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Motivation

Motivation

Exceedances of thresholds as events in time

Point process to model the occurrence of these events
POT model as a starting point for developing more dynamic
descriptions
POT model subsumes the models for maxima and the GPD models
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Threshold exceedances for strict white noise Assumptions

Threshold exceedances for strict white noise

Strict white noise process (Xi )i∈N representing financial losses
iid
E[X ] = 0
σ2 = E[X 2] <∞

Common loss distribution ∈ MDA(Hξ), that means

lim
n→∞

F (cnx + dn) = Hξ(x))

⇒ lim
n→∞

nln(F (cnx + dn)) = ln( lim
n→∞

(F n(cnx + dn)) = ln(Hξ(x)).
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Threshold exceedances for strict white noise Assumptions

Threshold exceedances for strict white noise

Sequence of thresholds (un(x)) defined by un(x) := cnx + dn, so that

lim
n→∞

nln(F (cnx + dn)) = lim
n→∞

nln(F (un(x))) = ln(Hξ(x))

and with limy→1−ln(y) = 1− y it follows

lim
n→∞

nF̄ (un(x)) = lim
n→∞

−nln(F (un(x))) = −ln(Hξ(x))

Nun(x) := #{i ∈ {1, ..., n} : Xi > un} is the number of exceedances of
un(x) by X1, ...,Xn with Nun(x) ∼ B(n, F̄ (un(x))). Nun(x) converges to
a Poisson RV with mean λ(x) = −ln(Hξ(x)) as n→∞.
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Threshold exceedances for strict white noise Poisson Point Processes

Poisson Point Process

Definition
Let X1, ...,Xn be a sequence of RV’s on some state space X . The point
process N(·), defined as Nn(A) =

∑n
i=1 1{Xn∈A} for any set A ⊂ X , is

called a Poisson point process (or Poisson random measure) with intensity
measure Λ if the following two conditions are satisfied

(a) For A ⊂ X and k ≥ 0,

P(N(A) = k) =

{
e−Λ(A) Λ(A)k

k! ,Λ(A) <∞
0 ,Λ(A) =∞

(b) For any m ≥ 1, if A1, ...,Am are mutually disjoint subsets of X , then
the RVs N(A1), ...,N(Am) are independent.
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Threshold exceedances for strict white noise Poisson Point Processes

Intensity measure and intensity function

The Intensity or mean measure Λ(·) has the following properties:
Λ(A) = E[N(A)] for A ⊂ X ,
Λ(A) =

∫
A λ(x)dx , where λ(x) is the intensity function or rate and

A ⊂ X .
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Threshold exceedances for strict white noise Behaviour as n → ∞

Asymptotic behaviour of the point process of exceedances

We have
Strict white noise process (Xi )i∈N

Sequence of thresholds (un(x)) defined by un(x) := cnx + dn

Yi ,n = (i/n)1{Xi>un(x)} for n ∈ N and 1 ≤ i ≤ n is either the
normalized "time" i/n of an exceedance or zero
Nn(A) =

∑n
i=1 1{Yi,n∈A} is the point process of exceedances of the

threshold un with state space X = (0, 1].
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Threshold exceedances for strict white noise Behaviour as n → ∞

Asymptotic behaviour of the point process of exceedances

Hence we can say
Nn(·) converges in distribution on X to a Poisson point process N(·)

lim
n→∞

P[Nn(A) ≤ k] = P[N(A) ≤ k], k ∈ N.

The Poisson point process N(·) has intensity measure Λ(·) satisfying
Λ(A) = (t2 − t1)λ(x) for A = (t1, t2) ⊂ X , where λ(x) = λ = −ln(Hξ)

⇒ E[Nn(A)]→ E[N(A)] = Λ(A) = (t2 − t1)λ(x)

We call this limiting process a homogeneous Poisson process with intensity
λ.
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Threshold exceedances for strict white noise Application

Application of the results in practice

Let n be a fixed large sample size and u = cny + dn a fixed high threshold
for some fixed y. Assume

the number of threshold exceedances of u can be approximated by a
Poisson RV,
the point process of exceedances of u can be approximated by a
homogeneous Poisson process with rate
λ = −ln(Hξ(y)) = −ln(Hξ((u − dn)/cn)).

Replace cn and dn by σ > 0 and µ to get a Poisson process with rate
−ln(Hξ,µ,σ(u)).
⇒ Exceedances of the level x ≥ u occur according to a Poisson process
with rate −ln(Hξ,µ,σ(x)). That shows us the relation between the GEV
model for block maxima and this model.
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The Peaks over Threshold (POT) Model

The Peaks over Threshold (POT) Model

asymptotic model for threshold exceedances in iid data or data from a
process with extremal index θ = 1 with the following assumptions:

(a) exceedances occur according to a homogeneous Poisson process in
time,

(b) excess amounts above thresholds are iid and independent of exceedance
times,

(c) excess amounts are generalized Pareto distributed.
Sometimes it is called marked Poisson point process where
(i) Exceedance times constitute the points and
(ii) GPD-distributed excesses are the marks.
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The Peaks over Threshold (POT) Model Two-dimensional Poisson formulation

Two-dimensional Poisson formulation

The POT model can also be described as a (non-homogeneous)
two-dimensional Poisson point process with points (t,x) with t time and x
magnitude of exceedances. Assume:

X1, ...,Xn are regularly spaced random losses,
u is a high threshold,
X = (0, 1]× (u,∞),
the point process defined by N(A) =

∑n
i=1 1{(i/n,Xi )∈A} is a Poisson

process with intensity at a point(t, x) given by

λ(x) =

{
1
σ

(
1 + ξ x−µσ

)−1/ξ−1
, (1− ξ(x − µ)/σ) > 0

0 , otherwise.
(1)
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The Peaks over Threshold (POT) Model Two-dimensional Poisson formulation

Two-dimensional Poisson formulation

For a set of the form A = (t1, t2)× (x ,∞) ⊂ X , the intensity measure is

Λ(A) =

∫ t2

t1

∫ ∞
x

λ(y)dydt = −(t2 − t1)ln(Hξ,µ,σ(x)).

⇒ For any x ≥ u, the implied one-dimensional process of exceedances of
the level x is a homogeneous Poisson process with rate
τ(x) := −ln(Hξ,µ,σ(x)).
The tail of the excess df F̄u(x) can be calculated as the ratio of the rates
of exceeding the levels u + x and u. We obtain

F̄u(x) =
τ(u + x)

τ(u)
=

(
1 +

ξx

σ + ξ(u − µ)

)−1/ξ

= Ḡξ,β(x)

for a positive scaling parameter β = σ + ξ(u − µ).
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The Peaks over Threshold (POT) Model Two-dimensional Poisson formulation

Relation to the GEP and GEV models

Ḡξ,β is precisely the tail of the GPD model for excesses over the
threshold u with the parameter β.

The relation to the GEV model is shown through the following:
Assume we have an event {Mn ≤ x} for some value x ≥ u. In point
process language that is an event that there are no points in the set
A = (0, 1]× (x ,∞).

⇒ P[Mn ≤ x ] = P[N(A) = 0] = e−Λ(A) = Hξ,µ,σ(x) ≥ u.

This is precisely the GEV model for maxima of n-blocks.
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The Peaks over Threshold (POT) Model Two-dimensional Poisson formulation

Advantage

the parameters ξ, µ and σ do not have any dependence on the
threshold chosen unlike the parameter β in the GPD model

the estimated parameters of the Poisson model are roughly stable over
a range of high thresholds

⇒ The intensity (1) is often used as a framework to introduce covariate
effects into extreme value modeling
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The Peaks over Threshold (POT) Model Statistical estimation

Maximum likelihood method

For exceedance data {X̃j : j = 1, ...,Nu} the likelihood is

L(ξ, σ, µ : X̃1, ..., X̃Nu) = e−τ(u)
Nu∏
j=1

λ(X̃j).

The intensity in (1) can therefore be written as

λ(x) = λ(t, x) =
τ

β

(
1 + ξ

x − u

β

)−1/ξ−1

,

with ξ ∈ R and τ, β > 0, where

τ = τ(u) = −ln(Hξ,µ,σ(u)) and β = σ + ξ(u − µ)
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The Peaks over Threshold (POT) Model Statistical estimation

Maximum likelihood method

The log-likelihood for the parameters ξ, σ, µ can be written as

ln(L(ξ, σ, µ; X̃1, ..., X̃Nu)) = lnL1(ξ, β; X̃1 − u, ..., X̃Nu − u) + lnL2(τ ;Nu).

This is easier to calculate and shows the relation to the GPD and GEV
model because

L1: likelihood for fitting a GPD to excess losses,
L2: log-likelihood for a one-dimensional homogeneous Poisson process
with rate τ .

First calculate ξ and β in a GPD-analysis and then τ by its MLE Nu to get
the estimates of µ and σ.
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The Peaks over Threshold (POT) Model Applicability

Applicability to return series data

Consider the POT model with financial return data where returns are
discrete-time measurements.

In a longer-term perspective such data can be approximated by point
events in time.

Problem
Exceedances of a high threshold do not necessarily occur according to a
homogeneous Poisson process. Instead they tend to form clusters
corresponding to episodes of high volatility.
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The Peaks over Threshold (POT) Model Applicability

Applicability to return series data

Problem
Exceedances of a high threshold do not necessarily occur according to a
homogeneous Poisson process. Instead they tend to form clusters
corresponding to episodes of high volatility.

→ for stochastic processes the extremal clusters themselves should occur
according to a homogeneous Poisson process in time, so that the individual
exceedances occur according to a Poisson cluster process.

Solution
→ Decluster financial return data:

Identify clusters by using the runs method for example.
Identify the maximum excess in each cluster.
Apply the POT model to these maxima only.
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The Peaks over Threshold (POT) Model Applicability

General application on declustered data

Although we can use the POT on declustered data to say something about

rate of occurrence of clusters of extremes,
average cluster size,

or
derive a GPD model for excess losses over thresholds for cluster
maxima

but by neglecting the modeling of cluster formation we however cannot
make more dynamic statements about the intensity of occurrance of
threshold exceedances at any point in time.
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Example POT analysis of AT&T weekly losses

POT analysis of AT&T weekly losses

Figure: (a)Time series of AT&T weekly percentage losses from 1991 to 2000.
(b)Corresponding realization of the marked point process of exceedances of the
threshold 2.75%. (c)Q-Q plot of inter-exceedance times against an exponential
reference distribution.
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Example POT analysis of AT&T weekly losses

POT analysis of AT&T weekly losses

We use weekly return data which include 102 weekly percentage losses for
the AT&T stock price exceeding a threshold of 2.75%.

By using the likelihood-method we get the parameter estimates
ξ̂ = 0.22,
µ̂ = 19.9,
σ̂ = 5.95,
and the estimated exceedance rate

τ̂(2.75) = −ln(Hξ̂,µ̂,σ̂(2.75)) = 102.

We can also calculate for example τ̂(15) = 2.50 and get that losses
exceeding 15% occur as a Poisson process with rate 2.5 per ten-year period.
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Thank you!

Thank you for your attention!
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