Quantitative Risk Management Topic: Market Risk Measurement

Vanessa Dietze 08 June 2018 University of Cologne

Structure

- Motivation
- Conditional and Unconditional Loss Distributions
- Various Simulations
- Monte Carlo Method
- Estimating Risk Measures
- Losses and Scaling
- Example

Motivation

- $L_{t+1} = I_{[t]}(X_{t+1})$
- 2 problems
 - \rightarrow finding the estimation for the distribution of X_{t+1}
 - \rightarrow evaluate L_{t+1} numerically

Conditional and Unconditional Loss Distributions

- conditional distribution of risk-factor changes: $F_{X_{t+1}|\mathcal{F}_t}$ where $\mathcal{F}_t = \sigma(\{X_s : s \leq t\})$
- conditional loss distribution: $df F_{L_{t+1}|\mathcal{F}_t}(I) = P(I_{[t]}(X_{t+1}) \leq I | \mathcal{F}_t)$ where $I_{[t]}(\cdot)$ is loss operator under $F_{X_{t+1}|\mathcal{F}_t}$
- unconditional loss distribution: process of risk factor changes (X_s)_{s≤t} is stationary multivariate time series
- if risk-factor changes are iid → F_{Xt+1|Ft} = F_X so it follows conditional = unconditional
- since 2007 estimations using stressed VaR data

Various Simulations

Historical Simulation:

- most popular method
- estimation of the distribution of the loss operator under empirical distribution of data X_{t-n+1}, ..., X_t
- construct a univariate data set and get a set of historically simulated losses

$$\{\tilde{L}_s = I_{[t]}(X_s) : s = t - n + 1, ..., t\}$$

• Assuming risk-factor changes are iid with df F_X : with the strong law of large numbers as $n \to \infty$ $F_n(l) = \frac{1}{n} \sum_{s=t-n+1}^t I_{\{\tilde{L}_s \leq l\}} = \frac{1}{n} \sum_{s=t-n+1}^t I_{\{l_{[t]}(X_s) \leq l\}} \to P(l_{[t]}(X) \leq l) = F_L(l)$ where X is generic vector of risk-factor changes with distribution F_X and $L = l_{[t]}(X)$ $\to F_n(l)$ consistent estimator

- strengths and weaknesses:
 - \rightarrow easy to implement
 - \rightarrow reduces to one-dimensional problem
 - \rightarrow no statistical estimation necessary
 - \rightarrow no assumption about dependence
 - \rightarrow unconditional method
 - \rightarrow dependence on ability to collect sufficient quantities of relevant data for all risk factors
 - \rightarrow difficult to implement for large portfolios \rightarrow full revaluation

Dynamic Historical Simulation

univariate approach:

- Reminder: historical simulation data { $\tilde{L}_s = l_{[t]}(X_s) : s = t - n + 1, ..., t$ }
- $I_{[t]}: \mathbb{R}^d \to \mathbb{R}$ and $L_{t+1} = I_{[t]}(X_{t+1})$ next RV in process
- (\tilde{L}_s) satisfies $\tilde{L}_s = \mu_s + \sigma_s Z_s$ for all s
- $VaR_{\alpha}^{t} = \mu_{t+1} + \sigma_{t+1}q_{\alpha}(Z)$ for the α -quantile of $F_{L_{t+1}|\mathcal{F}_{t}}$
- $ES_{\alpha}^{t} = \mu_{t+1} + \sigma_{t+1}ES_{\alpha}(Z)$ where Z is generic RV with the df F_{Z}
- with Gaussian innovations: $q_{\alpha}(Z) = \Phi^{-1}(\alpha)$ and $ES_{\alpha}(Z) = \phi(\Phi^{-1}(\alpha))/(1-\alpha)$
- 2 different possible estimation strategies:
 - \rightarrow weighted historical simulation
 - \rightarrow filtered historical simulation
- weakness: loss of information

multivariate approach:

- risk-factor change data X_{t-n+1}, ..., X_t from multivariate time-series process (X_s) that satisfies X_s = μ_s + Δ_sZ_s where Δ_s = diag(σ_{s,1}, ..., σ_{s,d})
- Z_s are iid random vectors, covariance matrix = correlation matrix P
- $\mathbb{E}(X_{s,k}|\mathcal{F}_{s-1}) = \mu_{s,k}$
- $\operatorname{var}(X_{s,k}|\mathcal{F}_{s-1}) = \sigma_{s,k}^2$
- key idea: apply simulation to unobserved innovations (Z_s)
- Step 1: compute estimates $\{\hat{\mu}_s : s = t n + 1, ..., t\}$ and $\{\hat{\Delta}_s : s = t n + 1, ..., t\}$
- Step 2: construct residuals $\{\hat{Z}_s = \Delta_s^{-1}(X_s \hat{\mu}_s) : s = t n + 1, ..., t\}$
- Step 3: Construct $\{\tilde{L}_s = I_{[t]}(\hat{\mu}_{t+1} + \hat{\Delta}_{t+1}\hat{Z}_s) : s = t n + 1, ..., t\}$

Monte Carlo Method

- simulation of an explicit parametric model for risk-factor changes
- only evaluating $L_{t+1} = I_{[t]}(X_{t+1})$ under a given model for X_{t+1}
- already estimated $X_{t-n+1}, ..., X_t$, now we generate m realizations $\tilde{X}_{t+1}^{(1)}, ..., \tilde{X}_{t+1}^{(m)}$ from $\hat{F}_{X_{t+1}|\mathcal{F}_t}$
- apply loss operator $ightarrow \{ ilde{L}_{t+1}^{(i)} = \mathit{I}_{[t]}(ilde{X}_{t+1}^{(i)}): i=1,...,m\}$
- estimation of VaR and ES
- strengths and weaknesses:
 - \rightarrow free to chose m
 - \rightarrow m can be larger than the number of data
 - ightarrow no solution for finding a model for X_{t+1}
 - \rightarrow computational cost could be high

Estimating Risk Measures

• Data
$$L_1, ..., L_n$$
 from underlying F_L and estimate
 $VaR_{\alpha} = q_{\alpha}(F_L) = F_L^{\leftarrow}(\alpha)$ or $ES_{\alpha} = (1 - \alpha)^{-1} \int_{\alpha}^{1} q_{\theta}(F_L) d\theta$

L-estimators:

- upper-order statistics $L_{1,n} \ge ... \ge L_{n,n}$
- lower-order statistics $L_{(1)} \leq ... \leq L_{(n)}$

•
$$L_{k,n} = L_{(n-k+1)}$$
 for $k = 1, ..., n$

•
$$F_n(x) = n^{-1} \sum_{i=1}^n \mathbf{1}_{\{L_i \le x\}} \rightarrow F_n^{\leftarrow}(\alpha) = L_{(k)} \text{ for } \frac{k-1}{n} < \alpha \le \frac{k}{n}$$

•
$$F_n^{\leftarrow}(\alpha) = L_{(\lceil n\alpha \rceil)}$$

- $\lfloor -x \rfloor = -\lceil x \rceil$ and therefore $L_{(\lceil n\alpha \rceil)} = L_{k,n}$ where $k = n \lceil n\alpha \rceil + 1 = \lfloor n(1 \alpha) \rfloor + 1$
- $\widehat{VaR}_{\alpha} = L_{k,n}$

L-estimator of ES:

.

$$\widehat{ES}_{\alpha} = \frac{1}{n(1-\alpha)} \sum_{k=1}^{n} L_{(k)}((k-n\alpha)^{+} - ((k-1)-n\alpha)^{+})$$
$$= \frac{1}{n(1-\alpha)} ((\sum_{k=\lceil n\alpha \rceil+1}^{n} L_{(k)}) + (\lceil n\alpha \rceil - n\alpha) L_{(\lceil n\alpha \rceil)})$$
$$= \frac{1}{n(1-\alpha)} ((\sum_{k=\lceil n\alpha \rceil+1}^{\lfloor n(1-\alpha) \rfloor} L_{k,n}) + (\lceil n\alpha \rceil - n\alpha) L_{(\lfloor n(1-\alpha) \rfloor)+1,n})$$

EVT-based estimators:

- inaccurate for n modest size
- solution: use of EVT (based on generalized Pareto distribution)
- high threshold $u = L_{k+1,n}$
- ML estimation based on k exceedances of threshold $ightarrow \hat{eta}$ and $\hat{\xi}$
- $\frac{k}{n} > 1 \alpha$
- $\widehat{VaR}_{\alpha} = u + \frac{\hat{\beta}}{\hat{\xi}} \left(\left(\frac{1-\alpha}{\frac{k}{\alpha}} \right)^{-\hat{\xi}-1} \right)$
- $\widehat{ES}_{\alpha} = \frac{\widehat{VaR}_{\alpha}}{1-\hat{\xi}} + \frac{\hat{\beta}-\hat{\xi}u}{1-\hat{\xi}}$

Losses and Scaling

Losses over Several Periods:

- regulatory capital purposes: 99% VaR estimation for 10 trading days
- model historical risk-factor changes over 10-day interval

• Example:

n=1000 days \rightarrow 100 10-day observations BUT we would need n=10.000 days of data for accuracy \rightarrow square-root-of-time rule to estimate only one-day VaR

Scaling:

• $h \in \mathbb{Z}$, $h \ge 1$ and loss defined by $L_{t+h}^{(h)}$

$$egin{aligned} & L_{t+h}^{(h)} = -(V_{t+h}-V_h) \ &= -(g(au_{t+h},Z_{t+h})-g(au_t,Z_t)) \ &= -(g(au_{t+h},Z_t+X_{t+1}+...+X_{t+h})-g(au_t,Z_t)) \ &=: l_{[t]}^{(h)}(\sum_{i=1}^h X_{t+i}) \end{aligned}$$

• for simplicity: $l_{[t]}^{(h)}(x) = l_{[t]}(x) \rightarrow l_{[t]}^{\Delta}(x) = b_t' x$

$$egin{aligned} & o \mathcal{L}_{t+h}^{(h)\Delta} = \mathit{l}_{[t]}^{\Delta}(\sum_{i=1}^{h} X_{t+i}) = \sum_{i=1}^{h} b_t' X_{t+i} \end{aligned}$$

Example

square-root-of-time scaling:

• risk-factor change vectors are iid with $N_d(0, \sum)$

•
$$\sum_{i=1}^n X_{t+i} \sim N_d(0, h \sum)$$

•
$$L_{t+h}^{(h)\Delta} \sim N(0, hb'_t \sum b_t)$$

 \rightarrow scaling according to \sqrt{h}

•
$$ES_{\alpha}^{(h)} = \sqrt{h}\sigma \frac{\phi(\Phi^{-1}(\alpha))}{1-\alpha}$$
 where $\sigma^2 = b'_t \sum b_t$

$$ightarrow ES^{(h)}_{lpha} = \sqrt{h}ES^{(1)}_{lpha}$$

• $VaR^{(h)}_{\alpha} = \sqrt{h}VaR^{(1)}_{\alpha}$

Monte Carlo approach:

- time-series model for risk-factor changes $(X_s)_{s \leq t}$
- future processes: $ilde{X}^{(i)}_{t+1},..., ilde{X}^{(i)}_{t+h}$ for i=1,...,m
- Monte Carlo simulated losses:

$$\{\tilde{L}_{t+h}^{(h)(i)} = l_{[t]}^{(h)}(\tilde{X}_{t+1}^{(i)} + \dots + \tilde{X}_{t+h}^{(i)}) : i = 1, \dots, m\}$$

statistical inference about loss distribution and associated risk measures

Literature

Used literature:

[MFE] A.McNeil R.Frey P.Embrechts, Quantitative Risk Management: Concepts, Techniques and Tools, University Press Group Ltd 2015, Subsection 9.2, pages 338-351 Thank you for your attention!