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1. Upper bound through martingales

Haugh and Kogan, and Andersen and Broadie first established dualformulations in which the
price is represented through a minimization problem.

Through minimization over martingales or super martingales, the dual generates a upper bound
on prices.

Connected with the Regression we have a valid upperand lower bound on prices.



1. Upper bound through martingales

Results from dynamic programmingrecursion:

Vi(X;) = max(h;(X;), E[Vi+1 X+ )1X:]D), £ =0,1,...,m — 1

One can follow that
VilX;) = E[Vig1 (Xip)1Xi], 1=0,1,...,m— 1
which is the definition of a super martingale.

Also, V;(X;) = h;(X;),i=0,1,...,m —1andV;(X;),i = 0,1, ..., m — 1 isin fact the minimal
super martingale that dominates h; (X;).

From this characterization Haugh and Kogan formulated the pricing of American optionsasa
minimization problem.



1. Upper bound through martingales

let M = {M;,i =0, ..., m} be a martingale with My = 0

From the optional samplingtheorem of martingales one can follow
E[M;]=0 foralli=0,..,m
And thus for every stoppingtime 7 in {1, ..., m} we have:

E[hT(XT)] - E[hT(XT) _ MT] < E[kinlﬁfm{hk(xk) _ Mk}]

As this equation holds for every martingale with initial value of 0

Elhe ()] < infE[, max {h(X) — My}



1. Upper bound through martingales

And as this equation holds for every stoppingtime 7, it also holds for the supremumover all T

Vo (Xo) = sup E[hy (X)) < infE[, max {hi(Xe) — M)

This minimization problemisthe dual problem.

By constructinga martingale for which the right side yieldsin V,(X,) one can show that the dual
problem holds with equality

To proofthat, we define
A =Vi(X) — E[Vi(X)IXi—q1] i =1,...,m
And
M;=Y  Ap,i=1,..,m



1. Upper bound through martingales

With

E[Aile-_l] - E[Vi(Xi) - E[Vi(Xi)|Xi_1]|Xi_1] =0
One can follow, that M = {M;,i = 0, ..., m} is a martingale:

E[M;|X;_1]= Zf{=1E[Ak Xi_1] = ch_=11Ak =M;_4
By using induction one can show that
Vi(X) = max{h;(X;),hyyq (Xip1) = Bigqy s R () =By — - = By} foralli=1,..,m
As hy(X,) = 0the value at O is:
And by rewriting V; (X) using the induction we get:

Vo(Xo) = kﬂf_‘fm(hk(xk) — My)



1. Upper bound through martingales

By defining

M= Ap,i=1,..,m
With
Ay =Vi(Xy) —E[Vi(XDIXi4],i=1,..,m
we found the optimal martingale M = {M;,i = 0, ..., m} sothat
Vo (Xo) = kgllﬁ_?fm(hk(Xk) — My)

holds.



1. Upper bound through martingales

To estimate the value of an American option by

Vo (Xo) = kgllé_)_(m(hk(Xk) — My)

we now have to find a martingale M thatis close to the optimal martingale M.
As this M is suboptimal, we then have a upper bound for the price of the option.

In connection with lower bound of the regression, we generated a range containingthe price of
the option.



1. Upper bound through martingales

Andersen and Broadie, and Haugh and Kogan developed the idea of constructinga

= Martingale from value functions (Haugh and Kogan)

= Martingale fromstoppingrules (Anderson and Broadie)




2. Martingales from value functions

To compute A; = V;(X;) — E[V;(X;)|X;—_1] Haugh and Kogan use a nested simulation.

Evaluate I; (X)):
= Just evaluate V;(x) = max{h;(x),C;(x)} along the Markov chain.

e 5,(T)
Evaluate E[V; (X;)|Xi-1]: ST STy
= Use a nested simulation: :
At each step X;_; of the simulated Monte Carlo Path, simulate S(0) . SulTy)
another n successors Xi(l), ,Xi(n) and use the arithmetic mean to
estimate the conditional expectation of V;(X;) 7gliven X;_1. ; (Tﬁ
n\ 41

1IN v
D nx)
j=1




2. Martingales from value functions

Conclusion of the algorithm for one Monte Carlo Path:

1. Simulatea path ofthe underlying Markov chain X, ..., X,

2. ForeachX;,i=0,1,..n

.. Calculate the approximated value function V;(X;) = max{h;(X;), ;(X,)} with ;(X,) given from a
previous regression or parametric approximation

, . (1) (n)
ii.  Simulate m successors Xi+'1, X of X; and calculate

l n
_ ~ L~ . 1 . -
Mi = Z Ak ,Wlth Ak = Vk(Xk) —Ez Vk(X]EJ))
K=1 j=1

3. Set VO (Xo) = kl;riaxn(hk(xk) T Mk)

- JEERS)



3. Martingales from stopping rules

Again we want to find a approximation of A;.

Let 74,..., T, be stoppingtimes with 7; interpreted asthe exercise time of an option, issued at
the i-th exercise date.

7; = min{k = i,..., n:hy (Xy) = C, (X))}
The martingale differences are again defined as

Ei = E[hri(XTi)|Xi] - E[hri(xri)lxi—l]



3. Martingales from stopping rules

To calculate the expected payoffs

Elh

Anderson and Broadie again used a nested simulation:

(X, )X k=0,..n-1

Tk+1

1. Simulatea path X, X, ..., X,, of the underlying Markov chain.

2. Ateach X;,i=01,..,n—-1
. Evaluate h;(X;) and C;(X;) and check which is larger.

| r (D, if h;(X;) = C;(Xp)
set £ [He, (e i) = Elhy, (X )X if (X)) < Ci(x)

. Simulate m sub paths of X; and calculate the payoff hTHl(XT ), following the same exercise policy

iii.  Usethe average to estimate E[hTi+1(XTi+1) | Xi]

i+1

3. Usethese conditional expectations to estimate A; and M.

4. Evaluatethe maximumof h,(X,) — M,overk =1, ..,n.



3. Martingales from stopping rules

Difference in the nested simulationsin the

: A
algorithms: S
. . Exercise Region
For martingalesfromvalue functions,the | Subpath 1 Subpath 2
algorithmsimulates exactlyonstepineach | e i

sub path.

Whereas for martingales from stoppingrules,
the algorithms simulates arandom number of

steps for each sub path.




4. Comparison

The following table shows a comparison of the upper bound for price of an American max option with 2
underlying assets, following a geometric Brownian motion, generated from duality with martingales from value
functions and stopping times.

The approximation is based on:
= 4000 initial paths to estimate regression coefficients
= 100independent path followed by n=100 and n=10 sub paths
= This was replicated 100 times to estimate standard errors
= 3 assets with initial values S(0) = 100,110, 90

The correct prices are 13.90,21.34 and 8.08

Standard errors of all estimations were between 0.02 and 0.03



4. Comparison
B NV e S N SR S Ao

poor set of basis

function 15,86 15,96 14,58 14,26 13,9
24,09 24,56 22,38 21,94 21,34
9,43 9,21 8,59 8,24 8,08

good set of basis

function 15,46 15,82 14,16 14,16 13,9
23,55 24,21 21,68 21,72 21,34

9,07 9,16 8,25 8,2 8,08




4. Comparison

Approximation errors using a poor set of basis Approximation errors unsing a good set of basis
functions functions
16% 14%
14% 12%
V)
12% 10%
10%
8%
8%
6%
6%
% 4%
| B | B B
S(0) =100 5(0)=110 S(0)=90 S(0) =100 S(0)=110 S(0)=90

®Dual-V,n=10 ™Dual-T,n=10 ™ Dual-V,n=100 ™ Dual-T,Nn=100 ®Dual-V,n=10 ™Dual-T,n=10 ™ Dual-V,n=100 ™ Dual-T,Nn=100




4. Comparison

Conclusion of approximation results:

1. Increasingthe number of sub pathsimprovesresults noticeably

2. Usinga good set of basis functions for regression improves results

3. Onlysmall differences between deriving martingales from value functions or stopping times

As martingales derived from stoppingtimes are based on animplementable exercise rule and not
from an approximated value function, results from stopping times usually better.

Nevertheless, martingales from stoppingtimes requires more computingtime per path.



5. Numerical Example

To confirm their theoretical results Anderson and Broadie tested two classes of problems:

= Pricing of multi asset equity options
= Pricing of interest-rate derivatives

In the first example an max-call equity option, andin the second example a Bermudan swap
option will be priced.




5. Numerical Example

Pricing an American max call option with 2, 3 and 5 assets

The payoff of a max-call-option:
h:(S;) = (max(S4, ...,.S®H) — K)?t

Set up:
= the dynamics of the 2, 3 and 5 assets follow a geometric Brownian motion
= Continuation values are approximated with the Longstaff and Schwartz approach and linear regression
= The initial asset prices are 90, 100 and 110
= 200,000 trials to estimate regression coefficient for determining the exercise policy
= 2,000,000 trials to estimate a lower bound via regression
= 10,000 trials to estimate the upper bound via duality

= Strike price K = 100, expiration time T = 3 with exercise opportunities t; = %T,i =0,1,...,9.



5. Numerical Example

S(0)=90
S(0) =100
S(0) =110
n=3
S(0) =90
S(0) =100
S(0) =110
n=5
S(0) =90
S(0) = 100
S(0)= 110

8,065 (0,006)
13,907 (0,008)
21,333 (0,009)

11,279 (0,007)
18,678 (0,009)
27,531 (0,01)

16,618 (0,008)
26,128 (0,01)
36,725 (0,011)

8,069 (0,007)
13,915 (0,01)
21,34 (0,01)

11,29 (0,009)
18,703 (0,013)
27,627 (0,019)

16,634 (0,01)
26,253 (0,02)
26,798 (0,017)

[8,053; 8,082]
[13,892; 13,934]
[21,316; 21,359]

[11,265; 11,308]
[18,661; 18,728]
[27,512; 27,663]

[16,602; 16,655]
[26,109; 26,292]
[36,704; 36,832]

8,075
13,902
21,345

11,29
18,69
27,58



100,2%

100,1%

100,0%

99,9%

99,8%

99,7%

99,6%

100,3%
100,1%
99,9%
99,7%
99,5%
99.,3%
99,1%

98,9%

90

90

2 Assets

100

5 Assets

100

110

110

H95%Cl
* Duality
*= Regression

XBinomial tree

H95%Cl
* Duality

= Regression

100,3%
100,2%
100,1%
100,0%
99,9%
99,8%
99,7%
99,6%
99,5%
99,4%
99,3%
99,2%

90

3 Assets

100 110

H95%Cl
* Duality
= Regression

X Binomial tree



5. Numerical Example

Pricing of a Bermudan swap option in the Libor Market

Swap:

Agreement between to parties to swap one interest payment against a an other at some specific
futuredatestq,..., t4.

Anderson and Broadie considered a fixed-for-floatinginterest rate swap with a fixed rate 6
changed against the LIBOR.



5. Numerical Example

Notation:

Let P(t, T) represent the price of 1$ in time t, which is received with certainty at time T.

The Libor-style discrete forwards can then be defined as
P(tt;)

Fi(t) = P(ttit1)

Liv+1—ti

Accordingto Andersen, the dynamics of forward rates are can be assumed to satisfy
dF; () = i Odt + o(F; ()2 (O dW (1)

Where W is an Brownian motion.



5. Numerical Example

The value of a fixed-for-floating-interest- rate swap attime t < t4, with fixed interestrate 6 and
floatinginterest rate F;(t), seen bythe fixed payeris

s(t) = XELP(E, tipg) * [F;(6) — 0] * (ti41 — t7)

Bermudan swap option:

The rightto enterinto a specific swap at several futuredatest, ..., t4.

The value of a Bermudan swap option at an exercise opportunityt,, k = 1,...,d is

ci(t) =S(E)"



5. Numerical Example

0,25

0,25

0,25
1

W W W R R R R R R Rp R}

1,25

1,25

1,25
3

a OO O W W

11
11

8%
10%
12%
8%
10%
12%
8%
10%
12%
8%
10%
12%
8%
10%
12%

184,62 (0,11)
49,12 (0,103)
8,904 (0,101)
355,67 (0,41)
158 (0,52)
61,84 (0,41)
807,43 (0,93)
418,43 (0,96)
213,03 (0,94)
1382,9 (1,7)
814,2 (1,5)
496,5 (1,6)
493,28 (0,81)
294,25 (1,6)
170,83 (0,86)

[184,5; 184,7]
[48,8; 49,4]
[8,7:9,1]
[354,9; 356,4]
[156,9; 158,9]
[61,1; 62,5]
[805,4; 809,3]
[415,9; 420,3]
[210,9; 214,8]

[1378,4; 1386,2]

[810; 817]
[492,7; 499,6]
[491,6; 494,9]
[291,8; 296,1]
[168,6; 172,5]
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