, so is Uess(K).
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Formula (9) is an immediate consequence of the following:

Proposition 2.7. A−(K) = minU (K) a
−
H = minUess(K) aH .

Proof. Let u ∈ U (K) be a minimizer of a−H and let v(s, t) = x(t), x ∈ P(H), be an element of
α-lim(u). Then

aH(v) = AH(x) = a−H(u),

so
min

Uess(K)
aH ≤ aH(v) = a−H(u) = min

U (K)
a−H .

Conversly, let v ∈ Uess(K) be a minimizer of aH . Then

v = lim
n→∞

τsn
un, where sn → −∞ and (un) ⊂ U (K).

Up to a subsequence, we may assume that (un) converges to some u ∈ U (K). If s is small enough,
then

AH(u(s)) = lim
n→∞

AH(un(s)) ≤ lim
n→∞

AH(un(sn)) = lim
n→∞

aH(τsn
un) = aH(v).

By taking the limit for s→ −∞, we find

a−H(u) ≤ aH(v),

which implies that
min

U (K)
a−H ≤ a

−
H(u) ≤ aH(v) = min

Uess(K)
aH .

The space Uess(K) satisfies the analogue of Proposition 1.2:

Proposition 2.8. For every z ∈ R× T the homorphism(
evz|Uess(K)

)∗ : H∗(M) ∼= Ȟ∗(M)→ Ȟ∗(Uess(K))

which is induced by the map
evz|Uess(K) : Uess(K)→M

is injective. In particular, the above map is surjective.

Proof. Let W ⊂ C∞(R × T,M) be a neighborhood of Uess(K). We claim that if s0 ∈ R is small
enough then τs0U (K) ⊂ W : if not, we could find sequences sn → −∞ and (un) ⊂ U (K) such
that τsn

un is not in W . But by compactness, (τsn
un) has a converging subsequence, whose limit is

by definition an element of Uess. Therefore this subsequence must eventually belong to W , which
is a contradiction.

If s0 is as above, we denote by

i : Uess ↪→ W and j : τs0U (K) ↪→ W

the inclusion mappings. Then, if z = (s, t) ∈ R× T and z′ = (s + s0, t), we get the commutative
diagram

Ȟ∗(W )

i∗

��

j∗ // Ȟ∗
(
τs0U (K)

) τ∗s0 // Ȟ∗
(
U (K)

)

Ȟ∗
(
Uess(K)

)
Ȟ∗(M)

ev∗oo

ev∗z

hhPPPPPPPPPPPP
ev∗z

OO

ev∗
z′

77oooooooooooo

Proposition 1.2 and the fact that τ∗s0 is an isomorphism imply that (evz|τs0U (K))∗ is injective.
Then so is (evz|W )∗. Since this is true for every neighborhood W of Uess(K), the continuity of
Alexander-Spanier cohomology implies that the homomorphism (evz|Uess(K))∗ is injective.
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Autonomous Hamiltonians. Let H ∈ C∞(H) be an autonomous Hamiltonian. In this case,
the critical points of H are the constants orbits of XH , and in particular they are elements of
P(H). Moreover, the solutions of the Floer equation (1) which do not not depend on t, that is
u(s, t) = u(s), are the solutions of the ODE

u′(s) +∇H(u(s)) = 0,

so they are the negative-gradient flow lines of H. In general, the vector field XH could have other
non-constant contractible orbits and the Floer equation could have other t-dependent bounded
energy solutions, but when this does not happen it is easy to calculate the value of the minimal
action selector:

Proposition 2.9. Let H ∈ C∞(H) be an autonomous Hamiltonian. Assume that P(H) consists
only of constant orbits and that every solution of the Floer equation (1) with bounded energy does
not depend on t. Then

A(H) = min
M

H.

Proof. Since minM H is the minimal critical value of AH , we must show that for every K ∈ K (H)
there holds A−(K) ≤ minM H. Assume by contradiction that there is a K ∈ K (H) with

A−(K) > min
M

H.

By the hypothesis that U (H) is the set of gradient flow lines of H and by the characterization
of A−(K) of Proposition 2.7, we deduce that Uess(K) is a set of gradient flow lines of H which is
contained in {

x ∈M | H(x) ≥ A−(K)
}
 M.

But this violates the surjectivity of the map evz|Uess(K) of Proposition 2.8.
needs clarifi-
cationRemark 2.10. The hypothesis of the above proposition are satisfied when the autonomous Hamil-

tonian H is a Morse function, with a Morse-Smale gradient, and with dH which is C1-small. Is
it true also if we just ask that dH is C1-small?

The same conclusion holds under the following assumptions, which are neither stronger nor
weaker than those considered above:

Proposition 2.11. Let H ∈ C∞(H) be an autonomous Hamiltonian with exactly two critical
values. Assume also that XH has no non-constant contractible 1-periodic orbits. Then

A(H) = min
M

H.

Proof. In this case AH has exactly two critical values, minM H and maxM H. We must exclude
that for some K ∈ K (H) the minimum of aH on Uess(K) is maxM H. But since

max
Uess(K)

aH ≤ max
U (H)

aH = max
P(H)

AH = max
M

H,

the latter fact forces Uess(K) to consist only of the constant cylinders defined by the maximum
points of H. This violates the surjectivity of the evaluation map evz|Uess(K) of Proposition 2.8.

needs clarifi-
cationRemark 2.12. Is the following fact true? If the C1 norm of the smooth vector field X on the

compact manifold M is small enough, then X has no non-constant closed orbits of period 1 or
less. what else

should we
include
here?

Remark 2.13. One could also restrict the class K (H) by requiring that K(s, t) = 0 for s large
enough. In this case, removal of singularities shows that we are actually dealing with open discs
(or equivalently, punctured spheres), which are J-holomorphic near the origin and satisfy the Floer
equation on a collar of the boundary, which is equipped with cylindrical coordinates. These are
exactly the objects which are used in the PSS isomorphism. Notice also that the proof of Proposition
1.2 requires seeing the full cylinders as limits of longer and longer sausages: in the latter approach,
capping at the positive end becomes unnecessary.
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3 More general action selectors

Let H ∈ C∞(T×M) and K ∈ K (H). Let ξ be a non-zero cohomology class in H∗(M) ∼= Ȟ∗(M).
By Proposition 1.2, the cohomology mclass

ξK :=
(
ev|U (K)

)∗
ξ ∈ Ȟ∗

(
U (K)

)
,

is non-zero.

Definition 3.1. Set

A−(ξ,K) := inf
{
a ∈ R

∣∣∣ the image of ξK by the homomorphism

Ȟ∗(U (K))→ Ȟ∗
(
{u ∈ U (K)) | a−H(u) < a}

)
is non-zero

}
,

and
A(ξ,H) := sup

K∈K (H)

A−(ξ,K).

By the functoriality of Ȟ∗, the set which appears in the definition of A−(ξ,K) is an interval
which is unbounded from above.

Let us check that A−(ξ,K) is a critical value of AH . Since a−H(U (K)) is contained in the set
of critical values of AH and the latter set is closed, it is enough to prove that

A−(ξ,K) ∈ a−H(U (K)).

Arguing by contradiction, we can find ε > 0 such that[
A−(ξ,K)− ε, A−(ξ,K) + ε

]
∩ a−H(U (K)) = ∅.

Therefore,{
u ∈ U (K) | a−H(u) < A−(ξ,K) + ε

}
=
{
u ∈ U (K) | a−H(u) < A−(ξ,K)− ε

}
.

The above identity contradicts the definition of A−(ξ,K), which requires the image of ξK by the
homomorphism

Ȟ∗
(
U (K)

)
→ Ȟ∗

({
u ∈ U (K) | a−H(u) < A−(ξ,K) + ε

})
to be non-zero and its image by the homomorphism

Ȟ∗
(
U (K)

)
→ Ȟ∗

({
u ∈ U (K) | a−H(u) < A−(ξ,K)− ε

})
to be zero.

In the particular case ξ = 1, we have

A−(1,K) = min
u∈U (K)

a−H(u),

and we find the minimal action selector of the previous section: A(1, H) = A(H). to be com-
pleted
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