### Persistence modules in symplectic topology

Leonid Polterovich, Tel Aviv

Cologne, 2017

based on joint works with Egor Shelukhin, Vukašin Stojisavljević and a survey (in progress) with Jun Zhang

伺 と く ヨ と く ヨ と

## Morse homology

*f*-Morse function,  $\rho$ -generic metric,  $\mathcal{F}$ -field. **Filtered complex:**  $C_t = \mathcal{F} \cdot \operatorname{Crit}_t(f)$  - span of critical points x of f with value f(x) < t,  $t \in \mathbb{R}$ . **Differential:**  $d : C_t \to C_t$ ,  $dx = \sum n(x, y)y$ , where n(x, y)-number of gradient lines of f connecting x and y.



**Problem:** Find homology of  $(C_t, d)$  with computer. **Difficulty:** Count orbits connecting approximate crit. pts.? **New approach needed!** 

< ロ > < 同 > < 回 > < 回 >

## Barcodes

Edelsbrunner, Harer, Carlsson,... Last decade in the context of topological data analysis.

**Barcode**  $\mathcal{B} = \{I_j, m_j\}$ -finite collection of intervals  $I_j$  with multiplicities  $m_j$ ,  $I_j = (a_j, b_j]$ ,  $a_j < b_j \le +\infty$ .

Bottleneck distance between barcodes:  $\mathcal{B}, \mathcal{C}$  are  $\delta$ -matched,  $\delta > 0$  if after erasing some intervals in  $\mathcal{B}$  and  $\mathcal{C}$  of length  $< 2\delta$  we can match the rest in 1-to-1 manner with error at most  $\delta$  at each end-point.

$$d_{bot}(\mathcal{B},\mathcal{C}) = \inf \delta$$
 .



Leonid Polterovich, Tel Aviv University Persistence modules in symplectic topology

 $\mathcal{F}$  – a field.

**Persistence module:** a pair  $(V, \pi)$ , where  $V_t$ ,  $t \in \mathbb{R}$  are  $\mathcal{F}$ -vector spaces, dim  $V_t < \infty$ ,  $V_s = 0$  for all  $s \ll 0$ .

 $\pi_{st}: V_s 
ightarrow V_t$ , s < t linear maps: orall s < t < r



**Regularity:** For all but finite number of jump points  $t \in \mathbb{R}$ , there exists a neighborhood U of t such that  $\pi_{sr}$  is an isomorphism for all  $s, r \in U$ . Extra assumption ("semicontinuity") at jump points.

## Structure theorem

**Interval module** 
$$(\mathcal{F}(a, b], \kappa), a \in \mathbb{R}, b \in \mathbb{R} \cup +\infty$$
:  
 $\mathcal{F}(a, b]_t = \mathcal{F}$  for  $t \in (a, b]$  and  $\mathcal{F}(a, b]_t = 0$  otherwise;  
 $\kappa_{st} = 1$  for  $s, t \in (a, b]$  and  $\kappa_{st} = 0$  otherwise.





**Structure theorem:** For every persistence module  $(V, \pi)$  there exists unique barcode  $\mathcal{B}(V) = \{(I_j, m_j)\}$  such that  $V = \bigoplus \mathcal{F}(I_j)^{m_j}$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

## Example: Morse theory

X-closed manifold,  $f : X \to \mathbb{R}$ -Morse function. Persistence module  $V_t(f) := H_*(\{f < t\}, \mathcal{F})$ . The persistence morphisms are induced by the inclusions  $\{f < s\} \hookrightarrow \{f < t\}, s < t$ .



**Figure:** Sublevels

**Robustness:**  $||f|| := \max |f|$ -uniform norm.  $(C^{\infty}(X), || \cdot ||) \rightarrow (Barcodes, d_{bot}), f \mapsto \mathcal{B}(V(f))$  is Lipshitz.

伺 と く ヨ と く ヨ と

# Symplectic preliminaries

 $(M^{2n}, \omega)$ -symplectic manifold  $\omega$ - symplectic form. Locally  $\omega = \sum_{i=1}^{n} dp_i \wedge dq_i$ . Examples of closed symplectic manifolds:

- Surfaces with area forms;
- Products.

*M*-phase space of mechanical system. **Energy determines evolution:**  $F : M \times [0,1] \rightarrow \mathbb{R}$  – Hamiltonian function (energy). Hamiltonian system:

$$\begin{cases} \dot{q} = \frac{\partial F}{\partial p} \\ \dot{p} = -\frac{\partial F}{\partial q} \end{cases}$$

Family of Hamiltonian diffeomorphisms

$$f_t: M 
ightarrow M, \ (p(0),q(0)) \mapsto (p(t),q(t))$$

Key feature:  $\phi_t^* \omega = \omega$ .

- ( 同 ) ( 回 ) ( 回 ) - 回

## Hamiltonian diffeomorphisms

 $(M, \omega)$ -closed symplectic manifold.  $Ham(M, \omega)$  - group of Hamiltonian diffeomorphisms.

Ham  $\subset$  Symp<sub>0</sub>. Ham = Symp<sub>0</sub> if  $H^1(M, \mathbb{R}) = 0$ . **Hofer's length:** For a Hamiltonian path  $\alpha = \{f_t\}, f_0 = 1, f_1 = \phi$ length( $\alpha$ ) =  $\int_0^1 ||F_t|| dt$ , where  $F_t$  - normalized (zero mean) Hamiltonian of  $\alpha$ .

Figure: Path  $\alpha$ 



同下 イヨト イヨト

Put  $d_H(\mathbb{1}, \phi) = \inf_{\alpha} \operatorname{length}(\alpha)$ , where  $\alpha$ -path between  $\mathbb{1}$  and  $\phi$ .  $d_H(\phi, \psi) := d_H(\mathbb{1}, \phi \psi^{-1})$  - Hofer's metric, 1990

- non-degenerate Hofer, P., Viterbo, Lalonde-McDuff
- biinvariant
- essentially unique non-degenerate Finsler metric on Ham associated to a Ham-invariant norm on the Lie algebra  $C^{\infty}(M)_{normalized}$  Buhovsky-Ostrover, 2011

Floer theory (1988-...)

*LM*- space of contractible loops  $z : S^1 \to M$  F(x, t)- 1-periodic Hamiltonian,  $\phi_F \in Ham$  - time one map **Action functional:**  $\mathcal{A}_F(z) : LM \to \mathbb{R}, z \mapsto \int_0^1 F(z(t), t) dt - \int_D \omega$  *D*-disc spanning *z*. Well defined if  $\pi_2(M) = 0$  **Critical points:** 1-periodic orbits of Hamiltonian flow **Gradient equation:** Cauchy-Riemann (Gromov's theory, 1985) Gradient lines connecting critical points – **Fredholm problem** 

Figure: Gradient lines:



Count of connecting lines: Floer homology HF

Leonid Polterovich, Tel Aviv University Persistence modules in symplectic topology

For  $s \in \mathbb{R}$  get family of vector spaces  $HF(\{A_F < s\})$  with natural morphisms (as in Morse theory).

Under certain assumptions on  $(M, \omega)$  (apsherical, atoroidal,...)

- the module depends only on the time one map  $\phi \in Ham(M, \omega)$  of the Hamiltonian flow of F.
- There exists a version of Floer persistence module  $HF(\phi)_{\alpha}$  built on non-contractible closed orbits in the free homotopy class  $\alpha$ .

イロン 不同 とくほう イロン

### Theorem (P.-Shelukhin, 2016)

For closed  $(M, \omega)$  with  $\pi_2(M) = 0$ , the map

$$(Ham, d_{Hofer}) \rightarrow (Barcodes, d_{bot})$$
,

 $\phi \mapsto \mathcal{B}$  (persist. module associated to Floer theory of  $\phi$ ) is Lipschitz.

Lipschitz functions on barcodes include some known numerical invariants of Hamiltonian diffeomorphisms: spectral invariants (Viterbo, Schwarz, Oh); boundary depth (Usher)

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Generalization to arbitrary symplectic manifolds, including theory of persistence modules over Novikov rings (Usher-Zhang) Applications to geometry of *Ham*.

# Symplectic homology of domains

(Floer-Hofer)  $U \subset \mathbb{R}^{2n}$  - domain,  $\mathcal{C}(U)$ - compactly supported non-negative Hamiltonians.

 $H, F \in \mathcal{C}(U), H \leq F \Rightarrow$  natural morphism  $HF^{t}(F) \rightarrow HF^{t}(H), t > 0.$ 



$$P_i^t(U) := SH_i^{e^t}(U) := \lim_{\leftarrow} HF_i^{[e^t, +\infty)}(H), \ i \ge 2n$$

point-wise fin. dim. persistence module - the same theory

▲圖→ ▲屋→ ▲屋→

(Ostrover, P., Usher, Gutt, Zhang) S-set of starshaped domains in  $\mathbb{R}^{2n}$ . For  $U, V \in S$  set

$$\rho(U, V) = \inf \left\{ \ln C \in [0, \infty) \middle| \begin{array}{c} \exists \ \frac{1}{C}U \xrightarrow{\phi} V \xrightarrow{\psi} CU \\ \text{s.t. } \psi \circ \phi \text{ is "unknotted"} \end{array} \right\}$$

and  $d_{SBM}(U, V) = \max\{\rho(U, V), \rho(V, U)\}.$ 

**Map:**  $U \in S \rightarrow \text{barcode } \mathcal{B}_i(U)$  of symplectic homology  $P_i^t(U)$ .

#### Theorem (Robustness)

 $U \rightarrow B_i(U)$  is Lipschitz for  $d_{SBM}$  on S and  $d_{bot}$  on barcodes.

**In progress:** Applications to geometry of  $(S, d_{SBM})$ .

Persistence of higher algebraic structures: Floer persistence module carries a natural operation  $HF_s(\phi) \otimes HF_t(\psi) \rightarrow HF_{s+t}(\phi\psi)$  (pair-of-pants product). How to use it? First steps (when  $\phi = 1$ ) - P-Shelukhin-Stojisavljević. Explore structures on SH (co-product?).

"Learning" symplectic mfds and their morphisms: Reconstruct (with a controlled error) "hard" invariants of a symplectic manifold or a symplectic diffeomorphism, given its (discrete) approximation.

**Persistence and (de)quantization:** Reconstruct (with a controlled error) "hard" invariants of a Hamiltonian function/diffeomorphism or subset from its (Berezin-Toeplitz) quantization. Analogy with the previous problem due to remainders (error terms) of the (de)quantization. In progress.

< ロ > < 同 > < 回 > < 回 > < □ > <

### **GEOMETRY** ~> **ALGEBRA** (pers. mod.) ~> **BARCODE**

GEOMETRY

ALGEBRA

同 ト イ ヨ ト イ ヨ ト

 $C^{\infty}(M)$ , uniform norm Morse homology Ham (M), Hofer's metric Floer homology starsh. domains, Banach-Mazur dist. sympl. homology  $(M, \omega)$ -closed symplectic manifold,  $k \ge 2$  - integer. Powers<sub>k</sub> = { $\phi = \psi^k | \psi \in Ham$ }- Hamiltonian diffeomorphisms admitting a root of order k.

### Theorem (P.-Shelukhin)

Let  $\Sigma$  be a closed oriented surface of genus  $\geq$  4 equipped with an area form  $\sigma$ , and  $k \geq$  2 an integer. Then

 $\sup_{\phi \in Ham} d(\phi, \operatorname{Powers}_k) = +\infty .$ 

< ロ > < 同 > < 回 > < 回 > < □ > <

**Extensions:** Proved for various split manifolds of the form  $\Sigma \times M$  (P.-Shelukhin, Zhang, P-S-Stojisavljević)

**Idea:** Diffeomorphism  $\phi$  induces  $\mathbb{Z}_{p}$ -action by conjugation on the persistence module of  $HF^{t}(\phi^{p})$ . Look at persistence eigenmodule corresponding to the primitive *p*-th root of unity. Involves Floer homology for non-contractible loops.

< ロ > < 同 > < 回 > < 回 > < □ > <

#### Theorem

For closed surface of genus  $\geq$  4, any asymptotic cone of Ham contains a free group with two generators.

D. Alvarez-Gavela, V. Kaminker, A. Kislev, K. Kliakhandler, A. Pavlichenko, L. Rigolli, D. Rosen, O. Shabtai, B. Stevenson, J. Zhang, 2015.

・ 同 ト ・ ヨ ト ・ ヨ ト