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Motivation: Correlation between Commodity Prices and USD
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— Dependence structure should be incorporated into financial risk

models.
Data source: Yahoo Finance 1
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Basic Definitions and Standard
Estimators



Random Vectors and Their Distributions

X =

(X1,...,Xq)" random vector of risk-factor changes.

- Joint distribution function

F(x) = Fx(X) = Fx(X1,...,Xq) = P(X < X) = P(Xy < X1y...,Xg < Xq)

- Marginal distribution function of X;

F,'(X,‘) = P(X,‘ < X,') = :"_(OO7 ..., 00,Xj,00,. . .,OO)

- X= (XI, X;)T where X; = (Xq, 500 ,X;?)T, X = (Xk+17 500 ,Xd)T,

marginal distribution of X, is
Fx,(x1) = P(Xy < X1) = F(Xq, ..., X, 00, ..., 00)

- Distribution function of X is absolutely continuous if

F(X1,...,X / / fur, ... ug)duq ... dug

- Existence of joint density f implies existence of all

k-dimensional marginal densities



Conditional Distributions and Independence 1

X = (X],X])T like before.

- Density of X; given Xy = x4

(X17X2)
Frop (Xa[x1) = B 0]
- Corresponding distribution function
R X (X1, e Xy Uk - - -5 Ug
Fy, 1%, (X2[X1) / = (x: ) dupyq ... dug
1

- IFf(X) = fx,(X1)fx, (X2), then X; and X, are independent



Conditional Distributions and Independence 2

- Components of X are mutually independent if and only if
F(x) = [T, Fi(x;) for all x € R

- When X possesses a density f, the components are mutually
independent if and only if f(x) = H, Lfi(x;) for all x € R9



Mean Vectors and Covariance Matrices

- Mean vector of X is defined as E(X) = (E(X1),...,E(Xg))"

- Covariance matrix of X is defined as
cov(X) = E ((X — E(X))(X — E(X))"), where the expectation
operator is applied componentwise

- Entries of the covariance matrix
ojj = CoV(Xj, X;) = E(XiX;) — E(X))E(X))

- Correlation matrix p(X) is defined componentwise by

cov(X;, X;)

i = p(Xi, X)) =
Py = pXi, X)) var(X;)var(X;)



Properties of Mean Vectors and Covariance Matrices

Let B € R**? b e RF and a € RY.
- E(BX+b)=BE(X)+b
« cov(BX + b) = Bcov(X) B
Let ¥ = cov(X).
- var(a’X) =a'za >0
- If ¥ is positive-definite — Cholesky decomposition ¥ = AAT

- ¥'/2 = A denotes the Cholesky factor, ¥="/2 its inverse



Standard Estimators of Covariance and Correlation 1

- Xq,..., X, identically distributed observations of a
d-dimensional risk-factor change

- First assumption: Independent or serially uncorrelated

- Second assumption: Their distribution has mean vector p, finite
covariance matrix £ and correlation matrix P



Standard Estimators of Covariance and Correlation 2

- Estimator for u

(sample mean)
- Estimator for X

1 _ _
== > X = X)X = X)"

(sample covariance matrix)
- Estimator for P
R (sample correlation matrix) defined componentwise by

where sj, denotes the (j, k)-th element of S



Properties of the Standard Estimators 1

- Estimator for X

1w . .
= /Z:;(x,- —X)(X —X)"

(sample covariance matrix)
- We have

= Z cov(Xj) — ncov(X) =nxX — X

since cov(X) = n~'% for iid or identically distributed and
uncorrelated data

- Unbiased version given by S, = nS/(n —1)



Properties of the Standard Estimators 2

- Further properties of X,S and R depend on the true distribution
of the observations

- If the data is iid multivariate normal, they are the maximum
likelihood estimators and their behavior is well understood

- For other distributions it is less well understood and other
estimators might perform better

- Not useful if the true distribution does not have a finite
covariance matrix or the mean vector does not exist
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The Multivariate Normal
Distribution




X = (X,...,X4)" has a multivariate normal distribution if
X<+ Az,

where Z = (Zy,...,Z)" is a vector of iid standard normal random
variables, u € R% and A € Rk We also write X ~ Ng(u, ¥).

CEX)=p
- cov(X) = X = AAT

We assume that X is non-singular.
In this case X has an absolutely continuous distribution function
with joint density

fix) = WQXD {—;(X — )= (x — M)} :



Joint Density of the Multivariate Normal Distribution

fix) =
mexp {—3(x— )= (x — )}

- Components of X are
mutually independent if and
only if ¥ is diagonal

- Points with equal density lie
on ellipsoids determined by
equations of the form
(X — )= (x — p) = c for
c>0

- Elliptical symmetry

Figure 1: Density of a bivariate normal
distribution with standard normal
margins and correlation —0.7. 13



Linear Combinations

Let X ~ Ng(u,X),B € R**9 b ¢ R* and a € RY.

- BX+b ~ Np(Bp + b, BEB")
- In particular, a’X ~ N(a'y,a’xa)

Alternative characterization of multivariate normality:
X is multivariate normal if and only if a’X is univariate normal for all

acRY\ {0}
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Marginal Distributions and Conditional Distributions

X = (X],XI)" like before. This notation can be extended, i.e.

= 1 s Yy Xo
pa )’ Y0 Xn

- The marginal distributions of X; and X, are also multivariate
normal, X; ~ Ng(p1, X11) and Xo ~ Ng_r(p2, X22)

- The conditional distribution of X, given X; = x4 is multivariate
normal,

Xo|X1 = X1 ~ Ng_p(p2.1, X22.1)
where o1 = pp + X5 (X1 — 1) and Typ g = ¥ — T Ty, T,



X~ Ng(p,Z),Y ~ Ng(p/, X) independent implies

X+Y~Ng(p+p/,E+5).
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Normal margins do not imply joint normality

Xi ~ N(0,1), Y independent of X; with P(Y = 1) = P(Y = —1) = 1 and
Xy = YX5.

- Marginal distribution of X;

- If (X1,X2)" was multivariate normal, aX; + bX; should be
univariate normal for all a,b € R\ {0}

“PXi+ X =0)=P(Y=-1)=1

= (X4, X)T is not multivariate normal



Testing Multivariate Normality




Univariate Tests

X1, ..., X, iid multivariate normal, then a'X;, ..., a’X, are iid
univariate normal.
— Use univariate normality tests or Q-Q plots



Multivariate Normality Tests 1

X~ Ng(p, ¥), Z:= Z72(X = ) ~ Ng(0, I)
= X=p)' T (X—p) =Z'Z~ x5
Replace p and ¥ with our standard estimators.
D? = (X —X)'ST'(X; = X),i=1,...,n

Under the null hypothesis D?, ..., D? should behave roughly like an
iid xj-sample. — Use Q-Q plots
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Multivariate Normality Tests 2

Mardia’s tests of multinormality (based on skewness and kurtosis

statistics):
b 1 n n s I? ,] n .
0= 522D ka=7> Dl
i=1

=1 j=1

where Di/ = (X,' = )_()TS_1(X]' = )_() and D,-2 = (D

Under the null hypothesis of multivariate normality

kg — d(d + 2) N
8d(d+2)/n

1
g”bd ~ Xé(d+1)(d+2)/67

(0,1)

as n — oQ.
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Normality of Returns on Dow Jones Stocks

- Data of ten stocks from the Dow Jones index from 1993-2000

- Daily, weekly, monthly and quarterly logarithmic returns
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Normality of Returns on Dow Jones Stocks: Mardia’s Tests

Daily ~ Weekly Monthly Quarterly

n 2020 416 96 32
b1o 9.31 9.91 21.10 50.10
p-value  0.00 0.00 0.00 0.02
Rig 242,45 177.04  142.65 120.83
p-value  0.00 0.00 0.00 0.44

- Daily, weekly and monthly return data fail the tests

- Inconclusive for quarterly return data
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Normality of Returns on Dow Jones Stocks: Q-Q Plots
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Figure 2: Q-Q plot of the D? data against a x?, distribution. (a) daily analysis,
(b) weekly analysis, (c) monthly analysis, (d) quarterly analysis 3



Conclusion

- The multivariate normal distribution has many desirable
properties that make it convenient to use

- Tests on financial return data suggest that it is not a good model
in many risk-management applications

- The marginal tails are too thin

- The joint tails do not assign enough weight to joint extreme
events

- The distribution has a strong form of symmetry and thus a very
specific dependence structure
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