Seminar

Monte-Carlo Methods in Finance Practice

Geometric Brownian Motion

Yuxuan Kong

<u>Contents</u>

- I. Introduction
- II. Geometric Brownian Motion
- III. Application in Financial modeling
- IV. Summary
- V. References

I. Introduction

Stochastic Process

- Collection of random variables on (Ω, \mathcal{F}, P)
- For given (Ω, \mathcal{F}, P) and $(S, \Sigma) : \{X(t) : t \in T\}$
- Applications in many disciplines
- Random changes in financial market \rightarrow stochastic process in finance
- Examples : Bernoulli Process, Poisson Process, Brownian Motion,... etc

Brownian Motion

- Historical connection with physical process "Brownian Movement"
- Often used in pure and applied mathematics, physics, biology
- Important role in finance modeling and simulating path
- continuous-time stochastic process, called Wiener Process
- Louis Bachelier modeled price changes in early 1900

Properties

- *i.* W(0) = 0
- *ii.* $\forall 0 \le t < T \le s < S$, W(T) W(t), W(S) W(s) independent
- *iii.* $\forall 0 \le t < s$, W(s) W(t) normal random variable
- *iv.* $\forall \omega \in \Omega$, path $t \mapsto W(t)(\omega)$ is a continuous function
- v. For each t > 0, W(t) normally distributed with
 - zero mean
 - variance t

• density
$$f(t, x) = \frac{1}{\sqrt{2\pi t}} e^{-x^2/2t}$$

Related Process

- Brownian Motion with Drift
 - Definition: A Brownian Motion X(t) is the solution of an SDE with constant drift and diffusion coefficients

 $dX(t) = \mu dt + \sigma dW(t)$

with initial value $X(0) = x_0$

• By direct Integration:

$$X(t) = x_0 + \mu t + \sigma W(t)$$

mean: $x_0 + \mu t$ variance: $\sigma^2 t$ density: $\frac{1}{\sigma\sqrt{2\pi t}}e^{-(x-x_0-\mu t)^2/2\sigma^2 t}$

Related Process

• Geometric Brownian motion

A stochastic process, which is used to model processes

that can never take on negative values,

such as the values of stocks.

II. Geometric Brownian Motion

Geometric Brownian Motion

• Definition: Suppose W is a standard Brownian Motion. A stochastic process S(t) is said to follow a GBM if it satisfies the following SDE:

$$dS(t) = \mu S(t)dt + \sigma S(t)dW(t)$$

with drift parameter μ and volatility parameter σ

$$S(t) = \exp\left[\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W(t)\right], \qquad t \in [0, \infty)$$

• S(t) is Geometric Brownian Motion: $S \sim GBM(\mu, \sigma^2)$

• If S(t) has initial value S(0), then

$$S(t) = S(0) \exp\left[\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W(t)\right]$$

more generally, if u < t

$$S(t) = S(u) \exp\left[\left(\mu - \frac{\sigma^2}{2}\right)(t - u) + \sigma\left(W(t) - W(u)\right)\right]$$

• Increments of Ware independent and normally distributed, reverse procedure

$$S(t_{i+1}) = S(t_i) \exp\left[\left(\mu - \frac{\sigma^2}{2}\right)(t_{i+1} - t_i) + \sigma\sqrt{t_{i+1} - t_i}Z_{i+1}\right]$$

for simulating values of S at $0 = t_0 < t_1 < \cdots < t_n$ with Z_1, Z_2, \ldots, Z_n independent standard normals.

Basic Properties

• Return Values
$$\{\frac{S_{t_{i+1}}}{S_{t_i}}\}$$
 are independent for $0 \le t_i \le t_{i+1} \le T$

- Simply an exponentiated Brownian Motion \Rightarrow only positive values
- Mean: (using moment generating function)

$$\mathbb{E}[S(t)] = \mathbb{E}[S_0 \exp(\mu t + \sigma W(t))]$$
$$= S_0 \exp\left(\mu t + \frac{\sigma^2}{2}t\right)$$

• Variance: $Var[S(t)] = \mathbb{E}[(S(t) - \mathbb{E}[S(t)])^2]$

$$= S_0^2 \exp(2\mu t + \sigma^2 t)(\exp(\sigma^2 t) - 1)$$

- μS(t) represent the drift, the deterministic portion

 → If μ > 0, generally assume a positive growth

 → If μ < 0, generally assume a fall off
 </p>
- $\sigma S(t)$ represent the diffusion term, the stochastic portion

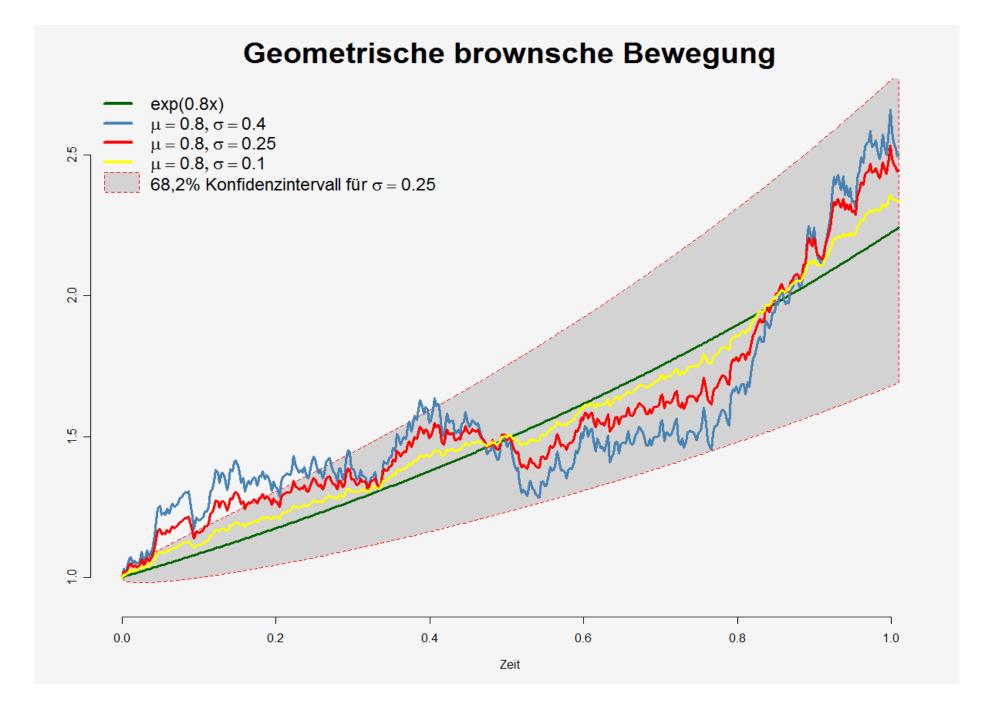
 $\hookrightarrow \text{If } \sigma = 0 \Longrightarrow \text{Deterministic differential equation}$

• Parameter $\mu - \frac{\sigma^2}{2}$ determines the asymptotic behavior of GBM

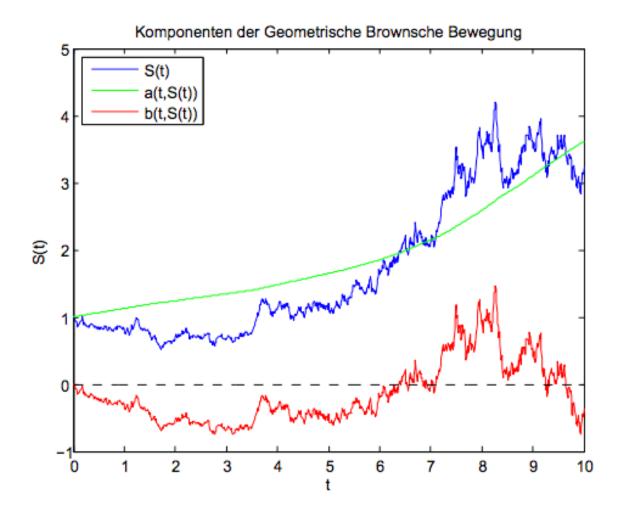
$$- If \mu > \frac{\sigma^2}{2} then X_t \to \infty as t \to \infty with probability 1$$

- If $\mu < \frac{\sigma^2}{2} then X_t \to 0 as t \to \infty with probability 1$
- If $\mu = \frac{\sigma^2}{2} then X_t has no limit as t \to \infty with probability 1$

• If drift parameter μ is $0 \Longrightarrow \text{GBM}$ is a martingale



• GBM and his components (a deterministic and b stochastic) S(0) = 1, $\mu = 0.15$, $\sigma = 0.3$, T = 10



Multiple Dimensions

• Multidimensional GBM specified through system of SDEs

$$\frac{dS_{i}(t)}{S_{i}(t)} = \mu_{i}dt + \sigma_{i}X_{i}(t), i = 1, ..., d$$

where X_i is standard one-dimensional BM with

- $X_i(t)$ and $X_j(t)$ have correlation ρ_{ij}
- Define Σ as $d \times d$ Matrix with $\Sigma_{ij} = \sigma_i \sigma_j \rho_{ij}$ (covariance Matrix of S)

•
$$S = (S_1, ..., S_d)$$
 with $\mu = (\mu_1, ..., \mu_d) \Longrightarrow S \sim GBM(\mu, \Sigma)$

• Let $\Sigma = AA^T$, $BM(0, \Sigma)$ can be written as AW(t) with $W \sim BM(0, I)$

$$\implies \frac{dS_i(t)}{S_i(t)} = \mu_i dt + a_i dW(t), i = 1, ..., d$$

with a_i the i-th Row of A

• More explicitly

$$\frac{dS_i(t)}{S_i(t)} = \mu_i dt + \sum_{j=1}^d A_{ij} dW(t), i = 1, ..., d$$

Simulating multiple Dimensions GBM

• For one-dimensional GBM, it is

$$S(t_{i+1}) = S(t_i) \exp\left[\left(\mu - \frac{\sigma^2}{2}\right)(t_{i+1} - t_i) + \sigma\sqrt{t_{i+1} - t_i}Z_{i+1}\right]$$

• For multiple dimensional GBM, it is

$$S_i(t_{k+1}) = S_i(t_k) \exp\left[\left(\mu_i - \frac{{\sigma_i}^2}{2}\right)(t_{k+1} - t_k) + \sqrt{t_{k+1} - t_k} \sum_{j=1}^d A_{ij} Z_{k+1,j}\right]$$

 $i = 1, ..., d; \quad k = 0, ..., n - 1; \quad Z_k = (Z_{k1}, ..., Z_{kd}) \sim N(0, I)$

III. Application in Financial Modeling

Geometric Brownian Motion in Finance

- model stock prices, for example in the Black-Scholes Model
- most widely used
- Question: How realistic is GBM regarding finance modeling?

Advantages

- Expected returns are independent of the value of the stock price
- GBM process only assumes positive values
- GBM process shows the same kind of 'roughness' in paths
- Calculations with GBM are relatively easy

Disadvantages

- Volatility is assumed constant
- In GBM the path is continuous

L in reality, stock prices often jumps caused by unpredictable events and news

Extensions

- Attempt to make GBM more realistic
- Volatility σ has to be inconstant
 - I. Local Volatility model : volatility a deterministic function
 - II. Stochastic Volatility model : volatility has randomness , described by different BM

Application in Finance - stock price

- The increase of the stock price in the next intervall is ΔS
- It is

$$\Delta S = S * \left(\mu \Delta t + \sigma \sqrt{\Delta t} * Z \right)$$

where $Z \sim N(0,1)$ random

• Example 1: $\mu = 15$ %, $\sigma = 30$ %, initial stock price is 100 €, consider time intervall of one week (0.0192 year)

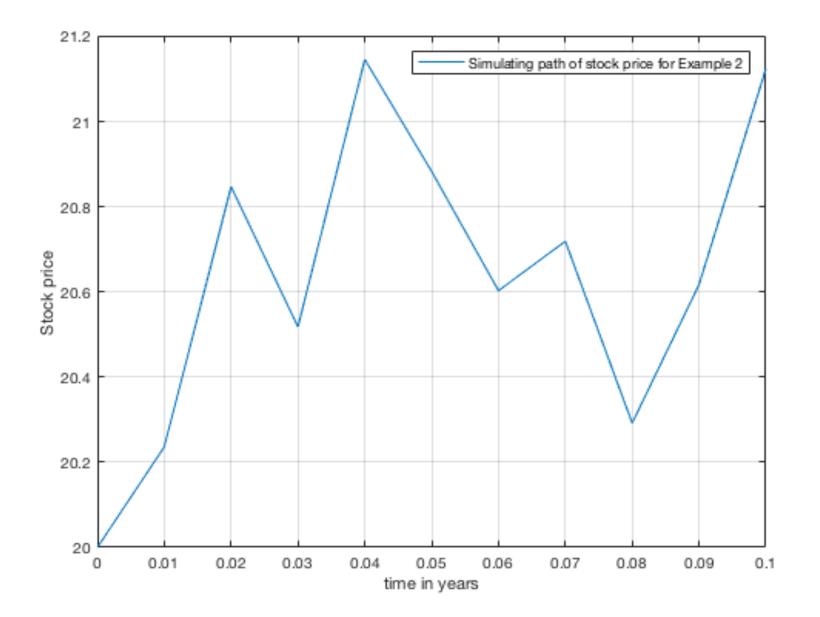
$$\Delta S = 100 * (0.15 * 0.0192 + 0.3 * \sqrt{0.0192} * Z)$$

= 100 * (0.00288 + 0.0416Z) = 0.288 + 4.16Z

 \Rightarrow price increase with mean 0.288 € and standard deviation of 4.16 €

• Example 2: $\mu = 14$ %, $\sigma = 20$ %, suppose $\Delta t = 0.01$ $\Delta S = 0.14 * 0.01 * S + 0.2\sqrt{0.01}SZ$ = 0.0014S + 0.02SZ

Stock Price at Start of Period	Random Sample for Z	∆ <i>S</i> during Period
20.000	0.52	0.236
20.236	1.44	0.611
20.847	- 0.86	- 0.329
20.518	1.46	0.628
21.146	- 0.69	-0.262
20.883	- 0.74	- 0.280
20.603	0.21	0.115
20.719	- 1.10	- 0.427
20.292	0.73	0.325
20.617	1.16	0.507
21.124	2.56	1.111



Application in Finance - Path-Dependent Options

- Focus on pricing options
- Not simply value S(T), but the path
- Essential is the choice of drift parameter μ
- Assume existence of constant continuously compounded interest rate r
- The growth rate is $\beta(t) = e^{rt}$

- Suppose *S* pays no dividends
- Under risk-neutral-measure, discounted price process

$$\frac{S(u)}{\beta(u)} = \mathbb{E}\left[\frac{S(t)}{\beta(t)} \mid \{S(\tau), 0 \le \tau \le u\}\right]$$

is a martingale

• GBM is lognormal distribution, so $\mathbb{E}[S(t)|\{S(\tau), 0 \le \tau \le u\}] = e^{\mu(t-u)}S(u)$

 \Rightarrow If S is a GBM under risk-neutral measure, then $\mu = r$

$$\Rightarrow \frac{dS(t)}{S(t)} = rdt + \sigma dW(t)$$

- Suppose S pays dividends
- Let D(t) be value of any dividends and interest earned on those dividends
- Suppose asset pays a continous dividend yield δ

• Then
$$\frac{dD(t)}{dt} = \underbrace{\delta S(t)}_{influx of new dividends} + \underbrace{rD(t)}_{interest \ earned \ on \ accumulated \ dividends}$$

• The Martingale property requires $\mu + \delta = r$; *i.e.*, $\mu = r - \delta$

Specific Settings

- Pricing index options (Equity Indices)
 - Level of index modeled as GBM
 - Index not an asset, not paying dividends
 - Individual stocks pays dividends
 - Effect often approx. by continous dividend yield
- Pricing currency options (Exchange Rates)
 - exchange rate S as price of foreign currency
 - A unit of foreign currency has risk-free rate r_f

 $-\mu = r - r_f$

Financial Models using GBM

- Simply GBM not 100% realistic
- GBM essential in many models simulating stock prices
- Many other models more fitting, but using GBM principle
 - I. Black Scholes Model
 - II. Merton Model
 - III. Heston Model
 - IV. Bates Model

Black-Scholes-Model

- Fischer Black and Myron Scholes 1973 in a seminal paper
- Estimates price of the option over time
- Main Idea: buy and sell asset in the "right way" (hedge option) \Rightarrow eliminate risk
- BS-equation: $\frac{dV}{dt} + \frac{1}{2}\sigma^2 S^2 \frac{d^2V}{dS^2} + rS \frac{dV}{dS} rV = 0$
- Used for the European call option price
- Underestimation of extreme moves
- Useful approximation, robust basis for refined models

Merton Model

- Robert Merton 1976, revised BSM Model
- Allows discontinuous trajectories
- Adding jumps to the stock price dynamics
- Equation:

$$\frac{ds}{s} = rdt + \sigma dW + dZ$$

• Z is a compound Poisson process with lognormal-distributed jumps

Heston Model

- Volatility paramter not constant anymore
- Stochastic Volatility Models
- σ is another GBM

Bates Model

- Bates 1996
- Combination of both
- Stochastic volatility and jumps

IV. Summary

Summary

- GBM essential for simulating path for stock prices/options
- "relatively" easy calculation
- Less data is needed to forecast future than some other forecasting models
- More accurate for short-term
- Due to obvious reasons \implies Revision via more complex models
- No models are absolutely right, have their own risk

References

• Paul Glassermann, "Monte Carlo Methods in Financial Engineering" (2003), p.93-107 Springer Verlag Thank you for your attention!