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Motivation

® L1y = l[t](Xt+1)

® 2 problems
— finding the estimation for the distribution of X;1
— evaluate L¢+1 numerically



Conditional and Unconditional Loss Distributions

® conditional distribution of risk-factor changes:
Fx.,1j7  where Fr = o({Xs : s < t})

® conditional loss distribution:
df Fi 17 (1) = P(hg(Xes1) < 1| F:)  where fj4(+) is loss operator under
FXH»ll]:t

® unconditional loss distribution: process of risk factor changes (X;)s<: is
stationary multivariate time series

e if risk-factor changes are iid — Fx,, |7, = Fx
so it follows conditional = unconditional

® since 2007 estimations using stressed VaR data



Various Simulations
Historical Simulation:

® most popular method

® estimation of the distribution of the loss operator under empirical
distribution of data X;—p41,..., Xt

® construct a univariate data set and get a set of historically simulated

IoNsses
{Lls=hg(Xs):s=t—n+1,..,t}

® Assuming risk-factor changes are iid with df Fx:

with the strong law of large numbers as n — oo
t t

Fo)=1% X lnen=13 > lugeo<n — Plha(X) < 1) = Fu())
s=t—n+1 s=t—n+1

where X is generic vector of risk-factor changes with distribution Fx and

L= hy(X)

— Fa(/l) consistent estimator



® strengths and weaknesses:

— easy to implement

— reduces to one-dimensional problem
— no statistical estimation necessary
— no assumption about dependence

— unconditional method

— dependence on ability to collect sufficient quantities of relevant data
for all risk factors

— difficult to implement for large portfolios — full revaluation



Dynamic Historical Simulation

univariate approach:

Reminder: _
historical simulation data {Ls = [g(Xs) :s=t—n+1,...,t}

I RY 5 R and Leys = f)(Xt11) next RV in process

(L) satisfies Ls = ps + 0sZs for all s

VaR!, = pri1 + 0e11Ga(Z) for the a-quantile of F, |7,

ES!, = pt+1 + 0::1ES4(Z) where Z is generic RV with the df Fz

with Gaussian innovations:
ga(Z) = ®7*(a) and ES.(Z) = ¢(¢~}(@))/(1 — @)

2 different possible estimation strategies:
— weighted historical simulation
— filtered historical simulation

weakness: loss of information



multivariate approach:

® risk-factor change data Xi_p41, ..., X¢ from multivariate time-series
process (X;) that satisfies Xs = pus + AsZs where A = diag(0os,1, ..., 05,d)

® 7. are iid random vectors, covariance matrix = correlation matrix P
® E(Xk|Fs—1) = ps,

2
]:5—1) = Us,k

® key idea: apply simulation to unobserved innovations (Z;)

e var(Xs«

® Step 1: compute estimates {/is :s=t—n+1,...,t} and
{As:s=t—n+1,..,t}

e Step 2: construct residuals {Z, = A7Y(Xs — fis) :s =t —n+1,....t}
e Step 3: Construct {Ls = fig(fie+1 + AnZ):s=t—n+1,..,t}



Monte Carlo Method

® simulation of an explicit parametric model for risk-factor changes
e only evaluating L1 = fg(Xt11) under a given model for X:11
® already estimated Xi_py1, ..., X¢, now we generate m realizations
x® X from F
t10 0 ANl Xey1|Ft
® apply loss operator — {Z£21 = /[t]()”g@l) ci=1,...,m}
® estimation of VaR and ES

® strengths and weaknesses:
— free to chose m
— m can be larger than the number of data

— no solution for finding a model for X;1+1
— computational cost could be high



Estimating Risk Measures

e Data Ly,..., L, from underlying F; and estimate

1
VaRo = qa(FL) = F{ (@) or ESe = (1 —a)™" [ qo(FL)d0

L-estimators:
® upper-order statistics L1, > ... > Lpn

® |ower-order statistics L) < ... < Ly

b Lk,n = L(n7k+1) for k = 1, . n

¢ Fo(x)=n""> 1< — Fi(a) =Ly for 2 <a <k

i=1 "
* Fy (@)= Lnan

e |—x| = —[x] and therefore L(fsqa) = Lk,n where
k=n—[na]+1=|n(l—a)|+1

L4 Va?_\,a = Lk,n



L-estimator of ES:

B = ooty O biol(k = o) = ((k=1) = na)")

n

1
==y > Lw)+([nal = na)La)
k=[na]+1
L ool

= m(( zk: Li,n) + ([na] — na)L((ni—a)))+1,n)




EVT-based estimators:

inaccurate for n modest size
solution: use of EVT (based on generalized Pareto distribution)
high threshold u = Liy1,5

ML estimation based on k exceedances of threshold — 3 and é



Losses and Scaling

Losses over Several Periods:

® regulatory capital purposes: 99% VaR estimation for 10 trading days
® model historical risk-factor changes over 10-day interval

® Example:
n=1000 days — 100 10-day observations
BUT we would need n=10.000 days of data for accuracy
— square-root-of-time rule to estimate only one-day VaR



Scaling:
® heZ, h>1 and loss defined by LHh

LD, = —~(Vesn — Vi)
—( (Tt+h, Zt+h) - g(Ttv Zt))
—(g(Teshs Zt + Xewr + . + Xegn) — g(7¢, Zt))

h
h
=D Xer)
i=1

e for simplicity: l[(t']’)(x) = Iy(x) — /[f] (x) = bix

h
Lh = 1 ZXH, D biXewi
i=1



Example

square-root-of-time scaling:

e risk-factor change vectors are iid with Ngy(0,>")
h

Z Xt+,' ~ I\Id(o7 h Z)

i=1

L0 ~ (0, bl b

— scaling according to vh

ES&") — \/EUW%}")) where 02 = by E by

— ES" = /hESY
Var" — /hvar®



Monte Carlo approach:
® time-series model for risk-factor changes (X:)s<:

XD fori=1,.

® future processes: XtH, s Xelh

® Monte Carlo simulated losses:

XDy =
{Lt+h [t]( +1+ X)) i=1,,m})
® statistical inference about loss distribution and associated risk measures



Literature
Used literature:

[MFE] A.McNeil R.Frey P.Embrechts, Quantitative Risk
Management: Concepts, Techniques and Tools, University
Press Group Ltd 2015, Subsection 9.2, pages 338-351



Thank you for your attention!



