Market Risk Measurement

Quantitative Risk Management

Marina Klein

08.06.2018

Table of contents

- The Loss Operator
- Delta and Delta-Gamma Approximations
- Example-European call option
- Mapping Bond Portfolios
 - Basic definitions of bond pricing
 - Detailed mapping of a bond portfolio
 - Relationship to duration and convexity
- Literature

The Loss Operator

• function that relates portfolios losses to changes in the risk factors

function that relates portfolios losses to changes in the risk factors
 ⇒ loss operator

ullet value of the portfolio: $(V(t))_{t\in\mathbb{R}}$

5/31

- ullet value of the portfolio: $(V(t))_{t\in\mathbb{R}}$
- time horizon: $\triangle t$

- ullet value of the portfolio: $(V(t))_{t\in\mathbb{R}}$
- time horizon: $\triangle t$
- the P&L of the portfolio over the period $[t, t + \triangle t]$ is $V(t + \triangle t) V(t)$

- ullet value of the portfolio: $(V(t))_{t\in\mathbb{R}}$
- time horizon: $\triangle t$
- the P&L of the portfolio over the period $[t, t + \triangle t]$ is $V(t + \triangle t) V(t)$
- ullet convenient to use the negative P&L $-(V(t+\triangle t)-V(t))$

ullet convenient to scale time in units of $\triangle t$ and to establish appropriate time-series notation

- ullet convenient to scale time in units of $\triangle t$ and to establish appropriate time-series notation
- $Y_t := Y(\tau_t)$, $\tau_t := t(\triangle t)$

- ullet convenient to scale time in units of $\triangle t$ and to establish appropriate time-series notation
- $Y_t := Y(\tau_t)$, $\tau_t := t(\triangle t)$
- the loss:

- ullet convenient to scale time in units of $\triangle t$ and to establish appropriate time-series notation
- $Y_t := Y(\tau_t)$, $\tau_t := t(\triangle t)$
- the loss:

$$L_{t+1} := -(V(\tau_{t+1}) - V(\tau_t)) = -(V_{t+1} - V_t)$$

• V_t is modelled by time t and a d-dimensional random vector $\mathbf{Z}_t = (Z_{t,1},...,Z_{t,d})'$ of risk factors

7/31

- V_t is modelled by time t and a d-dimensional random vector $\mathbf{Z}_t = (Z_{t,1},...,Z_{t,d})'$ of risk factors
- mapping leads to

$$V_t = g(\tau_t, \mathbf{Z}_t) \tag{1}$$

for some measurable function $g:\mathbb{R}_+ imes\mathbb{R}^d o\mathbb{R}$ and some vectors \mathbf{Z}_t

7/31

(1)
$$V_t = g(\tau_t, \mathbf{Z}_t)$$

• risk factor changes $(X_t)_{t \in \mathbb{Z}} := \mathbf{Z}_t - \mathbf{Z}_{t-1}$

8/31

Marina Klein Market Risk Measurement 08.06.2018

(1)
$$V_t = g(\tau_t, \mathbf{Z}_t)$$

- risk factor changes $(X_t)_{t \in \mathbb{Z}} := \mathbf{Z}_t \mathbf{Z}_{t-1}$
- portfolio loss:

8/31

(1)
$$V_t = g(\tau_t, \mathbf{Z}_t)$$

- risk factor changes $(X_t)_{t \in \mathbb{Z}} := \mathbf{Z}_t \mathbf{Z}_{t-1}$
- portfolio loss:

$$L_{t+1} = -(g(\tau_{t+1}, \mathbf{Z}_{t+1} - g(\tau_t, \mathbf{Z}_t)))$$

= $-(g(\tau_{t+1}, \mathbf{Z}_t + X_{t+1}) - g(\tau_t, \mathbf{Z}_t))$

(1)
$$V_t = g(\tau_t, \mathbf{Z}_t)$$

- risk factor changes $(X_t)_{t \in \mathbb{Z}} := \mathbf{Z}_t \mathbf{Z}_{t-1}$
- portfolio loss:

$$L_{t+1} = -(g(\tau_{t+1}, \mathbf{Z}_{t+1} - g(\tau_t, \mathbf{Z}_t)))$$

= $-(g(\tau_{t+1}, \mathbf{Z}_t + X_{t+1}) - g(\tau_t, \mathbf{Z}_t))$

determined by X_{t+1}

• loss operator at time t:

• loss operator at time t:

$$I_{[t]}: \mathbb{R}^d \to \mathbb{R}$$

• loss operator at time t:

$$I_{[t]}: \mathbb{R}^d \to \mathbb{R}$$

maps risk-factor changes into losses

loss operator at time t:

$$I_{[t]}: \mathbb{R}^d \to \mathbb{R}$$

maps risk-factor changes into losses

•

$$I_{[t]}(x) := -(g(\tau_{t+1}, z_t + x) - g(\tau_t, z_t)), x \in \mathbb{R}^d$$
 (2)

loss operator at time t:

$$I_{[t]}: \mathbb{R}^d \to \mathbb{R}$$

maps risk-factor changes into losses

$$I_{[t]}(x) := -(g(\tau_{t+1}, z_t + x) - g(\tau_t, z_t)), x \in \mathbb{R}^d$$
 (2)

•

$$L_{t+1} = I_{[t]}(X_{t+1})$$

Delta and Delta-Gamma Approximations

How can we approximate the non-linear loss operator over short time intervals by linear and quadratic functions?

(2)
$$I_{[t]}(x) := -(g(\tau_{t+1}, z_t + x) - g(\tau_t, z_t)), x \in \mathbb{R}^d$$

• first-order Taylor series approximation:

12/31

Marina Klein Market Risk Measurement 08.06.2018

(2)
$$I_{[t]}(x) := -(g(\tau_{t+1}, z_t + x) - g(\tau_t, z_t)), x \in \mathbb{R}^d$$

first-order Taylor series approximation:

$$g(\tau_t + \triangle t, z_t + x) \approx g(\tau_t, z_t) + g_{\tau}(\tau_t, z_t) \triangle t + \sum_{i=1}^d g_{z_i}(\tau_t, z_t) x_i$$

Marina Klein Market Risk Measurement 08.06.2018 12 / 31

(2)
$$I_{[t]}(x) := -(g(\tau_{t+1}, z_t + x) - g(\tau_t, z_t)), x \in \mathbb{R}^d$$

first-order Taylor series approximation:

$$g(\tau_t + \triangle t, z_t + x) \approx g(\tau_t, z_t) + g_{\tau}(\tau_t, z_t) \triangle t + \sum_{i=1}^d g_{z_i}(\tau_t, z_t) x_i$$

linear loss operator at time t:

12 / 31

Marina Klein Market Risk Measurement 08.06.2018

(2)
$$I_{[t]}(x) := -(g(\tau_{t+1}, z_t + x) - g(\tau_t, z_t)), x \in \mathbb{R}^d$$

first-order Taylor series approximation:

$$g(\tau_t + \triangle t, z_t + x) \approx g(\tau_t, z_t) + g_{\tau}(\tau_t, z_t) \triangle t + \sum_{i=1}^d g_{z_i}(\tau_t, z_t) x_i$$

linear loss operator at time t:

$$I_{[t]}^{\triangle}(x) := -(g_{\tau}(\tau_t, z_t) \triangle t + \sum_{i=1}^{d} g_{z_i}(\tau_t, z_t) x_i)$$
 (3)

4□ > 4□ > 4 = > 4 = > = 90

12 / 31

• first-order partial derivatives:

13/31

Marina Klein Market Risk Measurement 08.06.2018

• first-order partial derivatives:

$$\delta(\tau_t, z_t) = (g_{z_1}(\tau_t, z_t), ..., g_{z_d}(\tau_t, z_t))'$$
(4)

first-order partial derivatives:

$$\delta(\tau_t, z_t) = (g_{z_1}(\tau_t, z_t), ..., g_{z_d}(\tau_t, z_t))'$$
 (4)

second-order partial derivatives:

13 / 31

Marina Klein Market Risk Measurement 08.06.2018

• first-order partial derivatives:

$$\delta(\tau_t, z_t) = (g_{z_1}(\tau_t, z_t), ..., g_{z_d}(\tau_t, z_t))'$$
(4)

second-order partial derivatives:

$$\omega(\tau_t, z_t) = (g_{z_1\tau}(\tau_t, z_t), ..., g_{z_d\tau}(\tau_t, z_t))'$$
(5)

• first-order partial derivatives:

$$\delta(\tau_t, z_t) = (g_{z_1}(\tau_t, z_t), ..., g_{z_d}(\tau_t, z_t))'$$
(4)

second-order partial derivatives:

$$\omega(\tau_t, z_t) = (g_{z_1\tau}(\tau_t, z_t), ..., g_{z_d\tau}(\tau_t, z_t))'$$
(5)

ullet $\Gamma(au_t,z_t)$ denotes the matrix with (i,j)th element given by $g_{z_iz_i}(au_t,z_t)$

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ かくで

13 / 31

(4)
$$\delta(\tau_t, z_t) = (g_{z_1}(\tau_t, z_t), ..., g_{z_d}(\tau_t, z_t))'$$

(5) $\omega(\tau_t, z_t) = (g_{z_1\tau}(\tau_t, z_t), ..., g_{z_d\tau}(\tau_t, z_t))'$

• second-order approximation:

14/31

Marina Klein Market Risk Measurement 08.06.2018

(4)
$$\delta(\tau_t, z_t) = (g_{z_1}(\tau_t, z_t), ..., g_{z_d}(\tau_t, z_t))'$$

(5) $\omega(\tau_t, z_t) = (g_{z_1} \tau(\tau_t, z_t), ..., g_{z_d} \tau(\tau_t, z_t))'$

second-order approximation:

$$g(\tau_t + \triangle t, z_t + x) \approx g(\tau_t, z_t) + g_\tau(\tau_t, z_t) \triangle t + \delta(\tau_t, z_t)' x$$

$$+ \frac{1}{2} (g_{\tau\tau}(\tau_t, z_t) (\triangle t)^2 + 2\omega(\tau_t, z_t)' x \triangle t$$

$$+ x' \Gamma(\tau_t, z_t) x)$$

The quadratic loss operator

$$I_{[t]}^{\triangle\Gamma}(x) := -(g_{\tau}(\tau_t, z_t) \triangle t + \delta(\tau_t, z_t)' x + \frac{1}{2} x' \Gamma(\tau_t, z_t) x) \tag{6}$$

Example-European call option

(1)
$$V_t = g(\tau_t, \mathbf{Z}_t)$$

$$V_t = S_t h_t - C^{BS}(\tau_t, S_t; r, \sigma_t, K, T)$$
(7)

17 / 31

(1)
$$V_t = g(\tau_t, \mathbf{Z}_t)$$

$$V_t = S_t h_t - C^{BS}(\tau_t, S_t; r, \sigma_t, K, T)$$
(7)

• $S_t \& \sigma_t$: stock price

• K: strike price

• T: maturity

(1)
$$V_t = g(\tau_t, \mathbf{Z}_t)$$

$$V_t = S_t h_t - C^{BS}(\tau_t, S_t; r, \sigma_t, K, T)$$
(7)

- $S_t \& \sigma_t$: stock price
- K: strike price
- T: maturity
- $h_t = C_S^{BS}(\tau_t, S_t; r_t, \sigma_t, K, T)$

(1)
$$V_t = g(\tau_t, \mathbf{Z}_t)$$

$$V_t = S_t h_t - C^{BS}(\tau_t, S_t; r, \sigma_t, K, T)$$
(7)

- $S_t \& \sigma_t$: stock price
- K: strike price
- T: maturity
- $h_t = C_S^{BS}(\tau_t, S_t; r_t, \sigma_t, K, T)$
- $\triangle t = 1/250$ and $\tau_t = t/250$

(1)
$$V_t = g(\tau_t, \mathbf{Z}_t)$$

$$V_t = S_t h_t - C^{BS}(\tau_t, S_t; r, \sigma_t, K, T)$$
(7)

- $S_t \& \sigma_t$: stock price
- K: strike price
- T: maturity
- $h_t = C_S^{BS}(\tau_t, S_t; r_t, \sigma_t, K, T)$
- $\triangle t = 1/250$ and $\tau_t = t/250$
- $\mathbf{Z}_t = (InS_t, \sigma_t)'$

(3)
$$I_{[t]}^{\triangle}(x) := -(g_{\tau}(\tau_t, z_t) \triangle t + \sum_{i=1}^d g_{z_i}(\tau_t, z_t)x_i)$$

(a)
$$C^{BS} = S_t \phi(d_1) - Kexp(-r(T-t)\phi(d_2))$$

(b)
$$d_1 = \frac{\ln(S - t/K) + (r + \sigma_t^2/2)(T - t)}{\sigma_t * \sqrt{T - t}}$$

$$(c) d_2 = d_1 - \sigma_t \sqrt{T - t}$$

(d)
$$\phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp(\frac{-z^2}{2}) dz$$

$$I_{[t]}^{\triangle}(x) = C_{\tau}^{BS} \triangle t + C_{\sigma}^{BS} x_2$$

(3)
$$I_{[t]}^{\triangle}(x) := -(g_{\tau}(\tau_t, z_t) \triangle t + \sum_{i=1}^{d} g_{z_i}(\tau_t, z_t) x_i)$$

(a)
$$C^{BS} = S_t \phi(d_1) - Kexp(-r(T-t)\phi(d_2))$$

(b)
$$d_1 = \frac{\ln(S - t/K) + (r + \sigma_t^2/2)(T - t)}{\sigma_t * \sqrt{T - t}}$$

$$(c) d_2 = d_1 - \sigma_t \sqrt{T - t}$$

(d)
$$\phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp(\frac{-z^2}{2}) dz$$

$$I_{[t]}^{\triangle}(x) = C_{\tau}^{BS} \triangle t + C_{\sigma}^{BS} x_2$$

since
$$g_{z_1}(\tau_t, z_t) = (h_t - C_S^{BS})S_t = 0$$

(3)
$$I_{[t]}^{\triangle}(x) := -(g_{\tau}(\tau_t, z_t) \triangle t + \sum_{i=1}^{d} g_{z_i}(\tau_t, z_t) x_i)$$

(a)
$$C^{BS} = S_t \phi(d_1) - Kexp(-r(T-t)\phi(d_2))$$

(b)
$$d_1 = \frac{\ln(S - t/K) + (r + \sigma_t^2/2)(T - t)}{\sigma_t * \sqrt{T - t}}$$

$$(c) d_2 = d_1 - \sigma_t \sqrt{T - t}$$

(d)
$$\phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp(\frac{-z^2}{2}) dz$$

$$I_{[t]}^{\triangle}(x) = C_{\tau}^{BS} \triangle t + C_{\sigma}^{BS} x_2$$

since
$$g_{z_1}(\tau_t, z_t) = (h_t - C_S^{BS})S_t = 0$$

- time to expiry: $T \tau_t = 1$
- K = 100, r = 0.02, $S_t = 110$, $\sigma_t = 0.2$

(3)
$$I_{[t]}^{\triangle}(x) := -(g_{\tau}(\tau_t, z_t) \triangle t + \sum_{i=1}^{d} g_{z_i}(\tau_t, z_t) x_i)$$

(a)
$$C^{BS} = S_t \phi(d_1) - Kexp(-r(T-t)\phi(d_2))$$

(b)
$$d_1 = \frac{\ln(S - t/K) + (r + \sigma_t^2/2)(T - t)}{\sigma_{t+1} \sqrt{T - t}}$$

$$(c) d_2 = d_1 - \sigma_t \sqrt{T - t}$$

(d)
$$\phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp(\frac{-z^2}{2}) dz$$

$$I_{[t]}^{\triangle}(x) = C_{\tau}^{BS} \triangle t + C_{\sigma}^{BS} x_2$$

since
$$g_{z_1}(\tau_t, z_t) = (h_t - C_S^{BS})S_t = 0$$

- time to expiry: $T \tau_t = 1$
- K = 100, r = 0.02, $S_t = 110$, $\sigma_t = 0.2$
- values of the Greeks in the Black-Scholes model:

(3)
$$I_{[t]}^{\triangle}(x) := -(g_{\tau}(\tau_t, z_t) \triangle t + \sum_{i=1}^d g_{z_i}(\tau_t, z_t) x_i)$$

(a)
$$C^{BS} = S_t \phi(d_1) - Kexp(-r(T-t)\phi(d_2))$$

(b)
$$d_1 = \frac{\ln(S - t/K) + (r + \sigma_t^2/2)(T - t)}{\sigma_{t+1} \sqrt{T - t}}$$

$$(c) d_2 = d_1 - \sigma_t \sqrt{T - t}$$

(d)
$$\phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp(\frac{-z^2}{2}) dz$$

$$I_{[t]}^{\triangle}(x) = C_{\tau}^{BS} \triangle t + C_{\sigma}^{BS} x_2$$

since
$$g_{z_1}(\tau_t, z_t) = (h_t - C_S^{BS})S_t = 0$$

- time to expiry: $T \tau_t = 1$
- K = 100, r = 0.02, $S_t = 110$, $\sigma_t = 0.2$
- values of the Greeks in the Black-Scholes model: $C_{\tau}^{BS} \approx -4.83$ and $C_{\sigma}^{BS} \approx 34.91$

(3)
$$I_{[t]}^{\triangle}(x) := -(g_{\tau}(\tau_t, z_t) \triangle t + \sum_{i=1}^d g_{z_i}(\tau_t, z_t) x_i)$$

(a)
$$C^{BS} = S_t \phi(d_1) - Kexp(-r(T-t)\phi(d_2))$$

(b)
$$d_1 = \frac{\ln(S - t/K) + (r + \sigma_t^2/2)(T - t)}{\sigma_{t+1}/T - t}$$

$$(c) d_2 = d_1 - \sigma_t \sqrt{T - t}$$

(d)
$$\phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp(\frac{-z^2}{2}) dz$$

$$I_{[t]}^{\triangle}(x) = C_{\tau}^{BS} \triangle t + C_{\sigma}^{BS} x_2$$

since
$$g_{z_1}(\tau_t, z_t) = (h_t - C_S^{BS})S_t = 0$$

- time to expiry: $T \tau_t = 1$
- K = 100, r = 0.02, $S_t = 110$, $\sigma_t = 0.2$
- values of the Greeks in the Black-Scholes model: $C_{\tau}^{BS} \approx -4.83$ and $C_{\sigma}^{BS} \approx 34.91$
- x = (0.05, 0.02)'

(3)
$$I_{[t]}^{\triangle}(x) := -(g_{\tau}(\tau_t, z_t) \triangle t + \sum_{i=1}^d g_{z_i}(\tau_t, z_t)x_i)$$

(a)
$$C^{BS} = S_t \phi(d_1) - Kexp(-r(T-t)\phi(d_2))$$

(b)
$$d_1 = \frac{\ln(S - t/K) + (r + \sigma_t^2/2)(T - t)}{\sigma_{t+1}/T - t}$$

$$(c) d_2 = d_1 - \sigma_t \sqrt{T - t}$$

(d)
$$\phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp(\frac{-z^2}{2}) dz$$

$$I_{[t]}^{\triangle}(x) = C_{\tau}^{BS} \triangle t + C_{\sigma}^{BS} x_2$$

since
$$g_{z_1}(\tau_t, z_t) = (h_t - C_S^{BS})S_t = 0$$

- time to expiry: $T \tau_t = 1$
- K = 100, r = 0.02, $S_t = 110$, $\sigma_t = 0.2$
- values of the Greeks in the Black-Scholes model: $C_{\tau}^{BS} \approx -4.83$ and $C_{\sigma}^{BS} \approx 34.91$
- x = (0.05, 0.02)'

$$\Rightarrow I_{[t]}^{\triangle}(x) = C_{\tau}^{BS} * (1/250) + C_{\sigma}^{BS} * 0.02 \approx -0.019 + 0.698 = 0.679$$

08.06.2018

(6)
$$I_{[t]}^{\triangle\Gamma}(x) := -(g_{\tau}(\tau_t, z_t) \triangle t + \delta(\tau_t, z_t)' x + \frac{1}{2} x' \Gamma(\tau_t, z_t) x)$$

• quadratic loss operator:

19/31

Marina Klein Market Risk Measurement 08.06.2018

(6)
$$I_{[t]}^{\triangle\Gamma}(x) := -(g_{\tau}(\tau_t, z_t) \triangle t + \delta(\tau_t, z_t)' x + \frac{1}{2} x' \Gamma(\tau_t, z_t) x)$$

quadratic loss operator:

$$I_{[t]}^{\triangle \Gamma}(x) = C_{\tau}^{BS} \triangle t + C_{\sigma}^{BS} x_2 + \frac{1}{2} C_{SS}^{BS} S_t^2 x_1^2 + C_{S\sigma}^{BS} S_t x_1 x_2 + \frac{1}{2} C_{\sigma\sigma}^{BS} x_2^2$$

19/31

Marina Klein Market Risk Measurement 08.06.2018

(6)
$$I_{[t]}^{\triangle\Gamma}(x) := -(g_{\tau}(\tau_t, z_t) \triangle t + \delta(\tau_t, z_t)'x + \frac{1}{2}x'\Gamma(\tau_t, z_t)x)$$

quadratic loss operator:

$$I_{[t]}^{\triangle \Gamma}(x) = C_{\tau}^{BS} \triangle t + C_{\sigma}^{BS} x_2 + \frac{1}{2} C_{SS}^{BS} S_t^2 x_1^2 + C_{S\sigma}^{BS} S_t x_1 x_2 + \frac{1}{2} C_{\sigma\sigma}^{BS} x_2^2$$

$$\Rightarrow I_{[t]}^{\triangle\Gamma}(x) = I_{[t]}^{\triangle\tau}(x) + \frac{1}{2}C_{SS}^{BS}S_{t}^{2}x_{1}^{2} + C_{S\sigma}^{BS}S_{t}x_{1}x_{2} + \frac{1}{2}C_{\sigma\sigma}^{BS}x_{2}^{2}$$
$$\approx 0.679 + 0.218 - 0.083 + 0.011 = 0.825$$

Market Risk Measurement

19 / 31

(6)
$$I_{[t]}^{\triangle\Gamma}(x) := -(g_{\tau}(\tau_t, z_t) \triangle t + \delta(\tau_t, z_t)'x + \frac{1}{2}x'\Gamma(\tau_t, z_t)x)$$

quadratic loss operator:

$$I_{[t]}^{\triangle \Gamma}(x) = C_{\tau}^{BS} \triangle t + C_{\sigma}^{BS} x_2 + \frac{1}{2} C_{SS}^{BS} S_t^2 x_1^2 + C_{S\sigma}^{BS} S_t x_1 x_2 + \frac{1}{2} C_{\sigma\sigma}^{BS} x_2^2$$

$$\Rightarrow I_{[t]}^{\triangle\Gamma}(x) = I_{[t]}^{\triangle\tau}(x) + \frac{1}{2}C_{SS}^{BS}S_{t}^{2}x_{1}^{2} + C_{S\sigma}^{BS}S_{t}x_{1}x_{2} + \frac{1}{2}C_{\sigma\sigma}^{BS}x_{2}^{2}$$
$$\approx 0.679 + 0.218 - 0.083 + 0.011 = 0.825$$

 additional complexity of second-order approximation may often be warranted

19 / 31

Marina Klein Market Risk Measurement 08.06.2018

Mapping Bond Portfolios

• apply the idea of the loss operator to the mapping of a portfolio

- apply the idea of the loss operator to the mapping of a portfolio
- relate this to the concept of duration and convexity in risk management

• standard bond pricing notation p(t, T)

22 / 31

- standard bond pricing notation p(t, T)
- normalize the face value p(T, T) of the bond to 1

Marina Klein

- standard bond pricing notation p(t, T)
- normalize the face value p(T, T) of the bond to 1
- ways of discribing the term structure of interest rates at time t

Marina Klein

- standard bond pricing notation p(t, T)
- normalize the face value p(T, T) of the bond to 1
- ways of discribing the term structure of interest rates at time t
 - mapping $T \to p(t, T)$ for different maturities

- standard bond pricing notation p(t, T)
- normalize the face value p(T, T) of the bond to 1
- ways of discribing the term structure of interest rates at time t
 - mapping $T \to p(t, T)$ for different maturities
 - the continuously compounded yield $T \mapsto y(t, T)$ of a zero-coupon bond is y(t, T) = -(1/(T t))lnp(t, T)

$$p(t,T) = exp(-(T-t)y(t,T))$$

4□ ▶ 4回 ▶ 4 亘 ▶ 4 亘 ・ りへぐ

Detailed mapping of a bond portfolio

• d default free zero-coupon bonds with maturities T_i and price $p(t, T_i)$, $1 \le i \le d$

Detailed mapping of a bond portfolio

- d default free zero-coupon bonds with maturities T_i and price $p(t, T_i), 1 \le i \le d$
- λ_i ist the number of bonds with maturity T_i

23 / 31

Marina Klein Market Risk Measurement 08.06.2018

Detailed mapping of a bond portfolio

- d default free zero-coupon bonds with maturities T_i and price $p(t, T_i), 1 \le i \le d$
- λ_i ist the number of bonds with maturity T_i
- $V(t) = \sum_{i=1}^{d} \lambda_i p(t, T_i) = \sum_{i=1}^{d} \lambda_i exp(-(T_i t)y(t, T_i))$

Marina Klein

Market Risk Measurement

(1)
$$V_t := g(\tau_t, \mathbf{Z}_t)$$

 $\tau_t := t(\triangle t)$

for a discrete-time set-up

$$V_t = g(au_t, \mathbf{Z}_t) = \sum_{i=1}^d \lambda_i exp(-(T_i - au_t) Z_{t,i})$$

$$au_t = t(\triangle t)$$

(1)
$$V_t := g(\tau_t, \mathbf{Z}_t)$$

 $\tau_t := t(\triangle t)$

for a discrete-time set-up

$$V_t = g(au_t, \mathbf{Z}_t) = \sum_{i=1}^d \lambda_i exp(-(T_i - au_t)Z_{t,i})$$

$$au_t = t(\triangle t)$$

• risk factors are the yields $Z_{t,i} = y(\tau_t, T_i), \ 1 \leq i \leq d$

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

(1)
$$V_t := g(\tau_t, \mathbf{Z}_t)$$

 $\tau_t := t(\triangle t)$

for a discrete-time set-up

$$V_t = g(\tau_t, \mathbf{Z}_t) = \sum_{i=1}^d \lambda_i exp(-(T_i - \tau_t)Z_{t,i})$$

$$au_t = t(\triangle t)$$

- risk factors are the yields $Z_{t,i} = y(\tau_t, T_i), \ 1 \leq i \leq d$
- risk-factor changes $X_{t+1,i} = y(\tau_{t+1}, T_i) y(\tau_t, T_i), \ 1 \leq i \leq d$

4□ > 4□ > 4 = > 4 = > = 90

(3)
$$I_{[t]}^{\triangle}(x) := -(g_{\tau}(\tau_t, z_t) \triangle t + \sum_{i=1}^{d} g_{z_i}(\tau_t, z_t) x_i)$$

- first derivatives of the mapping function
 - $g_{\tau}(\tau_t, z_t) = \sum_{i=1}^d \lambda_i p(\tau_t, T_i) z_{t,i}$

25 / 31

Marina Klein Market Risk Measurement 08.06.2018

(3)
$$I_{[t]}^{\triangle}(x) := -(g_{\tau}(\tau_t, z_t) \triangle t + \sum_{i=1}^{d} g_{z_i}(\tau_t, z_t) x_i)$$

- first derivatives of the mapping function
 - $g_{\tau}(\tau_t, z_t) = \sum_{i=1}^d \lambda_i p(\tau_t, T_i) z_{t,i}$
 - $g_{z_i}(\tau_t, z_t) = -\lambda_i (T_i \tau_t) \exp(-(T_i \tau_t)z_{t,i})$

25 / 31

Marina Klein Market Risk Measurement 08.06.2018

(3)
$$I_{[t]}^{\triangle}(x) := -(g_{\tau}(\tau_t, z_t) \triangle t + \sum_{i=1}^{d} g_{z_i}(\tau_t, z_t) x_i)$$

- first derivatives of the mapping function
 - $g_{\tau}(\tau_t, z_t) = \sum_{i=1}^d \lambda_i p(\tau_t, T_i) z_{t,i}$
 - $g_{z_i}(\tau_t, z_t) = -\lambda_i (T_i \tau_t) exp(-(T_i \tau_t)z_{t,i})$

$$I_{[t]}^{\triangle}(x) = -\sum_{i=1}^{a} \lambda_i p(\tau_t, T_i) (y(\tau_t, T_i) \triangle t - (T_i - \tau_t) x_i)$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ト ・ 恵 ・ 夕久で

(6)
$$I_{[t]}^{\triangle\Gamma}(x) := -(g_{\tau}(\tau_t, z_t) \triangle t + \delta(\tau_t, z_t)' x + \frac{1}{2} x' \Gamma(\tau_t, z_t) x)$$

• second derivatives with respet to yields:

26 / 31

(6)
$$I_{[t]}^{\triangle\Gamma}(x) := -(g_{\tau}(\tau_t, z_t) \triangle t + \delta(\tau_t, z_t)' x + \frac{1}{2} x' \Gamma(\tau_t, z_t) x)$$

- second derivatives with respet to yields:
 - $g_{z_{i},z_{i}}(\tau_{t},z_{t}) = \lambda_{i}(T_{i}-\tau_{t})^{2} \exp(-(T_{i}-\tau_{t})z_{t,i})$

Marina Klein Market Risk Measurement 26 / 31

(6)
$$I_{[t]}^{\triangle\Gamma}(x) := -(g_{\tau}(\tau_t, z_t) \triangle t + \delta(\tau_t, z_t)' x + \frac{1}{2} x' \Gamma(\tau_t, z_t) x)$$

- second derivatives with respet to yields:
 - $g_{z_{i},z_{i}}(\tau_{t},z_{t}) = \lambda_{i}(T_{i}-\tau_{t})^{2} exp(-(T_{i}-\tau_{t})z_{t,i})$ and $g_{z_i z_i}(\tau_t, z_t) = 0$ for $i \neq j$

26 / 31

Marina Klein Market Risk Measurement 08.06.2018

(6)
$$I_{[t]}^{\triangle\Gamma}(x) := -(g_{\tau}(\tau_t, z_t) \triangle t + \delta(\tau_t, z_t)' x + \frac{1}{2} x' \Gamma(\tau_t, z_t) x)$$

- second derivatives with respet to yields:
 - $g_{z_i,z_i}(\tau_t, z_t) = \lambda_i (T_i \tau_t)^2 exp(-(T_i \tau_t)z_{t,i})$ and $g_{z_iz_j}(\tau_t, z_t) = 0$ for $i \neq j$

$$I_{[t]}^{\triangle\Gamma}(x) = -\sum_{i=1}^{d} \lambda_i p(\tau_t, T_i) (y(\tau_t, T_i) \triangle t - (T_i - \tau_t) x_i + \frac{1}{2} (T_i - \tau_t)^2 x_i^2)$$

26/31

Marina Klein Market Risk Measurement 08.06.2018

• very simple model for the yield curve at time t

27 / 31

Marina Klein Market Risk Measurement 08.06.2018

very simple model for the yield curve at time t

$$y(\tau_{t+1}, T_i) = y(\tau_t, T_i) + x$$

Marina Klein Market Risk Measurement 08.06.2018 27 / 31

very simple model for the yield curve at time t

$$y(\tau_{t+1}, T_i) = y(\tau_t, T_i) + x$$

• in terms of the classical concept of duration of a bond portfolio

$$I_{[t]}^{\triangle}(x) = -V_t(A_t \triangle t - D_t x)$$

◆ロト ◆個ト ◆差ト ◆差ト 差 める()

Marina Klein Market Risk Measurement

27 / 31

very simple model for the yield curve at time t

$$y(\tau_{t+1}, T_i) = y(\tau_t, T_i) + x$$

• in terms of the classical concept of duration of a bond portfolio

$$I_{[t]}^{\triangle}(x) = -V_t(A_t \triangle t - D_t x)$$

,where

$$D_t := \sum_{i=1}^d \frac{\lambda_i p(\tau_i, T_i)}{V_t} (T_i - \tau_t),$$

$$A_t := \sum_{i=1}^d \frac{\lambda_i p(\tau_t, T_i)}{V_t} y(\tau_t, T_i)$$

→□▶→□▶→□▶→□▶
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□

very simple model for the yield curve at time t

$$y(\tau_{t+1}, T_i) = y(\tau_t, T_i) + x$$

• in terms of the classical concept of duration of a bond portfolio

$$I_{[t]}^{\triangle}(x) = -V_t(A_t \triangle t - D_t x)$$

,where

$$D_t := \sum_{i=1}^d \frac{\lambda_i p(\tau_i, T_i)}{V_t} (T_i - \tau_t),$$

$$A_t := \sum_{i=1}^d \frac{\lambda_i p(\tau_t, T_i)}{V_t} y(\tau_t, T_i)$$

• D_t is the duration of the bond portfolio

08.06.2018

• over short time intervals the $\triangle t$ term will be negligible an losses of value in the bond portfolio will be determined by $I_{[t]}(x) \approx v_t D_t x$

- over short time intervals the $\triangle t$ term will be negligible an losses of value in the bond portfolio will be determined by $I_{[t]}(x) \approx v_t D_t x$
- immunization: standard duration-based strategy to manage the interest rate risk of a bond portfolio

• expression for the quadratic loss operator becomes

$$I_{[t]}^{\triangle\Gamma}(x) = -V_t(A_t \triangle t - D_t x + \frac{1}{2}C_t x^2)$$

expression for the quadratic loss operator becomes

$$I_{[t]}^{\triangle\Gamma}(x) = -V_t(A_t \triangle t - D_t x + \frac{1}{2}C_t x^2)$$

,where

$$C_t := \sum_{i=1}^d rac{\lambda_i p(au_t, T_i)}{V_t} (T_i - au_t)^2$$

08.06.2018

29 / 31

Marina Klein Market Risk Measurement

expression for the quadratic loss operator becomes

$$I_{[t]}^{\triangle\Gamma}(x) = -V_t(A_t \triangle t - D_t x + \frac{1}{2}C_t x^2)$$

,where

$$C_t := \sum_{i=1}^d \frac{\lambda_i p(\tau_t, T_i)}{V_t} (T_i - \tau_t)^2$$

is the convexity of the bond portfolio

Marina Klein

Literature

Alexander J. McNeil, Ruediger Frey, Paul Embrechts (2015): Quantitative Risk Management: Concepts, Techniques and Tools: University Press Group Ltd

Thank you for your attention!

