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What is the aim of dimension-reduction techniques?

m Financial risk management is very complex and
high-dimensional

Complex problems have to be modelled

Analyze an amount of data by various variables, such as a
person’s age, profession or health

m — Multivariate statistical analysis
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Course of the talk

m Factor models

m — Explain randomness of random vector by using a smaller set
of common factors

m Principal component analysis (PCA)

m — Data rotation technique to reduce dimensionality of highly
correlated data by finding a small set of uncorrelated linear
combinations
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Introduction in factor models

m Explain randomness in the components of a random vector X
by representing it by a smaller set of common factors

m Large part of variation of equity returns can be explained in
terms of smaller set of market index returns

m Drag of a car — relevant parameters such as length, width and
height can be combined to size of a car
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Remember

m E(X) = [7_ xf(x)dx = p is called mean of X
m 02 = [% (x — p)?f(x)dx is called variance of X

m Cov(X,Y)=E[(X—E(X)) (Y —E(Y))] is called
covariance of X and Y, notice Cov(X, Y) = Cov(Y,X)

Var(x1)  Cov(x1,x2) ... Cov(xi,xn)
Cov(xp, x Var(x. ... Cov(xp,x

m Cov(X) = (_2 ) ( 2) _ (_2 ")
Cov(xn,x1) Cov(xn,x2) ... Var(x,)
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p-factor model

m Random vector X is said to follow a p-factor model if it can be

written as
X = a+ BF + ¢, where
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p-factor model

m Random vector X is said to follow a p-factor model if it can be

written as
X = a+ BF + ¢, where
m F=(F...,F,)7 is a random vector of common factors with

p < d and a positive definite covariance matrix
mc=(€1,...,€p)" is a random vector of idiosyncratic error
terms, which are uncorrelated and have mean 0
m B € RY%P is a matrix of constant factor loadings and a € RY
is a vector of constants

m cov(F,e) =0, which means the errors and the common
factors are uncorrelated
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In case of normal distribution

m Assume X to be multivariate normally distributed and follows
the p-factor model

m Let Q be the covariance matrix of F and ~ the one of €
m— Y =Cov(X)=BQB+~y
m Define F* = Q~Y/2(F — E(F)) and B* = BQ'/?
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In case of normal distribution

m Factor model of the form X = p+ B*F* + ¢, where i = E(X)
and ¥ = B*(B*)T ++

Theorem

Whenever a random vector X has a covariance matrix - that
satisfies

Y =BBT 4+,

where B € RI*P with rank(B) = p < d and v is a diagonal matrix,
then the random vector X has a factor model representation for
some p-dimensional factor vector F and a d-dimensional error
vector e.
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Three kinds of factor models

m Assume data Xi,..., X, € R? representing risk factor changes
at different times t =1,...,n

m Each risk factor change X; should follow a p-factor model
m—> Xy =a+ BF;+¢, fort=1,...,n with p-dimensional

common factor vectors Fy = (Fe1, ..., Ft,p)T, error vectors €z,
a d-dimensional vector of constants a and loading matrix
B € RIxp

m This model is an idealization where data would be explained
perfectly by a factor model — seldomly the case in reality

m Therefore, find an approximating factor model that deals with
the main sources of variability in the data
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Macroeconomic factor models

m Assume that appropriate factors F; are observable and we
collect time-series data Fy,...,F, € RP

m Called macroeconomic because they are mostly used in finance
and economics to observe macroeconomic factors as changes
in inflation or interest rates
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Application in Sharpe’s single-index model

m F; are observations of the return on a market index

m X; are equity returns which are explained in terms of the
market return

m B and a have to be determined by time-series regression
techniques
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Fundamental factor models

m Assume that the factors F; are unobserved but the loading
matrix B is given

m These models get their name by applications in modelling
equity returns where stocks are classified according to their
fundamental attributes, such as country or industry sector

m F; have to be estimated from data X; using cross-sectional
regression at each time point t
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Fundamental factor models

m If each risk factor change X; ; is identified with a unique value
of a fundamental, e.g. a unique country, the loading Matrix B
will only consist 0 and 1

m If one risk factor change X; ; depends to more than one
country, e.g. a stock of a multinational company, then B can
contain weighted values which sum up to 1

m Moreover there may be the case, where it is necessary to use

time-dependent loading matrices B;. This happens when the
fundamental values change, e.g. the sales market of a company
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Statistical factor models

m Most common model are statistical factor models
m Factors F; and the loading matrix B are both not given

m We can estimate F; and B from the data Xi,..., X, by using
statistical techniques

m On the one hand, this approach can be very powerful in
explaining the variability in data

m On the other hand, it is not secured that the observed data
have an obvious interpretation
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Factor finding in statistical factor models

m Classical statistical factor analysis, but is not used that
commonly

m Principal component analysis (PCA) (next section)
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Introduction in PCA

m Principal component analysis (PCA) is useful to reduce the
dimensionality of highly correlated data

m Finding a small number of uncorrelated linear combinations
that account for the most of the variance of the original data

m Example: Three factors Fi, Fp, F3 and three variables length,
width and pace and let the loading matrix be given by
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Example

factor F F> F3

length(l) 0,862 0,481 -0,159
width(w) 0,977 0,083 0,198
pace(p)  -0,679 0,730 0,082

m For example, factor F; is given by the linear combination
F=0,862-/14+0,977-w — 0,679 - p

m Effects of the variables / and w are decisive, whereas the effect
of p is small

m Influence of factor F3 is not very huge and does not give many
information about the data — eliminate
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Spectral decompostion theorem of algebra

m Main mathematical result behind PCA

m Any symmetric matrix A € R¥*? (i.e. A= AT) can be written
as A=TAIT

m Where A = diag()\1, ..., Aq) is the diagonal matrix consisting
of eigenvalues of A and without loss of generality the
eigenvalues \; are ordered decreasingly

m [ is an orthogonal matrix (i.e. [T =TT = I;), whose
columns are standardized eigenvectors of A (i.e. eigenvectors
with length 1)
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Principal components transform

Covariance matrix £ of a random vector X is symmetric

Positive semidefiniteness of ¥ ensures that A; > 0 for all j

Suppose the random vector X has the mean vector y and
covariance matrix X

Apply spectral decomposition theorem to ¥ — ¥ =TAI'"
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Principal components transform and its properties

m The principal components transform of X is then given by
Y =TT(X~p)

m Interpreted as a rotation and recentring of X

m The jth component of the new vector is called jth principal
component of X and is given by Y; = VJ.T(X — )

m Where 7; is the eigenvector of ¥ corresponding to the jth
ordered eigenvalue and is called also jth vector of loadings

m For the rotated vector Y the characteristics E(Y) = 0 and
Cov(Y)=TTEI =TTTAF'T = A (thus I is orthogonal) hold
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Maximizing of the variance

m Principal components of Y are uncorrelated and have
variances var(Yj) = A; for all j

m Components are ordered by variance, from largest to smallest
— maximizing of the variance

m The first principal component is the standardized linear
combination of X, which has maximal variance among all such
combinations

m Var(y] X) = max[Var(a” X)|aTa = 1].
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Maximizing of the variance

m For j =2,...,d, the jth principal component is the
standardized linear combination of X with maximal variance
among all of these linear combinations that are orthogonal to
the first j — 1 linear combinations

m The last principal component vector has minimum variance
among standardized Iinear combinations of X

m Due to Z Var(Yj) = Z Aj = trace(X) = Z Var(X;) we can
j=1
use principal components to explain the varlance of X

d
m ) )i/ > Ajrepresents the amount of the variance that is
=1 A
explained by the first k principal components
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Example

m Applying PCA to our known example shows us the distribution
of the total variance to the principal components

| |
factor eigenvalue \; proportion on total variance sum
F 2,16 71,97 71,97
F 0,77 25,67 97,64
Fs 0,07 2,36 100,00

m The proportion of factor F3 on the total variance is very small

m Eliminate factor F3 and only consider factors F; and F
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Factor Modelling by PCA

m Use PCA for the construction of factors to use them in factor
modelling

m By inverting our principal component transform we get
X=p+lY=p+T1Y1+T2Yo

m Where Y is divided into two vectors Y; € R¥ and Y, € R4~k

m Y; contains the first k principal components and Y5 the
further ones
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Factor Modelling by PCA

m [ is partitioned into two matrices I'; € R9*¥ and
M, e Rdx(d—k)

m By choosing k so that the first k principal components explain
a large part of the total variance of X, we can focus on these
k principal components and ignore the further ones from k + 1
to d

m Set the error vector ¢ =2 Y5 and we obtain X = u+T1Y] +e€

m In the form of the basic factor model, where Y] replaces the
factors F and I'; is replacing the loading matrix B
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Factor estimation process

m Assume that we have a time series of multivariate data
observation Xi, ..., X, with identical distribution, unknown
mean vector y and covariance matrix ¥ = TAI'T

m To construct sample principal components we need to estimate
the unknown parameters y and &

m Estimate 4 by the sample mean vector X and X by the sample
n

covariance matrix Sx = £ S7(X; — X)(X; — X)T

n
t=1

m Apply the spectral decompostion to get Sx = GLG"
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Definitions

m Define sample principal components as Y; = GT(X; — X) for
t=1,...,n

m jth sample principal component as a component of Y; as
Yij = g (Xt — X) where g; is the jth column of G, which is
the eigenvector of Sx coresponding to the jth largest
eigenvalue

m L is the sample covariance matrix of the rotated vectors
Yi,.- o, Ya

m The rotated vectors have no correlation between components
and the components are ordered decreasingly by their sample
variances
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Conclusion

m Dimension-reduction techniques are very important
m Reduce the complexity of a problem by modelling it

m PCA powerful device to explain the variance of a random
vector X and to decide which components are relevant and
which not

m Lose some precison <> reduce the dimension of a problem and
thus its complexity

Sometimes no obvious interpretation of data by PCA
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Thank you for your
attention!
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