Shooting to find orbits

Otto van Koert

Department of Mathematical Sciences, Seoul National University

Goals

In this talk we describe very easy, heuristic tools for the following.

- find (symmetric) periodic orbits with the computer
- compute the Conley-Zehnder index

Remark

On Friday I will describe a general scheme to make the numerical work rigorous: this includes taking care of rounding errors, truncation errors, and uniqueness in a neighborhood. In other words, today's methods are just heuristics.

Symmetric periodic orbits

We consider a symplectic manifold (M, ω) with antisymplectic involution ι, so $\iota^{*} \omega=-\omega$.

Example

As a basic example, consider $\left(M=\mathbb{R}^{4}, \omega=\sum_{i} d p_{i} \wedge d q_{i}\right)$ with

$$
\iota\left(q_{1}, q_{2}, p_{1}, p_{2}\right)=\left(q_{1},-q_{2},-p_{1}, p_{2}\right)
$$

The fixed point set of ι is Lagrangian. In the example, Fix (ι) consists of points $\left(q_{1}, 0,0, p_{2}\right)$.

Definition

A symmetric, periodic orbit of an ι-invariant H is a periodic orbit γ of X_{H} such that $\iota \circ \gamma(t)=\gamma(T-t)$.

Doubling of chords

Given a chord γ from $\operatorname{Fix}(\iota)$ to itself, we obtain a symmetric, periodic orbit by doubling.

Symmetric Hamiltonians

Mechanical Hamiltonians with a potential that is symmetric in the x-axis are invariant. An interesting example is the diamagnetic Kepler problem.
In cylindrical coordinates, its Hamiltonian is given by

$$
H=\frac{1}{2}\left(p_{\rho}^{2}+p_{z}^{2}+\frac{p_{\vartheta}^{2}}{\rho^{2}}-B p_{\vartheta}\right)+\frac{B^{2}}{8} \rho^{2}-\frac{1}{\sqrt{\rho^{2}+z^{2}}}
$$

When the angular momentum $p_{\vartheta}=0$, this gives an invariant Hamiltonian on \mathbb{R}^{4}.

Some symmetric periodic orbits in the diamagnetic Kepler problem

Review of PRTBP

We consider a "massless" particle affected by by particles at $q_{i}(t)$ for $i=1,2$.

$$
H(q, p)=\frac{1}{2}\|p\|^{2}-\sum_{i=1}^{2} \frac{m_{i}}{\left\|q-q_{i}(t)\right\|}
$$

Suppose now q_{1} and q_{2} move around each other in circular orbits. It was discovered by Jacobi that then the problem turns out to admit an integral after going to a rotating frame.
This is the planar, restricted three-body problem (PRTBP). The Jacobi Hamiltonian is the autonomous Hamiltonian

$$
H(q, p)=\frac{1}{2}\|p\|^{2}+p^{t} J_{0} q-\frac{1-\mu}{\|q+\mu\|}-\frac{\mu}{\|q-1+\mu\|}
$$

A family of symmetric orbits in RTBP $(\mu=0.99)$ all with $\mu_{C Z}=3$ (after Moser regularization).

Shooting algorithm for finding symmetric periodic orbits

Input: An invariant Hamiltonian H, a starting point q, a stepsize δ and an energy level c
Output: Some approximations of symmetric periodic orbits

1. $i \leftarrow 1$
2. find p such that $H(q, 0,0, p)=c$, so $x=(q, 0,0, p) \in L$
3. by numerical integration find approximate minimal t such that $q_{2}\left(F l_{t}^{X_{H}}(x)\right)=0$.
4. record the slope: $s_{i} \leftarrow p_{1}\left(F l_{t}^{X_{H}}(x)\right) . q \leftarrow q+\delta . i \leftarrow i+1$
5. if $i=2$ go to step 2 .
6. (sign change) if $s_{i} \cdot s_{i-1}<0$, find 0 of the slope function by Newton iterations. Record the new starting q^{\prime} and half-period t^{\prime}.
7. if $q<q_{\max }$ go to step 2 . Else return recorded data.

A good way to find t such that $q_{2}\left(\left.F\right|_{t} ^{X_{H}}(x)\right)=0$ is the following: 1. find t_{0} such that $q_{2}\left(\left.F\right|_{t_{0}} ^{X_{H}}(x)\right)<0$ and $t_{1}=t_{0}+h$ such that $q_{2}\left(F_{t_{1}}^{X_{H}}(x)\right)>0$.
2. from $x^{\prime}=\left.F\right|_{t_{0}} ^{X_{H}}(x)$ integrate the ODE from $q_{2}=q_{2}\left(\left.F\right|_{t_{0}} ^{X_{H}}(x)\right.$ to 0

$$
\begin{aligned}
\dot{q}_{1} & =f_{q_{1}} / f_{q_{2}} \\
\dot{q}_{2} & =1 \\
\dot{p}_{1} & =f_{p_{1}} / f_{q_{2}} \\
\dot{p}_{2} & =f_{p_{2}} / f_{q_{2}} \\
\dot{t} & =1 / f_{q_{2}}
\end{aligned}
$$

Remark

The choice of numerical integration scheme (Runge-Kutta, symplectic integrator, Taylor) affects the results and speed considerably.

The standard algorithm

The above is a really a cartoon (but very effective) of the standard algorithm. The standard way goes as follows

1. take a local surface of section L and $x \in L$
2. by numerical integration find the approximate minimal $t>0$ such that $\tau(x):=F I_{t}^{X}(x) \in L$; at the same time compute the variational equation
3. we get a numerical approximation of the first return map $\tau(x)$ and its derivative $d_{x} \tau$
4. if $\tau(x)$ is close to x, use Newton iterations to obtain a fixed point.

Remark

The earlier version is essentially the same using a 1-dimensional surface of section (the Lagrangian intersection with the energy surface).

Conley-Zehnder index

An important invariant of Hamiltonian periodic orbits is the so-called Conley-Zehnder index. Intuitively, it is a "winding number" of the linearized flow.
More precisely, let us consider a path of symplectic matrices,

$$
\Psi:[0,1] \longrightarrow S p(2 n)
$$

with $\Psi(0)=\mathrm{Id}$ and $\operatorname{det}(\Psi(1)-\mathrm{Id}) \neq 0$.
Definition
The Maslov cycle is the (singular variety)

$$
V=\{A \in \operatorname{Sp}(2 n) \mid \operatorname{det}(A-\mathrm{Id})=0\}
$$

Maslov cycle

The Conley-Zehnder index of a path of symplectic matrices is the intersection number of Ψ with the Maslov cycle. This can be computed with the crossing formula.

Figure: Maslov cycle in $S p(2) \cong S^{1} \times \mathbb{R}^{2}$

Quaternions to construct global frames

Now the Conley-Zehnder index of a periodic orbit on a star-shaped hypersurface in \mathbb{R}^{4}

1. Symplectically trivialize the symplectic complement of $\operatorname{span}\left(X, X_{H}\right)$ (the contact structure) by the global frame

$$
U=j \nabla H-\frac{\lambda(j \nabla H)}{\lambda\left(X_{H}\right)} X_{H}, \quad V=k \nabla H-\frac{\lambda(k \nabla H)}{\lambda\left(X_{H}\right)} X_{H}
$$

Rescale U such that $d \lambda(\tilde{U}, V)=1$.
2. Use the variational equations to compute the linearized flow $d F l_{t}^{X_{H}}(U), d F I_{t}^{X_{H}}(V)$. Decompose these vectors into the frame to get $\Psi(t) . \mu_{C Z}(\gamma):=\mu_{C Z}(\Psi)$.
Note $X_{H}=i \nabla H$.
Remark
Global trivializations can also explicitly be written down for $\mathbb{R} P^{3}$.

Proposition (Long, Hutchings)

Let (Y, λ) be contact manifold, and γ a non-degenerate periodic Reeb orbit with symplectic trivialization Φ. Let ϑ denote the rotation number of γ with respect to Φ. Then
$\mu_{C Z}\left(\gamma^{k}\right)=\lfloor k \vartheta\rfloor+\lceil k \vartheta\rceil$.

Remark

- If $|\operatorname{trace}(\gamma)|<2$, then γ is elliptic (and the rotation number is irrational since γ is assumed to be non-degenerate.
- If trace $(\gamma)>2$, then γ is hyperbolic
- If trace $(\gamma)<-2$, then γ is negative hyperbolic (γ^{2} is a bad orbit).

Algorithm to get the CZ-index of a (approximate) periodic orbit

Input: Approximate starting point and period of a non-degenerate periodic orbit γ of a starshaped hypersurface in \mathbb{R}^{4}.
Output: Transverse Conley-Zehnder index of γ

1. Numerically integrate the variational equations to obtain an approximate, discretized path of symplectic matrices $\Psi\left(t_{0}\right)$, $\Psi\left(t_{1}\right), \ldots$
2. Compute $\operatorname{tr}=\operatorname{Trace}\left(\Psi\left(t_{\text {final }}\right)\right)$ If $|t r|>2$, the orbit is non-degenerate, hyperbolic. If $|\operatorname{tr}|<2$, the orbit is non-degenerate, elliptic.
3. Count axis crossings $\Psi\left(t_{i}\right)$ to obtain the rotation number
4. Apply the proposition.
