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1 Introduction

Consider the map

f : θ1 = F (θ, r), r1 = G(θ, r).

The functions F and G are defined for θ ∈ R, r ∈]a, b[, and satisfy the
periodicity conditions

F (θ + 2π, r) = F (θ, r) + 2π, G(θ + 2π, r) = G(θ, r). (1)

After the identification θ + 2π ≡ θ, the domain of f can be interpreted as
an annulus or a cylinder. Let us think that it is a cylinder with vertical
coordinate r. We say that the map f has twist if

∂F

∂r
> 0,

and it is exact symplectic if the differential form r1dθ1 − rdθ is exact. This
means that there exists a smooth function H = H(θ, r) that is 2π-periodic
in θ and such that

r1dθ1 − rdθ = dH.

The above definitions have simple geometrical interpretations which will be
discussed later. The reversed inequality ∂F

∂r < 0 is also admissible as a twist
condition.

Exact symplectic twist maps play an important role in the qualitative
theory of Hamiltonian systems of low dimension. See [4, 7, 11, 26] for the
general theory and [3, 9, 17, 27, 34, 36, 37, 38] for applications. Typically
these maps appear in the study of systems of the type

q̇ =
∂H
∂p

, ṗ = −∂H
∂q

, (q, p) ∈ Rd,

in the cases

• 2 degrees of freedom and autonomous, d = 2 and H = H(q, p)

• 1 degree of freedom and time periodic, d = 1 and H = H(t, q, p) with
H(t + 2π, q, p) = H(t, q, p).

The second case is sometimes referred to as the case of 1.5 degrees of freedom.
The periodicity in time is usually employed to guarantee the periodicity of
the angle θ in the associated twist map. In this course we will show that
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twist maps are also useful in the study of Hamiltonian systems with one
degree of freedom but with general dependence on time. The key point will
be to change the domain of the map f : Instead of a cylinder we will work
on the horizontal strip −∞ < θ < ∞, a < r < b, without any periodicity
assumption on the angle θ. Before entering into the details we will discuss
some results at an intuitive (non-rigorous) level. This will be useful to
describe the contents of the course.

Let us start with the integrable twist map

T : θ1 = θ + ϕ(r), r1 = r,

where ϕ : [a, b] → R is a smooth function such that ϕ′ > 0. This map
has twist (∂F

∂r = ϕ′) and it is exact symplectic on the cylinder. To check
this last property we notice that r1dθ1 − rdθ = dΦ where Φ = Φ(r) is a
primitive of the function rϕ′(r). The function I(θ, r) = r is a first integral,
that is I(θ1, r1) = I(θ, r), and each circle r = r∗ is invariant under T . The
twist condition implies that the rotation number ω = ϕ(r∗) associated to
each of these circles increases with r∗. When the rotation number ω is
commensurable with 2π, say ω

2π = p
q in reduced form, then all orbits in the

invariant circle are periodic and satisfy θn+q = θn + 2πp, rn+q = rn. On the
contrary, when ω

2π is irrational, orbits are quasi-periodic with frequencies 2π
and ω. A key property of the map T is that many of its invariant sets persist
under small perturbations in the class of exact symplectic twist mappings.
This is a delicate theory because there are different cases depending on
the arithmetic properties of ω. Given a compact interval [ϕ−, ϕ+] with
ϕ(a+) < ϕ− < ϕ+ < ϕ(b−) and a small perturbation Tε of T in the class of
exact symplectic twist maps, then for each ω ∈ [ϕ−, ϕ+], ω commensurable
with 2π, there are at least two periodic orbits with rotation number ω. This
is a consequence of the Poincaré-Birkhoff theorem (see [2, 29]). In the case
where ω is not commensurable with 2π there are two possibilities: Either
the invariant curve associated to ω persists and all motions on this curve
are quasi-periodic with frequencies 2π and ω, or the invariant circle breaks
down and an invariant Cantor set appears. The dynamics of the Cantor set
is of Denjoy type and has rotation number ω. These are consequences of
KAM and Aubry-Mather theories (see [3, 21, 34]).
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In the above discussions it is essential that the perturbation Tε is exact
symplectic. In the cylinder r ∈]− 1, 1[ and for ε > 0 the map

Tε,1 : θ1 = θ + ϕ(r), r1 = (1− ε)r,

has no invariant set with rotation number ω 6= 0, and the map

Tε,2 : θ1 = θ + ϕ(r), r1 = r + ε,

has no invariant sets at all.
All the previously mentioned results can be derived from by now classical

theorems in the theory of twist maps. Let us now go to a less standard
situation and consider maps f on the strip −∞ < θ < +∞, r ∈]a, b[. In
particular the periodicity conditions on F and G as imposed before will in
general be dropped. The twist condition still makes sense and we replace the
concept of exact symplectic map in the cylinder with the following definition.
The map f on the strip is E-symplectic if the differential form r1dθ1 − rdθ
is exact and its primitive H = H(θ, r) is bounded on each region R× [A, B]
with a < A < B < b. Notice that now the function H is not periodic in θ and
so this boundedness condition is not automatic. The integrable twist map
T is E-symplectic because the function Φ is bounded on compact intervals.
The sets r = r∗, invariant under T , are now straight lines where the orbits
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move with increasing velocities as r∗ goes from a to b. The rotation number
is recovered from the limit

lim
|n|→∞

θn

n
, (2)

which exists for each orbit (θn, rn)n∈Z and coincides with ω = ϕ(r∗). As-
suming that the strip is wide enough, we will prove that there is still some
persistence of invariant sets for small perturbations of T in the class of E-
symplectic maps. In particular we will prove the existence of complete orbits
which are bounded in the variable r. However, it does not seem possible to
associate a rotation number to these sets. As an example consider for ε > 0
the map

Tε,3 : θ1 = θ + r, r1 = r +
ε

1 + θ2
1

,

where r ∈]a, b[ for 0 < a < b. All orbits of this map are strictly increasing in
θ and so rotation numbers cannot exist, at least if they are understood in the
sense of (2). On the other hand this map is an E-symplectic perturbation
of T . Actually, r1dθ1 − rdθ = dH with

H(θ, r) =
1
2

r2 + ε arctan θ1.

These results on perturbations of the map T have many consequences. As an
application to mechanical problems we can consider the following ping-pong
game. Two players move their rackets (≡ parallel moving walls) according
to known protocols, say x = ρ1(t) and x = ρ2(t) with ρ1(t) < ρ2(t). The
ball is hit alternatively by the players and all impacts are assumed to be
perfectly elastic.

x = ρ1(x) x = ρ2(t)
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In the absence of gravity the motion of the ball is described by a Hamil-
tonian system with one degree of freedom defined by

H(t, q, p) =
1
2

p2 + V (t, q) with V (t, q) =
{

0 : ρ1(t) ≤ q ≤ ρ2(t)
+∞ : otherwise

.

The question is to decide whether the velocity of the ball remains bounded or
can become arbitrarily large. For simplicity we assume that one of the walls
is fixed, say ρ1 ≡ 0. Then we can consider the successor map (t0, v0) 7→
(t1, v1), associating consecutive impacts against the fixed wall. Times of
impact are t0, t1 and velocities after impacts are v0 ≥ 0, v1 ≥ 0. Ideally
we would like to determine if sup vn < +∞ or sup vn = +∞, for each
sequence of iterates (tn, vn). When the function ρ2(t) is 2π-periodic, the
successor map satisfies the periodicity conditions (1) and it seems reasonable
to interpret t0 as an angle. However, the successor map is not E-symplectic.
A computation shows that the form v2

1dt1 − v2
0dt0 is closed and this fact

suggests the use of new variables: time t0 and kinetic energy E0 = 1
2v2

0.
With the identification θ = t0 and r = E0, the map (t0, E0) 7→ (t1, E1)
becomes exact symplectic when ρ2 is periodic and E-symplectic in the non-
periodic case. These properties hold for large energies, as well as the twist
condition

∂t1
∂E0

< 0 if E0 À 0.

The intuition behind this formula is that the time employed by the ball to
go back to the fixed wall will decrease as the energy increases. We have
reformulated our problem in terms of an exact symplectic twist map but
in general this map is not a perturbation of the integrable twist map. The
symplectic change of variables

τ(t) =
∫ t

0

ds

ρ2(s)
, W = ρ2(t)2E,

leads to a new map (τ0,W0) 7→ (τ1,W1) which is close to T for ϕ(W ) =
√

2
W

and W0 large enough. The results on twist maps described previously are
applicable and many consequences for the ping-pong model can be deduced.
When ρ2(t) is a 2π-periodic and smooth function, say of class C5, KAM
theory implies that the map has invariant curves in W0 À 0. These curves
act as barriers for the orbits (τn,Wn) so that all motions have bounded
velocity. A complete proof of this result can be found in [17] and some ex-
tensions to the quasi-periodic case with diophantine conditions can be found
in [38]. The use of KAM theory forces the assumption on the smoothness
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of ρ2. An ingenious example in [37] shows that motions with unbounded
velocity can exist for certain functions ρ2(t) which are still periodic but only
continuous. Without the periodicity assumption, motions with unbounded
velocity can exist even if ρ2(t) is very smooth. Examples are constructed
in [16]. Also in that paper it is proved that there exist infinitely many mo-
tions with bounded velocity when ρ2 ∈ C3(R) satisfies ‖ρ(k)

2 ‖∞ < ∞ for
k = 0, 1, 2, 3. Moreover, unbounded motions remain close to some of these
bounded motions for arbitrarily long periods of time.

The plan of these notes is as follows. First we will discuss the theory of
twist maps in the plane and present a result on the persistence of bounded
orbits. The notion of generating function will be crucial. This is a classical
tool in mechanics which allows to represent E-symplectic maps in terms of
one single function. Some connections between generating functions and
the Calculus of Variations will be discussed. We will restrict ourselves to
the variational framework associated to Newtonian equations. Finally the
general theory will be applied to the study of a ping-pong model. The one
mentioned before is technically difficult, so we will analyze a simpler variant
which only involves one single racket and gravity. The notes are concluded
with some bibliographical comments.

2 Symplectic maps in the plane and in the cylinder

We will work on the plane R2 with cartesian coordinates (θ, r). Sometimes
we will also work on the cylinder T×R with T = R/2πZ. A generic point in
the cylinder will be denoted by (θ, r) with θ = θ + 2πZ. The covering map
p : R2 → T × R, (θ, r) 7→ (θ, r), is useful to lift maps from the cylinder to
the universal covering R2.

Let us start with the plane. We work with Ck embeddings, k ≥ 1, defined
on a strip Σ = R×]a, b[, −∞ ≤ a < b ≤ +∞. More precisely, consider a Ck

map
f : Σ ⊂ R2 → R2, (θ, r) 7→ (θ1, r1),

satisfying

(i) f is one-to-one

(ii) det f ′(θ, r) 6= 0 ∀(θ, r) ∈ Σ.

The class of these maps will be denoted by E1(Σ). A map f ∈ E1(Σ)
is called symplectic if it preserves the differential form ω = dθ ∧ dr. This
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means that, in the set Σ,

dθ1 ∧ dr1 = dθ ∧ dr. (3)

If we express the map f in coordinates

θ1 = F (θ, r), r1 = G(θ, r),

then the condition (3) can be reformulated as

det f ′ =
∂F

∂θ

∂G

∂r
− ∂F

∂r

∂G

∂θ
= 1 on Σ.

This is the classical definition of area-preserving map.

Exercise 1 Prove that f ∈ E1(Σ) is symplectic if and only if the two con-
ditions below hold:

(a) f is orientation-preserving

(b) for each (Lebesgue) measurable set Ω ⊂ Σ, the image Ω1 = f(Ω) is also
measurable and µ(Ω) = µ(Ω1). Here µ is the Lebesgue measure in the plane.

Given f ∈ E2(Σ) we consider the 1-form

α = r1dθ1 − rdθ.

Then dα = −dθ1 ∧ dr1 + dθ ∧ dr and so α is closed if and only if f is
symplectic. The strip Σ is contractible and therefore closed and exact forms
coincide. In particular, if f is symplectic there must exist a function H with
α = dH. After taking differentials in this identity we conclude that the
converse is also true. Summing up, a map f ∈ E2(Σ) is symplectic if and
only if

dH = r1dθ1 − rdθ for some H ∈ C2(Σ). (4)

This identity can be expressed as

Hθ = GFθ − r, Hr = GFr. (5)

When f is only in E1(Σ), the components of α given by (5) are only continu-
ous and the operation of taking the differential of α becomes more delicate.

Exercise 2 Assume that f ∈ E1(Σ). Prove that f is symplectic if and only
if there exists a function H ∈ C1(Σ) such that dH = α. Hint: If f is
symplectic define the potential H by the standard integral of α and check
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directly that (5) holds. For the converse construct sequences F ε, Gε ∈ C2(Σ)
with ‖F − F ε‖C1(Σ) +‖G−Gε‖C1(Σ) → 0 as ε → 0 and consider the integral

∫

Σ
{[Gε(F ε)θ − r]φr −Gε(F ε)rφθ} dθ dr

for each test function φ ∈ D(Σ). Integrate by parts and pass to the limit.

The equivalence between closed and exact 1-forms is no longer true in the
cylinder. Consider the strip immersed in the cylinder Σ = T×]a, b[. Since Σ
is its universal covering, all 1-forms on Σ of class C1 can be expressed as

β = A(θ, r)dθ + B(θ, r)dr

with A, B ∈ C1(Σ) and 2π-periodic in θ. When β is closed it is possible to
find a function H = H(θ, r) with dH = β. The problem is that sometimes H
is not periodic in θ and so it becomes a multi-valued function when regarded
in the cylinder.

Exercise 3 Prove that exact 1-forms in the cylinder can be characterized
as closed 1-forms satisfying

∫ 2π

0
A(θ, r∗)dθ = 0

for some r∗ ∈]a, b[.

This difference between the plane and the cylinder plays a role when one
tries to extend the notion of symplectic map to T× R. Let us start with a
map

f : Σ ⊂ T× R→ T× R, (θ, r) 7→ (θ1, r1),

satisfying the same conditions as in the case of the plane. The class of
these maps is E1(Σ). Every f ∈ E1(Σ) has a lift f = (F, G) in E1(Σ). The
coordinates satisfy

F (θ + 2π, r) = F (θ, r) + 2nπ, G(θ + 2π, r) = G(θ, r).

In principle n could be any integer but since our map is an orientation-
preserving embedding it can only take the values n = −1 or n = 1. We say
that f is symplectic if its lift is symplectic as a map of the plane. Notice
that, up to an additive constant 2Nπ, the lift is unique and so this definition
is all right.
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Exercise 4 Extend exercise 1 to the cylinder using the measure transported
from the plane via the covering map,

µT×R(A) = µR2(p−1(A) ∩ ([0, 2π]× R)).

We say that f ∈ E1(Σ) is exact symplectic if there is a function H ∈ C1(Σ),
and hence 2π-periodic in θ, such that

dH = r1dθ1 − rdθ.

Using exercise 2 we observe that exact symplectic maps are always symplec-
tic. Since not all closed forms are exact in the cylinder, we can expect that
there are symplectic maps which are not exact.

Exercise 5 Prove that f ∈ E1(Σ) is exact symplectic if and only if it is
symplectic and ∫ 2π

0
G(θ, r∗)

∂F

∂θ
(θ, r∗)dθ = 2πr∗

for some r∗ ∈]a, b[.

The notion of exact symplectic map can also be characterized in terms of
measure theory. Given an arbitrary Jordan curve Γ ⊂ Σ which is C1, regular
and non-contractible, the image Γ1 = f(Γ) ⊂ T × R is another Jordan
curve enjoying the same properties. Let us fix some r0 ∈ R such that
Γ ∪ Γ1 ⊂ {r > r0} and let A and A1 denote the bounded components of
{r > r0} \ Γ and {r > r0} \ Γ1, respectively. Then, if f is exact symplectic,
µ(A) = µ(A1).

Exercise 6 Prove that the previous property is a characterization of exact
symplectic maps.

To illustrate the above definitions we consider some simple maps in the
cylinder and the corresponding lifts in the plane.

Example 1: f(θ, r) = (θ + ω, r) for fixed ω ∈]0, 2π[.

In the plane this map is a translation in the horizontal direction. It can
be seen as the lift of a rotation.
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θ

r

θ

r

From r1dθ1 − rdθ = rd(θ + ω) − rdθ = 0 we deduce that the condition
(4) holds with H ≡ 0. Hence, rotations are exact symplectic maps.

Example 2: f(θ, r) = (θ, r + λ) for fixed λ ∈ R \ {0}.
This map can be interpreted as a vertical translation.

θ

r

θ

r

Now, r1dθ1 − rdθ = (r + λ)dθ − rdθ = λdθ. In the plane the condition
(4) holds with H(θ, r) = λθ. The differential form λdθ is not exact in the
cylinder and so f is symplectic but not exact.

We finish this section with another characterization of exact symplectic
maps. It is less standard but it is useful to suggest how to introduce a
related notion in the plane.
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Exercise 7 Assume that f ∈ E1(Σ) is symplectic and H ∈ C1(Σ) is such
that dH = r1dθ1− rdθ. Prove that the three conditions below are equivalent:

(i) f is exact symplectic

(ii) H is 2π-periodic in θ

(iii) H is bounded on each strip R× [A,B] with a < A < B < b.

Let us consider now a general map f ∈ E1(Σ), possibly not 2π-periodic in θ.
We say that f is E-symplectic if there exists a function H ∈ C1(Σ) satisfying

dH = r1dθ1 − rdθ

and
sup {|H(θ, r)| : θ ∈ R, A ≤ r ≤ B} < ∞

for each A, B with a < A < B < b.
In the introduction we already presented some examples of E-symplectic

maps. As a further example consider the map

θ1 = θ + r, r1 = r + a + b sin(θ + r) + c sin
√

2(θ + r),

with a, b, c ∈ R. In this case G(θ, r) is not 2π-periodic, if b and c do not
vanish, but in the plane it satisfies (4) taking

H(θ, r) =
1
2

r2 + a(θ + r)− b cos(θ + r)− c√
2

cos
√

2(θ + r).

Therefore f is E-symplectic when a = 0. Recall that θ is an unbounded
variable.

3 The twist condition and the generating function

A map f = (F, G) ∈ E1(Σ) has twist if

∂F

∂r
(θ, r) > 0 ∀(θ, r) ∈ Σ. (6)

Geometrically this means that vertical segments are twisted to the right.

Σ

f

f(Σ)
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From an analytic point of view the condition (6) is employed to solve the
implicit function problem

θ1 = F (θ, r). (7)

In this way a function r = R(θ, θ1) is obtained. It is defined on the region

Ω = {(θ, θ1) ∈ R2 : F (θ, a) < θ1 < F (θ, b)}

where
F (θ, a) = lim

r↓a
F (θ, r), F (θ, b) = lim

r↑b
F (θ, r).

Notice that

−∞ ≤ F (θ, a) < F (θ, b) ≤ +∞ for each θ ∈ R.

Exercise 8 Prove that Ω is open and connected. Hint: Ω =
⋃

Ωε, Ωε =
{(θ, θ1) ∈ R2 : F (θ, a + ε) < θ1 < F (θ, b− ε)}.
The function R is in C1(Ω) and, by implicit differentiation,

Fθ ◦ R+ (Fr ◦ R)Rθ = 0, (Fr ◦ R)Rθ1 = 1, (8)

where R(θ, θ1) = (θ, R(θ, θ1)).
Assuming that there exists a function H ∈ C1(Σ) such that dH = r1dθ1−

rdθ, the generating function of f is defined as

h(θ, θ1) = −H(θ, R(θ, θ1)), (θ, θ1) ∈ Ω.

Combining the identities (5), (8), and differentiating h = −H ◦R we obtain

∂h

∂θ
(θ, θ1) = R(θ, θ1),

∂h

∂θ1
(θ, θ1) = −G(θ, R(θ, θ1)). (9)

In a less formal language we can say that the map f given by θ1 = F (θ, r),
r1 = G(θ, r), is now expressed as

∂h

∂θ
(θ, θ1) = r,

∂h

∂θ1
(θ, θ1) = −r1.

This formula says that the map, originally defined in terms of two functions
F and G, can be given in terms of a single function only, the generating
function. This is reminiscent of the role played by the Hamiltonian function
in the theory of Hamiltonian systems. The above formulas also have a
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consequence for the regularity of the generating function, because (9) implies
that h is in C2(Ω). Moreover,

∂2h

∂θ∂θ1
> 0 in Ω.

This follows from the twist condition together with (9) and (8), since

hθθ1 = Rθ1 = 1/(Fr ◦ R) > 0.

Assume now that f ∈ E1(Σ) is a map in the cylinder whose coordinates
satisfy

F (θ + 2π, r) = F (θ, r) + 2π, G(θ + 2π, r) = G(θ, r).

When the lift is symplectic and has twist, the domain Ω and the function R
are invariant under the translation

T (θ, θ1) = (θ + 2π, θ1 + 2π).

This means that T (Ω) = Ω and R ◦ T = R. The second identity is a
consequence of the uniqueness of solution for the implicit function problem
(7) and the generalized periodicity of F . The generating function is not
always invariant under T . Indeed the identity h ◦ T = h is equivalent to

H(θ + 2π, R(θ, θ1)) = H(θ, R(θ, θ1)),

as can be deduced from the definition of h and the periodicity of R. For
fixed θ the function θ1 7→ R(θ, θ1) maps the interval ]F (θ, a), F (θ, b)[ onto
]a, b[. Hence the above identity, valid for all θ and θ1, is equivalent to

H(θ + 2π, r) = H(θ, r) ∀(θ, r) ∈ R×]a, b[.

This is just the periodicity of H with respect to θ and, from the definition
of h, we deduce that

h(θ + 2π, θ1 + 2π) = h(θ, θ1), (θ, θ1) ∈ Ω, (10)

holds whenever f is exact symplectic.
To illustrate the previous notions let us go back to the example at the

end of the last section. We consider the symplectic map in Σ = R2 given by

θ1 = θ + r, r1 = r + a + b sin(θ + r) + c sin
√

2(θ + r).
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Since ∂θ1
∂r = 1 the map has twist. Moreover Ω = R2 and R(θ, θ1) = θ1 − θ.

The generating function is

h(θ, θ1) = −1
2
(θ1 − θ)2 − aθ1 + b cos θ1 +

c√
2

cos
√

2θ1.

When c = 0 this map can be defined on the cylinder, and h satisfies the
periodicity condition (10) in the case where c = 0 and a = 0.

Exercise 9 Assume that h ∈ C2(R2), h = h(θ, θ1), is a function satisfying
∂2h

∂θ∂θ1
> 0 and, for some numbers a, b,

inf
θ1∈R

∂h

∂θ
(θ, θ1) ≤ a < b ≤ sup

θ1∈R
∂h

∂θ
(θ, θ1)

for each θ ∈ R. Then there exists a twist symplectic map f ∈ E1(Σ), Σ =
R×]a, b[, such that h is its generating function. Here it is understood that h
is restricted to an appropriate domain.

4 The variational principle

We will construct a functional such that its critical points are in correspon-
dence with the orbits generated by symplectic twist maps. First we present
a concrete example, arising in solid state physics.

4.1 The Frenkel-Kontorowa model

Let us imagine an infinite chain of atoms placed on a line, the positions of
the atoms being described by bi-infinite sequences (θn)n∈Z. It is assumed
that every atom n is attracted by its neighbors n− 1 and n + 1, according
to Hooke’s law (with constant C). In addition there is a force derived from
a potential V = V (θ) acting on the real line.

θnθn−1 θn+1

To find the equilibrium positions of the chain it is enough to impose that
the sum of forces acting on each atom vanishes. That is,

C(θn−1 − θn) + C(θn+1 − θn)− V ′(θn) = 0.
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We arrive at the second order difference equation

θn+1 + θn−1 − 2θn =
1
C

V ′(θn), n ∈ Z, (11)

which can be seen as a discrete counterpart of the Newtonian equation θ̈ =
1
C V ′(θ).

Alternatively we can look for critical points of the potential energy

Φ((θn)n∈Z) =
∑

n∈Z

[C

2
(θn+1 − θn)2 + V (θn)

]
.

It is straightforward to check that the system of conditions ∂Φ
∂θn

= 0 leads to
(11). Of course this computation is purely formal since typically the series
defining Φ will be divergent. One way to proceed rigorously is to consider
finite strings (θn)|n|≤N and to assume that the end points are fixed and
known, say θ−N = A−N and θN = AN . Then we can consider the truncated
potential energy

ΦN ((θn)n<|N |) =
∑

−N≤n<N

[C

2
(θn+1 − θn)2 + V (θn)

]
.

The critical points of ΦN satisfy (11) for |n| < N .
Let us now assume that the potential V is in C2(R) and let us interpret

the function
h(θ, θ1) = −C

2
(θ1 − θ)2 − V (θ)

as the generating function of a symplectic twist map. This makes sense since
hθθ1 = C > 0 and so Exercise 9 is applicable. The associated map is defined
by

r =
∂h

∂θ
(θ, θ1), r1 = − ∂h

∂θ1
(θ, θ1),

or
f : θ1 = θ +

1
C

r +
1
C

V ′(θ), r1 = r + V ′(θ).

The previous discussion leads to an interesting conclusion: given a “critical
point” (θ∗n)n∈Z of Φ, the sequence (θ∗n, r∗n)n∈Z with r∗n = C(θ∗n+1−θ∗n)+V ′(θ∗n)
is an f -orbit. The process can be also reversed.

Exercise 10 Prove that the map f defined above is E-symplectic in R2

when ‖V ‖∞+‖V ′‖∞ < ∞. Under what conditions is there an induced exact
symplectic map f in the cylinder?

Exercise 11 Prove that f is conjugate to the “standard map” θ1 = θ + 1
C r,

r1 = r + V ′(θ1). Hint: r 7→ r + V ′(θ).
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4.2 A general framework

Assume now that f ∈ E1(Σ) is a twist symplectic map and let h = h(θ, θ1)
denote its generating function. Given N ≥ 1 consider the function

ΦN ((θn)|n|≤N ) =
∑

−N≤n<N

h(θn, θn+1),

where θ±N = A±N are fixed numbers. This function is of class C3 on the
domain

ΩN = {(θn)|n|<N : (θn, θn+1) ∈ Ω, −N ≤ n < N}.
Exercise 12 Prove that ΩN is an open and connected subset of R2N−1.

Critical points of ΦN are solutions of

∂1h(θn, θn+1) + ∂2h(θn−1, θn) = 0, |n| < N, θ±N = A±N . (12)

The sequence (θn)|n|≤N obtained in this way leads to a segment of f -orbit
with the definitions rN = ∂2h(θN−1, θN ) and rn = ∂1h(θn, θn+1) if −N ≤
n < N . Actually, from the definition of the function R(θ, θ1) and (9) we
deduce that a < rn < b if −N ≤ n < N . This inequality also holds for
n = N , as follows from (12). Putting together (9), (12) and the definition
of R it is easy to deduce that f(θn, rn) = (θn+1, rn+1) for −N ≤ n < N .

The previous process can be reversed in order to obtain critical points of
ΦN from f -orbits. Our goal is to construct complete f -orbits with certain
additional properties. To this end we will prove the existence of critical
points of ΦN and let N →∞. This is clarified by the following result, valid
for the general second order difference equation

E(θn−1, θn, θn+1) = 0 (13)

where E : S → R is a continuous function defined on

S = {(θ−1, θ0, θ1) ∈ R3 : δ ≤ θ0 − θ−1 ≤ ∆ and δ ≤ θ1 − θ0 ≤ ∆}
for some ∆ > δ ≥ 0.

Lemma 13 Assume that for N ≥ N∗ there exists a finite sequence (θ[N ]
n )|n|≤N

satisfying (13) for |n| < N . Moreover, assume that

lim
N→+∞

θ
[N ]
±N = ±∞.

Then there exists a complete solution of (13). This means that there is a
sequence (θn)n∈Z satisfying (13) for all n ∈ Z.
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Proof. Let us consider the space of sequences RZ endowed with the product
topology. We recall that this space is metrizable and the associated conver-
gence is just the convergence of each coordinate. Inside RZ we consider the
space

K∞ = {Θ = (θn)n∈Z : δ ≤ θn+1 − θn ≤ ∆ ∀n ∈ Z, |θ0| ≤ ∆}.

This space is compact because it can be viewed as a closed subset of

K̂∞ = {Θ = (θn)n∈Z : θn ∈ [nδ −∆, (n + 1)∆] ∀n ∈ Z}

and K̂∞ is compact by Tichonoff’s Theorem on the product of compact
spaces. We will look for a solution of (13) lying in K∞.

For large N we can assume θ
[N ]
N > 0 > θ

[N ]
−N and so there exists an

integer ν = ν(N), −N ≤ ν < N , such that θ
[N ]
ν < 0 ≤ θ

[N ]
ν+1. Since

0 < θ
[N ]
ν+1 − θ

[N ]
ν ≤ ∆ we conclude that

|θ[N ]
ν | ≤ ∆. (14)

Also we notice that

lim
N→+∞

[±N − ν(N)] = ±∞. (15)

For the sign + this limit is justified using the estimates

θ
[N ]
N −∆ ≤ θ

[N ]
N − θ[N ]

ν =
N−1∑
n=ν

(θ[N ]
n+1 − θ[N ]

n ) ≤ (N − ν)∆.

The case of the sign − is treated similarly.
The equation (13) is autonomous and so the shifted sequence θ̃

[N ]
n =

θ
[N ]
n−ν , satisfies (13) for |n − ν| < N . Next we complete the finite sequence

(θ̃[N ]
n ) so that it becomes a point Θ̃[N ] of K∞. A simple way to achieve this

is to define
θ̃[N ]
n = ω(n−N − ν) + θ̃

[N ]
N , if n > N + ν

and
θ̃[N ]
n = ω(n + N − ν) + θ̃

[N ]
−N , if n < −N + ν,

where ω = 1
2(δ + ∆). Using (14) it is easy to check that Θ̃[N ] is contained

in K∞. By compactness we can extract a convergent subsequence (Θ̃[σ(N)]),
where σ : N → N is increasing. We claim that the limit Θ = (θn)n∈Z is a
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complete solution (13). To check this assertion we observe that for fixed n

and large N , θ̃
[N ]
k = θ

[N ]
k−ν if |n− k| ≤ 1. This is a consequence of (15). Then

E(θ̃[σ(N)]
n−1 , θ̃[σ(N)]

n , θ̃
[σ(N)]
n+1 ) = 0, N large,

and we can pass to the limit (N → +∞) using the continuity of E.¥

We will apply the previous lemma to the difference equation

∂1h(θn, θn+1) + ∂2h(θn−1, θn) = 0, δ ≤ θn+1 − θn ≤ ∆,

where δ and ∆ are positive numbers such that

F (θ, a) < δ < ∆ < F (θ, b) ∀θ ∈ R.

After finding solutions for |n| < N as critical points of ΦN , we will pass to
the limit.

This section will be finished with a discussion of the nature of the critical
points of ΦN in the simplest instance. Consider the map θ1 = θ + r, r1 = r.
The generating function is

h(θ, θ1) = −1
2
(θ1 − θ)2.

After fixing A±N ∈ R we observe that the function −ΦN is coercive on
R2N−1. To establish this claim, if ΘN = (θn)|n|<N is a generic point in R2N−1

and n0 is an integer such that |n0| < N and |θn0 | = max|n|<N |θn| = ‖ΘN‖∞,
then

−4ΦN (ΘN ) ≥ 2
∑

n0≤n<N (θn+1 − θn)2 ≥ ( ∑
n0≤n<N |θn+1 − θn|

)2
.

The last term dominates |θn0−AN |2 and, since |θn0−AN | ≥ ‖ΘN‖∞−|AN |,
we deduce that ΦN (ΘN ) → −∞ as ‖ΘN‖∞ →∞. The conditions ∂ΦN

∂θn
= 0

lead to the discrete Dirichlet problem
{

θn+1 + θn−1 − 2θn = 0,
θ−N = A−N , θN = AN .

This problem has the unique solution θ
[N ]
n = nω + c for ω = AN−A−N

2N and
c = 1

2(AN +A−N ). As a consequence Θ∗
N = (θ[N ]

n )|n|<N is the unique critical
point of ΦN and

maxΦN = ΦN (Θ∗
N ).

Let us fix δ < ∆ and assume that δ <
AN−A−N

2N < ∆. Then Θ∗
N is in the

interior of the compact set

SN = {ΘN = (θn)|n|<N : δ ≤ θn+1 − θn ≤ ∆, if −N ≤ n < N}.
This observation will be relevant later.
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5 Existence of complete orbits

In this section we fix two positive numbers ∆ > δ > 0 and consider the strip

S = {(θ, θ1) ∈ R2 : δ ≤ θ1 − θ ≤ ∆}

and a given function h = h(θ, θ1) in C1(S). Our goal is to prove the existence
of a complete orbit of the difference equation

∂1h(θn, θn+1) + ∂2h(θn−1, θn) = 0, n ∈ Z. (16)

Notice that this setting implicitly implies that the complete solution satisfies
(θn, θn+1) ∈ S for each n. The prototype of function h will be h∗(θ, θ1) =
−α(θ− θ1)2 with α a positive constant. We will impose two conditions that
roughly say that h is close to h∗ and the strip S is sufficiently wide, “width”
being measured by the quotient ∆/δ.

Theorem 14 Assume that h ∈ C1(S) and there are two positive numbers
α, α with α < 2α and

−α(θ1 − θ)2 ≤ h(θ1, θ) ≤ −α(θ1 − θ)2 ∀(θ, θ1) ∈ S. (17)

Then there exists a number σ ≥ 1, depending only on the quotient α/α, such
that if σ2δ ≤ ∆ then the equation (16) has a complete solution.

As will be seen from the proof, the number σ can be computed explicitly.
To obtain results of qualitative nature it is enough to interpret σ = σ(q)
as an increasing function depending on q = α/α ∈ [1, 2[. This is illustrated
by the following consequence on the existence of equilibria for the Frenkel-
Kontorowa model.

Corollary 15 Assume that the potential V is bounded and of class C1.
Then the equation

θn+1 + θn−1 − 2θn = V ′(θn), n ∈ Z,

has infinitely many complete solutions (θn,N )n∈Z with N = 1, 2, . . .. More-
over, the upper and lower rotation numbers

ωN := lim inf
|n|→∞

θn,N

n
≤ lim sup

|n|→∞

θn,N

n
=: ωN

satisfy ωN < ∞ for each N and ωN → +∞ as N → +∞.
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Proof. To prove the corollary we select the number σ0 = σ(3/2) corre-
sponding to α/α = 3/2 and work on the region S : δ ≤ θ1 − θ ≤ ∆, where
δ > 0 is a parameter to be adjusted and ∆ = σ2

0δ. Our equation is just (16)
for

h(θ, θ1) = −1
2
(θ − θ1)2 − V (θ).

Moreover, if (θ, θ1) ∈ S,

h(θ, θ1) ≤ −1
2
(θ − θ1)2 + ‖V ‖∞ ≤ −1

2
(θ − θ1)2 +

‖V ‖∞
δ2

(θ − θ1)2.

A similar lower estimate can be obtained to see that the condition (17) holds
for

α =
1
2
− ‖V ‖∞

δ2
, α =

1
2

+
‖V ‖∞
σ4

0δ
2

.

For large δ the inequality α/α ≤ 3/2 holds and so the constant σ = σ(α/α)
given by the theorem satisfies σ ≤ σ0. Then σ2δ ≤ σ2

0δ = ∆ and the theorem
is applicable. This shows the existence of an equilibrium for the Frenkel-
Kontorowa model (θδ

n)n∈Z with δ ≤ θn+1 − θn ≤ σ2δ, n ∈ Z. Letting δ =
N we obtain infinitely many equilibria, and the assertions on the rotation
numbers are easily seen to be verified.¥

Later we will present other applications of the theorem or of some variant of
it. In all cases h will be the generating function of a twist symplectic map
f . Indeed the condition (17) automatically implies that f is E-symplectic.

Proof of theorem 14. For each N ≥ 3 we select two numbers A±N

satisfying
A−N = −AN , Nδ ≤ AN ≤ N∆, (18)

and consider the following subset of R2N−1:

SN = {ΘN = (θn)|n|≤N : δ ≤ θn+1 − θn ≤ ∆ for each n = −N, . . . , N − 1},
with the convention θ±N = A±N . This set is non-empty since it contains at
least the point ( n

N AN ). It is easily proved that SN is closed and contained in
the ball ‖ΘN‖∞ ≤ AN and, since we are in finite dimension, we can deduce
that this set is compact. The continuous function

ΦN : SN → R, ΦN (ΘN ) =
∑

−N≤n<N

h(θn, θn+1),

attains its maximum at some point Θ∗
N ∈ SN ,

ΦN (Θ∗
N ) = max

SN

ΦN .
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We will prove that, for an appropriate choice of the sequence AN , the point
Θ∗

N is in the interior of SN . Hence this is a critical point of ΦN that can
be also interpreted as a solution of (12). Finally we can apply lemma 13 to
complete the proof. From now on we will concentrate on the claim

Θ∗
N ∈ int(SN ). (19)

To this end we make a couple of observations on the configuration of the
atoms of Θ∗

N .

(i) There exists L > 1 such that

1
L

(θ∗n+1 − θ∗n) ≤ θ∗n+2 − θ∗n+1 ≤ L(θ∗n+1 − θ∗n)

for each n = −N, . . . , N − 2. Moreover L only depends on the quotient α/α.

To prove this assertion we modify Θ∗
N by replacing θ∗n+1 with the mid-point

between θ∗n and θ∗n+2; that is,

Θ̂N = (θ̂n)|n|≤N , θ̂m = θ∗m if m 6= n + 1, θ̂n+1 =
1
2
(θ∗n + θ∗n+2).

θ̂n+1θ∗n θ∗n+1 θ∗n+2

The new point Θ̂N also belongs to SN . Indeed

θ̂n+2 − θ̂n+1 = θ̂n+1 − θ̂n =
1
2
(θ∗n+2 − θ∗n) =

1
2
(θ∗n+2 − θ∗n+1) +

1
2
(θ∗n+1 − θ∗n)

and these differences remain between δ and ∆. The maximizing property of
Θ∗

N implies that ΦN (Θ∗
N ) ≥ ΦN (Θ̂N ), leading to

h(θ∗n, θ∗n+1) + h(θ∗n+1, θ
∗
n+2) ≥ h(θ∗n, θ̂n+1) + h(θ̂n+1, θ

∗
n+2).

As a consequence

−α[(θ∗n+1 − θ∗n)2 + (θ∗n+2 − θ∗n+1)
2] ≥ −α

(θ∗n+2 − θ∗n)2

2
.

Assume that ` :=
θ∗n+2−θ∗n+1

θ∗n+1−θ∗n
≥ 1, otherwise we would define ` as the inverse

fraction. Using that θ∗n+2−θ∗n = (1+`)(θ∗n+1−θ∗n) we are led to the inequality

ϕ(`) :=
2(1 + `2)
(1 + `)2

≤ α/α.
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The function ϕ : [1, +∞[→ [1, 2[ is an increasing homeomorphism and so
` ≤ ϕ−1(α/α). This implies that (i) holds with L = ϕ−1(α/α). Notice that
at this point we are using α < 2α.

(ii) There exists σ > 1 such that

∆∗

δ∗
≤ σ,

where ∆∗ = max−N≤n<N (θ∗n+1 − θ∗n) and δ∗ = min−N≤n<N (θ∗n+1 − θ∗n).
Moreover σ only depends on the quotient α/α.

Let us assume that ∆∗ = θ∗M+1 − θ∗M and δ∗ = θ∗m+1 − θ∗m with m,M ∈
{−N, . . . , N−1}. If |m−M | ≤ 1 we can apply the previous step and deduce
that ∆∗/δ∗ ≤ L. From now on we assume that |m−M | ≥ 2, say M ≥ m+2.

θ∗Mθ∗m+2 ...θ∗m+1

δ∗

θ∗m θ̃M

∆∗

θ∗M+1

We modify Θ∗
N in a new way: After eliminating θ∗m+1 a new atom is inserted

between θ∗M and θ∗M+1. Let Θ̃N = (θ̃n)|n|<N be defined as θ̃n = θ∗n if n ≤ m

or n > M , θ̃n = θ∗n+1 if m < n < M and θ̃M = 1
2(θ∗M + θ∗M+1). We prove

that Θ̃N ∈ SN as soon as ∆∗/δ∗ ≥ L + 1, where L is given by step (i).
Actually,

θ̃m+1 − θ̃m = θ∗m+2 − θ∗m ≤ (L + 1)δ∗ ≤ ∆∗ ≤ ∆

and
θ̃M+1 − θ̃M = θ̃M − θ̃M−1 =

∆∗

2
≥ L + 1

2
δ∗ ≥ δ∗ ≥ δ,

so that Θ̃N ∈ SN . Then from ΦN (Θ∗
N ) ≥ ΦN (Θ̃N ) we deduce that

h(θ∗m, θ∗m+1) + h(θ∗m+1, θ
∗
m+2) + h(θ∗M , θ∗M+1)

≥ h(θ∗m, θ∗m+2) + h(θ∗M , θ̃M ) + h(θ̃M , θ∗M+1).

Hence
−α[(θ∗m − θ∗m+1)

2 + (θ∗m+1 − θ∗m+2)
2 + (θ∗M − θ∗M+1)

2]

≥ −α[(θ∗m − θ∗m+2)
2 + 2(θ̃M − θ∗M )2]
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and, using again (i), we are led to ψL(∆∗/δ∗) ≤ α/α, where the function ψL

is defined as

ψL(q) =
1 + L−2 + q2

(1 + L)2 + 1
2q2

.

This function is strictly increasing on the interval [1 + L,∞[ and satisfies
ψL(1+L) < 1 as well as ψL(∞) = 2. Hence the inequality ψL(∆∗/δ∗) ≤ α/α
is equivalent to ∆∗/δ∗ ≤ ψ−1

L (α/α), i.e., we have proved (ii) taking

σ = max{1 + L, ψ−1
L (α/α)}.

Now that we have shown (ii) we can complete the proof of the theorem.
Define

AN =
1
2
(σ−1∆ + σδ)N.

From the assumption σ2δ < ∆ we observe that δ < σδ < σ−1∆ < ∆, and
AN is the mid point of the interval [σδ, σ−1∆]. This implies that (18) holds.
We are going to prove that for this choice of the sequence {AN} the claim
(19) holds. By contradiction assume that ∆∗ = ∆ or δ∗ = δ. Then either
δ∗ ≥ 1

σ∆ or ∆∗ ≤ σδ. To fix ideas let us consider the first case ∆∗ = ∆,
δ∗ ≥ 1

σ∆. Then

2AN =
N−1∑

n=−N

(θ∗n+1 − θ∗n) ≥ 2N∆
σ

,

and this contradicts the definition of AN . The case δ∗ = δ is treated
similarly.¥

Exercise 16 Show that the previous proof allows to compute σ = σ(α/α)

explicitly. Hint: σ = 4
3

√
85
3 for α/α = 5/4.

Exercise 17 Compute two numbers δ and ∆ such that the equation

θn+1 − 2θn + θn−1 = sin θn + cos(
√

2θn), n ∈ Z

has a solution lying in δ ≤ θn+1 − θn ≤ ∆.

Exercise 18 Prove that the conclusion of theorem 14 still holds when the
condition (17) is replaced by

−α(θ1 − θ)k ≤ h(θ1, θ) ≤ −α(θ1 − θ)k ∀(θ, θ1) ∈ S (20)

with k > 1 and α < 2k−1α. Hint: ϕ(`) = 2k−1(1+`k)
(1+`)k , ψL(q) = 1+L−k+qk

(1+L)k+21−kqk .
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Exercise 19 Prove that the conclusion of theorem 14 also holds when the
condition (17) is replaced by

−α(θ1 − θ)−k ≤ h(θ1, θ) ≤ −α(θ1 − θ)−k ∀(θ, θ1) ∈ S (21)

with k > 0 and α < 2kα. Hint: ϕ(`) = (1+`−k)(1+`)k

2k+1 , ψL(q) = 1+L−k+q−k

2−k+21+kq−k ,
θ∗m+2 − θ∗m ≥ 2δ∗.

In the applications of theorem 14 or the variants given by the previous
exercises we must know how to compute h or at least how to estimate it
in order to verify (17), (20) or (21). The next two sections are devoted
to the computation of generating functions in two interesting mechanical
situations.

6 The action functional of a Newtonian equation

Consider the differential equation

ẍ = −Vx(t, x), t ∈ [0, 1], x ∈ R, (22)

where the potential V : [0, 1] × R → R is continuous and has two partial
derivatives with respect to x, Vx and Vxx, which are also continuous functions
of (t, x). It will be assumed that the Cauchy problem is globally well posed.
This can be guaranteed if Vx has linear growth, that is

|Vx(t, x)| ≤ A|x|+ B, (t, x) ∈ [0, 1]× R,

for some A, B > 0. Given x0, v0 ∈ R, the solution satisfying x(0) = x0,
ẋ(0) = v0, will be denoted by x(t; x0, v0). If we interpret these initial condi-
tions as coordinates, say θ = x0 and r = v0, then we can define the Poincaré
map

f : R2 → R2, θ1 = x(1; θ, r), r1 = ẋ(1; θ, r).

The classical theorems on the Cauchy problem1 imply that f is a C1-
diffeomorphism. Moreover f is symplectic. This can be justified using
Liouville’s theorem on Hamiltonian flows but we will prove it in a differ-
ent way. Consider the Lagrangian function

L(t, θ, r) =
1
2

ẋ(t; θ, r)2 − V (t, x(t; θ, r))

1Notice that no smoothness in t has been assumed.
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and its time average

H(θ, r) =
∫ 1

0
L(t, θ, r) dt.

This function is of class C1 with partial derivatives

Hθ =
∫ 1

0
Lθ dt =

∫ 1

0
{ẋ∂ẋ

∂θ
− Vx

∂x

∂θ
} dt,

Hr =
∫ 1

0
Lr dt =

∫ 1

0
{ẋ∂ẋ

∂r
− Vx

∂x

∂r
} dt.

Commuting ∂t with ∂θ and ∂r and integrating by parts,
∫ 1

0
ẋ

∂ẋ

∂θ
dt = [ẋ

∂x

∂θ
]t=1
t=0 −

∫ 1

0
ẍ

∂x

∂θ
dt,

∫ 1

0
ẋ

∂ẋ

∂r
dt = [ẋ

∂x

∂r
]t=1
t=0 −

∫ 1

0
ẍ

∂x

∂r
dt.

From (22) we conclude that dH = r1dθ1 − rdθ and so f is symplectic.
The map f will induce a map f on the cylinder if the potential satisfies

V (t, x + 2π) = V (t, x) + p(t), (t, x) ∈ [0, 1]× R, (23)

for some function p : [0, 1] → R. This condition of generalized periodicity
implies that

x(t; θ + 2π, r) = x(t; θ, r) + 2π, ẋ(t; θ + 2π, r) = ẋ(t; θ, r),

and letting t = 1, f(θ + 2π, r) = f(θ, r) + (2π, 0). Hence f is symplectic.

Exercise 20 Prove that the Poincaré map f associated to

ẍ + a sinx = p(t)

is exact symplectic if and only if
∫ 1
0 p(t)dt = 0. Here a > 0 is a parameter

and p : [0, 1] → R is a given continuous function.

Exercise 21 Assume that, instead of (23), the potential satisfies

V (t, x) = B(t, x) + p(t)x

where p : [0, 1] → R is continuous and B, Bx are bounded. Prove that the
Poincaré map is E-symplectic if

∫ 1
0 p(t)dt = 0. Hint: The kinetic energy

T (t) = 1
2 ẋ(t)2 satisfies |Ṫ | ≤ CT 1/2 and

∫ 1
0 p(t)x(t)dt = − ∫ 1

0 P (t)ẋ(t)dt for
P (t) =

∫ t
0 p(s)ds.
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Next we are going to discuss under what conditions the Poincaré map will
satisfy the twist condition. The partial derivative ∂F

∂r = ∂θ1
∂r can be expressed

as
∂θ1

∂r
= y(1)

where y(t) is the solution of the variational equation

ÿ + Vxx(t, x(t; θ, r))y = 0

such that y(0) = 0, ẏ(0) = 1. The twist condition becomes y(1) > 0 and
can be proved using Sturm comparison theory. Actually it holds when the
potential satisfies

Vxx(t, x) < π2, (t, x) ∈ [0, 1]× R. (24)

In this case our solution y(t) must oscillate less than the solution of the
comparison equation z̈ + π2z = 0, which is z(t) = sinπt. This implies that
y(t) > 0 if t ∈]0, 1] and therefore the twist holds.

Another hypothesis implying the twist condition is

(2nπ)2 < Vxx(t, x) < ((2n + 1)π)2, (t, x) ∈ [0, 1]× R, (25)

for some n = 1, 2, . . .. Now the oscillations of y(t) are between those of
z−(t) = sin(2nπt) and z+(t) = sin((2n + 1)πt). Hence y(t) has exactly 2n
zeros on ]0, 1[ and y(1) is positive.

Exercise 22 Find conditions on the parameters a and ω to guarantee that
the Poincaré map associated to ẍ+ω2x+a sinx = p(t) is a twist symplectic
map.

Once we know that the twist condition holds, to compute the generating
function we solve the equation

x(1; θ, r) = θ1

and find r for given θ and θ1. This is equivalent to finding r = ẋ(0), where
x(t) is the solution of the Dirichlet problem

ẍ = −Vx(t, x), x(0) = θ, x(1) = θ1. (26)

The conditions (24) or (25) are sufficient to guarantee that this problem has
at most one solution. This is obviously a consequence of the twist condition.
However these conditions are not sufficient for the existence of solution.
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Exercise 23 Find θ and θ1 such that

ẍ + π2x− arctanx = 0, x(0) = θ, x(1) = θ1,

has no solution. Hint: Multiply the equation by sinπt and integrate between
t = 0 and t = 1.

A classical result in the theory of nonlinear boundary value problems says
that (26) has a unique solution, if (24) or (25) are replaced by the corre-
sponding stronger conditions

Vxx(t, x) ≤ Γ < π2, (t, x) ∈ [0, 1]× R, (27)

(2nπ)2 < γ ≤ Vxx(t, x) ≤ Γ < ((2n + 1)π)2, (t, x) ∈ [0, 1]× R, (28)

where n = 1, 2, . . . and γ and Γ are given constants. From now on we assume
that (27) or (28) are satisfied and so the set Ω defined in section 3 is R2. The
solution of (26) will be denoted by ξ(t; θ, θ1) and the discussions of section
3 on the regularity of the function R = R(θ, θ1) together with the standard
theorems on differentiability with respect to initial conditions imply that ξ
and ξ̇ are of class C1 in [0, 1]× R2. Notice that

ξ(t; θ, θ1) = x(t; θ, R(θ, θ1)) and R(θ, θ1) = ξ̇(0; θ, θ1).

The generating function h(θ, θ1) = −H(θ, R(θ, θ1)) is well defined on the
whole plane by

h(θ, θ1) = −
∫ 1

0

[1
2

ξ̇(t; θ, θ1)2 − V (t, ξ(t; θ, θ1))
]
dt.

The reader who is familiar with the classical theory of the Calculus of Vari-
ations will recognize this expression. Up to a sign, the generating function
is the restriction of the action functional to fields of extremals defined by
ξ = ξ(t; θ, θ1). More precisely, if we consider the Sobolev space H1(0, 1) and
the functional

A : H1(0, 1) → R, A[x] =
∫ 1

0

[1
2

ẋ(t)2 − V (t, x(t))
]
dt,

then
h(θ, θ1) = −A[ξ(·; θ, θ1)].

Exercise 24 Compute the generating function associated to ẍ + ω2x = 0
with 2nπ < ω < 2(n + 1)π for some n = 1, 2, . . ..
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Finally we propose a more difficult exercise dealing with an application of
theorem 14 to the framework of this section.

Exercise 25 Prove that the equation ẍ+a sinx = p(t) with 0 < a < π2 and
p(t+1) = p(t),

∫ 1
0 p(t)dt = 0, has a solution satisfying δ ≤ x(t+1)−x(t) ≤ ∆

for some ∆ > δ > 0.

7 Impact problems and generating functions

Let us consider a particle moving on the half-line x = x(t) ≥ 0. It satisfies
a Newtonian law for x > 0 but at the end point x = 0 there is an obstacle
and the particle bounces elastically.

x = 0

x = x(t)

The function x(t) is a solution of the impact problem




ẍ = −Vx(t, x), t ∈ R,
x(t) ≥ 0,
x(τ) = 0 ⇒ ẋ(τ+) = −ẋ(τ−),

(29)

where V : R×R→ R is continuous and has two partial derivatives in x, Vx

and Vxx. Moreover it is assumed that both derivatives are continuous with
respect to both variables (t, x). In short, V ∈ C0,2(R× R).

The exact meaning of the above impact problem is clarified by the
following definition. A bouncing solution of (29) is a continuous function
x : R→ [0,∞[ and a sequence of times (tn)n∈Z satisfying
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(i) infn∈Z(tn+1 − tn) > 0,

(ii) x(tn) = 0 and x(t) > 0 for t ∈]tn, tn+1[ and n ∈ Z,

(iii) the restriction of x(t) to [tn, tn+1] is of class C2 and satisfies the differ-
ential equation,

(iv) ẋ(t+n ) = −ẋ(t−n ) for n ∈ Z.

This solution will be bounded if furthermore

(v) supt∈R |x(t)|+ ess supt∈R |ẋ(t)| < ∞,

(vi) supn∈Z(tn+1 − tn) < ∞.

Notice that ẋ(t) is well defined for t 6= tn and so the essential supremum
makes sense.

Exercise 26 Compute the bouncing solutions for a linear spring with ob-
stacle, V (t, x) = 1

2x2. Prove that all of them are bounded.

We will present a method for the construction of bouncing solutions. The
first step will be the study of a boundary value problem.

7.1 The Dirichlet problem

Let us consider the problem

ẍ = −Vx(t, x), x(t0) = x(t1) = 0. (30)

From now on we will assume that the potential satisfies two additional con-
ditions:

(C1) Vxx(t, x) ≤ 0 for each (t, x) ∈ R2.

(C2) There exist two numbers c1, c2 ∈ R and two functions ψ, φ ∈ C2(R)
such that

ψ̈(t) + c1 ≤ Vx(t, x) ≤ φ̈(t) + c2 for each (t, x) ∈ R2.

Moreover, supt∈R |ψ̇(t)| < ∞.

These assumptions have strong consequences for the problem (30). First
of all we present a result showing that there is a unique solution.

Lemma 27 Assume that (C1) and (C2) hold. Then problem (30) has a
unique solution on the interval [t0, t1] for each t1 − t0 > 0.
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Proof. The existence will be obtained via the method of upper and lower
solutions. Let α(t) and β(t) be the solutions of the linear problems

α̈ = −φ̈(t)− c2, α(t0) = α(t1) = 0 and β̈ = −c1 − ψ̈(t), β(t0) = β(t1) = 0.

From (C2) we deduce that −β̈ ≤ −α̈ and so, by the Maximum Principle,
α(t) ≥ β(t) everywhere. Moreover, using (C2),

−α̈(t) = c2 + φ̈(t) ≥ Vx(t, α(t)), −β̈(t) = c1 + ψ̈(t) ≤ Vx(t, β(t)).

This shows that α(t) and β(t) is a couple of ordered upper and lower solu-
tions. Therefore the problem (30) has a solution lying in α ≥ x ≥ β.

For the uniqueness we assume that x1(t) and x2(t) are two solutions of
(30). We notice that the difference y(t) = x1(t) − x2(t) satisfies the linear
problem

ÿ + α(t)y = 0, y(t0) = y(t1) = 0, (31)

where α(t) =
∫ 1
0 Vxx(t, λx1(t)+(1−λ)x2(t)) dλ. The condition (C1) implies

that α ≤ 0 everywhere. By Sturm comparison theory we deduce that (31) is
disconjugate and so we arrive at a contradiction unless y vanishes identically
and x1 = x2. Instead of using comparison techniques we can also prove the
uniqueness just by multiplying the equation with y and using integration by
parts. ¥

Exercise 28 Prove the Maximum Principle used above: Let y(t) be the
solution of −ÿ = p(t), y(t0) = y(t1) = 0 with p ∈ C[t0, t1]. If p(t) ≥ 0 and∫ t1
t0

p(t)dt > 0 then y(t) > 0 for t ∈]t0, t1[.

To guarantee the positivity of the solution of (30) it is enough to know that
the lower solution β(t) is positive. This will be the case provided that t1− t0
is large enough. To check this fact it is convenient to employ the explicit
formula for β given by

β(t) =
c1

2
(t1 − t)(t− t0) +

ψ(t1)− ψ(t0)
t1 − t0

(t− t0) + ψ(t0)− ψ(t).

Exercise 29 Prove that β(t) > 0 for each t ∈]t0, t1[ if t1 − t0 > 8
c‖ψ̇‖∞.

Hint: First study the interval ]t0, t0+t1
2 [.

To complete our study of the Dirichlet problem we present a result on dif-
ferentiability with respect to the end points. The unique solution of (30)
will be denoted by xD(t; t0, t1).
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Lemma 30 The map (t; t0, t1) ∈ D 7→ (xD(t; t0, t1), ẋD(t; t0, t1)) ∈ R2 is of
class C1, where D = {(t; t0, t1) ∈ R3 : t1 − t0 > 0, t0 ≤ t ≤ t1}.
Proof. Let x(t; t0, x0, v0) be the solution of

ẍ = −Vx(t, x), x(t0) = x0, ẋ(t0) = v0.

Since ψ̈(t)+c1 ≤ Vx(t, x) ≤ φ̈(t)+c2, this solution is well defined and smooth
for t ∈]−∞, +∞[ and (t0, x0, v0) ∈ R3. Let us consider the equation in v0,

x(t1; t0, 0, v0) = 0.

It is equivalent to solving (30) and so we know that it has a unique solution
v0 = v0(t0, t1). The Implicit Function Theorem will imply that v0(t0, t1) is
of class C1 if we prove that

∂x

∂v0
(t1; t0, 0, v0) > 0 for t1 > t0 and v0 ∈ R.

The function y(t) = ∂x
∂v0

(t; t0, 0, v0) is a solution of the initial value problem

ÿ + Vxx(t, x(t; t0, 0, v0))y = 0, y(t0) = 0, ẏ(t0) = 1.

From (C1) we deduce that this linear equation is disconjugate and so y(t1)
has to be positive.¥

7.2 The condition of elastic bouncing

A naive approach for the construction of bouncing solutions could consist
in juxtaposing solutions of Dirichlet problems for prescribed sequences of
impact times. Given a sequence (tn)n∈Z, the function

x(t) := xD(t; tn, tn+1) for t ∈ [tn, tn+1], n ∈ Z, (32)

would be the candidate for a bouncing solution. Indeed, if we assume that
the sequence satisfies

tn+1 − tn >
8
c1
‖ψ̇‖∞, n ∈ Z, (33)

then the conditions (i), (ii), and (iii) of the definition are satisfied. Here we
are using the previous discussions, in particular exercise 29. In most cases
this procedure does not lead to a bouncing solution because the elasticity
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condition given by (iv) does not necessarily hold. Next we present a method
for the construction of a judicious sequence of impacts.

Consider the function

h(t0, t1) =
∫ t1

t0

L(t, xD(t; t0, t1), ẋD(t; t0, t1)) dt, (34)

where L is the Lagrangian function associated to ẍ = −Vx. More preceisely,
here

L(t, x, ẋ) =
1
2

ẋ2 − V (t, x) + V (t, 0).

We recall that the Newtonian equation can be expressed in the Lagrangian
framework as

∂xL− d

dt
(∂ẋL) = 0. (35)

The function h is of class C1 in the region {(t0, t1) ∈ R2 : t1− t0 > 0}. This
is a consequence of lemma 30. An integration by parts leads to

∂t0h(t0, t1)

= −L(t0, xD(t0; t0, t1), ẋD(t0; t0, t1)) +
∫ t1

t0

{(∂xL)
∂xD

∂t0
+ (∂ẋL)

∂ẋD

∂t0
} dt

= −1
2
ẋD(t0; t0, t1)2 + [(∂ẋL)

∂xD

∂t0
]t=t1
t=t0

+
∫ t1

t0

[(∂xL)− d

dt
(∂ẋL)]

∂xD

∂t0
dt.

From xD(t0; t0, t1) = xD(t1; t0, t1) = 0 we deduce that

ẋD(t0; t0, t1) +
∂xD

∂t0
(t0; t0, t1) =

∂xD

∂t0
(t1; t0, t1) = 0.

These identities together with (35) imply that

∂t0h(t0, t1) =
1
2

ẋD(t0; t0, t1)2.

After differentiating with respect to t1 we arrive at

∂t1h(t0, t1) = −1
2

ẋD(t1; t0, t1)2.

Assume now that (tn) is a sequence solving

∂t0h(tn, tn+1) + ∂t1h(tn−1, tn) = 0, n ∈ Z. (36)

If the condition (33) holds, then the function defined by (32) is non-negative
and it satisfies ẋ(t+n )2 = ẋ(t−n )2. Then ẋ(t−n ) ≤ 0 ≤ ẋ(t+n ) and so the
condition (iv) holds and x(t) becomes a bouncing solution.

Exercise 31 Assume that (tn)n∈Z satisfies (33), (36) and sup(tn+1− tn) <

∞. Moreover, let supt∈R |φ̇(t)| < ∞. Prove that x(t) is bounded.
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7.3 A bouncing ball

Let us apply the previous discussions to a concrete model. Assume that a
horizontal plate (the racket) is moving according to some prescribed protocol
and a particle (the ball) is in free fall until hitting the plate, when it bounces
elastically. In more analytic terms assume that the unknown z = z(t) is the
vertical position of the particle and the given function w(t) is the position
of the plate. For z > w(t) the free fall is modelled by z̈ = −g, where g > 0
is the gravitational constant. The elastic impact is easily modelled through
the relative position x(t) = z(t)− w(t),

x(τ) = 0 ⇒ ẋ(τ+) = −ẋ(τ−).

Assuming that w(t) is of class C2 we find that x(t) is a solution of the impact
problem (29) with

V (t, x) = (g + ẅ(t))x. (37)

From now on we assume that the position and velocity of the plate are
bounded; that is,

w ∈ C2(R) and ‖w‖∞ + ‖ẇ‖∞ < ∞. (38)

This is sufficient to guarantee that (C1) and (C2) are satisfied for c1 = c2 =
g and φ = ψ = w.

In this case the simplicity of the potential allows for explicit computa-
tions.

Exercise 32 Determine xD(t; t0, t1) in terms of w(t). Hint: β(t).

Exercise 33 Use the previous exercise together with (34) to prove that the
generating function is

h(t0, t1) = −g2

24
(t1 − t0)3 − g

2
(w(t1) + w(t0))(t1 − t0)

+
(w(t1)− w(t0))2

2(t1 − t0)
+ g

∫ t1

t0

w(t) dt− 1
2

∫ t1

t0

ẇ(t)2 dt.

Hint:
∫ t1
t0

ẋ2
D(t) dt = − ∫ t1

t0
xD(t)ẍD(t) dt.

We do not need this exact formula for h, since for our purposes it is sufficient
to determine the dominant term as t1 − t0 →∞. From the above exercise,

h(t0, t1) = −g2

24
(t1 − t0)3 + R(t0, t1)
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where
|R(t0, t1)| ≤ C(t1 − t0) for t1 > t0.

Here C is a constant depending only on ‖w‖∞ + ‖ẇ‖∞.
We are going to apply exercise 18 with k = 3 and fixed numbers α, α

satisfying α < g
24 < α and α < 4α. Then there exists d > 0 such that

−α(t1 − t0)3 ≤ h(t1 − t0) ≤ −α(t1 − t0)3 for t1 − t0 ≥ d.

The number σ associated to α and α can be computed in order to find
complete orbits of the difference equation (36) lying in δ ≤ tn+1 − tn ≤ σ2δ
if δ ≥ d. These sequences of impact times lead to bouncing solutions.
Actually, the conditions (v) and (vi) are also satisfied and so these solutions
are bounded. The condition (vi) is automatic from the construction of the
sequence (tn). To verify (v) we notice that x(t) is a solution of the Dirichlet
problem

ẍ = −(g + ẅ(t)), x(tn) = x(tn+1) = 0

and, going back to exercise 32, we obtain a bound for ‖x‖∞+‖ẋ‖∞ in terms
of g, σ, δ and ‖w‖∞ + ‖ẇ‖∞. Alternatively we could apply exercise 31.

We sum up the previous discussions.

Theorem 34 Assume that w(t) satisfies (38) and consider the impact prob-
lem (29) with potential given by (37). Then there exist positive constants
σ > 1 and d such that for each δ ≥ d there exists a bounded solution with
impact times (tδn)n∈Z satisfying

δ ≤ tδn+1 − tδn ≤ σ2δ, n ∈ Z.

8 Comments and bibliographical remarks

1. Introduction. In [38] Zharnitsky replaced standard angles on S1 by an-
gles on a torus S1× . . .×S1. These generalized angles were then employed to
reformulate KAM theory for quasi-periodic maps. The paper [38] motivated
us to consider non-periodic angles.

Standard versions of the Poincaré-Birkhoff and Aubry-Mather theorems
concern diffeomorphisms mapping the cylinder onto itself. In our setting the
image of the map Tε is not necessarily contained in the region a < r < b.
This is not a serious problem since one can first apply KAM theory in order
to find invariant curves. Then the region between two of these invariant
curves is mapped onto itself. This region can be symplectically deformed
into a compact cylinder of the type A ≤ r ≤ B where the standard theory
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applies. An alternative is the use of more sophisticated versions of P-B and
A-M theorems. See for instance [10, 19, 31].

The map Tε,3 was presented as an example in [15]. In that paper there
also some results on the existence of orbits with rotation number for certain
maps with non-periodic angle.

The mechanical model described in the introduction is sometimes called
Fermi-Ulam ping-pong. The problem of deciding whether the velocity can
become unbounded is of physical significance in connection with the so-
called Fermi acceleration. This is explained in a paper by Dolgopyat [9].
The relativistic version of the model is probably more significant in physics
and has been considered, in the periodic case, by Pustyl’nikov, see [32].

2. Symplectic maps in the plane and in the cylinder. Given a home-
omorphism f : T × R → T × R, the theory of covering spaces allows to
construct a lifting f̃ : T × R → R2. Then p ◦ f̃ is a homeomorphism of the
plane and this is what we mean by a lift from the cylinder to the plane.
More details on this point can be found in [4]. The condition (3) can be for-
mulated in a slightly more abstract language as f∗ω = ω, where f∗ω is the
pull-back of the two form ω = dθ∧dr. Symplectic manifolds are the natural
setting to define symplectic maps, the plane and the cylinder endowed with
the form ω are just two simple examples of this class of manifolds. We refer
to [2, 13, 25, 29] for the general theory. The notion of E-symplectic map
was introduced in [14].

3. The twist condition and the generating function. Twist maps
are also studied in more degrees of freedom. See the papers by Herman
[12] and by Bialy-MacKay [6]. The presentation of the notion of generating
function on the cylinder is inspired by the frameworks defined by Mather in
[22] and by Moser in [28]. Generating functions can be defined on general
symplectic manifolds. We refer to the textbooks [2, 26, 29] on Hamiltonian
Dynamics. Usually generating functions are associated to symplectic maps
by local constructions based on the implicit function theorem.

4. The variational principle. The presentation of the Frenkel-Kontorowa
model follows Aubry’s paper [5]. This paper contains interesting results on
the dynamics of the standard map when the potential V is a trigonometric
function. The variational principle is just an adaptation of classical ideas in
Aubry-Mather theory. The only difference is that A-M theory is concerned
with generating functions satisfying the periodicity condition

h(θ + 2π, θ1 + 2π) = h(θ, θ1).

Mather arrived at a different variational principle in [21]. It was concerned
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with functions of the continuous variable θ instead of discrete sequences
(θn). Mather’s original motivation was to understand what remains of in-
variant curves after perturbations when KAM theory does no longer apply.
The book by Moser [28] presents a general view of the different variational
principles connected with Aubry-Mather theory. The use of results about
compactness in spaces of sequences in lemma 13 is influenced by the paper
[1]. There Angenent extended Aubry-Mather theory to more general classes
of difference equations using a method of upper and lower solutions. Finally
we mention the paper by MacKay, Slijepčević, and Stark [24], where the
variational principle is employed for a non-standard application.

5. Existence of complete orbits. Theorem 14 first appeared in [14].
In the original version the condition α < 2α was replaced by the more
restrictive condition α < (3/2)α. The two variants of the theorem presented
in exercises 18 and 19 are taken from [15] and [16]. Again there is some
improvement in the conditions on the quotient α/α. The steps (i) and
(ii) of the proof of theorem 14 are inspired by the techniques employed by
Terracini and Verzini in [35]. See also [30].

6. The action functional of a Newtonian equation. The standard
versions of the theorem on differentiability with respect to initial conditions
assume the differentiability of the vector field with respect to both variables
t and x. However, the differentiability in t is not required to differentiate
the solution at a fixed time t = t1. See for instance the book by Lefschetz
[20].

Alternative proofs of the result in exercise 20 can be found in the papers
by Franks [10] and You [36].

If (25) is replaced by

((2n + 1)π)2 < Vxx(t, x) < (2nπ)2,

then there is backward twist, which means that the derivative ∂θ1
∂r is negative.

A classical result in the theory of boundary value problems, see [18], says
that the problem

z̈ = −Ṽz(t, z), z(0) = z(1) = 0,

has a unique solution if Ṽzz ≤ Γ < π2 or (nπ)2 < γ ≤ Ṽzz ≤ Γ < ((n+1)π)2.
This problem has homogeneous boundary conditions but the previous result
is applicable to (26) after the change of variables x(t) = z(t) + (θ1− θ)t + θ.

Very clear discussions on the connection between the generating func-
tion and the action functional can be found in Moser’s course [28]. They
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apply to general Lagrangian systems but we have preferred to restrict our-
selves to Newtonian equations to make the discussion simpler and also to
present a non-local formulation. In [33] Radmazé considered the problem of
minimization of the action functional in a space of periodic functions, say
H1(R/Z). He found that there is a minimizer if and only if the function
R(θ) := h(θ, θ) reaches a minimum at some θ∗. Moreover, the minimizer is
precisely ξ(t; θ∗, θ∗). This is also described in Caratheodory’s book [8].

Exercise 25 is a particular case of some results in [15] for equations of
the type

ẍ + V ′(x) = p(t), p(t + 1) = p(t),
∫ 1

0
p(t)dt = 0,

with V (x) bounded. An alternative way to solve it is to find a generalized
periodic solution of the type x(t + 1) = x(t) + 2π by minimization of the
action functional. More information on this approach can be found in the
paper by Mawhin on the pendulum equation [23].

7. Impact problems and generating functions. The connections be-
tween the generating function and the action functional for impact problems
is discussed in [15]. The key is the formula (34), which also explains the con-
nection between the so-called Nehari method and our method of construc-
tion of bouncing solutions via the equation (36). The basic idea of Nehari’s
method (see [35]) is to consider the function

h(t0, t1) = inf
{∫ t1

t0

L(t, x(t), ẋ(t)) dt : x ∈ H1
0 (t0, t1), x > 0 on ]t0, t1[

}
,

and then to obtain a solution satisfying the boundary conditions x(t0) =
x(tn+1) = 0 and having exactly n zeros in ]t0, tn+1[ by finding a maximum
of the function

Φ(t1, t2, . . . , tn) =
n∑

k=0

h(tk, tk+1).

From formula (34) and the uniqueness of solution to the Dirichlet problem
we observe that h is precisely the generating function and the critical points
of Φ are the solutions of (36) on a finite interval of indexes.

The problem of the bouncing ball with gravity was considered in [32] by
Pustyl’nikov in the case where the motion of the racket w(t) is periodic. In
particular he obtained an interesting result on the existence of motions with
unbounded velocity for certain functions w(t) which are periodic, smooth
and have large norm.
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ics, Birkhäuser, 2011.

[14] M. Kunze, R. Ortega, Complete orbits for twist maps on the plane,
Ergodic Theory Dynam. Systems 28 (2008), 1197-1213.

39



[15] M. Kunze, R. Ortega, Complete orbits for twist maps on the plane:
extensions and applications, to appear in J. Dynamics and Differential
Equations.

[16] M. Kunze, R. Ortega, Complete orbits for twist maps on the plane:
the case of small twist, Ergodic Theory Dynam. Systems 31 (2011),
1471-1498.

[17] S. Laederich, M. Levi, Invariant curves and time-dependent potentials,
Ergodic Theory Dynam. Systems 11 (1991), 365-378.

[18] A. Lazer, D. Leach, On a nonlinear two-point boundary value problem,
J. Math. Anal. Appl. 26 (1969), 20-27.

[19] P. Le Calvez, J. Wang, Some remarks on the Poincaré-Birkhoff theorem,
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