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Introduction

Introduction

@ The pricing of an American option is a mathematical challenge in
finance for several years.

@ American options can be exercised at any time up to their expiration
dates.

@ We want to approximate American Options by considering Bermudan
Options.

European < Bermudan < American
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Introduction

Introduction

(Pricing Problem]

(Random Tree] (Regression Based Method] [Duality]

Random tree method:

@ Very simple to implement. Provides a confidence interval containing
the true option value.
@ Suitable only for options with few exercise opportunities (not more
than about five).
= The regression-based method is a very powerful technique for solving
high-dimensional problems with many exercise opportunities.
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Repetition Definitions

Definitions

Bermudan Option
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Repetition Definitions

Definitions

Bermudan Option

Option that can be exercised only at a fixed set of exercise opportunities
<t <---<tny
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Repetition Definitions

Definitions

Bermudan Option

Option that can be exercised only at a fixed set of exercise opportunities
h<b<- <ty

Option Value :=V;
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Repetition Definitions

Definitions

Bermudan Option

Option that can be exercised only at a fixed set of exercise opportunities
h<b<- <ty

Option Value :=V;
The value achieved by exercising optimally.
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Repetition Definitions

Definitions

Bermudan Option

Option that can be exercised only at a fixed set of exercise opportunities
h<b<- <ty

Option Value :=V;
The value achieved by exercising optimally.

Continuation Value := C;
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Repetition Definitions

Definitions

Bermudan Option
Option that can be exercised only at a fixed set of exercise opportunities
h<b<- <ty

Option Value :=V;
The value achieved by exercising optimally.

Continuation Value := (;
The continuation value of a Bermudan option is the value of holding
rather than exercising the option.
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Repetition Definitions

Definitions

Bermudan Option

Option that can be exercised only at a fixed set of exercise opportunities
h<b<- <ty

Option Value :=V;
The value achieved by exercising optimally.

Continuation Value := C;
The continuation value of a Bermudan option is the value of holding
rather than exercising the option.

Optimal Stopping Rule

V.
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Repetition Definitions

Definitions

Bermudan Option

Option that can be exercised only at a fixed set of exercise opportunities
h<b<- <ty

Option Value :=V;
The value achieved by exercising optimally.

Continuation Value := (;
The continuation value of a Bermudan option is the value of holding
rather than exercising the option.

Optimal Stopping Rule
#=min{i: hi(X;) > &(X)}

V.
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Repetition Least-Squares Method

Least-Squares Method

@ Standard approach in regression analysis that 107 ..
finds the line of best fit for a dataset. o

o First, choose a well fitting model function - j
(we will only use polynomial functions as o oo Data P
model functions). oo | = Mesetemn |

@ The best fit is a function with minimal A
deviation to the data points. While using the & .
least-square method, minimize the sum of b R
squared residuals to find the best coefficients ’ .
in your model function. J T4

@ Residual: The difference between the 2{ A
observed value and the fitted value, provided S S
by the model. ?
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Repetition Least-Squares Method

Least-Squares Method

@ Assume that our data can be well fitted by a polynomial function.
e We choose s, r(x),r =1..., M basis functions and s =1, ..., N.

@ The given data set is approximated by a linear system of equations
that looks like:

P11 .. Yim b1 y1

YNy oo YNm Bn YN
——
A Y

@ [; are unknown coefficients that we want to estimate by least-squares.
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Repetition Least-Squares Method

Least-Squares Method

@ We are looking for some (; so that the difference between the
observed value and the fitted value, provided by the model, is as small
as possible.

@ So we want to find a 3 for the minimzation problem below:

min ¥ — A- 3]

@ How can you solve the linear system of equations?

o Normal equations ATAZ = ATY
o QR decomposition A = QR
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Derivation

Longstaff and Schwartz Algorithm - Overview

@ The algorithm for valuing American options was developed by Francis
A. Longstaff and Eduardo S. Schwartz in 2001.

@ Hereafter, LSM will be the shortcut for Longstaff and Schwartz
Algorithm.

@ The algorithm can be divided into four sections:
Simulation of paths

Labeling the nodes at the expiration date
Carrying out a regression analysis

Valuing the option
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Derivation Mathematical Derivation

Longstaff and Schwartz Algorithm

Step 1:

@ Simulate b independent paths. : -

Step 2:

The intuition behind the approach is that the holder of an
American option compares the payoff from exercising
immediately with the expected payoff from continuation at
any exercising date.

@ At the final expiration date of the option, the investor exercises the
option if it is in-the-money or allows it to expire if it is out
of-the-money.
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Derivation Mathematical Derivation

Longstaff and Schwartz Algorithm

Step 3a:

@ We use the regression technique to approximate the conditional
expectation function at each exercising date:

Gi(x) = E[Viy1(Xiy1)|Xi = x]

@ We assume that the continuation values C; can be approximated by a
linear combination of known functions of the current state:

Gi(x) = E[Vis1(Xisa) |1 Xi = x] = 21, Birtr

@ Then, we choose M basis functions and apply the least-squares
method to estimate the coefficients in our regression function.

@ We only use in-the-money paths in the estimation since the exercise
decision is only relevant if the option is in-the-money.
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Derivation Mathematical Derivation

Longstaff and Schwartz Algorithm

Step 3b:
@ Now, we can determine whether an early exercise or holding the
option is optimal at the current time point. Repeating this procedure
for each in-the-money path generates an optimal stopping rule:

v, = {hi(Xi') hi(Xy) > Gi(Xy)
’ Viey  hi(Xy) < G(Xi)
o Afterwards, we go back one point in time and repeat step 3.
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Derivation Mathematical Derivation

Longstaff and Schwartz Algorithm

Step 4:

@ Starting at time zero, we move forward along each path until the first
stopping time occurs:

@ Then, we discount the resulting cash flows from the different
exercising dates:

@ Finally, we take the average of all paths and obtain the value of the
American option:

* Viat.4V
Vo = AL - 1b
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Derivation Example

Example
@ Bermudan put option on a share of non-dividend-paying stock
@ Strike price: K= 1.10
o Exercise dates: t=1,t=2,t =3
@ Riskless rate: 6%
@ 8 sample paths for the price of the stock
e Payoff-function: hy, = (K — S(t))*
@ All values are in Euro

Objective
Find the stopping rule that maximizes the value of the option at each
point along each path.
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Step 1: Simulate 8 Independent Paths

The table below shows the simulated data for our example.

Derivation

Table: Values of 8 different paths

R
)

(=
>

t=0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

O NOOT W

t=1
1.09
1.16
1.22
0.93
1.11
0.76
0.92
0.88

t=2
1.08
1.26
1.07
0.97
1.56
0.77
0.84
1.22

t=3
1.34
1.54
1.03
0.92
1.52
0.90
1.01
1.34
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Derivation Example

Step 2: Terminal Nodes

@ At terminal nodes we set \A/3J- = h3(X3j), j =1,...,8 as option value.
@ Our payoff-function is given by h, = (K — S(t))*, m=1,2,3.

Path t=1 t=2

WO~NOOT P~ WwWwN
1
1
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t=3
1.10 — 1.34 = 0.00
1.10 — 1.54 = 0.00
1.10 — 1.03 = 0.07
1.10 - 0.92 =0.18
1.10 — 1.52 = 0.00
1.10 — 0.90 = 0.20
1.10 - 1.01 = 0.09
1.10 — 1.34 = 0.00

O HOREFHOOR
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Derivation

Step 3a: Regression (1)

Example

@ We have to find a function that approximates the continuation value

at time 2.

@ To do this, we use the regression approach.

@ We only consider paths that are in-the-money.

Table: Values of 8 different paths

Path

~NOoO ok W N

8

Regression-Based Methods for Pricing American Options

t=0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

t=1
1.09
1.16
1.22
0.93
1.11
0.76
0.92
0.88

t=2
1.08
1.26
1.07
0.97
1.56
0.77
0.84
1.22

t=3
1.34
1.54
1.03
0.92
1.52
0.90
1.01
1.34
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Derivation

Step 3a: Regression (1)

Example

@ We have to find a function that approximates the continuation value

at time 2.

@ To do this, we use the regression approach.

@ We only consider paths that are in-the-money.

Table: Values of 8 different paths

Path

~NOoO ok W N

8
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t=0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

t=1
1.09
1.16
1.22
0.93
1.11
0.76
0.92
0.88

t=2
1.08
1.26
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0.97
1.56
0.77
0.84
1.22

t=3
1.34
1.54
1.03
0.92
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1.01
1.34
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Step 3a: Regression (1)

Derivation

Example

o We are looking for an expression like Y; = g + B1 - X; + B2 - X?

@ Y := discounted cash flow at t = 3

@ X := stock price at t =2

@ /:= path

1.08
1.07
0.97
0.77
0.84

[T Gy T W T W B §

1.082
1.072
0.972
0.772
0.842

Values of path itm

Bo
B2

0.00-0.94176
0.07-0.94176

= 0.18-0.94176

0.20 - 0.94176
0.09-0.94176

discounted payoffs of t = 3

= Y; = —1.069983 + 2.983396X — 1.813567 X2
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Derivation Example

Step 3b: Exercise decision (1)

Now, we try to figure out whether to exercise or to further hold the
option, by comparing the exercise value and the continuation value.

Table: Early exercise decision at t=2

Path Exercise

0.02
0.00
0.03
0.13
0.00
0.33
0.26
0.00

O~NO Ok WwWwN -

Continuation We obtain
0.0369 o the exercise value by the payoff
0.00 function h, = (K — S(t))*
0.0461 and
0.1176 @ the continuation value by
0.00 inserting Xop in the model
0.1520 function that we estimated by
0.1565 i

regression.
0.00
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Derivation Example

Step 3b: Exercise decision (1)

We obtain a vector, which

Table: Early exercise decision at t = 2 reflects the stopping rule for
Path Exercise Continuation t=2
1 0.02 0.0369 0
2 0.00 0.00 0
3 0.03 0.0461 0
4 0.13 0.1176 N 1
5 0.00 0.00 2710
6 0.33 0.1520 1
7 0.26 0.1565 1
8 0.00 0.00 0
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Derivation

Step 3a: Regression (2)

Determining the paths, which are in the money at time t = 1.

Example

Table: Values of 8 different paths

R
)

—+
>

t=0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

O NO OB WN
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t=1
1.09
1.16
1.22
0.93
1.11
0.76
0.92
0.88

t=2
1.08
1.26
1.07
0.97
1.56
0.77
0.84
1.22

t=3
1.34
1.54
1.03
0.92
1.52
0.90
1.01
1.34
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Step 3a: Regression (2)

Derivation

Example

o We are looking for an expression like Y; = g + B1 - X; + B2 - X?

@ Y := discounted cash flow at t = 2

@ X :=stock priceat t =1

@ /:= path

1.09
0.93
0.76
0.92
0.88

[ T W A | T

1.092
0.932
0.762
0.922
0.882

Values of paths itm

= Y; = 2.037503 — 3.335427X + 1.356450X?

Bo
B1
B2
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0.00 -
0.13-
= 0.33-
0.26 -
0.00 -

0.94176
0.94176
0.94176
0.94176
0.94176

Discounted payoffs of t = 2
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Derivation Example

Step 3b: Exercise decision (2)

Again, we try to figure out whether to exercise or to further hold the
option by comparing the exercise value and the continuation value.

Table: Early exercise decision at t =1

Path Exercise

0.01
0.00
0.00
0.17
0.00
0.34
0.18
0.22

O~NOOT P~ WwWwN

Continuation We obtain

0.0139 @ the exercise value by the payoff
0.00 function h, = (K — S(t))*
0.00 and

0.1092

@ the continuation value by

0.00 inserting Xip in the model
0.2866 function that we estimated by
0.1175 .

regression.
0.1533

Regression-Based Methods for Pricing American Options Felicitas Ulmer



Derivation Example

Step 3b: Exercise decision (2)

Table: Early exercise decision at We obtain a vector, which
t=1 reflects the stopping rule for
t=1.
Path Exercise Continuation 0
1 0.01 0.0139 0
2 0.00 0.00 0
3 0.00 0.00 A 1
4 0.17 0.1092 =19
5 0.00 0.00 1
6 0.34 0.2866 1
7 0.18 0.1175 1
8 0.22 0.1533
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Step 4: Pricing

Derivation

Example

@ Having identified the cash flows generated by the Bermudan put at
each point along each path, the option can now be valued ...

Table: Stopping rule

Path
1

OO0, WwWDN

t=1
0

_H = ROk OO

t=2
0

OO O OO oo

t

coocoocoor ool

3
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Table: Option cash flow matrix

Y
9]

—+
>

OO0~ WD

t=1
0.00
0.00
0.00
0.17
0.00
0.34
0.18
0.22

t=2
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

t=3
0.00
0.00
0.07
0.00
0.00
0.00
0.00
0.00
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Derivation Example

Step 4: Pricing

@ ... by discounting each cash flow in the option cash flow matrix back
to time zero

@ and calculating the average of all paths.

@ A mathematical frame for the discounted option value is given by:
O/ _ VitV
W = i

Value of the Bermudan option

A

.»—0.06-3 .»—0.06 .~—0.06 .»—0.06 .»—0.06
VO — 0.07-e +0.17-e +0.3486 +0.18-e +0.22-e — 0.11443433
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Derivation Example

Eurpean Put Vs. Bermudan Put

Value of the Bermudan option

~ —0.06-3 —0.06 .a—0.06 . a—0.06 a—0.06
VO — 0.07-e +0.17-e +O.3486 +0.18-e +0.22-€ = 0.11443433

|
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Derivation Example

Eurpean Put Vs. Bermudan Put

Value of the Bermudan option

A .a—0.06-3 .o—0.06 .~—0.06 .»—0.06 .»—0.06
VO — 0.07-e +0.17-e +0.3486 +0.18-e +0.22-e — 0.11443433

v

Value of the European option

A

. .—0.063 . —0.06-3 .»—0.06-3 .e—0.06-3
Vo = 0.07-e +0.18-e +80.20 e +0.09-e + — 0.05638
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Derivation Example

Eurpean Put Vs. Bermudan Put

Value of the Bermudan option

A .a—0.06-3 .o—0.06 .~—0.06 .»—0.06 .»—0.06
VO — 0.07-e +0.17-e +0.348€ +0.18-e +0.22-e — 0.11443433

v

Value of the European option

A

0—0.06:3 .e—0.06:3 .e—0:06:3 -e—0:06-3
Vo = 0.07-e +0.18-¢ +80.20 e +0.09-e + — 0.05638

@ The value of the Bermudan put is roughly twice the value of the
European put.
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Derivation Graphical Derivation

Graphical Derivation

I™
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Derivation Graphical Derivation

Graphical Derivation

Functionality of the algorithm:

@ Six paths
@ Four exercise dates including ty

Payoff Functions

25

Option value

@ \j

OFM to Backwards Induction
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Derivation Graphical Derivation

Pricing Algorithm by Longstaff and Schwartz

(2) At terminal nodes, set ij = hm(Xmj), j=1,....b

(3) Apply backward induction: for i=m—1,...,1
o given the estimated values /\7,'_1,_1]', j=1,..., b use regression

to calculate B,-
@ set

~

Viey  hi(Xiy)
with Ci(X;) = BT v(x)

v {hi(Xu) hi(Xi ) =
v <

(4) Set Vp = VartetVin

(1) Simulate b independent paths {Xyj, Xoj, ..., Xmj}, j=1,...,b

Regression-Based Methods for Pricing American Options
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Derivation Graphical Derivation

Pricing Algorithm by Tsitsiklis and Van Roy

(1) Simulate b independent paths {Xij, X2, ..., Xm,},
j=1,..,b

(2) At terminal nodes, set Vm,j = hm(Xmj), j=1,...,b
(3) Apply backward induction: for i=m—1,...,1

e given the estimated values /\7,'_1,_1]', j=1,..., b use regression

to calculate 3;
e set

with (X)) = BT (x)

(4) Set Vg = Yttt

Regression-Based Methods for Pricing American Options
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Derivation Comparison

Difference between Longstaff/Schwartz and Tsitsiklis/Van
Roy

@ The calculation of V,-J-
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Derivation Comparison

Difference between Longstaff/Schwartz and Tsitsiklis/Van
Roy

@ The calculation of V,-J-
o Tsitsiklis and Van Roy: \/,J = max{h;(X;;), C(X,J)}

o _ (X)) hi(Xig) = G(Xy
o Longstaff and Schwartz: Vj; = {Q( J) N EX J; - E( J)
i+1,j I\ j
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Derivation Comparison

Difference between Longstaff/Schwartz and Tsitsiklis/Van
Roy

@ The calculation of V,-J-
o Tsitsiklis and Van Roy: \/,J = max{h;(X;;), C(X,J)}

o _ (X)) hi(Xig) = G(Xy
o Longstaff and Schwartz: Vj; = {Q( J) N EX J; - Z_( J)
i+1,j I\ j

@ Only in-the-money paths
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Derivation Comparison

Difference between Longstaff/Schwartz and Tsitsiklis/Van
Roy

@ The calculation of V,-J-
o Tsitsiklis and Van Roy: \/,J = max{h;(X;;), C(X,J)}
hi(Xij)  hi(Xi))

N > G
o Longstaff and Schwartz: Vjj = ¢ =" - A(
Vi+1,j hI(XI7_]) < C

@ Only in-the-money paths

o To get a better approximation of the continuation value, Longstaff and
Schwartz suggest to consider only paths that are in-the-money.
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Performance

Measuring the Performance of a Monte-Carlo Estimator

o The estimator V for a quantity V can be measured by the
root-mean-square-error (RMSE).

o RMSE(V) = \/E[(V — V)2] = \/Bias(V/)2 + Variance(V)

@ We see the joint influnece of the number of basis functions and the
number of paths.

@ The more basis functions/paths chosen, the lower the RMSE.

HSINY
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Summary

Overview

@ We have introduced a method for valuing options with early exercise
features.

@ The main idea is to estimate the continuation value. Then, we can
compare the continuation value to the corresponding exercise value.
This procedure gives us a stopping rule. Due to the corresponding
cash flows, we can finally value the option. The average of the
discounted payoffs of each path is the price of the option.

@ For a better performance you have to increase the number of paths
and the number of basis functions.
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