Bibliographic references for the course on Action minimizing periodic solutions of the *N*-body problem

Summer School in Cologne Hamiltonian Systems and Celestial Mechanics July 29–August 2, 2013

Jacques Féjoz

Only references the most directly related to the contents of the course are cited below.

1. The N-body problem and its symmetries

The book [4] is an invaluable reference for the N-body problem. The article [13] is a short, introductory version to the topic.

The other book of Arnold [3] is less specialized and provides an excellent, conceptual introduction to the mathematical methods in classical mechanics, with a lot of geometric insight. The appendices are particularly remarkable.

The article of Albouy-Chenciner [2] focuses on the symmetries of the N-body problem in \mathbb{R}^d , the corresponding reductions (generalizing the method of Lagrange for the 3-bordy problem), and homographic solutions.

2. Homographic solutions

Again, we refer to the book [4], the article [2] and references therein.

3. The Lagrangian action and its minima

The PhD thesis of Venturelli [19] (in particular the introduction, the appendices, as well of the first chapter) and the book of Young [20] provide us with some details about the "well-known" facts about the Lagrangian action functional: weak lower semi-continuity, differentiability, Gordon's theorem, etc. See also [7].

The theorem of Marchal, which has become a corner point in the subject, is described somewhat informally in [16] and with more details in Chenciner's ICM address [7]; a more general, equivariant form is in the article of Ferrario-Terracini [14].

4. The eight-shaped solution of the equal-mass three body problem

The article of Chenciner-Montgomery [11] gives the first proof of existence of an action minimizing periodic orbit using a direct method. Chen [5] has improved the part of the proof which shows that the minimizer is collision free.

5. The P_{12} family

This family relating the Eight to the Lagrange relative equilibrium is studied in various articles : the starting (wonderful) intuition in [15], the neighborhood of the relative equilibrium in [8], the neighborhood of the Eight in [10] (relying on the numerical computation of the monodromy matrix of the Eight), the whole P_{12} family, as well as generalizations to other relative equilibria and other families of choreographies in [9] (the continuity of the families is only known numerically).

PROBLEM SESSIONS

Good references on the two-body problem are Arnold's book or, for more details, Albouy's lectures [1].

Various properties of the global evolution of the flow of the N-body problem are studied in [6], for example.

The given problem on periodic orbits in a perturbed Kepler problem is inspired by both Moser's paper [18] and [12] (which aims at finding quasiperiodic orbits). The book [4] gives a good introduction to perturbation theory.

The shape sphere is described in full details in the first 10 pages of [17].

Jacques Féjoz fejoz@imcce.fr http://www.ceremade.dauphine.fr/~fejoz

References

- A. Albouy. Lectures on the two-body problem. In *Classical and celestial mechanics* (*Recife*, 1993/1999), pages 63–116. Princeton Univ. Press, Princeton, NJ, 2002.
- [2] A. Albouy and A. Chenciner. Le problème des n corps et les distances mutuelles. Invent. Math., 131(1):151–184, 1998.
- [3] V. I. Arnold. Mathematical methods of classical mechanics, volume 60 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1989. Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein, Corrected reprint of the second (1989) edition.
- [4] V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt. Mathematical aspects of classical and celestial mechanics, volume 3 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, third edition, 2006. Translated from the Russian original by E. Khukhro.
- [5] K.-C. Chen. On Chenciner-Montgomery's orbit in the three-body problem. Discrete Contin. Dynam. Systems, 7(1):85–90, 2001.
- [6] A. Chenciner. Collisions totales, mouvements complètement paraboliques et réduction des homothéties dans le problème des n corps. Regul. Chaotic Dyn., 3(3):93-106, 1998. J. Moser at 70 (Russian).
- [7] A. Chenciner. Action minimizing solutions of the Newtonian n-body problem: from homology to symmetry. In Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002), pages 279–294, Beijing, 2002. Higher Ed. Press.
- [8] A. Chenciner and J. Féjoz. The flow of the equal-mass spatial 3-body problem in the neighborhood of the equilateral relative equilibrium. *Discrete Contin. Dyn. Syst. Ser. B*, 10(2-3):421–438, 2008.
- [9] A. Chenciner and J. Féjoz. Unchained polygons and the N-body problem. Regul. Chaotic Dyn., 14(1):64–115, 2009.
- [10] A. Chenciner, J. Féjoz, and R. Montgomery. Rotating eights. I. The three Γ_i families. *Nonlinearity*, 18(3):1407–1424, 2005.
- [11] A. Chenciner and R. Montgomery. A remarkable periodic solution of the three-body problem in the case of equal masses. Ann. of Math. (2), 152(3):881–901, 2000.
- [12] J. Féjoz. Averaging the planar three-body problem in the neighborhood of double inner collisions. J. Differential Equations, 175(1):175–187, 2001.
- [13] J. Féjoz. Celestial Mechanics, chapter The N-body problem. Unesco, 2013.

- [14] D. L. Ferrario and S. Terracini. On the existence of collisionless equivariant minimizers for the classical n-body problem. *Invent. Math.*, 155(2):305–362, 2004.
- [15] C. Marchal. The family P_{12} of the three-body problem—the simplest family of periodic orbits, with twelve symmetries per period. *Celestial Mech. Dynam. Astronom.*, 78(1-4):279–298 (2001), 2000. New developments in the dynamics of planetary systems (Badhofgastein, 2000).
- [16] C. Marchal. How the method of minimization of action avoids singularities. *Celestial Mech. Dynam. Astronom.*, 83(1-4):325–353, 2002. Modern celestial mechanics: from theory to applications (Rome, 2001).
- [17] R. Moeckel, R. Montgomery, and A. Venturelli. From brake to syzygy. Arch. Ration. Mech. Anal., 204(3):1009–1060, 2012.
- [18] J. Moser. Regularization of Kepler's problem and the averaging method on a manifold. Comm. Pure Appl. Math., 23:609–636, 1970.
- [19] A. Venturelli. Application de la minimisation de l'action au problème des N corps dans le plan et dans l'espace. PhD thesis, Université D. Diderot – Paris VII, 2002.
- [20] L. C. Young. Lectures on the calculus of variations and optimal control theory. Foreword by Wendell H. Fleming. W. B. Saunders Co., Philadelphia, 1969.