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Motivation

• Lt+1 = l[t](Xt+1)
• 2 problems
→ finding the estimation for the distribution of Xt+1
→ evaluate Lt+1 numerically



Conditional and Unconditional Loss Distributions

• conditional distribution of risk-factor changes:
FXt+1|Ft where Ft = σ({Xs : s ≤ t})

• conditional loss distribution:
df FLt+1|Ft (l) = P(l[t](Xt+1) ≤ l |Ft) where l[t](·) is loss operator under
FXt+1|Ft

• unconditional loss distribution: process of risk factor changes (Xs)s≤t is
stationary multivariate time series

• if risk-factor changes are iid → FXt+1|Ft = FX
so it follows conditional = unconditional

• since 2007 estimations using stressed VaR data



Various Simulations
Historical Simulation:

• most popular method
• estimation of the distribution of the loss operator under empirical

distribution of data Xt−n+1, ...,Xt

• construct a univariate data set and get a set of historically simulated
losses
{L̃s = l[t](Xs) : s = t − n + 1, ..., t}

• Assuming risk-factor changes are iid with df FX :
with the strong law of large numbers as n→∞

Fn(l) = 1
n

t∑
s=t−n+1

I{L̃s≤l} = 1
n

t∑
s=t−n+1

I{l[t](Xs )≤l} → P(l[t](X) ≤ l) = FL(l)

where X is generic vector of risk-factor changes with distribution FX and
L = l[t](X)
→ Fn(l) consistent estimator



• strengths and weaknesses:

→ easy to implement
→ reduces to one-dimensional problem
→ no statistical estimation necessary
→ no assumption about dependence

→ unconditional method
→ dependence on ability to collect sufficient quantities of relevant data
for all risk factors
→ difficult to implement for large portfolios → full revaluation



Dynamic Historical Simulation
univariate approach:

• Reminder:
historical simulation data {L̃s = l[t](Xs) : s = t − n + 1, ..., t}

• l[t] : Rd → R and Lt+1 = l[t](Xt+1) next RV in process
• (L̃s) satisfies L̃s = µs + σsZs for all s
• VaR t

α = µt+1 + σt+1qα(Z) for the α-quantile of FLt+1|Ft

• ESt
α = µt+1 + σt+1ESα(Z) where Z is generic RV with the df FZ

• with Gaussian innovations:
qα(Z) = Φ−1(α) and ESα(Z) = φ(Φ−1(α))/(1− α)

• 2 different possible estimation strategies:
→ weighted historical simulation
→ filtered historical simulation

• weakness: loss of information



multivariate approach:
• risk-factor change data Xt−n+1, ...,Xt from multivariate time-series

process (Xs) that satisfies Xs = µs + ∆sZs where ∆s = diag(σs,1, ..., σs,d )
• Zs are iid random vectors, covariance matrix = correlation matrix P
• E(Xs,k |Fs−1) = µs,k

• var(Xs,k |Fs−1) = σ2
s,k

• key idea: apply simulation to unobserved innovations (Zs)
• Step 1: compute estimates {µ̂s : s = t − n + 1, ..., t} and
{∆̂s : s = t − n + 1, ..., t}

• Step 2: construct residuals {Ẑs = ∆−1
s (Xs − µ̂s) : s = t − n + 1, ..., t}

• Step 3: Construct {L̃s = l[t](µ̂t+1 + ∆̂t+1Ẑs) : s = t − n + 1, ..., t}



Monte Carlo Method

• simulation of an explicit parametric model for risk-factor changes
• only evaluating Lt+1 = l[t](Xt+1) under a given model for Xt+1

• already estimated Xt−n+1, ...,Xt , now we generate m realizations
X̃ (1)

t+1, ..., X̃
(m)
t+1 from F̂Xt+1|Ft

• apply loss operator → {L̃(i)
t+1 = l[t](X̃ (i)

t+1) : i = 1, ...,m}
• estimation of VaR and ES
• strengths and weaknesses:
→ free to chose m
→ m can be larger than the number of data

→ no solution for finding a model for Xt+1
→ computational cost could be high



Estimating Risk Measures

• Data L1, ..., Ln from underlying FL and estimate

VaRα = qα(FL) = F←L (α) or ESα = (1− α)−1
1∫
α

qθ(FL)dθ

L-estimators:
• upper-order statistics L1,n ≥ ... ≥ Ln,n

• lower-order statistics L(1) ≤ ... ≤ L(n)

• Lk,n = L(n−k+1) for k = 1, ..., n

• Fn(x) = n−1
n∑

i=1
1{Li≤x} → F←n (α) = L(k) for k−1

n < α ≤ k
n

• F←n (α) = L(dnαe)

• b−xc = −dxe and therefore L(dnαe) = Lk,n where
k = n − dnαe+ 1 = bn(1− α)c+ 1

• V̂aRα = Lk,n



L-estimator of ES:
•

ÊSα = 1
n(1− α)

n∑
k=1

L(k)((k − nα)+ − ((k − 1)− nα)+)

= 1
n(1− α) ((

n∑
k=dnαe+1

L(k)) + (dnαe − nα)L(dnαe))

= 1
n(1− α) ((

bn(1−α)c∑
k

Lk,n) + (dnαe − nα)L(bn(1−α)c)+1,n)



EVT-based estimators:
• inaccurate for n modest size
• solution: use of EVT (based on generalized Pareto distribution)
• high threshold u = Lk+1,n

• ML estimation based on k exceedances of threshold → β̂ and ξ̂
• k

n > 1− α

• V̂aRα = u + β̂

ξ̂
(( 1−α

k
n

)−ξ̂−1)

• ÊSα = V̂aRα

1−ξ̂ + β̂−ξ̂u
1−ξ̂



Losses and Scaling
Losses over Several Periods:

• regulatory capital purposes: 99% VaR estimation for 10 trading days
• model historical risk-factor changes over 10-day interval
• Example:

n=1000 days → 100 10-day observations
BUT we would need n=10.000 days of data for accuracy
→ square-root-of-time rule to estimate only one-day VaR



Scaling:
• h ∈ Z, h ≥ 1 and loss defined by L(h)

t+h

L(h)
t+h = −(Vt+h − Vh)

= −(g(τt+h,Zt+h)− g(τt ,Zt))
= −(g(τt+h,Zt + Xt+1 + ...+ Xt+h)− g(τt ,Zt))

=: l (h)
[t] (

h∑
i=1

Xt+i )

• for simplicity: l (h)
[t] (x) = l[t](x) → l∆

[t](x) = b′tx

→ L(h)∆
t+h = l∆

[t](
h∑

i=1

Xt+i ) =
h∑

i=1

b′tXt+i



Example
square-root-of-time scaling:

• risk-factor change vectors are iid with Nd (0,
∑

)

•
h∑

i=1
Xt+i ∼ Nd (0, h

∑
)

• L(h)∆
t+h ∼ N(0, hb′t

∑
bt)

→ scaling according to
√

h

• ES(h)
α =

√
hσ φ(Φ−1(α))

1−α where σ2 = b′t
∑

bt

→ ES(h)
α =

√
hES(1)

α

• VaR(h)
α =

√
hVaR(1)

α



Monte Carlo approach:
• time-series model for risk-factor changes (Xs)s≤t

• future processes: X̃ (i)
t+1, ..., X̃

(i)
t+h for i = 1, ...,m

• Monte Carlo simulated losses:

{L̃(h)(i)
t+h = l (h)

[t] (X̃ (i)
t+1 + ...+ X̃ (i)

t+h) : i = 1, ...,m}
• statistical inference about loss distribution and associated risk measures
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Thank you for your attention!


