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Motivation: Correlation between Commodity Prices and USD
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→ Dependence structure should be incorporated into financial risk
models.

Data source: Yahoo Finance 1
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Basic Definitions and Standard
Estimators



Random Vectors and Their Distributions

X = (X1, . . . , Xd)T random vector of risk-factor changes.

• Joint distribution function
F(x) = FX(x) = FX(x1, . . . , xd) = P(X ⩽ x) = P(X1 ⩽ x1, . . . , Xd ⩽ xd)

• Marginal distribution function of Xi
Fi(xi) = P(Xi ⩽ xi) = F(∞, . . . ,∞, xi,∞, . . . ,∞)

• X = (XT1 , XT2)T where X1 = (X1, . . . , Xk)T, X2 = (Xk+1, . . . , Xd)T,
marginal distribution of X1 is
FX1(x1) = P(X1 ⩽ x1) = F(x1, . . . , xk,∞, . . . ,∞)

• Distribution function of X is absolutely continuous if

F(x1, . . . , xd) =
∫ x1

−∞
· · ·
∫ xd

−∞
f(u1, . . . ,ud)du1 . . .dud

• Existence of joint density f implies existence of all
k-dimensional marginal densities
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Conditional Distributions and Independence 1

X = (XT1 , XT2)T like before.

• Density of X2 given X1 = x1

fX2|X1(x2|x1) =
f(x1, x2)
fX1(x1)

• Corresponding distribution function

FX2|X1(x2|x1) =
∫ xk+1

−∞
· · ·
∫ xd

−∞

f(x1, . . . , xk,uk+1, . . . ,ud)
fX1(x1)

duk+1 . . .dud

• If f(x) = fX1(x1)fX2(x2), then X1 and X2 are independent
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Conditional Distributions and Independence 2

• Components of X are mutually independent if and only if
F(x) =

∏d
i=1 Fi(xi) for all x ∈ Rd

• When X possesses a density f, the components are mutually
independent if and only if f(x) =

∏d
i=1 fi(xi) for all x ∈ Rd
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Mean Vectors and Covariance Matrices

• Mean vector of X is defined as E(X) = (E(X1), . . . , E(Xd))T

• Covariance matrix of X is defined as
cov(X) = E

(
(X− E(X))(X− E(X))T

)
, where the expectation

operator is applied componentwise
• Entries of the covariance matrix
σij = cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj)

• Correlation matrix ρ(X) is defined componentwise by

ρij = ρ(Xi, Xj) =
cov(Xi, Xj)√
var(Xi)var(Xj)
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Properties of Mean Vectors and Covariance Matrices

Let B ∈ Rk×d,b ∈ Rk and a ∈ Rd.

• E(BX+ b) = B E(X) + b
• cov(BX+ b) = B cov(X)BT

Let Σ = cov(X).

• var(aTX) = aTΣa ⩾ 0
• If Σ is positive-definite→ Cholesky decomposition Σ = AAT

• Σ1/2 = A denotes the Cholesky factor, Σ−1/2 its inverse
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Standard Estimators of Covariance and Correlation 1

• X1, . . . , Xn identically distributed observations of a
d-dimensional risk-factor change

• First assumption: Independent or serially uncorrelated
• Second assumption: Their distribution has mean vector µ, finite
covariance matrix Σ and correlation matrix P
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Standard Estimators of Covariance and Correlation 2

• Estimator for µ

X̄ :=
1
n

n∑
i=1

Xi

(sample mean)
• Estimator for Σ

S :=
1
n

n∑
i=1

(Xi − X̄)(Xi − X̄)T

(sample covariance matrix)
• Estimator for P
R (sample correlation matrix) defined componentwise by

rjk =
sjk√sjjskk

where sjk denotes the (j, k)-th element of S
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Properties of the Standard Estimators 1

• Estimator for Σ

S :=
1
n

n∑
i=1

(Xi − X̄)(Xi − X̄)T

(sample covariance matrix)
• We have

nE(S) = E
( n∑

i=1

(Xi − µ)(Xi − µ)T − n(X̄− µ)(X̄− µ)T

)

=
n∑
i=1

cov(Xi)− ncov(X̄) = nΣ− Σ

since cov(X̄) = n−1Σ for iid or identically distributed and
uncorrelated data

• Unbiased version given by Su = nS/(n− 1)
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Properties of the Standard Estimators 2

• Further properties of X̄, S and R depend on the true distribution
of the observations

• If the data is iid multivariate normal, they are the maximum
likelihood estimators and their behavior is well understood

• For other distributions it is less well understood and other
estimators might perform better

• Not useful if the true distribution does not have a finite
covariance matrix or the mean vector does not exist

11



The Multivariate Normal
Distribution



Definition

X = (X1, . . . , Xd)T has a multivariate normal distribution if

X d
= µ+ AZ,

where Z = (Z1, . . . , Zk)T is a vector of iid standard normal random
variables, µ ∈ Rd and A ∈ Rd×k. We also write X ∼ Nd(µ,Σ).

• E(X) = µ

• cov(X) = Σ = AAT

We assume that Σ is non-singular.
In this case X has an absolutely continuous distribution function
with joint density

f(x) = 1
(2π)d/2det(Σ)1/2 exp

{
− 12 (x− µ)TΣ−1(x− µ)

}
.
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Joint Density of the Multivariate Normal Distribution

Figure 1: Density of a bivariate normal
distribution with standard normal
margins and correlation −0.7.

f(x) =
1

(2π)d/2det(Σ)1/2
exp

{
− 1
2 (x− µ)TΣ−1(x− µ)

}
.

• Components of X are
mutually independent if and
only if Σ is diagonal

• Points with equal density lie
on ellipsoids determined by
equations of the form
(x− µ)TΣ−1(x− µ) = c for
c > 0

• Elliptical symmetry
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Linear Combinations

Let X ∼ Nd(µ,Σ),B ∈ Rk×d,b ∈ Rk and a ∈ Rd.

• BX+ b ∼ Nk(Bµ+ b,BΣBT)
• In particular, aTX ∼ N(aTµ, aTΣa)

Alternative characterization of multivariate normality:
X is multivariate normal if and only if aTX is univariate normal for all
a ∈ Rd \ {0}.
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Marginal Distributions and Conditional Distributions

X = (XT1 , XT2)T like before. This notation can be extended, i.e.

µ =

(
µ1
µ2

)
, Σ =

(
Σ11 Σ12
Σ21 Σ22

)
.

• The marginal distributions of X1 and X2 are also multivariate
normal, X1 ∼ Nk(µ1,Σ11) and X2 ∼ Nd−k(µ2,Σ22)

• The conditional distribution of X2 given X1 = x1 is multivariate
normal,

X2|X1 = x1 ∼ Nd−k(µ2.1,Σ22.1)

where µ2.1 = µ2 +Σ21Σ
−1
11 (x1 − µ1) and Σ22.1 = Σ22 − Σ21Σ

−1
11 Σ12.
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Convolutions

X ∼ Nd(µ,Σ), Y ∼ Nd(µ′,Σ′) independent implies

X+ Y ∼ Nd(µ+ µ′,Σ+ Σ′).
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Normal margins do not imply joint normality

X1 ∼ N(0, 1), Y independent of X1 with P(Y = 1) = P(Y = −1) = 1
2 and

X2 = YX1.

• Marginal distribution of X2

P(X2 ⩽ x2) = E (P(X2 ⩽ x2|Y))
= P(Y = 1)P(X1 ⩽ x2) + P(Y = −1)P(−X1 ⩽ x2)

=
1
2Φ(x) +

1
2Φ(x)

• If (X1, X2)T was multivariate normal, aX1 + bX2 should be
univariate normal for all a,b ∈ R \ {0}

• P(X1 + X2 = 0) = P(Y = −1) = 1
2

⇒ (X1, X2)T is not multivariate normal
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Testing Multivariate Normality



Univariate Tests

X1, . . . , Xn iid multivariate normal, then aTX1, . . . , aTXn are iid
univariate normal.
→ Use univariate normality tests or Q-Q plots
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Multivariate Normality Tests 1

X ∼ Nd(µ,Σ), Z := Σ−1/2(X− µ) ∼ Nd(0, Id)

⇒ (X− µ)TΣ−1(X− µ) = ZTZ ∼ χ2d.

Replace µ and Σ with our standard estimators.

D2i = (Xi − X̄)TS−1(Xi − X̄), i = 1, . . . ,n

Under the null hypothesis D21 , . . . ,D2n should behave roughly like an
iid χ2d-sample. → Use Q-Q plots
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Multivariate Normality Tests 2

Mardia’s tests of multinormality (based on skewness and kurtosis
statistics):

bd =
1
n2

n∑
i=1

n∑
j=1

D3ij, kd =
1
n

n∑
i=1

D4i ,

where Dij = (Xi − X̄)TS−1(Xj − X̄) and D2i = Dii.
Under the null hypothesis of multivariate normality

1
6nbd ∼ χ2d(d+1)(d+2)/6,

kd − d(d+ 2)√
8d(d+ 2)/n

∼ N(0, 1)

as n→ ∞.
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Normality of Returns on Dow Jones Stocks

• Data of ten stocks from the Dow Jones index from 1993-2000
• Daily, weekly, monthly and quarterly logarithmic returns
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Normality of Returns on Dow Jones Stocks: Mardia’s Tests

Daily Weekly Monthly Quarterly
n 2020 416 96 32
b10 9.31 9.91 21.10 50.10
p-value 0.00 0.00 0.00 0.02
k10 242.45 177.04 142.65 120.83
p-value 0.00 0.00 0.00 0.44

• Daily, weekly and monthly return data fail the tests
• Inconclusive for quarterly return data
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Normality of Returns on Dow Jones Stocks: Q-Q Plots

Figure 2: Q-Q plot of the D2i data against a χ210 distribution. (a) daily analysis,
(b) weekly analysis, (c) monthly analysis, (d) quarterly analysis 23



Conclusion

• The multivariate normal distribution has many desirable
properties that make it convenient to use

• Tests on financial return data suggest that it is not a good model
in many risk-management applications

• The marginal tails are too thin
• The joint tails do not assign enough weight to joint extreme
events

• The distribution has a strong form of symmetry and thus a very
specific dependence structure

24



References

Alexander J. McNeil, Rüdiger Frey, and Paul Embrechts.
Quantitative Risk Management: Concepts, Techniques and Tools.

Princeton University Press, Princeton, NJ, USA, 2015.

25


	Basic Definitions and Standard Estimators
	The Multivariate Normal Distribution
	Testing Multivariate Normality

