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Morse homology

f -Morse function, ρ-generic metric, F-field.
Filtered complex: Ct = F · Critt(f ) - span of critical points x of
f with value f (x) < t, t ∈ R.
Differential: d : Ct → Ct , dx =

∑
n(x , y)y , where

n(x , y)-number of gradient lines of f connecting x and y .

Problem: Find homology of (Ct , d) with computer.
Difficulty: Count orbits connecting approximate crit. pts.?
New approach needed!
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Barcodes

Edelsbrunner, Harer, Carlsson,... Last decade in the context of
topological data analysis.
Barcode B = {Ij ,mj}-finite collection of intervals Ij with
multiplicities mj , Ij = (aj , bj ], aj < bj ≤ +∞.

Bottleneck distance between barcodes: B, C are δ-matched ,
δ > 0 if after erasing some intervals in B and C of length < 2δ we
can match the rest in 1-to-1 manner with error at most δ at each
end-point.

dbot(B, C) = inf δ .

Figure: Matching
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Persistence modules

F – a field.
Persistence module: a pair (V , π), where Vt , t ∈ R are F-vector
spaces, dimVt <∞, Vs = 0 for all s � 0.
πst : Vs → Vt , s < t linear maps: ∀s < t < r

Vt

πtr

  
Vs

πst
>>

πsr // Vr

Regularity: For all but finite number of jump points t ∈ R, there
exists a neighborhood U of t such that πsr is an isomorphism for
all s, r ∈ U. Extra assumption (”semicontinuity”) at jump points.
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Structure theorem

Interval module (F(a, b], κ), a ∈ R, b ∈ R ∪+∞:
F(a, b]t = F for t ∈ (a, b] and F(a, b]t = 0 otherwise;
κst = 1l for s, t ∈ (a, b] and κst = 0 otherwise.

Figure: Interval module

Structure theorem: For every persistence module (V , π) there
exists unique barcode B(V ) = {(Ij ,mj)} such that V = ⊕F(Ij)

mj .
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Example: Morse theory

X -closed manifold, f : X → R-Morse function.
Persistence module Vt(f ) := H∗({f < t},F). The persistence
morphisms are induced by the inclusions
{f < s} ↪→ {f < t}, s < t.

Figure: Sublevels

Robustness: ||f || := max |f |-uniform norm.
(C∞(X ), || · ||)→ (Barcodes, dbot), f 7→ B(V (f )) is Lipshitz.
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Symplectic preliminaries

(M2n, ω)–symplectic manifold
ω– symplectic form. Locally ω =

∑n
i=1 dpi ∧ dqi .

Examples of closed symplectic manifolds:

Surfaces with area forms;

Products.

M-phase space of mechanical system. Energy determines
evolution: F : M × [0, 1]→ R – Hamiltonian function (energy).
Hamiltonian system: {

q̇ = ∂F
∂p

ṗ = −∂F
∂q

Family of Hamiltonian diffeomorphisms

ft : M → M, (p(0), q(0)) 7→ (p(t), q(t))

Key feature: φ∗tω = ω.
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Hamiltonian diffeomorphisms

(M, ω)-closed symplectic manifold. Ham (M, ω) - group of
Hamiltonian diffeomorphisms.
Ham ⊂ Symp0. Ham = Symp0 if H1(M,R) = 0.
Hofer’s length: For a Hamiltonian path α = {ft}, f0 = 1l, f1 = φ

length(α) =
∫ 1
0 ||Ft || dt, where Ft - normalized (zero mean)

Hamiltonian of α.

Figure: Path α
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Hofer’s metric

Put dH(1l, φ) = infα length(α), where α-path between 1l and φ.
dH(φ, ψ) := dH(1l, φψ−1) - Hofer’s metric, 1990

non-degenerate Hofer, P., Viterbo, Lalonde-McDuff

biinvariant

essentially unique non-degenerate Finsler metric on Ham
associated to a Ham -invariant norm on the Lie algebra
C∞(M)normalized Buhovsky-Ostrover, 2011
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Floer theory (1988-...)

LM- space of contractible loops z : S1 → M
F (x , t)- 1-periodic Hamiltonian, φF ∈ Ham - time one map

Action functional: AF (z) : LM → R, z 7→
∫ 1
0 F (z(t), t)dt −

∫
D ω

D-disc spanning z . Well defined if π2(M) = 0
Critical points: 1-periodic orbits of Hamiltonian flow
Gradient equation: Cauchy-Riemann (Gromov’s theory, 1985)
Gradient lines connecting critical points – Fredholm problem

Figure: Gradient lines:

Count of connecting lines: Floer homology HF
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Floer persistence module

For s ∈ R get family of vector spaces HF ({AF < s}) with natural
morphisms (as in Morse theory).
Under certain assumptions on (M, ω) (apsherical, atoroidal,...)

the module depends only on the time one map
φ ∈ Ham (M, ω) of the Hamiltonian flow of F .

There exists a version of Floer persistence module HF (φ)α
built on non-contractible closed orbits in the free homotopy
class α.

Leonid Polterovich, Tel Aviv University Persistence modules in symplectic topology



Robustness

Theorem (P.-Shelukhin, 2016)

For closed (M, ω) with π2(M) = 0, the map

(Ham , dHofer )→ (Barcodes, dbot) ,

φ 7→ B (persist. module associated to Floer theory of φ)
is Lipschitz.

Lipschitz functions on barcodes include some known numerical
invariants of Hamiltonian diffeomorphisms: spectral invariants
(Viterbo, Schwarz, Oh); boundary depth (Usher)
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Generalizations

Generalization to arbitrary symplectic manifolds, including theory
of persistence modules over Novikov rings (Usher-Zhang)
Applications to geometry of Ham .
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Symplectic homology of domains

(Floer-Hofer)
U ⊂ R2n - domain, C(U)- compactly supported non-negative
Hamiltonians.
H,F ∈ C(U),H ≤ F ⇒ natural morphism HF t(F )→ HF t(H),
t > 0.

colognesh
Tuesday, July 25, 2017 6:50 AM

Pt
i (U) := SHet

i (U) := lim
←

HF
[et ,+∞)
i (H), i ≥ 2n

point-wise fin. dim. persistence module - the same theory
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Symplectic Banach-Mazur (pseudo)-distance

(Ostrover,P.,Usher,Gutt,Zhang)
S-set of starshaped domains in R2n.
For U,V ∈ S set

ρ(U,V ) = inf

{
lnC ∈ [0,∞)

∣∣∣∣ ∃ 1
CU

φ−→ V
ψ−→ CU

s.t. ψ ◦ φ is “unknotted”

}

and dSBM(U,V ) = max{ρ(U,V ), ρ(V ,U)}.

Map: U ∈ S  barcode Bi (U) of symplectic homology Pt
i (U).

Theorem (Robustness)

U → Bi (U) is Lipschitz for dSBM on S and dbot on barcodes.

In progress: Applications to geometry of (S, dSBM).
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Further directions

Persistence of higher algebraic structures: Floer persistence
module carries a natural operation
HFs(φ)⊗ HFt(ψ)→ HFs+t(φψ) (pair-of-pants product). How to
use it?
First steps (when φ = 1l) - P-Shelukhin-Stojisavljević.
Explore structures on SH (co-product?).

“Learning” symplectic mfds and their morphisms: Reconstruct
(with a controlled error) “hard” invariants of a symplectic manifold
or a symplectic diffeomorphism, given its (discrete) approximation.

Persistence and (de)quantization: Reconstruct (with a
controlled error) “hard” invariants of a Hamiltonian
function/diffeomorphism or subset from its (Berezin-Toeplitz)
quantization. Analogy with the previous problem due to
remainders (error terms) of the (de)quantization. In progress.
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Conclusion

GEOMETRY  ALGEBRA (pers. mod.)  BARCODE

GEOMETRY ALGEBRA

C∞(M), uniform norm Morse homology
Ham (M), Hofer’s metric Floer homology

starsh. domains, Banach-Mazur dist. sympl. homology
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Application: distance to powers

(M, ω)-closed symplectic manifold, k ≥ 2 - integer.
Powersk = {φ = ψk | ψ ∈ Ham }- Hamiltonian diffeomorphisms
admitting a root of order k.

Theorem (P.-Shelukhin)

Let Σ be a closed oriented surface of genus ≥ 4 equipped with an
area form σ, and k ≥ 2 an integer. Then

sup
φ∈Ham

d(φ,Powersk) = +∞ .
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Comments

Extensions: Proved for various split manifolds of the form Σ×M
(P.-Shelukhin, Zhang, P-S-Stojisavljević)

Idea: Diffeomorphism φ induces Zp-action by conjugation on the
persistence module of HF t(φp). Look at persistence eigenmodule
corresponding to the primitive p-th root of unity. Involves Floer
homology for non-contractible loops.
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Application: coarse geometry of Ham

Theorem

For closed surface of genus ≥ 4, any asymptotic cone of Ham
contains a free group with two generators.

D. Alvarez-Gavela, V. Kaminker, A. Kislev, K. Kliakhandler, A.
Pavlichenko, L. Rigolli, D. Rosen, O. Shabtai, B. Stevenson, J.
Zhang, 2015.
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