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Goals

In this talk we describe very easy, heuristic tools for the following.

I find (symmetric) periodic orbits with the computer

I compute the Conley-Zehnder index

Remark
On Friday I will describe a general scheme to make the numerical
work rigorous: this includes taking care of rounding errors,
truncation errors, and uniqueness in a neighborhood.
In other words, today’s methods are just heuristics.
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Symmetric periodic orbits

We consider a symplectic manifold (M, ω) with antisymplectic
involution ι, so ι∗ω = −ω.

Example

As a basic example, consider (M = R4, ω =
∑

i dpi ∧ dqi ) with

ι(q1, q2, p1, p2) = (q1,−q2,−p1, p2).

The fixed point set of ι is Lagrangian. In the example, Fix(ι)
consists of points (q1, 0, 0, p2).

Definition
A symmetric, periodic orbit of an ι-invariant H is a periodic
orbit γ of XH such that ι ◦ γ(t) = γ(T − t).
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Doubling of chords

Given a chord γ from Fix(ι) to itself, we obtain a symmetric,
periodic orbit by doubling.

γ(·)

ι ◦ γ(T − ·)
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Symmetric Hamiltonians

Mechanical Hamiltonians with a potential that is symmetric in the
x-axis are invariant. An interesting example is the diamagnetic
Kepler problem.
In cylindrical coordinates, its Hamiltonian is given by

H =
1

2

(
p2ρ + p2z +

p2ϑ
ρ2
− Bpϑ

)
+

B2

8
ρ2 − 1√

ρ2 + z2

When the angular momentum pϑ = 0, this gives an invariant
Hamiltonian on R4.
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Some symmetric periodic orbits in the diamagnetic Kepler problem
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Review of PRTBP

We consider a “massless” particle affected by by particles at qi (t)
for i = 1, 2.

H(q, p) =
1

2
‖p‖2 −

2∑
i=1

mi

‖q − qi (t)‖

Suppose now q1 and q2 move around each other in circular orbits.
It was discovered by Jacobi that then the problem turns out to
admit an integral after going to a rotating frame.
This is the planar, restricted three-body problem (PRTBP).
The Jacobi Hamiltonian is the autonomous Hamiltonian

H(q, p) =
1

2
‖p‖2 + ptJ0q −

1− µ
‖q + µ‖

− µ

‖q − 1 + µ‖
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A family of symmetric orbits in RTBP (µ = 0.99) all with µCZ = 3
(after Moser regularization).

1 2 3

4 5 6
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Shooting algorithm for finding symmetric periodic orbits

Input: An invariant Hamiltonian H, a starting point q, a stepsize δ
and an energy level c

Output: Some approximations of symmetric periodic orbits

1. i ← 1

2. find p such that H(q, 0, 0, p) = c, so x = (q, 0, 0, p) ∈ L

3. by numerical integration find approximate minimal t such that
q2(FlXH

t (x)) = 0.

4. record the slope: si ← p1(FlXH
t (x)). q ← q + δ. i ← i + 1

5. if i = 2 go to step 2.

6. (sign change) if si · si−1 < 0, find 0 of the slope function by
Newton iterations. Record the new starting q′ and half-period
t ′.

7. if q < qmax go to step 2. Else return recorded data.
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A good way to find t such that q2(FlXH
t (x)) = 0 is the following:

1. find t0 such that q2(FlXH
t0 (x)) < 0 and t1 = t0 + h such that

q2(FlXH
t1 (x)) > 0.

2. from x ′ = FlXH
t0 (x) integrate the ODE from q2 = q2(FlXH

t0 (x)
to 0

q̇1 = fq1/fq2

q̇2 = 1

ṗ1 = fp1/fq2

ṗ2 = fp2/fq2

ṫ = 1/fq2

Remark
The choice of numerical integration scheme (Runge-Kutta,
symplectic integrator, Taylor) affects the results and speed
considerably.
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The standard algorithm

The above is a really a cartoon (but very effective) of the standard
algorithm. The standard way goes as follows

1. take a local surface of section L and x ∈ L

2. by numerical integration find the approximate minimal t > 0
such that τ(x) := FlXt (x) ∈ L; at the same time compute the
variational equation

3. we get a numerical approximation of the first return map τ(x)
and its derivative dxτ

4. if τ(x) is close to x , use Newton iterations to obtain a fixed
point.

Remark
The earlier version is essentially the same using a 1-dimensional
surface of section (the Lagrangian intersection with the energy
surface).
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Conley-Zehnder index

An important invariant of Hamiltonian periodic orbits is the
so-called Conley-Zehnder index. Intuitively, it is a “winding
number” of the linearized flow.
More precisely, let us consider a path of symplectic matrices,

Ψ : [0, 1] −→ Sp(2n).

with Ψ(0) = Id and det(Ψ(1)− Id) 6= 0.

Definition
The Maslov cycle is the (singular variety)

V = {A ∈ Sp(2n) | det(A− Id) = 0}
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Maslov cycle

The Conley-Zehnder index of a path of symplectic matrices is
the intersection number of Ψ with the Maslov cycle. This can be
computed with the crossing formula.

Figure: Maslov cycle in Sp(2) ∼= S1 × R2
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Quaternions to construct global frames

Now the Conley-Zehnder index of a periodic orbit on a
star-shaped hypersurface in R4

1. Symplectically trivialize the symplectic complement of
span(X ,XH) (the contact structure) by the global frame

U = j∇H − λ(j∇H)

λ(XH)
XH , V = k∇H − λ(k∇H)

λ(XH)
XH

Rescale U such that dλ(Ũ,V ) = 1.

2. Use the variational equations to compute the linearized flow
dFlXH

t (U), dFlXH
t (V ). Decompose these vectors into the

frame to get Ψ(t). µCZ (γ) := µCZ (Ψ).

Note XH = i∇H.

Remark
Global trivializations can also explicitly be written down for RP3.
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Proposition (Long, Hutchings)

Let (Y , λ) be contact manifold, and γ a non-degenerate periodic
Reeb orbit with symplectic trivialization Φ. Let ϑ denote the
rotation number of γ with respect to Φ. Then
µCZ (γk ) = bkϑc+ dkϑe.

Remark

I If |trace(γ)| < 2, then γ is elliptic (and the rotation number is
irrational since γ is assumed to be non-degenerate.

I If trace(γ) > 2, then γ is hyperbolic

I If trace(γ) < −2, then γ is negative hyperbolic (γ2 is a bad
orbit).
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Algorithm to get the CZ-index of a (approximate) periodic
orbit

Input: Approximate starting point and period of a non-degenerate
periodic orbit γ of a starshaped hypersurface in R4.

Output: Transverse Conley-Zehnder index of γ

1. Numerically integrate the variational equations to obtain an
approximate, discretized path of symplectic matrices Ψ(t0),
Ψ(t1),...

2. Compute tr = Trace(Ψ(tfinal ) ) If |tr | > 2, the orbit is
non-degenerate, hyperbolic. If |tr | < 2, the orbit is
non-degenerate, elliptic.

3. Count axis crossings Ψ(ti ) to obtain the rotation number

4. Apply the proposition.

Otto van Koert Shooting to find orbits


