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1.	Upper	bound	through	martingales
Haugh and	Kogan,	and	Andersen	and	Broadie first	established	dual	formulations	in	which	the	
price	is	represented	through	a	minimization	problem.	

Through	minimization	over	martingales	or	super	martingales,	the	dual	generates	a	upper	bound	
on	prices.

Connected	with	the	Regression	we	have	a	valid	upper	and	lower	bound	on	prices.



1.	Upper	bound	through	martingales
Results	from	dynamic	programming	recursion:	

𝑉" 𝑋" = max(ℎ"(𝑋") , 𝐸[𝑉"./(𝑋"./)|𝑋"])	, 𝑖 = 0,1, … ,𝑚 − 1	

One	can	follow	that

𝑉" 𝑋" ≥ 𝐸 𝑉"./ 𝑋"./ 𝑋" 	, 𝑖 = 0,1, … , 𝑚 − 1	

which	is	the	definition	of	a	super	martingale.

Also,	𝑉" 𝑋" ≥ ℎ" 𝑋" , 𝑖 = 0,1,… ,𝑚 − 1	and	𝑉" 𝑋" ,	𝑖 = 0,1, … ,𝑚 − 1	is	in	fact	the	minimal	
super	martingale	that	dominates	ℎ" 𝑋" .

From	this	characterization	Haugh and	Kogan formulated	the	pricing	of	American	options	as	a	
minimization	problem.	



1.	Upper	bound	through	martingales
Let	𝑀 = 𝑀", 𝑖 = 0, … ,𝑚 be	a	martingale	with	𝑀; = 0

From	the	optional	sampling	theorem	of	martingales	one	can	follow

𝐸 𝑀" = 0	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖 = 0, . . , 𝑚

And thus	for	every	stopping	time	𝜏	𝑖𝑛	 1,… , 𝑚 we	have:

	 𝐸 ℎD 𝑋D = 𝐸 ℎD 𝑋D −𝑀D ≤ 𝐸[ max
FG/,…,H

{ℎF 𝑋F −𝑀F}]

As	this	equation	holds	for	every	martingale	with	initial	value	of	0

	 𝐸 ℎD 𝑋D ≤ inf
N
𝐸[ max

FG/,…,H
{ℎF 𝑋F − 𝑀F}]



1.	Upper	bound	through	martingales
And	as	this	equation	holds	for	every	stopping	time	𝜏,	it	also	holds	for	the	supremum	over	all	𝜏

𝑉O 𝑋O = sup
D
𝐸 ℎD 𝑋D ≤ inf

N
𝐸[ max

FG/,…,H
{ℎF 𝑋F − 𝑀F}]

This	minimization	problem	is	the	dual	problem.

By	constructing	a	martingale	for	which	the	right	side	yields	in	𝑉O 𝑋O one	can	show	that	the	dual	
problem	holds	with	equality

To	proof	that,	we	define	

Δ" = 𝑉" 𝑋" − 𝐸 𝑉" 𝑋" 𝑋"T/ 	, 𝑖 = 1, … , 𝑚

And

𝑀" = ∑ ΔF"
FG/ , 𝑖 = 1,… , 𝑚



1.	Upper	bound	through	martingales
With	

	 𝐸 Δ" 𝑋"T/ = 𝐸 𝑉" 𝑋" − 𝐸 𝑉" 𝑋" 𝑋"T/ 𝑋"T/ = 0

One	can	follow,	that	𝑀 = 𝑀", 𝑖 = 0, … ,𝑚 is	a	martingale:	

𝐸[𝑀" 𝑋"T/ = ∑ 𝐸[ΔF"
FG/ XWT/ = ∑ ΔF"T/

FG/ = 𝑀"T/

By	using	induction	one	can	show	that

𝑉" 𝑋" = max{ℎ" 𝑋" ,ℎ"./(𝑋"./)− Δ"./,… , ℎH 𝑋H −ΔH − ⋯− Δ"./}	 	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖 = 1,… ,𝑚

As	ℎ; 𝑋; = 0 the	value	at	0	is:	

𝑉O 𝑋O = 𝐸 𝑉/ 𝑋/ 𝑋; = 𝑉/ 𝑋/ − Δ/	

And	by	rewriting		𝑉/ 𝑋/ 	using	the	induction	we	get:	

𝑉; 𝑋; = max
FG/,…,H

(ℎF 𝑋F − 𝑀F)

∎	



1.	Upper	bound	through	martingales
By	defining	

𝑀" = ∑ ΔF"
FG/ , 𝑖 = 1,… , 𝑚

With

Δ" = 𝑉" 𝑋" − 𝐸 𝑉" 𝑋" 𝑋"T/ 	, 𝑖 = 1,… ,𝑚

we found theoptimal	martingale𝑀 = 𝑀",𝑖 = 0, … , 𝑚 so	that

𝑉; 𝑋; = max
FG/,…,H

(ℎF 𝑋F − 𝑀F)

holds.



1.	Upper	bound	through	martingales
To	estimate	the	value	of	an	American	option	by	

𝑉Z; 𝑋; = max
FG/,…,H

(ℎF 𝑋F − 𝑀[F)

we	now	have	to	find	a	martingale	𝑀[ that	is	close	to	the	optimal	martingale	𝑀.	

As	this	𝑀[ is	suboptimal,	we	then	have	a	upper	bound	for	the	price	of	the	option.	

In	connection	with	lower	bound	of	the	regression,	we	generated	a	range	containing	the	price	of	
the	option.



1.	Upper	bound	through	martingales
Andersen	and	Broadie,	and	Haugh and	Kogan developed	the	idea	of	constructing	a

§ Martingale	from	value	functions	(Haugh and	Kogan)
§ Martingale	from	stopping	rules	(Anderson	and	Broadie)



2.	Martingales	from	value	functions
To	compute	Δ[" = 𝑉Z" 𝑋" − 𝐸[𝑉Z"(𝑋")|𝑋"T/] Haugh	and	Kogan use	a	nested	simulation.

Evaluate	𝑉Z" 𝑋" :
§ Just	evaluate	𝑉Z" 𝑥 = max ℎ" 𝑥 ,𝐶" 𝑥 along	the	Markov	chain.

Evaluate	𝐸[𝑉Z"(𝑋")|𝑋"T/] :
§ Use	a	nested	simulation:
At	each	step	𝑋"T/ of	the	simulated	Monte	Carlo	Path,	simulate

another	n	successors	𝑋"
(/) ,… ,𝑋"

_ and	use	the	arithmetic	mean	to	
estimate	the	conditional	expectation	of	𝑉" 𝑋" given	𝑋"T/.

1
𝑛
`𝑉Z"(𝑋"

a )
_

aG/



2.	Martingales	from	value	functions
Conclusion	of	the	algorithm	for	one	Monte	Carlo	Path:

1. Simulate	a	path	of	the	underlying	Markov	chain	𝑋;,… ,𝑋_	

2. For	each	𝑋"	, 𝑖 = 0,1,… 𝑛
i. Calculate	the	approximated	value	function	𝑉Z" 𝑋" = max ℎ" 𝑋" , 𝐶" 𝑋" with	𝐶" 𝑋" given	from	a	

previous	 regression	or	parametric approximation

ii. Simulate m	successors 𝑋"./
(/) ,… ,𝑋"./

_ of 𝑋" and calculate

𝑀[" = ` 	Δ[ F	
"

bG/

, 𝑤𝑖𝑡ℎ		Δ[ F = 𝑉ZF 𝑋F −
1
𝑛
`𝑉ZF(𝑋F

a )
_

aG/

3. Set	𝑉Z; 𝑋; = max
FG/,…,_

(ℎF 𝑋F − 𝑀[F)



3. Martingales	from	stopping	rules
Again	we	want	to	find	a	approximation	of	Δ".	

Let	𝜏/,… , 𝜏_ be	stopping	times	with	𝜏" interpreted	as	the	exercise	time	of	an	option,	issued	at	
the	i-th exercise	date.	

𝜏" = min	{𝑘 = 𝑖,… , 𝑛:ℎF 𝑋F ≥ 𝐶̂F 𝑋F }

The	martingale	differences	are	again	defined	as	

Δ[" = 𝐸 ℎD" 𝑋Dg 𝑋" − 𝐸[ℎDg(XDg)|XWT/]



3.	Martingales	from	stopping	rules
To	calculate	the	expected	payoffs

𝐸 ℎDhij 𝑋Dhij 𝑋F , 𝑘 = 0,… 𝑛 − 1

Anderson	and	Broadie again	used	a	nested	simulation:

1. Simulate	a	path	𝑋;, 𝑋/,… , 𝑋_ of	the	underlying	Markov	chain.	

2. At	each	𝑋", 𝑖 = 0,1,… , 𝑛 − 1
i. Evaluate	ℎ"(𝑋") and	𝐶̂" 𝑋" and	check	which	is	larger.	

Set	𝐸 𝐻Dg 𝑋Dg 𝑋" = l
ℎ" 𝑋" , 																													𝑖𝑓	ℎ" 𝑋" ≥ 𝐶̂" 𝑋"
𝐸 ℎDgij 𝑋D	gij 𝑋" , 						𝑖𝑓	ℎ" 𝑋" < 𝐶̂"(𝑋")

ii. Simulate	m	sub	paths	of	𝑋" and	calculate	 the	payoff	ℎDgij 𝑋Dgij ,	following	the	same	exercise	 policy
iii. Use	the	average	to	estimate	𝐸[ℎDgij 𝑋Dgij |𝑋"]

3. Use	these	conditional	expectations	to	estimate		Δ[" and	𝑀[".

4. Evaluate	the	maximum	of	ℎF 𝑋F −𝑀[F over	𝑘 = 1, … , 𝑛	.



3.	Martingales	from	stopping	rules
Difference	in	the	nested	simulations	in	the	
algorithms:	

For	martingales	from	value	functions,	the	
algorithm	simulates	exactly	on	step	in	each	
sub	path.	

Whereas	for	martingales	from	stopping	rules,	
the	algorithms	simulates	a	random	number	of	
steps	for	each	sub	path.



4.	Comparison
The	following	table	shows	a	comparison	of	the	upper	bound	for	price	of	an	American	max	option	with	2	
underlying	assets,	following	a	geometric	Brownian	motion,		generated	from	duality	with	martingales	from	value	
functions	and	stopping	times.	

The	approximation	is	based	on:	
§ 4000	initial	paths	to	estimate	 regression	coefficients
§ 100	independent	path	followed	by	n=100	and	n=10	sub	paths	
§ This	was	replicated	100	times	 to	estimate	standard	errors
§ 3	assets	with	initial	values	𝑆 0 = 100,110, 90

The	correct	prices	are	13.90,	21.34	and	8.08

Standard	errors	of	all	estimations	were	between	0.02	and	0.03



4.	Comparison
n=10

Dual	– V
n=10

Dual - T 
n=100
Dual	- V

n=100
Dual - T correct values

poor set of basis
function 15,86 15,96 14,58 14,26 13,9

24,09 24,56 22,38 21,94 21,34

9,43 9,21 8,59 8,24 8,08
good set of basis
function 15,46 15,82 14,16 14,16 13,9

23,55 24,21 21,68 21,72 21,34

9,07 9,16 8,25 8,2 8,08



4.	Comparison
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4.	Comparison
Conclusion	of	approximation	results:

1. Increasing	the	number	of	sub	paths	improves	results	noticeably

2. Using	a	good	set	of	basis	functions	for	regression	improves	results

3. Only	small	differences	between	deriving	martingales	from	value	functions	or	stopping	times

As	martingales	derived	from	stopping	times	are	based	on	an	implementable	exercise	rule	and	not	
from	an	approximated	value	function,	results	from	stopping	times	usually	better.	

Nevertheless,	martingales	from	stopping	times	requires	more	computing	time	per	path.



5.	Numerical	Example
To	confirm	their	theoretical	results	Anderson	and	Broadie tested	two	classes	of	problems:	

§ Pricing	of	multi	asset	equity	options
§ Pricing	of	interest-rate	derivatives

In	the	first	example	an	max-call	equity	option,	and	in	the	second	example	a	Bermudan	swap	
option	will	be	priced.



5.	Numerical	Example
Pricing	an	American	max	call	option	with	2,	3	and	5	assets
The	payoff	of	a	max-call-option:

ℎp 𝑆p = max 𝑆p/,… , 𝑆p_ − 𝐾 .

Set	up:	
§ the	dynamics	of	the	2,	3	and	5	assets	follow	a	geometric	Brownian	motion
§ Continuation	values	are	approximated	with	the	Longstaff and	Schwartz	approach	and	linear	regression
§ The	initial	asset	prices	are 90,	100	and 110
§ 200,000	trials	to	estimate	regression	coefficient	for	determining	 the	exercise	policy
§ 2,000,000	 trials	to	estimate	a	lower	bound	via	regression
§ 10,000	trials	to	estimate	the	upper	bound	 via	duality
§ Strike	price	𝐾	 = 	100,	expiration	time	𝑇 = 3	with	exercise	opportunities	 𝑡" =

"t
u
, 𝑖 = 0,1, … , 9.



5.	Numerical	Example
n=2 Regression Duality 95%	CI Binomial	Tree

S(0) = 90 8,065	(0,006) 8,069	(0,007) [8,053; 8,082] 8,075

S(0)	=	100 13,907	(0,008) 13,915 (0,01) [13,892; 13,934] 13,902

S(0)	=	110 21,333	(0,009) 21,34 (0,01) [21,316; 21,359] 21,345

n=3

S(0)	=	90 11,279	(0,007) 11,29	(0,009) [11,265;	11,308] 11,29

S(0)	=	100 18,678	(0,009) 18,703	(0,013) [18,661; 18,728] 18,69

S(0)	=	110 27,531	(0,01) 27,627	(0,019) [27,512;	27,663] 27,58

n=5

S(0)	=	90 16,618	(0,008) 16,634 (0,01) [16,602; 16,655]

S(0) = 100 26,128	(0,01) 26,253	(0,02) [26,109;	26,292]

S(0) = 110 36,725	(0,011) 26,798	(0,017) [36,704;	36,832]
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5.	Numerical	Example
Pricing	of	a	Bermudan	swap	option	in	the	Libor	Market
Swap:	

Agreement	between	to	parties	to	swap	one	interest	payment	against	a	an	other	at	some	specific	
future	dates	𝑡/,… , 𝑡u.

Anderson	and	Broadie considered	a	fixed-for-floating	interest	rate	swap	with	a	fixed	rate	𝜃
changed	against	the	LIBOR.



5.	Numerical	Example
Notation:	

Let	𝑃(𝑡, 𝑇) represent	the	price	of	1$	in	time	t,	which	is	received	with	certainty	at	time	T.

The	Libor-style	discrete	forwards	can	then	be	defined	as

𝐹" 𝑡 =
y z,zg

y z,zgij
pgijTpg

According	to	Andersen,	the	dynamics	of	forward	rates	are	can	be	assumed	to	satisfy

	𝒹𝐹" 𝑡 = 𝜇" 𝑡 𝒹𝑡 + 𝜑 𝐹" 𝑡 𝜆"t 𝑡 𝑑𝑊(𝑡)

Where	𝑊 is	an	Brownian	motion.



5.	Numerical	Example
The	value	of	a	fixed-for-floating-interest- rate	swap	at	time	𝑡 < 𝑡/,	with	fixed	interest	rate	𝜃 and	
floating	interest	rate	𝐹" 𝑡 ,		seen	by	the	fixed	payer	is

	 𝑠 𝑡 = ∑ 𝑃 𝑡, 𝑡"./ ∗ 𝐹" 𝑡 − 𝜃 ∗ 𝑡"./ − 𝑡" 	uT/
"G/ 	

Bermudan	swap	option:

The	right	to	enter	into	a	specific	swap	at	several	future	dates	𝑡/,… , 𝑡u.	

The	value	of	a	Bermudan	swap	option	at	an	exercise	opportunity	𝑡F, 𝑘 = 1,… ,𝑑 is	

𝑐" 𝑡" = 𝑆 𝑡" .



5.	Numerical	Example
𝑡/ 𝑡u 𝜃 upper	bound 95%	CI
0,25 1,25 8% 184,62	(0,11) [184,5; 184,7]
0,25 1,25 10% 49,12 (0,103) [48,8; 49,4]
0,25 1,25 12% 8,904	(0,101) [8,7; 9,1]
1 3 8% 355,67 (0,41) [354,9; 356,4]
1 3 10% 158 (0,52) [156,9; 158,9]
1 3 12% 61,84 (0,41) [61,1; 62,5]
1 6 8% 807,43	(0,93) [805,4; 809,3]
1 6 10% 418,43	(0,96) [415,9; 420,3]
1 6 12% 213,03	(0,94) [210,9; 214,8]
1 11 8% 1382,9	(1,7) [1378,4; 1386,2]
1 11 10% 814,2	(1,5) [810; 817]
1 11 12% 496,5 (1,6) [492,7; 499,6]
3 6 8% 493,28 (0,81) [491,6; 494,9]
3 6 10% 294,25	(1,6) [291,8; 296,1]
3 6 12% 170,83 (0,86) [168,6; 172,5]



Thank	you	for	your	
Attention
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