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Only references the most directly related to the contents of the course are cited below.

1. The N-body problem and its symmetries

The book [4] is an invaluable reference for the N -body problem. The article [13] is a
short, introductory version to the topic.

The other book of Arnold [3] is less specialized and provides an excellent, conceptual
introduction to the mathematical methods in classical mechanics, with a lot of geometric
insight. The appendices are particularly remarkable.

The article of Albouy-Chenciner [2] focuses on the symmetries of the N -body problem in
R
d, the corresponding reductions (generalizing the method of Lagrange for the 3-bordy

problem), and homographic solutions.

2. Homographic solutions

Again, we refer to the book [4], the article [2] and references therein.

3. The Lagrangian action and its minima

The PhD thesis of Venturelli [19] (in particular the introduction, the appendices, as well
of the first chapter) and the book of Young [20] provide us with some details about the
“well-known” facts about the Lagrangian action functional: weak lower semi-continuity,
differentiability, Gordon’s theorem, etc. See also [7].

The theorem of Marchal, which has become a corner point in the subject, is described
somewhat informally in [16] and with more details in Chenciner’s ICM address [7]; a
more general, equivariant form is in the article of Ferrario-Terracini [14].

4. The eight-shaped solution of the equal-mass three body problem

The article of Chenciner-Montgomery [11] gives the first proof of existence of an action
minimizing periodic orbit using a direct method. Chen [5] has improved the part of the
proof which shows that the minimizer is collision free.

5. The P12 family

This family relating the Eight to the Lagrange relative equilibrium is studied in vari-
ous articles : the starting (wonderful) intuition in [15], the neighborhood of the rela-
tive equilibrium in [8], the neighborhood of the Eight in [10] (relying on the numerical
computation of the monodromy matrix of the Eight), the whole P12 family, as well as
generalizations to other relative equilibria and other families of choreographies in [9] (the
continuity of the families is only known numerically).
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Problem sessions

Good references on the two-body problem are Arnold’s book or, for more details, Al-
bouy’s lectures [1].

Various properties of the global evolution of the flow of the N -body problem are studied
in [6], for example.

The given problem on periodic orbits in a perturbed Kepler problem is inspired by both
Moser’s paper [18] and [12] (which aims at finding quasiperiodic orbits). The book [4]
gives a good introduction to perturbation theory.

The shape sphere is described in full details in the first 10 pages of [17].
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réduction des homothéties dans le problème des n corps. Regul. Chaotic Dyn.,
3(3):93–106, 1998. J. Moser at 70 (Russian).

[7] A. Chenciner. Action minimizing solutions of the Newtonian n-body problem: from
homology to symmetry. In Proceedings of the International Congress of Mathemati-
cians, Vol. III (Beijing, 2002), pages 279–294, Beijing, 2002. Higher Ed. Press.
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