The GPD Method The Hill Method Sources

Threshold Exceedances

Moritz Lücke

27. April 2018

Moritz Lücke Threshold Exceedances

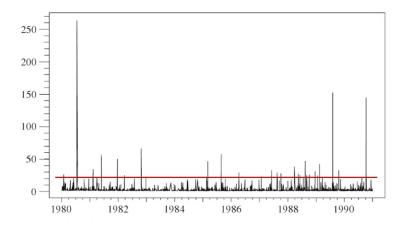
The GPD Method The Hill Method Sources

1 The GPD Method

- Estimating ξ and β
- Estimating the Threshold
- modelling Tails and Measures of Tail risk

2 The Hill Method

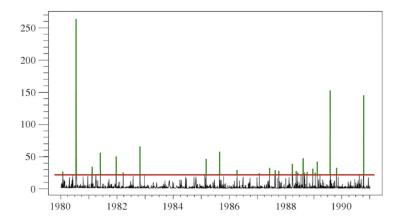
3 Sources



・ロト ・ 日 ・ ・ 日 ・

э

æ



・ロト ・ 日 ・ ・ 日 ・

э

æ

The GPD Method The Hill Method Sources Estimating ξ and β Estimating the Threshold modelling Tails and Measures of Tail risk

イロト イヨト イヨト

Excess Distribution

Definition

Let X be a rv with df F. The excess distribution over the threshold \boldsymbol{u} has the df

$$F_u(x) = P(X - u \le x | X > u) = \frac{F(x + u) - F(u)}{1 - F(u)}$$

for $0 \leq x < X_F - u$.

The GPD Method The Hill Method Sources Estimating ξ and β Estimating the Threshold modelling Tails and Measures of Tail risk

The GPD

Definition

The General Pareto Distribution (GPD) is given by:

$$G_{\xi,\beta}(x) = \begin{cases} 1 - (1 + \frac{x\xi}{\beta})^{-\frac{1}{\xi}} & \xi \neq 0\\ 1 - \exp(-\frac{x}{\beta}) & \xi = 0 \end{cases}$$

for $\beta > 0$, $x \ge 0$ if $\xi \ge 0$ and $0 \le x \le -\frac{\beta}{\xi}$ if $\xi < 0$.

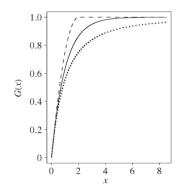


Abbildung: GPD mit $\xi = -0.5$; 0; 0.5 und $\beta = 1$

æ

э

(日) (同) (三)

Theorem

We can find a positive-measurable function $\beta(u)$ so that

$$\lim_{u \to X_F} \sup_{0 \le x < X_F - u} |F_u(x) - G_{\xi,\beta(u)}(x)| = 0$$

if and only if $F \in MDA(H_{\xi}), \xi \in \mathbb{R}$.

The GPD Method The Hill Method Sources

Estimating ξ and β Estimating the Threshold modelling Tails and Measures of Tail risk

< ロ > < 同 > < 三 >

Use of the Theorem

We assume that for some high threshold u, we have $F_u(x) = G_{\xi,\beta}(x)$ for $0 \le x < X_F - u$ and some $\xi \in \mathbb{R}$ and $\beta > 0$.

Estimating ξ and β

• Given the loss data $X_1, ..., X_n$ from F, a random number N_u will exceed our threshold u.

Estimating ξ and β

- Given the loss data $X_1, ..., X_n$ from F, a random number N_u will exceed our threshold u.
- Relabel these $X'_1, ..., X'_{N_u}$.

Estimating ξ and β

- Given the loss data $X_1, ..., X_n$ from F, a random number N_u will exceed our threshold u.
- Relabel these $X'_1, ..., X'_{N_u}$.

• We write
$$Y'_j = X'_j - u$$
.

Estimating ξ and β

- Given the loss data $X_1, ..., X_n$ from *F*, a random number N_u will exceed our threshold *u*.
- Relabel these $X'_1, ..., X'_{N_u}$.

• We write
$$Y'_j = X'_j - u$$

• We can use the log-likelihood method:

$$\begin{split} L(\xi,\beta;\,Y_1,...,Y_{N_u}) &= \sum_{j=1}^{N_u} \ln(g_{\xi,\beta}(Y_j)) \\ &= -N_u \ln(\beta) - (1 + \frac{1}{\xi}) \sum_{j=1}^{N_u} \ln(1 + \xi \frac{Y_j}{\beta}), \end{split}$$

Theorem

We can find a positive-measurable function $\beta(u)$ so that

$$\lim_{u \to X_F} \sup_{0 \le x < X_F - u} |F_u(x) - G_{\xi,\beta(u)}(x)| = 0$$

if and only if $F \in MDA(H_{\xi})$, $\xi \in \mathbb{R}$.

Definition

The mean excess function of an rv X with finite mean is given by e(u) = E(X - u|X > u).

< ロ > < 同 > < 回 > <

Definition

The mean excess function of an rv X with finite mean is given by e(u) = E(X - u|X > u).

Theorem

Under the assumption $F_u(x) = G_{\xi,\beta}(x)$, it follows that the mean excess function is linear for all v > u

Image: A matrix

For positive-valued loss data $X_1, ..., X_n$ we estimate the mean excess function with the sample mean excess function given by

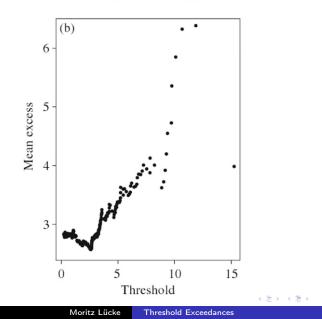
$$e_n(v) = \frac{\sum_{i=1}^n (X_i - v) I_{(X_i > v)}}{\sum_{i=1}^n I_{(X_i > v)}}.$$

• We construct the mean excess plot $\{(X_{i,n}, e_n(X_{i,n})) : 2 \le i \le n\}$ where X_i denotes the upper *i*th order statistic.

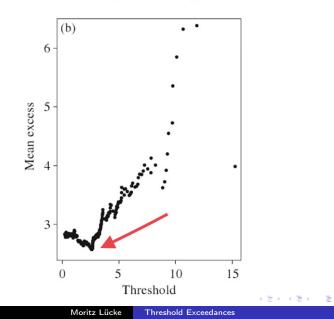
< ロ > < 同 > < 回 > <

- We construct the mean excess plot $\{(X_{i,n}, e_n(X_{i,n})) : 2 \le i \le n\}$ where X_i denotes the upper *i*th order statistic.
- If the data support a GDP model over a high threshold, then the plot should become increasingly linear for higher values of v.

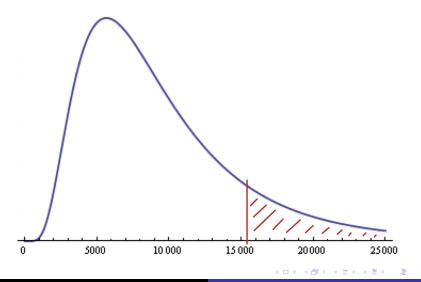
- We construct the mean excess plot $\{(X_{i,n}, e_n(X_{i,n})) : 2 \le i \le n\}$ where X_i denotes the upper *i*th order statistic.
- If the data support a GDP model over a high threshold, then the plot should become increasingly linear for higher values of *v*.
- By this, we can estimate the needed high of our threshold.



æ



modelling Tails and Measures of Tail risk



Our goal is to estimate the tail of a underlying loss distribution ${\sf F}$ and associated risk measures.

• We have for $x \ge u$

$$\bar{F}(x) = P(X > u)P(X > x|X > u)$$

$$= \bar{F}(u)P(X - u > x - u|X > u)$$

$$= \bar{F}(u)\bar{F}_u(x - u)$$

$$= \bar{F}(u)(1 + \xi \frac{x - u}{\beta})^{-\frac{1}{\xi}}$$

イロン イロン イヨン イヨン

æ

 $\begin{array}{lll} \mbox{The GPD Method} & \mbox{Estimating } \xi \mbox{ and } \beta \\ \mbox{The Hill Method} & \mbox{Estimating the Threshold} \\ \mbox{Sources} & \mbox{modelling Tails and Measures of Tail risk} \end{array}$

• We have for $x \ge u$

$$\bar{F}(x) = P(X > u)P(X > x|X > u)$$

$$= \bar{F}(u)P(X - u > x - u|X > u)$$

$$= \bar{F}(u)\bar{F}_u(x - u)$$

$$= \bar{F}(u)(1 + \xi \frac{x - u}{\beta})^{-\frac{1}{\xi}}$$

• which gives us a formula for tail probabilities, if F(u) is known.

イロト イポト イヨト イヨト

э

 $\begin{array}{lll} \mbox{The GPD Method} & \mbox{Estimating } \xi \mbox{ and } \beta \\ \mbox{The Hill Method} & \mbox{Estimating the Threshold} \\ \mbox{Sources} & \mbox{modelling Tails and Measures of Tail risk} \end{array}$

• We have for $x \ge u$

$$\bar{F}(x) = P(X > u)P(X > x|X > u)$$

$$= \bar{F}(u)P(X - u > x - u|X > u)$$

$$= \bar{F}(u)\bar{F}_u(x - u)$$

$$= \bar{F}(u)(1 + \xi \frac{x - u}{\beta})^{-\frac{1}{\xi}}$$

- which gives us a formula for tail probabilities, if F(u) is known.
- If not, we can estimate $\overline{F}(u)$ with the estimator $\frac{N_u}{n}$.

• We have for $x \ge u$

$$\bar{F}(x) = P(X > u)P(X > x|X > u)$$

$$= \bar{F}(u)P(X - u > x - u|X > u)$$

$$= \bar{F}(u)\bar{F}_u(x - u)$$

$$= \bar{F}(u)(1 + \xi \frac{x - u}{\beta})^{-\frac{1}{\xi}}$$

which gives us a formula for tail probabilities, if F(u) is known.
If not, we can estimate \$\bar{F}(u)\$ with the estimator \$\frac{N_u}{n}\$.

•
$$\Rightarrow \hat{\overline{F}}(x) = \frac{N_u}{n} (1 + \hat{\xi} \frac{x-u}{\hat{\beta}})^{-\frac{1}{\hat{\xi}}}$$

 By inverting the formula, we can obtain a high quantile of the underlying distribution, which we can interpret as a VaR. For α ≤ F(u) we have

 By inverting the formula, we can obtain a high quantile of the underlying distribution, which we can interpret as a VaR. For α ≤ F(u) we have

$$VaR_{\alpha} = q_{\alpha}(F) = u + \frac{\beta}{\xi}((\frac{1-\alpha}{\bar{F}(u)})^{-\xi} - 1).$$

 By inverting the formula, we can obtain a high quantile of the underlying distribution, which we can interpret as a VaR. For α ≤ F(u) we have

$$VaR_{\alpha} = q_{\alpha}(F) = u + \frac{\beta}{\xi}((\frac{1-\alpha}{\bar{F}(u)})^{-\xi} - 1).$$

• Assuming $\xi < 1$, the associated expected shortfall is given by

$$ES_{\alpha} = \frac{1}{1-\alpha} \int_{\alpha}^{1} q_{x}(F) dx = \frac{VaR_{\alpha}}{1-\xi} + \frac{\beta - \xi u}{1-\xi}$$

(日) (同) (三) (

The GPD Method The Hill Method Sources

The Hill Method

• Alternative to the GPD Method.

æ

The GPD Method The Hill Method Sources

The Hill Method

- Alternative to the GPD Method.
- New assumption: $F \in MDA(H_{\xi})$, $\xi > 0$.

The Hill Method

- Alternative to the GPD Method.
- New assumption: $F \in MDA(H_{\xi})$, $\xi > 0$.
- We can use the Fréchet Theorem $(F \in MDA(H_{\xi}) \Leftrightarrow \overline{F} = x^{-\frac{1}{\xi}}L(x) \text{ for } \xi > 0)$

The Hill Method

- Alternative to the GPD Method.
- New assumption: $F \in MDA(H_{\xi})$, $\xi > 0$.
- We can use the Fréchet Theorem $(F \in MDA(H_{\xi}) \Leftrightarrow \overline{F} = x^{-\frac{1}{\xi}}L(x) \text{ for } \xi > 0)$
- $\Rightarrow \overline{F} = x^{-\alpha}L(x)$ for a function $L \in R_0$ and $\alpha = \frac{1}{\xi} > 0$.

Estimating α

• Given the data $X_1, ..., X_n$, we first build the orderstatistic $X_{n,n} \leq ... \leq X_{2,n} \leq X_{1,n}$

▲ 同 ▶ ▲ 国 ▶ ▲

- Given the data $X_1, ..., X_n$, we first build the orderstatistic $X_{n,n} \leq ... \leq X_{2,n} \leq X_{1,n}$
- the hill estimator is then given by

- Given the data $X_1, ..., X_n$, we first build the orderstatistic $X_{n,n} \leq ... \leq X_{2,n} \leq X_{1,n}$
- the hill estimator is then given by

$$\hat{\alpha}_{k,n}^{H} = (\frac{1}{k} \sum_{j=1}^{k} \ln(X_{j,n}) - \ln(X_{k,n}))^{-1}$$

for $2 \leq k \leq n$.

- Given the data $X_1, ..., X_n$, we first build the orderstatistic $X_{n,n} \leq ... \leq X_{2,n} \leq X_{1,n}$
- the hill estimator is then given by

$$\hat{\alpha}_{k,n}^{H} = (\frac{1}{k} \sum_{j=1}^{k} \ln(X_{j,n}) - \ln(X_{k,n}))^{-1}$$

for $2 \leq k \leq n$.

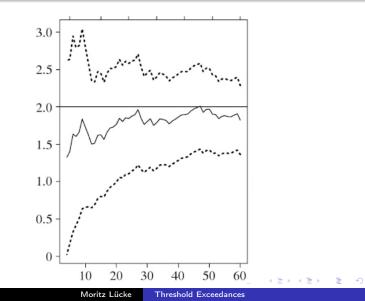
- Given the data $X_1, ..., X_n$, we first build the orderstatistic $X_{n,n} \leq ... \leq X_{2,n} \leq X_{1,n}$
- the hill estimator is then given by

$$\hat{\alpha}_{k,n}^{H} = (\frac{1}{k} \sum_{j=1}^{k} \ln(X_{j,n}) - \ln(X_{k,n}))^{-1}$$

for $2 \leq k \leq n$.

• The strategy is to plot Hill estimates for various values of k. This gives the Hill plot $((k, \hat{\alpha}_{k,n}^H) : k = 2, ..., n)$. We hope to find a stable region in the Hill plot.

Estimating α



hill based tail estimates

• We assume a tail of the form $\bar{F}(x) = Cx^{-\alpha}$, $x \ge u > 0$ for some high threshold u.

hill based tail estimates

- We assume a tail of the form $\bar{F}(x) = Cx^{-\alpha}$, $x \ge u > 0$ for some high threshold u.
- We estimate α by $\hat{\alpha}_{k,n}^{(H)}$ and u by $X_{k,n}$

estimating C

•
$$\bar{F}(u) = Cu^{-\hat{\alpha}_{k,n}^{(H)}}$$

◆□ > ◆□ > ◆豆 > ◆豆 >

æ

estimating C

•
$$\bar{F}(u) = Cu^{-\hat{\alpha}_{k,n}^{(H)}} \Leftrightarrow C = u^{\hat{\alpha}_{k,n}^{(H)}} \bar{F}(u)$$

◆□ > ◆□ > ◆豆 > ◆豆 >

æ

estimating C

•
$$\bar{F}(u) = Cu^{-\hat{\alpha}_{k,n}^{(H)}} \Leftrightarrow C = u^{\hat{\alpha}_{k,n}^{(H)}} \bar{F}(u)$$

• The empirical estimator for $\bar{F}(u)$ is $\frac{k}{n}$.

< 一型

▶ < ∃ ▶

estimating C

•
$$\bar{F}(u) = Cu^{-\hat{\alpha}_{k,n}^{(H)}} \Leftrightarrow C = u^{\hat{\alpha}_{k,n}^{(H)}} \bar{F}(u)$$

- The empirical estimator for $\bar{F}(u)$ is $\frac{k}{n}$.
- We get the Hill tail estimator

$$\hat{\bar{F}}(x) = \frac{k}{n} \left(\frac{x}{X_{k,n}}\right)^{-\hat{\alpha}_{k,n}^{(H)}}, x \leqslant X_{k,n}.$$

[1] A.McNeil R.Frey P.Embrechts. *Quantitative Risk Management: Concepts, Techniques and Tools.* Princeton Series in Finance, 2015.