Monte Carlo Methods in Financial Practice

Derivates Pricing and Arbitrage

28.04.2017

What are Derivatives?

- Derivatives are complex financial products which come in many different forms.
- They are, simply said, a contract between two parties, which specify payments between those parties.
- Different derivatives have different conditions.

What are Derivatives?

- They usually get traded "Over the Counter" (OTC)
- They *derive* their value from an underlying asset.
 - → they do not have any inherent value

What are Derivatives?

- Different kinds of derivatives: Forwards, Swaps, Options etc.
- Option: One party sells another party the "right" to buy a certain asset at a certain price at one point in the future (European Option) or at a time frame in the future (American Option)
- Forward: Two parties agree to a certain deal in the future and sign a contract

Derivatives: An Example

- Two parties: A farmer and a cookie factory
- Agree to trade the flour of the farmer to a fixed price after the harvest (e.g. 200€/t)
- If the marketprice rises over that amout → profit for the factory otherwise → profit for the farmer
- Security for both parties.

© Can Stock Photo

Why do we need to find a way to price them?

- Derivatives are no product per se, they do not have any inherent value
- The value of a derivative is subject to changes in the market price of the underlying asset
- We need to develop a strategy to find a price for the contract, which is fair on both parties

How can we achieve this?

Principles of Derivatives Pricing

- 1. If a derivative security can be replicated by trading in other assets, the price of this security is the price of using that trading strategy.
- 2. One can "*discount*" or "*deflate*" asset prices, such that the resulting prices are martingales under a probability measure.
- 3. In a complete market any payoff can be synthesized through a trading strategy.

Mathematical Theory

- Lets consider d assets with prices Si(t) (i = 1....d)
- They can be described as a System of Stochastic Differential Equations:

 $dS_i(t)/S_i(t) = \mu_i(S(t), t) dt + \sigma_i(S(t), t) \top dW(t)$

- With: $\sigma_i \in R^k$, $\mu_i \in R$ and W(t) k-dimensional Brownian Motion
 - A Brownian Motion can be imagined as a sort of "random walk", a function, which changes its value randomly

Mathematical Theory

• Let a vector $\theta \in \mathbb{R}^d$ be the portfolio with θ_i representing the number of units held of the ith asset. The value of the portfolio at time t is:

$$\boldsymbol{\theta}_1 S_1(t) + \cdots + \boldsymbol{\theta}_d S_d(t) = \boldsymbol{\theta}_T S(t)$$

• A trading strategy can be written as a stochastical process $\theta(t)$. This is called *self-financing* if:

 $\theta(t) \top S(t) - \theta(0) \top S(0) = {}_0 \int^t \theta(u) \top dS(u)$

and, equivalently:

 $\boldsymbol{\theta}(t) \top S(t) = \boldsymbol{\theta}(0) \top S(0) + {_0} \int^t \boldsymbol{\theta}(u) \top dS(u)$

- Developed by Fisher Black and Myron Scholes in 1973
- A mathematical model to price options in the financial market
- It is widely used and describes the actual behaviour and pricing fairly well

- General idea: We want to find a risk-less strategy to get the same profit of the option and then price the option accordingly
- In the model there are 2 assets:
 - 1. Risky: $dS(t)/S(t) = \mu dt + \sigma^* dW(t)$
 - Stock
 - 2. Riskless: $d\beta(t)/\beta(t)=r dt$
 - Savings account

- We now want to price a derivative with a payoff f(S(t)) at time t and want to find the value V
- If we insert that in the formulas derived from Ito's Lemma, regarding the price of derivatives, we can get:

 $(\partial V/\partial t) + (1/2)\sigma^2 S^2 (\partial^2 V/\partial S^2) = 0$

And

 $\mathbf{V}(S,\boldsymbol{\beta},t) = (\partial \mathbf{V}/\partial S)^*S + (\partial \mathbf{V}/\partial \boldsymbol{\beta})^*\boldsymbol{\beta}$

• Also the boundary condition $V(S,\beta,t) = f(S(t))$ holds.

• Since we know that $\beta(t) = e^{rt}$ we can write $V(S,\beta,t)$ as

$$V^{*}(S,t) = V(S, e^{rt}, t)$$

• Now, using

$$(\partial V^* / \partial t) = (\partial V / \partial \beta)^* r\beta + (\partial V / \partial t)$$

We can get:

$$(\partial V^*/\partial t) + rS(\partial V^*/\partial S) + (1/2)\sigma^2S^2\partial(\partial^2V/\partial S^2) - rV = 0$$

What is Arbitrage?

- Arbitrage is the possibility of generating risk-less profit.
- Often by taking advantage of price differences in different markets.
- "Making money out of nothing"

What is Arbitrage?

- In mathematics, we call a self-financing strategy θ *arbitrage*, if one of these two conditions hold:
 - i. $\theta(0) \top S(0) < 0$ and $Po(\theta(t) \top S(t) \ge 0) = 1$; or
 - ii. $\theta(0) \top S(0) = 0$, $Po(\theta(t) \top S(t) \ge 0) = 1$, and $Po(\theta(t) \top S(t) > 0) > 0$
- negative initial investment → non-negative final wealth with probability 1 (i.)
- initial net investment of $0 \rightarrow$ non-negative final wealth, which is positive with positive probability (ii.)

What is Arbitrage?

- \$: € Rate in Europe → 1 : 0.8
- But in the USA $\rightarrow 1:0.7$
- It is possible to exchange US-\$ in Europe and then exchange the resulting Euros in the USA
- 1000\$ -> 800€ -> 1143 \$ => 143\$ profit!

What is a martingale?

• Definition: A Martingale is a stochastical process M(t), for which:

$$M(t) = E[M(t+1)] \forall t$$

• So the expectation at the next step of the martingale is always the current value!

Examples of Martingales

- The budget of a gambler when playing a fair game: e.g. tossing a fair coin
- A wiener process (standard brownian motion) is a random walk with normal distributed increments → also a martingale

The Stochastical Discount Factor

• The *"stochastic discount factor"* (or *deflator*) is a nonnegative stochastic process Z(t), for which the ratio of the price and the discount factor (V(t)/Z(t)) is a martingale:

V(t)/Z(t) = Eo[V(T)/Z(T)|Ft]

(where Ft is the history of the Brownian Motion up to t)

 $<=>\mathrm{V}(t)=\mathrm{Eo}[\mathrm{V}(\mathrm{T})^*(Z(t)/Z(\mathrm{T}))\big|\mathrm{Ft}]$

→ The price V(t) is the *expectation* of the price V(T) (at some point in the future) discounted by (Z(t)/Z(T)).

Fundamental Theorem of Asset Pricing

We can normalize the stochastical discount factor by setting Z
 (0) = 1 and therefore

V(0)=Eo[V(T)/Z(T)]

• If we now insert a self-financing strategy θ with the price process $\theta(t) \top S(t)$, by the definition of the SDF $\theta(0) \top S(0) = Eo[\theta(T) \top S(T)/Z(T)]$

has to hold

Fundamental Theorem of Asset Pricing

$\theta(0) \top S(0) = Eo[(\theta(T) \top S(T))/Z(T)]$

- If we now compare that to the definition of arbitrage
 - *i.* $\theta(0) \top S(0) < 0$ and $Po(\theta(t) \top S(t) \ge 0) = 1$; or
 - $\begin{array}{ll} ii. \quad \pmb{\theta}(0) \top S(0) = 0, \ Po(\pmb{\theta}(t) \top S(t) \geq 0) = 1, \ and \\ Po(\pmb{\theta}(t) \top S(t) > 0) > 0 \end{array} \end{array}$

we can see that this can not hold, given that Z(T) is non-negative \rightarrow definition

Fundamental Theorem of Asset Pricing

- There can be no arbitrage if there is a stochastical discount factor and vice versa
 → mutually exclusive
- •It can also be shown that the absence of arbitrage implies the existence of a stochastical discount factor under certain conditions
- •Known as "The Fundamental Theorem of Asset Pricing"

Any Questions?

