Basics of Multivariate Modelling

Lars Christmann June 1, 2018

Seminar on Quantitative Risk Management

Motivation: Correlation between Commodity Prices and USD

 \rightarrow Dependence structure should be incorporated into financial risk models.

- 1. Basic Definitions and Standard Estimators
- 2. The Multivariate Normal Distribution
- 3. Testing Multivariate Normality

Basic Definitions and Standard Estimators

Random Vectors and Their Distributions

 $\mathbf{X} = (X_1, \dots, X_d)^T$ random vector of risk-factor changes.

- Joint distribution function $F(\mathbf{x}) = F_{\mathbf{X}}(\mathbf{x}) = F_{\mathbf{X}}(x_1, \dots, x_d) = P(\mathbf{X} \leq \mathbf{x}) = P(X_1 \leq x_1, \dots, X_d \leq x_d)$
- Marginal distribution function of X_i $F_i(x_i) = P(X_i \leq x_i) = F(\infty, \dots, \infty, x_i, \infty, \dots, \infty)$
- $\mathbf{X} = (\mathbf{X}_1^T, \mathbf{X}_2^T)^T$ where $\mathbf{X}_1 = (X_1, \dots, X_k)^T$, $\mathbf{X}_2 = (X_{k+1}, \dots, X_d)^T$, marginal distribution of \mathbf{X}_1 is $F_{\mathbf{X}_1}(\mathbf{X}_1) = P(\mathbf{X}_1 \leq \mathbf{X}_1) = F(x_1, \dots, x_k, \infty, \dots, \infty)$
- Distribution function of X is absolutely continuous if

$$F(x_1,\ldots,x_d)=\int_{-\infty}^{x_1}\cdots\int_{-\infty}^{x_d}f(u_1,\ldots,u_d)\,\mathrm{d} u_1\ldots\,\mathrm{d} u_d$$

• Existence of joint density *f* implies existence of all *k*-dimensional marginal densities

 $\mathbf{X} = (\mathbf{X}_1^T, \mathbf{X}_2^T)^T$ like before.

 $\cdot \,$ Density of X_2 given $X_1 = x_1$

$$f_{\mathbf{X}_2|\mathbf{X}_1}(\mathbf{x}_2|\mathbf{x}_1) = \frac{f(\mathbf{x}_1, \mathbf{x}_2)}{f_{\mathbf{X}_1}(\mathbf{x}_1)}$$

Corresponding distribution function

$$F_{\mathbf{X}_{2}|\mathbf{X}_{1}}(\mathbf{X}_{2}|\mathbf{X}_{1}) = \int_{-\infty}^{x_{k+1}} \cdots \int_{-\infty}^{x_{d}} \frac{f(x_{1}, \dots, x_{k}, u_{k+1}, \dots, u_{d})}{f_{\mathbf{X}_{1}}(\mathbf{X}_{1})} \, \mathrm{d}u_{k+1} \dots \, \mathrm{d}u_{d}$$

• If $f(\mathbf{x}) = f_{X_1}(\mathbf{x}_1) f_{X_2}(\mathbf{x}_2)$, then X_1 and X_2 are independent

- Components of **X** are mutually independent if and only if $F(\mathbf{x}) = \prod_{i=1}^{d} F_i(x_i)$ for all $\mathbf{x} \in \mathbb{R}^d$
- When **X** possesses a density *f*, the components are mutually independent if and only if $f(\mathbf{x}) = \prod_{i=1}^{d} f_i(x_i)$ for all $\mathbf{x} \in \mathbb{R}^d$

Mean Vectors and Covariance Matrices

- Mean vector of **X** is defined as $E(\mathbf{X}) = (E(X_1), \dots, E(X_d))^T$
- Covariance matrix of X is defined as $cov(X) = E((X - E(X))(X - E(X))^T)$, where the expectation operator is applied componentwise
- Entries of the covariance matrix $\sigma_{ij} = \operatorname{cov}(X_i, X_j) = E(X_i X_j) - E(X_i)E(X_j)$
- Correlation matrix ho(X) is defined componentwise by

$$\rho_{ij} = \rho(X_i, X_j) = \frac{\operatorname{cov}(X_i, X_j)}{\sqrt{\operatorname{var}(X_i)\operatorname{var}(X_j)}}$$

Let $B \in \mathbb{R}^{k \times d}$, $\mathbf{b} \in \mathbb{R}^k$ and $\mathbf{a} \in \mathbb{R}^d$.

- E(BX + b) = BE(X) + b
- $\operatorname{cov}(B\mathbf{X} + \mathbf{b}) = B \operatorname{cov}(\mathbf{X}) B^{\mathsf{T}}$

Let $\Sigma = \text{cov}(X)$.

- $var(a^T X) = a^T \Sigma a \ge 0$
- If Σ is positive-definite \rightarrow Cholesky decomposition $\Sigma=\text{AA}^{\text{T}}$
- + $\Sigma^{1/2}=A$ denotes the Cholesky factor, $\Sigma^{-1/2}$ its inverse

- X₁,..., X_n identically distributed observations of a *d*-dimensional risk-factor change
- First assumption: Independent or serially uncorrelated
- Second assumption: Their distribution has mean vector μ , finite covariance matrix Σ and correlation matrix P

Standard Estimators of Covariance and Correlation 2

+ Estimator for μ

$$\bar{\mathbf{X}} := \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}$$

(sample mean)

 $\cdot\,$ Estimator for $\Sigma\,$

$$S := \frac{1}{n} \sum_{i=1}^{n} (\mathbf{X}_i - \bar{\mathbf{X}}) (\mathbf{X}_i - \bar{\mathbf{X}})^{\mathsf{T}}$$

(sample covariance matrix)

• Estimator for P

R (sample correlation matrix) defined componentwise by

$$r_{jk} = \frac{\mathsf{S}_{jk}}{\sqrt{\mathsf{S}_{jj}\mathsf{S}_{kk}}}$$

where s_{jk} denotes the (j, k)-th element of S

Properties of the Standard Estimators 1

 $\cdot\,$ Estimator for $\Sigma\,$

$$S := \frac{1}{n} \sum_{i=1}^{n} (\mathbf{X}_i - \bar{\mathbf{X}}) (\mathbf{X}_i - \bar{\mathbf{X}})^{\mathsf{T}}$$

(sample covariance matrix)

• We have

$$nE(S) = E\left(\sum_{i=1}^{n} (\mathbf{X}_{i} - \mu)(\mathbf{X}_{i} - \mu)^{T} - n(\bar{\mathbf{X}} - \mu)(\bar{\mathbf{X}} - \mu)^{T}\right)$$
$$= \sum_{i=1}^{n} \operatorname{cov}(\mathbf{X}_{i}) - n\operatorname{cov}(\bar{\mathbf{X}}) = n\Sigma - \Sigma$$

since $\operatorname{cov}(\bar{X}) = n^{-1}\Sigma$ for iid or identically distributed and uncorrelated data

• Unbiased version given by $S_u = nS/(n-1)$

- Further properties of $\bar{\mathbf{X}}$, S and R depend on the true distribution of the observations
- If the data is iid multivariate normal, they are the maximum likelihood estimators and their behavior is well understood
- For other distributions it is less well understood and other estimators might perform better
- Not useful if the true distribution does not have a finite covariance matrix or the mean vector does not exist

The Multivariate Normal Distribution

Definition

 $\mathbf{X} = (X_1, \dots, X_d)^T$ has a multivariate normal distribution if

$$\mathbf{X} \stackrel{d}{=} \boldsymbol{\mu} + \mathbf{A}\mathbf{Z},$$

where $\mathbf{Z} = (Z_1, \ldots, Z_k)^T$ is a vector of iid standard normal random variables, $\mu \in \mathbb{R}^d$ and $A \in \mathbb{R}^{d \times k}$. We also write $\mathbf{X} \sim N_d(\mu, \Sigma)$.

· $E(X) = \mu$

· cov(X) =
$$\Sigma = AA^{T}$$

We assume that Σ is non-singular.

In this case **X** has an absolutely continuous distribution function with joint density

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} \det(\mathbf{\Sigma})^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\mu)^T \mathbf{\Sigma}^{-1}(\mathbf{x}-\mu)\right\}.$$

Joint Density of the Multivariate Normal Distribution

 $f(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} \det(\mathbf{\Sigma})^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\mu)^{\mathsf{T}} \mathbf{\Sigma}^{-1}(\mathbf{x}-\mu)\right\}$

- Components of X are mutually independent if and only if Σ is diagonal
- Points with equal density lie on ellipsoids determined by equations of the form $(\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu) = c$ for c > 0
- Elliptical symmetry

Figure 1: Density of a bivariate normal distribution with standard normal margins and correlation -0.7.

Let $X \sim N_d(\mu, \Sigma), B \in \mathbb{R}^{k \times d}, \mathbf{b} \in \mathbb{R}^k$ and $\mathbf{a} \in \mathbb{R}^d$.

- $B\mathbf{X} + \mathbf{b} \sim N_k(B\mu + \mathbf{b}, B\Sigma B^T)$
- In particular, $\mathbf{a}^{\mathsf{T}}\mathbf{X} \sim N(\mathbf{a}^{\mathsf{T}}\mu, \mathbf{a}^{\mathsf{T}}\Sigma\mathbf{a})$

Alternative characterization of multivariate normality:

X is multivariate normal if and only if $\mathbf{a}^T \mathbf{X}$ is univariate normal for all $\mathbf{a} \in \mathbb{R}^d \setminus \{\mathbf{0}\}$.

 $X = (X_1^{\text{T}}, X_2^{\text{T}})^{\text{T}}$ like before. This notation can be extended, i.e.

$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}.$$

- The marginal distributions of X_1 and X_2 are also multivariate normal, $X_1 \sim N_k(\mu_1, \Sigma_{11})$ and $X_2 \sim N_{d-k}(\mu_2, \Sigma_{22})$
- The conditional distribution of $X_{\rm 2}$ given $X_{\rm 1}=x_{\rm 1}$ is multivariate normal,

$$X_2|X_1 = X_1 \sim N_{d-k}(\mu_{2.1}, \Sigma_{22.1})$$

where $\mu_{2.1} = \mu_2 + \Sigma_{21} \Sigma_{11}^{-1} (\mathbf{x}_1 - \mu_1)$ and $\Sigma_{22.1} = \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}$.

$\mathbf{X} \sim N_d(\mu, \mathbf{\Sigma}), \mathbf{Y} \sim N_d(\mu', \mathbf{\Sigma}')$ independent implies

$$X + Y \sim N_d(\mu + \mu', \Sigma + \Sigma').$$

Normal margins do not imply joint normality

 $X_1 \sim N(0, 1)$, Y independent of X_1 with $P(Y = 1) = P(Y = -1) = \frac{1}{2}$ and $X_2 = YX_1$.

• Marginal distribution of X₂

$$P(X_2 \le x_2) = E(P(X_2 \le x_2 | Y))$$

= P(Y = 1)P(X_1 \le x_2) + P(Y = -1)P(-X_1 \le x_2)
= $\frac{1}{2}\Phi(x) + \frac{1}{2}\Phi(x)$

• If $(X_1, X_2)^T$ was multivariate normal, $aX_1 + bX_2$ should be univariate normal for all $a, b \in \mathbb{R} \setminus \{0\}$

•
$$P(X_1 + X_2 = 0) = P(Y = -1) = \frac{1}{2}$$

 $\Rightarrow (X_1, X_2)^T$ is not multivariate normal

Testing Multivariate Normality

 X_1, \ldots, X_n iid multivariate normal, then $\mathbf{a}^T X_1, \ldots, \mathbf{a}^T X_n$ are iid univariate normal.

 \rightarrow Use univariate normality tests or Q-Q plots

$$\begin{split} \mathsf{X} &\sim \mathsf{N}_d(\mu, \Sigma), \, \mathsf{Z} := \Sigma^{-1/2} (\mathsf{X} - \mu) \sim \mathsf{N}_d(\mathbf{0}, \mathsf{I}_d) \\ & \Rightarrow (\mathsf{X} - \mu)^\mathsf{T} \Sigma^{-1} (\mathsf{X} - \mu) = \mathsf{Z}^\mathsf{T} \mathsf{Z} \sim \chi_d^2. \end{split}$$

Replace μ and Σ with our standard estimators.

$$D_i^2 = (\mathbf{X}_i - \bar{\mathbf{X}})^T S^{-1} (\mathbf{X}_i - \bar{\mathbf{X}}), i = 1, \dots, n$$

Under the null hypothesis D_1^2, \ldots, D_n^2 should behave roughly like an iid χ_d^2 -sample. \rightarrow Use Q-Q plots

Mardia's tests of multinormality (based on skewness and kurtosis statistics):

$$b_d = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n D_{ij}^3, \quad k_d = \frac{1}{n} \sum_{i=1}^n D_i^4,$$

where $D_{ij} = (\mathbf{X}_i - \bar{\mathbf{X}})^T S^{-1} (\mathbf{X}_j - \bar{\mathbf{X}})$ and $D_i^2 = D_{ii}$. Under the null hypothesis of multivariate normality

$$\frac{1}{6}nb_d \sim \chi^2_{d(d+1)(d+2)/6}, \quad \frac{k_d - d(d+2)}{\sqrt{8d(d+2)/n}} \sim N(0,1)$$

as $n \to \infty$.

- Data of ten stocks from the Dow Jones index from 1993-2000
- Daily, weekly, monthly and quarterly logarithmic returns

Normality of Returns on Dow Jones Stocks: Mardia's Tests

	Daily	Weekly	Monthly	Quarterly
n	2020	416	96	32
b ₁₀	9.31	9.91	21.10	50.10
<i>p</i> -value	0.00	0.00	0.00	0.02
k ₁₀	242.45	177.04	142.65	120.83
<i>p</i> -value	0.00	0.00	0.00	0.44

- Daily, weekly and monthly return data fail the tests
- Inconclusive for quarterly return data

Normality of Returns on Dow Jones Stocks: Q-Q Plots

Figure 2: Q-Q plot of the D_i^2 data against a χ^2_{10} distribution. (a) daily analysis, (b) weekly analysis, (c) monthly analysis, (d) quarterly analysis

- The multivariate normal distribution has many desirable properties that make it convenient to use
- Tests on financial return data suggest that it is not a good model in many risk-management applications
- The marginal tails are too thin
- The joint tails do not assign enough weight to joint extreme events
- The distribution has a strong form of symmetry and thus a very specific dependence structure

Alexander J. McNeil, Rüdiger Frey, and Paul Embrechts. Quantitative Risk Management: Concepts, Techniques and Tools.

Princeton University Press, Princeton, NJ, USA, 2015.